Second law analysis of a plate heat exchanger with an axial dispersive wave
Kumar Das, Sarit; Roetzel, Wilfried
A second law analysis is presented for thermally dispersive flow through a plate heat exchanger. It is well known that in plate or plate fin type heat exchangers the backmixing and other deviations from plug flow contribute significantly to the inefficiency of the heat exchanger, which is of importance to heat exchangers working in the cryogenic regime. The conventional axial heat dispersion model which is used so far is found to be better than `plug flow' model but still unsatisfactory where the timescale related to heat transfer is comparable with the thermal relaxation time for the propagation of dispersion. The present work therefore considers dispersion as a wave phenomenon propagating with a finite velocity. The study discusses the nature of variation of different contributions to total exergy loss in the heat exchanger with respect to dispersion parameters of the Peclet number and propagation velocity of the dispersive wave. The practical example of the single-pass plate heat exchanger demonstrates how a second law optimization can be carried out for heat transfer equipment under such conditions.
Fundamental modes of new dispersive SH-waves in piezoelectromagnetic plate
A A Zakharenko
2013-11-01
Fundamental modes of new dispersive shear-horizontal (SH) acoustic waves propagating in the (6 mm) piezoelectromagnetic plate are studied. These SH-waves can propagate when the following boundary conditions are exploited for both the upper and lower surfaces of the plate: (1) when the surfaces are mechanically free, electrically and magnetically closed and (2) when the surfaces are mechanically free, electrically and magnetically open. The SH-waves depend on the electromagnetic wave speed $V_{\\text{EM}} = 1/\\sqrt{( )}$ and can only exist when the electromagnetic constant ≠ 0. The calculations (first evidence) were performed for the PZT-5H–Terfenol-D which is a composite with a large value of . The limit cases of large values of (2 = 0.5 , 2 = 0.9 ), and 2 = 0.99 ) are studied because they satisfy the limitation condition of 2 < .
Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface
Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih
2016-07-01
The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.
Reconstruction of Dispersive Lamb Waves in Time Plates Using a Time Reversal Method
Jeong, Hyun Jo [Wonkwang University, Iksan (Korea, Republic of)
2008-02-15
Time reversal (TR) of nondispersive body waves has been used in many applications including ultrasonic NDE. However, the study of the TR method for Lamb waves on thin structures is not well established. In this paper, the full reconstruction of the input signal is investigated for dispersive Lamb waves by introducing a time reversal operator based on the Mindlin plate theory. A broadband and a narrowband input waveform are employed to reconstruct the A{sub 0} mode of Lamb wave propagations. Due to the frequency dependence of the TR process of Lamb waves, different frequency components of the broadband excitation are scaled differently during the time reversal process and the original input signal cannot be fully restored. This is the primary reason for using a narrowband excitation to enhance the flaw detectability
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
Harb, M. S.; Yuan, F. G.
2015-03-01
Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser
Hsu, Jin-Chen; Wu, Tsung-Tsong
2008-02-01
Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed. For solid/solid phononic plates, it is suggested that the filling material be chosen with larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in order to obtain wider complete band gaps of the lower-order Lamb waves. By comparing to the calculated results without considering the piezoelectricity, the influences of piezoelectric effect on Lamb waves are analyzed as well. On the other hand, for air/solid phononic plates, a background material itself with proper anisotropy and a high filling fraction of air may favor the opening of the complete Lamb wave gaps.
FLEXURAL WAVE PROPAGATION IN NARROW MINDLIN'S PLATE
HU Chao; HAN Gang; FANG Xue-qian; HUANG Wen-hu
2006-01-01
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given.Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories,the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.
Thermoelastic wave propagation in laminated composites plates
Verma K. L.
2012-12-01
Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.
Guided-mode resonant wave plates.
Magnusson, Robert; Shokooh-Saremi, Mehrdad; Johnson, Eric G
2010-07-15
We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55 microm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and pi phase difference across a bandwidth exceeding 50 nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.
Li, Ping
2016-09-09
A discontinuous Galerkin time-domain (DGTD) method analyzing signal/power integrity on multilayered power-ground parallel plate pairs is proposed. The excitation is realized by introducing wave ports on the antipads where electric/magnetic current sources are represented in terms of the eigenmodes of the antipads. Since closed-forms solutions do not exist for the eigenmodes of the arbitrarily shaped antipads, they have to be calculated using numerical schemes. Spatial orthogonality of the eigenmodes permits determination of each mode\\'s temporal expansion coefficient by integrating the product of the electric field and the mode over the wave port. The temporal mode coefficients are then Fourier transformed to accurately calculate the S-parameters corresponding to different modes. Additionally, to generalize the DGTD to manipulate dispersive media, the auxiliary differential equation method is employed. This is done by introducing a time-dependent polarization volume current as an auxiliary unknown and the constitutive relation between this current and the electric field as an auxiliary equation. Consequently, computationally expensive temporal convolution is avoided. Various numerical examples, which demonstrate the applicability, robustness, and accuracy of the proposed method, are presented.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Amplification of acoustic waves in laminated piezoelectric semiconductor plates
Yang, J.S.; Yang, X.M.; Turner, J.A. [University of Nebraska, Department of Engineering Mechanics, Lincoln, NE (United States)
2004-12-01
Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of laminated plates of piezoelectric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order terms in power series expansions in the plate thickness coordinate. The equations are used to analyze extensional waves in a composite plate of piezoelectric ceramics and semiconductors. Dispersion and dissipation due to semiconduction as well as wave amplification by a dc electric field are discussed. (orig.)
Light splitting with imperfect wave plates.
Jackson, Jarom S; Archibald, James L; Durfee, Dallin S
2017-02-01
We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.
Ultimately Thin Metasurface Wave Plates
Keene, David; Durach, Maxim
2015-01-01
Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. This is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.
Lamb wave Shearwave dispersion ultrasound Vibrometry (SDUV) validation study.
Nenadic, Ivan; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F
2010-01-01
Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV) for quantifying viscoelasticity of the myocardium. The primary aim of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave model in the heart. The Lamb wave SDUV method was used to measure shear wave velocity dispersion of gelatin and urethane rubber plates in the range 40-500 Hz and estimate the material properties. A finite element model (FEM) of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of viscoelasticity. The FEM wave velocity dispersion data were in excellent agreement with the theoretical predictions. Elasticity and viscosity of urethane and gelatin obtained using the Lamb wave SDUV and embedded sphere methods agree within one standard deviation.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Wave propagation in a magneto-electro- elastic plate
2008-01-01
The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.
Guided wave topological imaging of isotropic plates.
Rodriguez, S; Deschamps, M; Castaings, M; Ducasse, E
2014-09-01
Topological imaging is a recent method. So far, it has been applied to bulk waves, and high resolution has been demonstrated for imaging scatterers even with a single ultrasonic insonification of the inspected medium. This method consists of (i) emitting waves and measuring the response of the medium; (ii) solving two propagation problems: the direct problem, where the experimental source is simulated, and the adjoint problem, where the source is the time-reversed difference between the measured wave field and that obtained from the direct problem; (iii) computing the image by simply multiplying both wave fields together in the frequency domain, and integrating over the frequency. The speed of the method depends only on the cost of the field computations that are performed in the defect-free medium. The present work deals with the application of topological imaging to plate guided waves. Combining modal theory and Fourier analysis, the computations are performed in a very short time. In the investigated cases, two-dimensional in-plane imaging is based on propagation of the single S0 Lamb mode. Despite very high dispersion of that mode, scatterers are accurately located and the spatial resolution is equal to about one wavelength.
Simplified description of out-of-plane waves in thin annular elastic plates
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role of curv...
Adaptive dispersion compensation for guided wave imaging
Hall, James S.; Michaels, Jennifer E.
2012-05-01
Ultrasonic guided waves offer the promise of fast and reliable methods for interrogating large, plate-like structures. Distributed arrays of permanently attached, inexpensive piezoelectric transducers have thus been proposed as a cost-effective means to excite and measure ultrasonic guided waves for structural health monitoring (SHM) applications. Guided wave data recorded from a distributed array of transducers are often analyzed and interpreted through the use of guided wave imaging algorithms, such as conventional delay-and-sum imaging or the more recently applied minimum variance imaging. Both imaging algorithms perform reasonably well using signal envelopes, but can exhibit significant performance improvements when phase information is used. However, the use of phase information inherently requires knowledge of the dispersion relations, which are often not known to a sufficient degree of accuracy for high quality imaging since they are very sensitive to environmental conditions such as temperature, pressure, and loading. This work seeks to perform improved imaging with phase information by leveraging adaptive dispersion estimates obtained from in situ measurements. Experimentally obtained data from a distributed array is used to validate the proposed approach.
Directional bending wave propagation in periodically perforated plates
Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo
2015-01-01
We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated ...
Propagation of elastic waves in a plate with rough surfaces
DAI Shuwu; ZHANG Hailan
2003-01-01
The characteristics of Lamb wave propagating in a solid plate with rough surfacesare studied on the basis of small perturbation approximation. The Rayleigh-Lamb frequencyequation expressed with SA matrix is presented. The Rayleigh-Lamb frequency equation fora rough surface plate is different from that for a smooth surface plate, resulting in a smallperturbation Ak on Lamb wave vector k. The imaginary part of Ak gives the attenuationcaused by wave scattering. An experiment is designed to test our theoretical predications.By using wedge-shape pipes, different Lamb wave modes are excited. The signals at differentpositions are received and analyzed to get the dispersion curves and attenuations of differentmodes. The experimental results are compared with the theoretical predications.
Acoustoelastic Lamb wave propagation in biaxially stressed plates.
Gandhi, Navneet; Michaels, Jennifer E; Lee, Sang Jun
2012-09-01
Acoustoelasticity, or the change in elastic wave speeds with stress, is a well-studied phenomenon for bulk waves. The effect of stress on Lamb waves is not as well understood, although it is clear that anisotropic stresses will produce anisotropy in the Lamb wave dispersion curves. Here the theory of acoustoelastic Lamb wave propagation is developed for isotropic media subjected to a biaxial, homogeneous stress field. It is shown that, as expected, dispersion curves change anisotropically for most stresses, modes, and frequencies. Interestingly, for some mode-frequency combinations, changes in phase velocity are isotropic even for a biaxial stress field. Theoretical predictions are compared to experimental results for several Lamb wave modes and frequencies for uniaxial loads applied to an aluminum plate, and the agreement is reasonably good.
Databases of surface wave dispersion
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Stationary one-dimensional dispersive shock waves
Kartashov, Yaroslav V
2011-01-01
We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defect in defocusing media with linear gain and two-photon absorption. We found that in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from defect or generating beam, the competition between gain and two-photon absorption in dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed certain critical value.
Numerical Wave Flume Study on Wave Motion Around Submerged Plates
齐鹏; 侯一筠
2003-01-01
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Dispersive internal long wave models
Camassa, R.; Choi, W.; Holm, D.D. [Los Alamos National Lab., NM (United States); Levermore, C.D.; Lvov, Y. [Univ. of Arizona, Tucson, AZ (United States)
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.
Shear Flow Dispersion Under Wave and Current
无
2007-01-01
The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is proposed based on Fischer's expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the proposed expression. The experimental results, together with dimensional analysis, show that the wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased under the presence of waves.
QT dispersion and P wave dispersion in patients with fibromyalgia.
Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Karakaya, Bülent; Dağlı, Mustafa Necati; Koca, Süleyman Serdar
2016-12-01
Fibromyalgia (FM) is a chronic disease characterized by widespread pain. Somatic complaints associated with the cardiovascular system, such as chest pain and palpitations, are frequently seen in FM patients. P and QT dispersions are simple and inexpensive measurements reflecting the regional heterogeneity of atrial and ventricular repolarization, respectively. QT dispersion can cause serious ventricular arrhythmias. The aim of the present study was to evaluate QT dispersion and P wave dispersion in patients with FM. The study involved 48 FM patients who fulfilled the established criteria and 32 healthy controls (HC). A standard 12-lead electrocardiogram was performed on all participants. QT dispersion was defined as the difference between the longest and the shortest QT intervals. Similarly, the differences between the shortest and longest P waves were defined as P wave dispersion. The QT dispersion and corrected QT dispersion were shorter in the FM group compared with the HC group (pdispersion value, there was no significant difference between the FM and HC groups (p=0.088). Longer QT and P wave dispersions are not problems in patients with FM. Therefore, it may be concluded that fibromyalgia does not include an increased risk of atrial and/or ventricular arrhythmias.
Thermo elastic waves with thermal relaxation in isotropic micropolar plate
Soumen Shaw; Basudeb Mukhopadhyay
2011-04-01
In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an inﬁnitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.
Wave Propagation In Plates Studied By Pulsed Hologram Interferometry
Wahlin, Anders; Fallstrom, Karl-Evert; Gustavsson, H.; Molin, Nils-Erik
1989-07-01
Isotropic and non-isotropic plates are impacted by a ballistic pendulum. The bending waves that are generated are studied with holographic interferometry using a double pulsed ruby laser as light source. The pulse shape changes with time because of the dispersivity of the waves. Initially the fringe pattern in the isotropic case is cylindrically symmetric and determined from an initial value problem. Later, when the waves have reached the plate rim, in-and outgoing waves gradually develop fringe patterns which in the end will be a combination of eigenmodes of the plate. A solution to the corresponding Kirchhoff plate equation is presented, which in the special case when the impact is modelled as a Dirac-pulse in space and time, is shown to depend only of the distance to the impact point divided by the square root of the time after impact and a parameter containing plate parameters. From the slope of the central deflection material parameters can be determined. Another solution, assuming a finite inpact time, is shown to agree better with experiments. Results from investigations of non-isotropic materials are also presented.
Nonlinear Dispersion Relation in Wave Transformation
李瑞杰; 严以新; 曹宏生
2003-01-01
A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over-prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1＜kh＜1.5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.
Lamb waves propagation in layered piezoelectric/piezomagnetic plates.
Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2017-04-01
A dynamic solution is presented for the propagation of harmonic waves in magneto-electro-elastic plates composed of piezoelectric BaTiO3(B) and magnetostrictive CoFe2O4(F) material. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The ordinary differential approach is employed to determine the wave propagating characteristics in the plate by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. The dispersion curves of the piezoelectric-piezomagnetic plate are shown for different thickness ratios. The numerical results show clearly the influence of different stacking sequences as well as thickness ratio on dispersion curves and on magneto-electromechanical coupling factor. These findings could be relevant to the analysis and design of high-performance surface acoustic wave (SAW) devices constructed from piezoelectric and piezomagnetic materials.
SH-guided waves in layered piezoelectric/piezomagnetic plates
Guoquan Nie; Zijun An; Jinxi Liu
2009-01-01
The propagation of shear horizontal (SH) guided waves in a coupled plate consisting of a piezoelectric layer and a piezomagnetic layer is studied. Both the layers are transversely isotropic and perfectly bonded along the interface. The upper and the lower surfaces of the plate are assumed to be mechanically free, electrically open and magnetically dosed. Two different cases are considered. One is that the bulk shear wave velocity of piezoelectric material is larger than that of piezomagnetic material. The other is that the bulk shear wave velocity of piezomagnetic material is larger than that of piezoelectric material. The dispersion relation is obtained while the phase velocity is among the bulk shear wave velocity of two different layers. The numerical results show that the phase velocity approaches the smaller bulk shear wave velocity of the material in the system with the increase in the wave number for different modes. The thickness ratio and the properties of the piezoelectric material have great effect on the dispersion behaviors. The results of this paper can offer some funda-mental theory to the application of piezoelectric/piezomagnetic composites or structures.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.
Harb, M S; Yuan, F G
2015-08-01
A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Wave turbulence buildup in a vibrating plate
Auliel, Maria Ines; Mordant, Nicolas
2015-01-01
We report experimental and numerical results on the buildup of the energy spectrum in wave turbulence of a vibrating thin elastic plate. Three steps are observed: first a short linear stage, then the turbulent spectrum is constructed by the propagation of a front in wave number space and finally a long time saturation due to the action of dissipation. The propagation of a front at the second step is compatible with scaling predictions from the Weak Turbulence Theory.
Signal velocity for anomalous dispersive waves
Mainardi, F. (Bologna Univ. (Italy))
1983-03-11
The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.
Nonlinear Dispersion Effect on Wave Transformation
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Weakly relativistic dispersion of Bernstein waves
Robinson, P. A.
1988-01-01
Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.
Weakly relativistic dispersion of Bernstein waves
Robinson, P. A.
1988-01-01
Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.
Shock waves in dispersive Eulerian fluids
Hoefer, M A
2013-01-01
The long time behavior of an initial step resulting in a dispersive shock wave (DSW) for the one-dimensional isentropic Euler equations regularized by generic, third order dispersion is considered by use of Whitham averaging. Under modest assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs are characterized and found to depend only upon the sign of dispersion (convex or concave) and a general pressure law. Two mechanisms leading to the breakdown of this simple wave DSW theory for sufficiently large jumps are identified: a change in the sign of dispersion, leading to gradient catastrophe in the modulation equations, and the loss of genuine nonlinearity in the modulation equations. Large amplitude DSWs are constructed for several particular dispersive fluids with differing pressure laws modeled by the generalized nonlinear Schr\\"{o}dinger equation. These include superfluids (Bose-Einstein condensates and ultracold Fermions) and "optical fluids". Estimates of breaking times for smoo...
On the effect of damping on dispersion curves in plates
Manconia, Elisabetta; Sorokin, Sergey
2013-01-01
This paper presents a study on quantitative prediction and understanding of time-harmonic wave characteristics in damped plates. Material dissipation is modelled by using complex-valued velocities of free dilatation and shear waves in an unbounded volume. As a numerical example, solution of the c...
Moulding and shielding flexural waves in elastic plates
Antonakakis, T.; Craster, R. V.; Guenneau, S.
2014-03-01
Platonic crystals (PlCs) are the elastic plate analogue of the photonic crystals widely used in optics, and are thin structured elastic plates along which flexural waves cannot propagate within certain stop band frequency intervals. The practical importance of PlCs is twofold: These can be used either in the design of microstructured acoustic metamaterials or as an approximate model for surface elastic waves propagating in meter scale seismic metamaterials. Here, we make use of the band spectrum of PlCs created by an array of either very small or densely packed clamped circles to achieve surface wave reflectors at very large wavelengths, a flat lens, a waveguide effect, a directive antenna near the stop band frequencies. The limit in which the circles reduce to points is particularly appealing as there is an exact dispersion relation available so the origin of these phenomena can be explained and interpreted using Fourier series and high-frequency homogenization (HFH). We then enlarge the radius of clamped circles, which both makes the zero-frequency stop band up to five times wider and flattens the dispersion curves. Here, HFH notably captures the essence of localized modes, one of which appears in the zero-frequency stop band and is used in the design of a highly directive waveguide.
Numerical and experimental investigation on broadband wave propagation features in perforated plates
Zhou, C. W.; Lainé, J. P.; Ichchou, M. N.; Zine, A. M.
2016-06-01
Perforated plates are widely used in various engineering applications. Their mechanical and dynamical behaviours need to be investigated for the design and optimization purpose. In this work, the wave propagation features on broadband in perforated plates are predicted by a Condensed Wave Finite Element Method (CWFEM). Based on the wave dispersion relation identified by CWFEM, wave-based homogenization methods are proposed to define equivalent solid plates. Three perforated plates with different penetration patterns and hole shapes are considered and the accuracy of the equivalent homogenized model is illustrated by comparing it with finite element method. Experimental validation of the computed wave propagation characteristics on the two models is provided as well. A good correlation is observed not only at low frequency where homogenized model can be found, but also at mid and high frequency, where the wave beaming effect phenomenon occurs.
Complete Band Gaps for Lamb Waves in Cubic Thin Plates with Periodically Placed Inclusions
CHEN Jiu-Jiu; QIN Bo; CHENG Jian-Chun
2005-01-01
@@ We present a theoretical study for propagation of Lamb waves in cubic thin plates consisting of solid inclusions placed periodically in the host material. The dispersion curves of Lamb waves propagating parallel to the surfaces of the plates are calculated based on the plane wave expansion method for triangular lattices. We realize the existence of full band gaps in the systems composed of W cylinders embedded in a Si matrix with filling ratio f = 0.176 for different thickness ratios of h/a, where h is the plate thickness and a is the lattice spacing.
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
A Lamb wave source based on the resonant cavity of phononic-crystal plates.
Sun, Jia-Hong; Wu, Tsung-Tsong
2009-01-01
In this paper, we propose a Lamb wave source that is based on the resonant cavity of a phononic-crystal plate. The phononic-crystal plate is composed of tungsten cylinders that form square lattices in a silicon plate, and the resonant cavity is created by arranging defects inside the periodic structure. The dispersion, transmission, and displacement of Lamb waves are analyzed by the finite-difference time-domain (FDTD) method. The eigenmodes inside the cavities of the phononic-crystal plate are identified as resonant modes. The fundamental and higher order resonant modes, which vary with the length of cavities, are calculated. By exciting the specific resonant mode in an asymmetric cavity, the 232.40 MHz flexural Lamb wave has a magnified amplitude of 78 times larger than the normal one. Thus, the cavity on the tungsten/silicon phononic-crystal plate may serve as a source element in a microscale acoustic wave device.
Modeling of Rayleigh wave dispersion in Iberia
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Dispersion of guided waves in composite laminates and sandwich panels
Schaal, Christoph; Mal, Ajit
2015-03-01
In composite structures, damages are often invisible from the surface and can grow to reach a critical size, potentially causing catastrophic failure of the entire structure. Thus safe operation of these structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost-effective method for structural health monitoring in advanced structures. Guided waves allow for long monitoring ranges and are very sensitive to defects within their propagation path. In this work, the relevant properties of guided Lamb waves for damage detection in composite structures are investigated. An efficient numerical approach is used to determine their dispersion characteristics, and these results are compared to those from laboratory experiments. The experiments are based on a pitch-catch method, in which a pair of movable transducers is placed on one surface of the structure to induce and detect guided Lamb waves. The specific cases considered include an aluminum plate and an aluminum honeycomb sandwich panel with woven composite face sheets. In addition, a disbond of the interface between one of the face sheets and the honeycomb core of the sandwich panel is also considered, and the dispersion characteristics of the two resultant waveguides are determined. Good agreement between numerical and experimental dispersion results is found, and suggestions on the applicability of the pitch-catch system for structural health monitoring are made.
Wave Interaction with Dual Circular Porous Plates
Arpita Mondal; R.Gayen
2015-01-01
In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green’s integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.
Wave interaction with dual circular porous plates
Mondal, Arpita; Gayen, R.
2015-12-01
In this paper we investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method using the behaviour of the potential functions at the tips of the plates. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.
Waves in Periodic Dissipative Laminate Metamaterial Generated by Plate Impact
Franco Navarro, Pedro; Benson, David; Nesterenko, Vitali
2015-06-01
Waves generated by plate impact loading of Al/W laminates with different size of cell were investigated numerically depending on the impactor/cell mass ratio. The materials model took into account viscoplastic behavior of materials. It was observed that this mass ratio has a direct impact on the structure of stress pulses traveling through the composite. At the small impactor/cell mass ratio travelling waves closely resembling solitary waves were quickly formed near the impacted surface. They propagate as quasistationary weakly attenuating localized pulses. The properties of these pulses were satisfactory described based on a theoretical model using dispersive and nonlinear parameters of the materials similar to solitary solutions for the Korteweg-de Vries equation (KdV). The temperature at given pressure at the maximum is dramatically different then the temperature corresponding to the shock wave at the same pressure reflecting a different paths of loading. Increase of impactor/cell mass ratio results in the train of solitary like pulses which number increased with the increase of the impactor/cell mass ratio. At large impactor/cell mass ratio oscillatory stationary shock waves were formed. The leading front of these stationary shock waves was closely described by a solitary like pulse observed at small impactor/cell mass ratio. One of the authors (PFN) was supported by UCMexus Fellowship
Wave Damping over a Perforated Plate with Water Chambers
ZHU Shutang
2006-01-01
The movement of waves propagating over a horizontally submerged perforated plate with waterfilled chambers bellow the plate was investigated by using linear potential theory. The analytical solution was compared with laboratory experiments on wave blocking. The analysis of the wave energy dissipation on the perforated bottom surface shows that the effects of the perforated plate on thewave motion depend mainly on the plate porosity, the wave height, and the wave period. The wave number is a complex number when the wave energy dissipation on the perforated plate is considered. The real part of the wave number refers to the spatial periodicity while the imaginary part represents the damping modulus. The characteristics of the wave motion were explored for several possible conditions.
Wu, Zhijie; Ge, Shaohui; Zhang, Minghui; Li, Wei; Tao, Keyi
2009-02-15
Nickel nanoparticles supported on metal oxides were prepared by a modified electroless nickel-plating method. The process and mechanism of electroless plating were studied by changing the active metal (Ag) loading, acidity, and surface area of metal oxides and were characterized by UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, and H(2) chemisorption. The results showed that the dispersion of nickel nanoparticles was dependent on the interface reaction between the metal oxide and the plating solution or the active metal and the plating solution. The Ag loading and acidity of the metal oxide mainly affected the interface reaction to change the dispersion of nickel nanoparticles. The use of ultrasonic waves and microwaves and the change of solvents from water to ethylene glycol in the electroless plating could affect the dispersion and size of nickel nanoparticles.
Assessment of fatigue damage in solid plates through the ultrasonic Lamb wave approach
无
2010-01-01
Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qualitatively analyzed the feasibility of using the amplitude-frequency characteristics and the stress wave factors(SWFs) of ultrasonic Lamb wave propagation to assess fatigue damage in solid plates.Liquid wedge transducers located on the surface of solid plates tested are used to generate and detect the Lamb wave signals.Based on the Ritec-SNAP ultrasonic measurement system,the experimental setup for assessing the degree of fatigue damage in solid plates using ultrasonic Lamb wave approach has been established.For several rolled aluminum sheets subjected to tension-tension cyclic loading,the experimental examinations have been performed for the relationships between the amplitude-frequency characteristics of ultrasonic Lamb wave propagation and the numbers of loading cycles(denoted by N),as well as the correlations between the Lamb wave SWFs and N.The experimental results show that the Lamb wave SWFs decrease monotonously and sensitively with the increment of cycles of fatigue loading.Based on the correlations between the Lamb wave SWFs and N,it is further verified that ultrasonic Lamb wave propagation combined with the Lamb wave SWFs can be used to effectively assess early fatigue damage in solid plates.
Absorption and dispersion of ultrasonic waves
Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A
1959-01-01
Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe
The inverse problem based on a full dispersive wave equation
Gegentana Bao; Naranmandula Bao
2012-01-01
The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.
Dispersive shock waves and modulation theory
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented.
Nearly linear dynamics of nonlinear dispersive waves
Erdogan, M B; Zharnitsky, V
2010-01-01
Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.
Research on relationships between Lamb wave velocity and static stress in metal plate
WANG Jun; WANG Yinguan
2006-01-01
On the fact that an isotropic metal solid produces anisotropic property in the state of static stress, based on the theory of the nonlinear acoustoelasticity, the equivalent secondorder elastic constants are calculated for metal plate with static stress. For the case of thin metal plate with stress, the two kinds of dispersion equation for Lamb waves propagating parallel and vertical to the direction of static stress are derived. Using the equations, the relationships between Lamb wave velocity and static stress in a metal plate are discussed.
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Katsaounis, Theodoros; Mitsotakis, Dimitrios
2011-04-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Mitsotakis, Dimitrios
2010-01-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Guided waves in a fluid-loaded transversely isotropic plate
Ahmad F.
2002-01-01
Full Text Available Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.
Damage detection in submerged plates using ultrasonic guided waves
Sandeep Sharma; Abhijit Mukherjee
2014-10-01
This paper describes a non-contact and non-invasive health monitoring strategy for submerged plate structures using guided waves. The structure under consideration is immersed in water and subjected to longitudinal ultrasonic waves at specific angles of incidence using a cylindrical piezoelectric transducer using the surrounding water as coupling medium. Suitable ultrasonic guided wave modes with optimum scanning capabilities have been generated and identified in submerged plate system. Finally, the propagation of selected modes through submerged notched plates is investigated. Sensitivity of leaky waves to the notches has been studied. The methodology would help in identifying damages in the submerged plate structures.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.
Evaluation of the Interface Between Two Plates by the Lamb Wave
王小民; 廉国选; 李明轩
2001-01-01
A new expression of the dispersion equation of the Lamb wave in an adhesive two-layered plate is presented. The bond rigidity of the adhesive plate is accounted for in terms of a spring model. The influence of the variations of the compliance constants of the spring on the dispersion feature of Lamb modes is numerically studied. The numerical results indicate that the deterioration of the bond rigidity may cause the phase velocity decrease and the frequency-shift for a given Lamb mode, thus having a possibility for the evaluation of the bonding state of the adhesive plate by using ultrasonic wave velocity measurements. The phase-tracing method is used to measure the phase velocities experimentally and the results for an adhesive plate of aluminium-aluminium are given to verify the theoretical predictions.
Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun; Deng Ming-Xi
2008-01-01
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface.In general,the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur.However,the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied.Through boundary condition and initial condition of excitation,the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined.Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE
Rajneesh Kumar; Geeta Partap
2006-01-01
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit,the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.
Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.
Wang, Weibin; Yang, Hua; Tang, Pinghua; Zhao, Chujun; Gao, Jing
2013-05-06
Based on the generalized nonlinear Schrödinger equation, we present a numerical study of trapping of dispersive waves by solitons during supercontinuum generation in photonic crystal fibers pumped with femtosecond pulses in the anomalous dispersion region. Numerical simulation results show that the generated supercontinuum is bounded by two branches of dispersive waves, namely blue-shifted dispersive waves (B-DWs) and red-shifted dispersive waves (R-DWs). We find a novel phenomenon that not only B-DWs but also R-DWs can be trapped by solitons across the zero-dispersion wavelength when the group-velocity matching between the soliton and the dispersive wave is satisfied, which may led to the generation of new spectral components via mixing of solitons and dispersive waves. Mixing of solitons with dispersive waves has been shown to play an important role in shaping not only the edge of the supercontinuum, but also its central part around the higher zero-dispersion wavelength. Further, we show that the phenomenon of soliton trapping of dispersive waves in photonic crystal fibers with two zero-dispersion wavelengths has a very close relationship with pumping power and the interval between two zero-dispersion wavelengths. In order to clearly display the evolution of soliton trapping of dispersive waves, the spectrogram of output pulses is observed using cross-correlation frequency-resolved optical gating technique (XFROG).
Dog Bone Triplet Metamaterial Wave Plate
Mohamed, Imran; Ng, Ming Wah; Haynes, Vic; Maffei, Bruno
2014-01-01
Metamaterials are artificially made sub-wavelength structures arranged in periodic arrays. They can be designed to interact with electromagnetic radiation in many different and interesting ways such as allowing radiation to experience a negative refractive index (NRI). We have used this technique to design and build a quasi-optical Half Wave Plate (HWP) that exhibits a large birefringence by virtue of having a positive refractive index in one axis and a NRI in the other. Previous implementations of such NRI-HWP have been narrow band ($\\sim$1-3%) due to the inherent reliance on needing a resonance to create the NRI region. We manufacture a W-band prototype of a novel HWP that uses the Pancharatnam method to extend the bandwidth (up to more than twice) of a usual NRI-HWP. Our simulated and experimentally obtained results despite their differences show that a broadening of a flat region of the phase difference is possible even with the initially steep gradient for a single plate.
Farhat, Mohamed
2014-08-01
We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.
Dispersive waves generated by an underwater landslide
Dutykh, Denys; Beysel, Sonya; Shokina, Nina; Khakimzyanov, Gayaz
2011-01-01
In this work we study the generation of water waves by an underwater sliding mass. The wave dynamics are assumed to fell into the shallow water regime. However, the characteristic wavelength of the free surface motion is generally smaller than in geophysically generated tsunamis. Thus, dispersive effects need to be taken into account. In the present study the fluid layer is modeled by the Peregrine system modified appropriately and written in conservative variables. The landslide is assumed to be a quasi-deformable body of mass whose trajectory is completely determined by its barycenter motion. A differential equation modeling the landslide motion along a curvilinear bottom is obtained by projecting all the forces acting on the submerged body onto a local moving coordinate system. One of the main novelties of our approach consists in taking into account curvature effects of the sea bed.
Small-Scale Effect on Longitudinal Wave Propagation in Laser-Excited Plates
F. Kh. Mirzade
2014-01-01
Full Text Available Longitudinal wave propagation in an elastic isotopic laser-excited solid plate with atomic defect (vacancies, interstitials generation is studied by the nonlocal continuum model. The nonlocal differential constitutive equations of Eringen are used in the formulations. The coupled governing equations for the dynamic of elastic displacement and atomic defect concentration fields are obtained. The frequency equations for the symmetrical and antisymmetrical motions of the plate are found and discussed. Explicit expressions for different characteristics of waves like phase velocity and attenuation (amplification coefficients are derived. It is shown that coupling between the displacement and defect concentration fields affects the wave dispersion characteristics in the nonlocal elasticity. The dispersion curves of the elastic-diffusion instability are investigated for different pump parameters and larger wave numbers.
Resonant dispersive waves generated with multi-input femtosecond pulses
Wang, Kai; Peng, Jiahui; Sokolov, Alex
2010-10-01
We investigated the resonant dispersive waves generated by high-order dispersion theoretically. We considered different femtosecond pulses propagating in the kagome-lattice hollow-core photonics crystal fibers. The two third order and fourth order resonant dispersive waves would be produced in the visible range to produce the ultrashort pulse.
Plate-mode waves in phononic crystal thin slabs: mode conversion.
Chen, Jiu-Jiu; Bonello, Bernard; Hou, Zhi-Lin
2008-09-01
We have computed the dispersion curves of plate-mode waves propagating in periodic composite structures composed of isotropic aluminum cylinders embedded in an isotropic nickel background. The phononic crystal has a square symmetry and the calculation is based on the plane-wave expansion method. Along GammaX or GammaM directions, shear-horizontal modes do not couple to the Lamb wave modes which are polarized in the sagittal plane. Whatever the direction of propagation in between GammaX and GammaM, shear-horizontal modes convert to Lamb waves and couple with the flexural and dilatational modes. This phenomenon is demonstrated both through the mode splitting in the lower-order symmetric band structure and through the calculation of all three components of the particle displacements. The phononic case is different from the pure isotropic plate case where shear-horizontal waves decouple from Lamb waves whatever the direction of propagation.
A spectroscopic method for determining thickness of quartz wave plate
Weiwei Feng; Lihuang Lin; Ligang Chen; Huafeng Zhu; Ruxin Li; Zhizhan Xu
2006-01-01
A spectroscopic method to determine thickness of quartz wave plate is presented. The method is based on chromatic polarization interferometry. With the polarization-resolved transmission spectrum (PRTS)curve, the phase retardation of quartz wave plate can be determined at a wide spectral range from 200 to2000 nm obviously. Through accurate judgment of extreme points of PRTS curve at long-wave band, the physical thickness of quartz wave plates can be obtained exactly. We give a measuring example and the error analysis. It is found that the measuring precision of thickness is mainly determined by the spectral resolution of spectrometer.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J
2014-09-01
The paper presents an efficient and accurate method for dispersion curve calculation and analysis of numerical models for guided waves. The method can be used for any arbitrarily selected anisotropic material. The proposed approach utilizes the wave equation and through-thickness-only discretization of anisotropic, layered plates to obtain the Lamb wave characteristics. Thus, layered structures, such as composites, can be analyzed in a straightforward manner. A general framework for the proposed analysis is given, along with application examples. Although these examples are based on the local interaction simulation approach for elastic waves propagation, the proposed methodology can be easily adopted for other methods (e.g., finite elements). The method can be also used to study the influence of discretization parameters on dispersion curves estimates.
Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F [Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905 (United States)
2011-04-07
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F
2011-04-07
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
Dispersive shock waves in nematic liquid crystals
Smyth, Noel F.
2016-10-01
The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In the experimental parameter regime for which the nematic response is highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between full numerical solutions of the governing nematicon equations and these analytical solutions is found.
The propagation of Lamb waves in an anisotropic plate bordered with liquid layers
YAN Ping; ZHU Zhemin; DU Gonghuan
2002-01-01
Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc oxide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic,are included in this analysis as well. For the case of one liquid layer loading, numerical calculations show that the phase velocity changes periodically with the thickness of the liquid layer.When the thickness 2d of the anisotropic plate is very small, mass sensing application of A0mode Lamb wave is also discussed.
Uplift Pressure of Waves on A Horizontal Plate
周益人; 陈国平; 黄海龙; 王登婷
2003-01-01
Uplift pressures of waves acting on horizontal plates are the important basis for design of maritime hollow-trussed structures. In this paper, an experimental study on the uplift pressures of waves on a horizontal plate is conducted by use of a series of model tests. Detailed analysis has been given to the formation mechanism of uplift pressures of waves. It is considered that the impact pressure intensity is mainly affected by geometrical factors (tangential angle of waves), dynamic factors (wave height, wave velocity, etc.) and air cushion. Based on the test results, an equation for calculation of the maximum uplift pressure intensity of waves on a plate is presented. A large quantity of test data shows good agreement of the present equation with the test results.
Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures
2015-09-30
Acoustic wave dispersion and scattering in complex marine sediment structures Charles W. Holland The Pennsylvania State University Applied...volume scattering and 2) the effects of shear waves in general layered media. These advances will provide the basis for measuring dispersion in in-situ...shear waves on dispersion in marine sediments. The first step will be development of the theory. WORK COMPLETED A brief summary of the work
Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom
Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)
2014-12-15
The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
Weak and strong interactions between dark solitons and dispersive waves
Oreshnikov, Ivan; Yulin, Alexey
2015-01-01
The effect of mutual interaction between dark solitons and dispersive waves is investigated numerically and analytically. The condition of the resonant scattering of dispersive waves on dark solitons is derived and compared against the results of numerical simulations. It is shown that the interaction with intense dispersive waves affects the dynamics of the soltons strongly changing their frequencies and accelerating or decelerating the solitons. It is also demonstrated that two dark solitons can form a cavity for dispersive weaves bouncing between the two dark solitons. The differences of the resonant scattering of the dispersive waves on the dark and bright solitons are discussed. In particular we demonstrate that two dark solitons and dispersive wave bouncing in between them create solitonic cavity with convex "mirrors" unlike the concave "mirror" in case of the bright solitons.
Single-mode dispersive waves and soliton microcomb dynamics
Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry
2017-03-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.
2011-01-01
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186
Longitudinal wave motion in width-constrained auxetic plates
Lim, Teik-Cheng
2016-05-01
This paper investigates the longitudinal wave velocity in auxetic plates in comparison to conventional ones, in which the plate is constrained from motion in the width direction. By taking into account the thickness change of the plate and its corresponding change in density, the developed wave velocity is casted not only as a function of Young’s modulus and density, but also in terms of Poisson’s ratio and longitudinal strain. Results show that density and thickness variations compensate for one another when the Poisson’s ratio is positive, but add up when the Poisson’s ratio is negative. Results also reveal that the classical model of longitudinal wave velocity for the plate is accurate when the Poisson’s ratio is about 1/3; at this Poisson’s ratio the influence from density and thickness variations cancel each other. Comparison between the current corrected model and the density-corrected Rayleigh-Lamb model reveals a number of consistent trends, while the discrepancies are elucidated. If the plate material possesses a negative Poisson’s ratio, the deviation of the actual wave velocity from the classical model becomes significant; auxeticity suppresses and enhances the wave velocity in compressive and tensile impacts, respectively. Hence the use of the corrected model is proposed when predicting longitudinal waves in width-constrained auxetic plates, and auxetic materials can be harnessed for effectively controlling wave velocities in thin-walled structures.
Focusing on Plates: Controlling Guided Waves using Negative Refraction
2015-01-01
Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19th century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists natu...
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
Dispersive waves in fs cascaded second-harmonic generation
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Characterization of thin films using generalized lamb wave dispersion relations
Richard, P; Behrend, O.; Gremaud, G.; Kulik, A.
1993-01-01
We used the Continuous Wave Scanning Acoustic Microscope to characterize thin film materials. The measurement of the dispersion curve of surface waves and the inversion of this dispersion equation relation, allow to determine the elastic constants, the density or the thickness of a thin layer on a substrate. Besides, it is possible to have qualitative information on the adhesion properties of the layer.
An investigation into the dispersion of ocean surface waves in sea ice
Collins, Clarence Olin; Rogers, William Erick; Lund, Björn
2017-02-01
This investigation considers theoretical models and empirical studies related to the dispersion of ocean surface gravity waves propagating in ice covered seas. In theory, wave dispersion is related to the mechanical nature of the ice. The change of normalized wavenumber is shown for four different dispersion models: the mass-loading model, an elastic plate model, an elastic plate model extended to include dissipation, and a viscous-layer model. For each dispersion model, model parameters are varied showing the dependence of deviation from open water dispersion on ice thickness, elasticity, and viscosity. In all cases, the deviation of wavenumber from the open water relation is more pronounced for higher frequencies. The effect of mass loading, a component of all dispersion models, tends to shorten the wavelength. The Voigt model of dissipation in an elastic plate model does not change the wavelength. Elasticity in the elastic plate model and viscosity in the viscous-layer model tend to increase the wavelength. The net effect, lengthening or shortening, is a function of the particular combination of ice parameters and wave frequency. Empirical results were compiled and interpreted in the context of these theoretical models of dispersion. A synopsis of previous measurements is as follows: observations in a loose pancake ice in the marginal ice zone, often, though not always, showed shortened wavelengths. Both lengthening and shortening have been observed in compact pancakes and pancakes in brash ice. Quantitative matches to the flexural-gravity model have been found in Arctic interior pack ice and sheets of fast ice.
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Analysis of Wave Nonlinear Dispersion Relation
LI Rui-jie; TAO Jian-fu
2005-01-01
The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1＜kh＜1.5 and has sufficient accuracy for practical purposes.
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...
The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...
P-wave dispersion in children with acute rheumatic fever.
Kocaoglu, Celebi; Sert, Ahmet; Aypar, Ebru; Oran, Bulent; Odabas, Dursun; Arslan, Derya; Akin, Fatih
2012-01-01
As a new and simple electrocardiographic marker, P-wave dispersion is reported to be associated with inhomogeneous and discontinuous propagation of sinus impulses. The current study aimed to investigate P-wave dispersion in children with acute rheumatic fever. The study population consisted of 47 children with acute rheumatic fever (29 patients with carditis and 18 patients without carditis) and 31 healthy control subjects. Maximum and minimum P-wave durations were measured from the 12-lead surface electrocardiogram. The P-wave dispersion was calculated as the difference between maximum and minimum P-wave durations. The maximum P-wave duration and the P-wave dispersion of the patients with and without carditis were significantly greater than those of the control subjects. The P-wave dispersion of the patients with carditis was significantly greater than that of the patients without carditis. In conclusion, the P-wave dispersion was higher in the children with acute rheumatic fever than in the healthy control subjects.
Quasi-Rayleigh waves in butt-welded thick steel plate
Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin
2015-03-01
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
Quasi-Rayleigh waves in butt-welded thick steel plate
Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu [Mechanical Engineering University of South Carolina, 300 Main Str., Columbia, SC 29208 (United States)
2015-03-31
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
Particle Scattering off of Right-Handed Dispersive Waves
Schreiner, Cedric; Spanier, Felix
2016-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfv\\'en waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, wellestablished analytic models derived in the framework of magnetostatic quasi-linear theory (QLT) can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for the use in the plasma frame. Thereby we aim at a description of particle ...
Standing wave acoustic levitation on an annular plate
Kandemir, Mehmet Hakan; Çalışkan, Mehmet
2016-11-01
In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.
Shear waves in a ﬂuid saturated elastic plate
A Pradhan; S K Samal; N C Mahanti
2002-12-01
In the present context, we consider the propagation of shear waves in the transverse isotropic ﬂuid saturated porous plate. The frequency spectrum for SH-modes in the plate has been studied. It is observed that the frequency of the propagation is damped due to the two-phase character of the porous medium. The dimensionless phase velocities of the shear waves have also been calculated and presented graphically. It is interesting to note that the frequency and phase velocity of shear waves in porous media differ signiﬁcantly in comparison to that in isotropic elastic media.
Reflection of bending Waves from Border of the Plate
Belubekyan M.V.
2010-03-01
Full Text Available To problems of the reflection of the bending waves from flat border of the ambience dedicated to the multiple studies. Relatively little works are connected with questions of the reflection curved waves from flat edge of the thin plate. In this work happen to the decisions of the problem of the plate under different border condition. For partial case of the free edge, as limiting case of the absence of the reflected wave, is got decision of the problem localized curved variations.
All-optical observation and reconstruction of spin wave dispersion
Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji
2017-06-01
To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations.
Single-mode dispersive waves and soliton microcomb dynamics
Yi, Xu; Zhang, Xueyue; Yang, Ki Youl; Vahala, Kerry
2016-01-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and to offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power in the form of a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. A limiting case is demonstrated in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton is shown to induce bistable behavior in the spectral and temporal properties of the soliton. Also, an operating point of enhanced repetition-rate stability is predicted and observed. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
Agrahari, J K; Kapuria, S
2016-08-01
To develop an effective baseline-free damage detection strategy using the time-reversal process (TRP) of Lamb waves in thin walled structures, it is essential to develop a good understanding of the parameters that affect the amplitude dispersion and consequently the time reversibility of the Lamb wave signal. In this paper, the effects of adhesive layer between the transducers and the host plate, the tone burst count of the excitation signal, the plate thickness, and the piezoelectric transducer thickness on the time reversibility of Lamb waves in metallic plates are studied using experiments and finite element simulations. The effect of adhesive layer on the forward propagation response and frequency tuning has been also studied. The results show that contrary to the general expectation, the quality of the reconstruction of the input signal after the TRP may increase with the increase in the adhesive layer thickness at certain frequency ranges. Similarly, an increase in the tone burst count resulting in a narrowband signal does not necessarily enhance the time reversibility at all frequencies, contrary to what has been reported earlier. For a given plate thickness, a thinner transducer yields a better reconstruction, but for a given transducer thickness, the similarity of the reconstructed signal may not be always higher for a thicker plate. It is important to study these effects to achieve the best quality of reconstruction in undamaged plates, for effective damage detection.
Urban, Matthew W; Pislaru, Cristina; Nenadic, Ivan Z; Kinnick, Randall R; Greenleaf, James F
2013-02-01
Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ(1), and viscosity, μ(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle.
Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)
2016-09-07
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.
Non-contact ultrasonic technique for Lamb wave characterization in composite plates.
Harb, M S; Yuan, F G
2016-01-01
A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency.
Zhang, Guangmin; Gao, Weihang; Song, Gangbing; Song, Yue
2017-02-01
Piezoceramic induced Lamb waves are often used for imaging based damage detection, especially for plate like structures. The dispersion effect of the Lamb waves deteriorates the performance of most of imaging methods, since the waveform of the dispersion signals will spread out. In this paper, an imaging method which can compensate the dispersion is developed. In the proposed method, the phase induced by the propagation distance is compensated firstly. After that, the phase deviation generated by the dispersion effect is compensated. Via the two compensations, the proposed method can derive an accurate location of the target with a clean imaging map. An experiment using a plate like structure with four piezoceramic transducer was conducted. In the experiment, the four piezoceramic sensors were used to obtain the signals of the scatterer that simulated the damage on an aluminum plate. The experimental results show that since the dispersion effect is compensated, the target’s image based on the proposed method is about 10 cm × 14 cm, which is about a quarter of that of using the back-projection imaging method.
Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack
Jung-Ryul Lee
2014-01-01
Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.
Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws
El, G A; Shearer, M
2015-01-01
We compare the structure of solutions of Riemann problems for a conservation law with nonconvex (specifically, cubic) flux, regularized by two different mechanisms: 1) dispersion (in the modified Korteweg--de Vries (mKdV) equation); and 2) a combination of diffusion and dispersion (in the mKdV-Burgers equation). In the first case, the possible dynamics involve two qualitatively different types of expanding dispersive shock waves (DSWs), rarefaction waves (RWs) and kinks (smooth fronts). In the second case, in addition to RWs, there are travelling wave solutions approximating both classical (Lax) and nonclassical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In particular the mKdV kink solution is identified as an undercompressive DSW. Other prominent features, su...
Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves
Wright, Logan G; Christodoulides, Demetrios N; Wise, Frank W
2015-01-01
Despite the abundance and importance of three-dimensional systems, relatively little progress has been made on spatiotemporal nonlinear optical waves compared to time-only or space-only systems. Here we study radiation emitted by three-dimensionally evolving nonlinear optical waves in multimode fiber. Spatiotemporal oscillations of solitons in the fiber generate multimode dispersive wave sidebands over an ultrabroadband spectral range. This work suggests routes to multipurpose sources of coherent electromagnetic waves, with unprecedented wavelength coverage.
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS
无
2002-01-01
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
Zakharenko, A. A.
2013-11-01
This report studies the dispersive wave propagation in the transversely isotropic (6 mm) piezoelectromagnetic (PEM) plate when the mechanical, electrical, and magnetic boundary conditions for both the upper and lower free surfaces of the plate are as follows: the mechanically free, electrically open, and magnetically open surfaces. This study follows some original results obtained in book. The fundamental modes' dispersion relations are graphically shown for the following well-known PEM composite materials: BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D. It is natural that for large values of the nondimensional parameter kd (k is the wave number and d is the plate half-thickness), the velocities of both the fundamental modes approach the surface shear-horizontal wave called the piezomagnetic exchange surface Melkumyan wave. It is well known that plate waves are usually utilized in the nondestructive testing and evaluation, for instance, in the airspace industry. Also, PEM materials are used as smart ones in various technical devices such as dispersive wave delay lines, (biochemi)sensors, lab-on-a-chip, etc.
Time-domain Wave Propagation in Dispersive Media①
无
1997-01-01
The equation of time-domain wave propagation in dispersive media and the explicit beam propagation method are presented in this paper.This method is demonstrated by the short optical pulses in a directional coupler with second order dispersive effect and shows to be in full agreement with former references.This method is simple,easy and practical.
Study and verification on dispersion coefficient in wave field
SHEN LiangDuo; ZOU ZhiLi
2012-01-01
Transport and diffusion caused by coastal waves have different characteristics from those induced by flows.Through solving the vertical diffusion equation by an analytic method,this paper infers a theoretical formula of dispersion coefficient under the combined action of current and waves.It divides the general dispersion coefficient into six parts,including coefficients due to tidal current,Stokes drift,wave oscillation and interaction among them.It draws a conclusion that the contribution of dispersive effect induced by coastal waves is mainly produced by Stokes drift,while the contributions to time-averaged dispersion coefficient due to wave orbital motion and interaction between current and waves are very small.The results without tidal current are in agreement with the numerical and experimental results,which proves the correctness of the theoretical derivation.This paper introduces the variation characteristics of both the time-averaged and oscillating dispersion coefficients versus relative water depth,and demonstrates the physical implications of the oscillating mixing coefficient due to waves.We also apply the results to the costal vertical circulation and give its characteristics compared to Stokes drift.
Pabisek, Ewa; Waszczyszyn, Zenon
2015-12-01
A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Non-classical dispersive shock waves in shallow water
Sprenger, Patrick; Hoefer, Mark
2016-11-01
A classical model for shallow water waves with strong surface tension is the Kawahara equation, which is the Korteweg-de Vries (KdV) including a fifth order derivative term. A particular problem of interest to these types of equations is step initial data, known as the Riemann problem, which results in a shock in finite time. Unlike classical shock waves, where a discontinuity is resolved by dissipation, the dispersive regularization results in the discontinuity resolved as a dispersive shock wave (DSW). When parameter choices result in non-convex dispersion, three distinct dynamic regimes are observed that can be characterized solely by the amplitude of the initial step. For small jumps, a perturbed KdV DSW with positive polarity and orientation is generated, accompanied by small amplitude radiation from an embedded solitary wave leading edge, termed a radiating DSW. For moderate jumps, a crossover regime is observed with waves propagating forward and backward from the sharp transition region. For sufficiently large jumps, a new type of DSW is observed we term a translating DSW were a partial, non-monotonic, negative solitary wave at the trailing edge is connected to an interior nonlinear periodic wave and exhibits features common to both dissipative and dispersive shock waves.
Experimental investigation of two oil dispersion pathways by breaking waves
Li, Cheng; Katz, Joseph
2014-11-01
This experimental study focuses on generation and size distribution of airborne and subsurface oil droplets as breaking surface waves interact with a crude oil slick (MC252 surrogate). Experiments in a specialized wave tank investigate the effects of wave height and wave properties (e.g. spilling vs. plunging), as well as drastically reducing the oil-water interfacial tension by orders of magnitude by introducing dispersant (Coexist 9500-A). This dispersant is applied at varying dispersant-to-oil ratios either by premixing or surface spraying, the latter consistent with typical application. The data include high-speed visualizations of processes affecting the entrainment of subsurface oil and bubbles as well as airborne aerosols. High-speed digital holographic cinematography is employed to track the droplet trajectories, and quantify the droplet size distributions above and below the surface. Introduction of dispersants drastically reduces the size of subsurface droplets to micron and even submicron levels. Ahead of the wave, the 25 μm (our present resolution limit) to 2 mm airborne droplet trajectories are aligned with the wave direction. Behind the wave, these droplets reverse their direction, presumably due to the airflow above the wave. Supported by Gulf of Mexico Research Initiative (GoMRI).
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
The Peano-series solution for modeling shear horizontal waves in piezoelectric plates
Ben Ghozlen M.H.
2012-06-01
Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.
Chen, Yung-Yu
2013-07-01
Diamond films have been utilized to develop surface acoustic wave filters and micromechanical resonators because of the highest acoustic wave velocity and largest product of frequency and quality factor (f.Q) of diamond among all materials. A theoretical analysis of Lamb wave characteristics in multilayer piezoelectric plates including a diamond layer is presented in this paper. Formulae for effective permittivity are derived using the transfer matrix method and are further employed to calculate Lamb wave phase velocity dispersions. The electromechanical coupling coefficients (ECCs) are also calculated exactly by Green's function method. Detailed calculations are carried out for ZnO/diamond and AlN/diamond composite plates with four distinct electrode arrangements. Results show that the ZnO/diamond structure yields a phase velocity of 6420 m/s and a large ECC of 7.41%, which makes it suitable for high-frequency wideband filter applications. Moreover, in the AlN/diamond structure, the S0 mode exhibits a large phase velocity of up to 10.3 km/s and a moderate ECC of 1.97%. Such favorable characteristics are expected to contribute to the development of AlN/diamond Lamb wave oscillators operating at approximately 5-10 GHz without the need for a sub-micrometer-resolution lithographic process. Therefore, both ZnO/diamond and AlN/diamond Lamb wave devices are highly promising candidates for RF devices in modern communication systems with advantages over conventional surface acoustic wave devices.
Jian Cai
2016-12-01
Full Text Available The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC and non-dispersive signal construction (NDSC are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates.
Cai, Jian; Yuan, Shenfang; Wang, Tongguang
2016-12-23
The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates.
Boundary control of long waves in nonlinear dispersive systems
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Adaptive beamforming for array imaging of plate structures using lamb waves.
Engholm, Marcus; Stepinski, Tadeusz
2010-12-01
Lamb waves are considered a promising tool for the monitoring of plate structures. Large areas of plate structures can be monitored using active arrays employing beamforming techniques. Dispersion and multiple propagating modes are issues that need to be addressed when working with Lamb waves. Previous work has mainly focused on standard delay-and-sum (DAS) beamforming while reducing the effects of multiple modes through frequency selectivity and transducer design. This paper presents a minimum variance distortionless response (MVDR) approach for Lamb waves using a uniform rectangular array (URA) and a single transmitter. Theoretically calculated dispersion curves are used to compensate for dispersion. The combination of the MVDR approach and the two-dimensional array improves the suppression of interfering Lamb modes. The proposed approach is evaluated on simulated and experimental data and compared with the standard DAS beamformer. It is shown that the MVDR algorithm performs better in terms of higher resolution and better side lobe and mode suppression capabilities. Known issues of the MVDR approach, such as signal cancellation in highly correlated environments and poor robustness, are addressed using methods that have proven effective for the purpose in other fields of active imaging.
Numerical calculation of dispersion relation for linear internal waves
无
2007-01-01
With the horizontal Coriolis terms included in motion equations and the influence of compressibility of seawater on Brunt-V(a)is(a)l(a) frequency considered, a numerical method of calculating the dispersion relation for linear internal waves, which is an improvement of Cai and Gan (1995), and hence Fliegel and Hunkins (1975), had been set up. For different models (Pacific model, Atlantic model and Arctic model), simulations using the three different methods were compared and the following conclusions were reached: (1) the influence of horizontal Coriolis terms on dispersion relation cannot be neglected and is connected with the direction of the wave celerity, the latitude, and the modes of the wave;(2) the effect of compressibility of seawater in stratification is not an important factor for the dispersion relation of linear internal wave, at least for those three models. With the improved method, the wavefunction curves for the Pacific model had also been built.
Victor M. García-Chocano
2011-12-01
Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.
Weight loss and P wave dispersion: a preliminary study.
Falchi, Anna Giulia; Grecchi, Ilaria; Muggia, Chiara; Tinelli, Carmine
2014-01-01
The aim of this study is to investigate if therapeutic weight loss reduces P wave dispersion. 20 obese patients (10 males and 10 females), part of a randomized clinical trial, were examined over a 6 month period. They were treated with a diet, aiming at 5% weight loss at the 6th month. After physical examination, they underwent laboratory tests, bioelectrical impedance analysis and a electrocardiogram (ECG). ECGs were transferred to a personal computer via a scanner and then magnified 400 times. We examined at baseline and at the 6th month, maximum and minimum P-wave duration, P-wave dispersion and heart rate. Comparing responders (patients who lost 5% of weight at t6) and not responders (who lost less than 5%), responders showed a significant reduction of P wave dispersion value (-0.38 [SD: 0.35] mm equal to -32.3 [SD: 11.3] % p=0.00001). All responders present a reduction of P wave dispersion, while for not-responders this is no longer evident. Finally, a good degree of correlation (r=0.54) between P wave dispersion difference and the decrease of weight was noticed. Females have a better response in P dispersion reduction strictly connected with their weight loss with a good correlation, (r=0.7, p=0.002), versus a moderate correlation evidenced in males (r=0.5, p=0.011). P wave duration and dispersion are significantly reduced in patients who lost more than 5% of weight and this decrease is highly related to the extent of weight loss. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Acoustic measurements above a plate carrying Lamb waves
Talberg, Andreas Sørbrøden
2016-01-01
This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...
Platonic scattering cancellation for bending waves in a thin plate
Farhat, Mohamed
2014-04-10
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Experimental study on the wave loads of twin-plate breakwater under oblique waves
GU Qian; HUANG Guoxing; ZHANG Ningchuan; LI Longxiang; SHAO Zhongan
2016-01-01
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate widthB/L, wave heightHs/D and incident angleθ0 on the wave forces were analyzed and discussed. The results showed that: (1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles (θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases. (2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves. (3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater. This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
Dispersion Relation of Linear Waves in Quantum Magnetoplasmas
Zhu, Jun
2016-07-01
The quantum magnetohydrodynamic (QMHD) model is applied in investigating the propagation of linear waves in quantum magnetoplasmas. Using the QMHD model, the dispersion equation for quantum magnetoplasmas and the dispersion relations of linear waves are deduced. Results show that quantum effects affect the propagation of electron plasma waves and extraordinary waves (X waves). When we select the plasma parameters of the laser-based plasma compression (LBPC) schemes for calculation, the quantum correction cannot be neglected. Meanwhile, the corrections produced by the Fermi degeneracy pressure and Bohm potential are compared under different plasma parameter conditions. supported by National Natural Science Foundation of China (No. 11447125) and the Research Training Program for Undergraduates of Shanxi University of China (Nos. 2014012167, 2015013182)
Son, Myung Seob; Kang, Yeon June
2011-05-01
This study analytically investigates the propagation of shear waves (SH waves) in a coupled plate consisting of a piezoelectric layer and an elastic layer with initial stress. The piezoelectric material is polarized in z-axis direction and perfectly bonded to an elastic layer. The mechanical displacement and electrical potential function are derived for the piezoelectric coupled plates by solving the electromechanical field equations. The effects of the thickness ratio and the initial stress on the dispersion relations and the phase and group velocities are obtained for electrically open and mechanically free situations. The numerical examples are provided to illustrate graphically the variations of the phase and group velocities versus the wave number for the different layers comparatively. It is seen that the phase velocity of SH waves decreases with the increase of the magnitude of the initial compression stress, while it increases with the increase of the magnitude of the initial tensile stress. The initial stress has a great effect on the propagation of SH waves with the decrease of the thickness ratio. This research is theoretically useful for the design of surface acoustic wave (SAW) devices with high performance.
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Guided wave phased array beamforming and imaging in composite plates.
Yu, Lingyu; Tian, Zhenhua
2016-05-01
This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
Quiroga, J. E.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J.
2017-05-01
This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.
Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar
Z.Q. Cheng
1998-01-01
Full Text Available A viscoelastic split Hopkinson pressure bar intended for testing soft materials with low acoustic impedance is studied. Using one-dimensional linear viscoelastic wave propagation theory, the basic equations have been established for the determination of the stress—strain—strain rate relationship for the tested material. A method, based on the spectral analysis of wave motion and using measured wave signals along the split Hopkinson pressure bar, is developed for the correction of the dispersion and attenuation of viscoelastic waves. Computational simulations are performed to show the feasibility of the method.
Dispersion Characteristics of a New Slow-Wave Structure
WU Jian-Qiang
2004-01-01
@@ The microwave excitation in a new slow-wave structure, i.e. the plasma-filled coaxial cylindrical dielectric-loaded cylindrical waveguide, is investigated by using the self-consistent linear field theory in considering the collision effect between electrons and ions in the plasma via the collision frequency term. The determinant dispersion equation of the beam-wave interaction with a complex value of angular frequency is derived. The effects of plasma collision frequency on the output frequency and the wave growth rate of the beam-wave interaction are calculated and discussed.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads to a complex dispersion relation, which gives complex values of the wave number. This has been used to discuss the nature of the waves and their characteristics near the horizon.
A fractional calculus model of anomalous dispersion of acoustic waves.
Wharmby, Andrew W
2016-09-01
An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong
2016-07-01
The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.
Particle Scattering off of Right-handed Dispersive Waves
Schreiner, C.; Kilian, P.; Spanier, F.
2017-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.
Periodic folded waves for a (2+1)-dimensional modified dispersive water wave equation
Huang Wen-Hua
2009-01-01
A general solution,including three arbitrary functions,is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method.Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution,special types of periodic folded waves are derived.In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions of the periodic folded waves and the degenerated single folded solitary waves axe investigated graphically and found to be completely elastic.
The group velocity variation of Lamb wave in fiber reinforced composite plate.
Rhee, Sang-Ho; Lee, Jeong-Ki; Lee, Jung-Ju
2007-12-01
Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not the same as the theoretical group velocities which is calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude correction in addition to direction correction. In this study, S0 mode phase velocity dispersion curves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity could be calculated from the slowness surface. The recalculated group velocities with consideration of the magnitude and direction from the slowness surface are compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.
Dispersion properties of helical waves in radially inhomogeneous elastic media.
Syresin, D E; Zharnikov, T V; Tyutekin, V V
2012-06-01
In this paper, a method describing dispersion curve calculation for waves propagating in radially layered, inhomogeneous isotropic elastic waveguides is developed. Particular emphasis is placed on the helical waves with noninteger azimuthal wavenumbers, which can be potentially applied in such fields as nondestructive evaluation, acoustic tomography, etc., stipulating their practical importance. To solve the problem under consideration, the matrix Riccati equation is formulated for an impedance matrix. The use of the latter yields a simple form of the dispersion equation. Numerical computation of dispersion curves can encounter difficulties, which are due to potential singularities of the impedance matrix and the necessity to separate roots of the dispersion equation. These difficulties are overcome by employing the Cayley transform and invoking the parametric continuation method. The method developed by the authors is demonstrated by calculating dispersion diagrams in support of helical waves for several models of practical interest. Such computations for an inhomogeneous layer and its approximation by a set of homogeneous layers using a transfer matrix and Riccati equation methods revealed higher computational accuracy of the latter. Dispersion curves calculated for layers with different types of inhomogeneity demonstrated significant discrepancies at low frequencies.
P wave dispersion is prolonged in patients with Wilson's disease
无
2008-01-01
AIM: To investigate the P wave dispersion as a noninvasive marker of intra-atrial conduction disturbances in patients with Wilson's disease. METHODS: We compared Wilson's disease patients (n=18) with age matched healthy subjects (n=15) as controls. The diagnosis was based on clinical symptoms, laboratory tests (ceruloplasmin, urinary and hepatic copper concentrations). P wave dispersion, a measurement of the heterogeneity of atrial depolarization, was measured as the difference between the duration of the longest and the shortest P-waves in 12 lead electrocardiography. RESULTS: All the patients were asymptomatic on cardiological examination and have sinusal rhythm in electrocardiography. Left ventricular and left atrial diameters, left ventricular ejection fraction and left ventricular mass index were similar in both groups. The Wilson's disease patients had a significantly higher P wave dispersion compared with the controls (44.7+5.8vs 25.7±2.5,P＜0.01＝. CONCLUSION: There was an increase in P wave dispersion in cardiologically asymptomatic Wilson's disease patients which probably represents an early stage of cardiac involvement.
Curvature-Induced Asymmetric Spin-Wave Dispersion
Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila
2016-11-01
In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.
New multi-soliton solutions and travelling wave solutions of the dispersive long-wave equations
张解放; 郭冠平; 吴锋民
2002-01-01
Using the extended homogeneous balance method, the (1+1)-dimensional dispersive Iong-wave equations have been solved. Starting from the homogeneous balance method, we have obtained a nonlinear transformation for simplifying a dispersive long-wave equation into a linear partial differential equation. Usually, we can obtain only a type of soliton-like solution. In this paper, we have further found some new multi-soliton solutions and exact travelling solutions of the dispersive long-wave equations from the linear partial equation.
Focusing on Plates: Controlling Guided Waves using Negative Refraction
Philippe, Franck D.; Murray, Todd W.; Prada, Claire
2015-06-01
Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19th century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists naturally in very simple finite elastic media, there has been remarkably little attention paid to this phenomenon. Here we report the development of a tunable acoustic lens in an isotropic elastic plate showing negative refraction over a finite acoustic frequency bandwidth. As compared to engineered acoustic materials such as phononic crystals and metamaterials, the design of the acoustic lens is very simple, with negative refraction obtained through thickness changes rather than internal periodicity or sub-wavelength resonant structures. A new class of acoustic devices, including resonators, filters, lenses, and cloaks, may be possible through topography optimization of elastic waveguide structures to exploit the unique properties of backward waves.
Absorption of ultrasound waves during dynamic processes in disperse systems
Kol'tsova, I. S.; Khomutova, A. S.
2016-11-01
Measurements of ultrasound wave absorption are conducted at a frequency of 3 MHz in 3% suspensions of starch, gelatin, and lactose. It is shown that the dynamics of the additional ultrasound wave absorption coefficient in the suspensions carries information on the processes of swelling, dissolution, and the phase and structural periods occurring in the interaction of the disperse and dispersoid phases; it also reflects the influence of the temperature field on these processes.
WANG Qi; CHEN Yong; ZHANG Hong-Qing
2005-01-01
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.
Dahmen, Souhail; Ketata, Hassiba; Ben Ghozlen, Mohamed Hédi; Hosten, Bernard
2010-04-01
A hybrid elastic wave method is applied to determine the anisotropic constants of Olive wood specimen considered as an orthotropic solid. The method is based on the measurements of the Lamb wave velocities as well as the bulk ultrasonic wave velocities. Electrostatic, air-coupled, ultrasonic transducers are used to generate and receive Lamb waves which are sensitive to material properties. The variation of phase velocity with frequency is measured for several modes propagating parallel and normal to the fiber direction along a thin Olivier wood plates. A numerical model based mainly on an optimization method is developed; it permits to recover seven out of nine elastic constants with an uncertainty of about 15%. The remaining two elastic constants are then obtained from bulk wave measurements. The experimental Lamb phase velocities are in good agreement with the calculated dispersion curves. The evaluation of Olive wood elastic properties has been performed in the low frequency range where the Lamb length wave is large in comparison with the heterogeneity extent. Within the interval errors, the obtained elastic tensor doesn't reveal a large deviation from a uniaxial symmetry.
Dynamic Response of Stiffened Plates with Holes Subjected to Shock Waves and Fragments
刘彦; 张庆明; 黄风雷
2004-01-01
The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the properties of the shock waves and fragments, the experiments on the shock waves acting on the stiffened plates (penetrated and non-penetrated by fragments) are mainly conducted. The dynamic response rules of stiffened plates with holes under shock waves and fragments loading are obtained. The results show that the penetration of fragments into stiffened plates hardly affects their deformation produced by shock waves.
Evolution of Modulated Dispersive Electron Waves in a Plasma
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...
Defocusing regimes of nonlinear waves in media with negative dispersion
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
Dark solitons, dispersive shock waves, and transverse instabilities
Hoefer, M A
2011-01-01
The nature of transverse instabilities to dark solitons and dispersive shock waves for the (2+1)-dimensional defocusing nonlinear Schrodinger equation / Gross-Pitaevskii (NLS / GP) equation is considered. Special attention is given to the small (shallow) amplitude regime, which limits to the Kadomtsev-Petviashvili (KP) equation. We study analytically and numerically the eigenvalues of the linearized NLS / GP equation. The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This yields 1) the maximum growth rate and associated wavenumber of unstable perturbations; and 2) the separatrix between convective and absolute instabilities. The latter result is used to study the transition between convective and absolute instabilities of oblique dispersive shock waves (DSWs). Stationary and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct simulations of the NLS / GP equation. The instability properties of oblique DSWs are found to be dir...
Wave dispersion and propagation in state-based peridynamics
Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther
2017-07-01
Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.
Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei
2016-10-01
Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.
Nonlinear waves in electromigration dispersion in a capillary
Christov, Ivan C
2016-01-01
We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...
Some aspects of dispersive horizons: lessons from surface waves
Chaline, J; Maïssa, P; Rousseaux, G
2012-01-01
Hydrodynamic surface waves propagating on a moving background flow experience an effective curved space-time. We discuss experiments with gravity waves and capillary-gravity waves in which we study hydrodynamic black/white-hole horizons and the possibility of penetrating across them. Such possibility of penetration is due to the interaction with an additional "blue" horizon, which results from the inclusion of surface tension in the low-frequency gravity-wave theory. This interaction leads to a dispersive cusp beyond which both horizons completely disappear. We speculate the appearance of high-frequency "superluminal" corrections to be a universal characteristic of analogue gravity systems, and discuss their relevance for the trans-Planckian problem. We also discuss the role of Airy interference in hybridising the incoming waves with the flowing background (the effective spacetime) and blurring the position of the black/white-hole horizon.
Wave-plate structures, power selective optical filter devices, and optical systems using same
Koplow, Jeffrey P [San Ramon, CA
2012-07-03
In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.
Berryman, J G; Pride, S R
2004-07-28
Laboratory experiments on wave propagation through saturated and partially saturated porous media have often been conducted on porous cylinders that were initially fully saturated and then allowed to dry while continuing to acquire data on the wave behavior. Since it is known that drying typically progresses from outside to inside, a sensible physical model of this process is concentric cylinders having different saturation levels--the simplest example being a fully dry outer cylindrical shell together with a fully wet inner cylinder. We use this model to formulate the equations for wave dispersion in porous cylinders for patchy saturation (i.e. drainage) conditions. In addition to multiple modes of propagation obtained numerically from these dispersion relations, we find two distinct analytical expressions for torsional wave modes. We solve the dispersion relation for torsional waves for two examples: Massillon sandstone and Sierra White granite. The drainage analysis appears to give improved agreement with the data for both these materials.
Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; vanÂ derÂ Hilst, Robert D.
2016-05-01
We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.
Garth, Tom; Rietbrock, Andreas
2017-09-01
Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Dispersion analysis for waves propagated in fractured media
Lesniak, A.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering
1996-05-01
Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.
The density stratification and amplitude dispersion of internal waves
Makarenko, N.; Ulanova, E.
2012-04-01
We consider the theoretical model of large amplitude internal solitary waves propagating in a weakly stratified fluid under gravity. It is well known that steady 2D Euler equations of non-homogeneous fluid reduce in this case to the second-order quasi-linear equation for a stream function (the Dubreil-Jacotin-Long equation). Subsequently, the shape of traveling solitary wave can be determined in the long-wave scaling limit by solving the dispersive KdV-type model equation. The non-linear terms of this equation depend considerably on the instantaneous fine-scale density profile formed over background linear- or exponential stratification (Benney&Ko, 1978; Borisov&Derzho 1990; Derzho&Grimshaw 1997; Makarenko, 1999; Makarenko, Maltseva and Kazakov, 2009). Now we derive and analyze Fredholm-type integral equations coupling immediately the fluid density coefficient with the dispersion function for internal solitary waves. The inverse problem which means to find the fine-scale density by known curve of the amplitude dispersion is discussed in more details.
Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate
Bratton, Robert; Datta, Subhendu K.; Shah, Arvind
1990-01-01
Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation
A detailed study of guided wave propagation in a viscoelastic multilayered anisotropic plate
Taupin, L; Lhemery, A [CEA, institut LIST, centre de Saclay, bat. 611, point courrier 120, F-91191 Gif-sur-Yvette cedex (France); Inquiete, G, E-mail: alain.lhemery@cea.fr [EADS - Innovation Works, 12, rue Pasteur, BP76, F-92152 Suresnes cedex (France)
2011-01-01
Guided waves (GW) are very attractive in nondestructive technique applications (eg. Structural Health Monitoring) because of their ability to propagate at long range. In a structure made of composite materials, their propagation is complex due to material anisotropy and to their dispersive and multi-modal nature. Interpreting measurements of GW in such a structure requires a sound grasp of their behaviour. Here, the Semi-Analytical Finite Element (SAFE) method is used for studying GW propagation in viscoelastic multilayered anisotropic plates. Beside classical post-processing techniques used to compute the displacement, dispersion and slowness curves, the Poynting vector is also obtained, allowing us to study energy propagation in complex plate structures. Then, GW propagation in multilayered viscoelastic composite (C-epoxy) plates is studied; different stacking sequences typical of those used to build aeronautical parts are considered. Phase, energy velocities and attenuation are studied for different propagation directions and frequencies. It appears that symmetries of GW behaviour are complex: the axes of symmetry depicting this behaviour do not coincide with those of stacking sequences and depend on frequency. Modes appearing above the first cut-off frequency have such a complex behaviour that they cannot be used in practical applications.
Increased P wave dispersion in patients with liver steatosis
Mustafa Aparci
2010-08-01
Full Text Available Aim Hepatic steatosis is associated with metabolic and hemodynamicabnormalities induced by insulin resistance and inflammatory state. Since abnormalities of P wave dispersion may be accompanied with latter issues we evaluated this subject in patients with hepatic steatosis. Methods Total of 106 patients and 56 healthy subjects were enrolled and performed hepatic ultrasonography, echocardiography, electrocardiogram, and biochemistry tests. Clinical features, laboratory and echocardiographic parameters, P wave dispersion were compared between groups and analyzed for any correlation among parameters. Results Body mass index (BMI, waist circumference, systolic and diastolic blood pressure, levels of total and LDL cholesterol, and fasting blood glucose (FBG, and left atrial diameter were significantly higher in patients with hepatic steatosis. Peak velocities of mitral E and A waves and their ratio were abnormally changed in patients compared to normals. In multiple linear regression analysis, approximately all of the variables previously correlated within Pearsons’ correlation test were found to be significantly correlated with P wave dispersion [ waist circumference (ß=0.151, p=0.048, LDL cholesterol (ß=0.234, p=0.000, FBG (ß=0.402, p= 0.000, alanine aminotransferase (ALT (ß=0.205, p= 0.006, alkaline phosphatase (ALP (ß=0.277, p=0.000, γ-glutamyl transferase (γ-GT (ß=0.240, p=0.000, left atrial diameter (ß=0.204, p=0.003, heart rate (ß=0.123, p=0.037]. Conclusion Increased P wave dispersion may indicate a risk of atrial arrhythmia which may be complicated with disabling symptoms and thromboembolism in patients with hepatic steatosis. Consequently, hepatic steatosis is associated with increased risk for cardiovascular disease due to metabolic and hemodynamic abnormalitiesprobably induced by insulin resistance and inflammatory state.
Experimental and numerical study of the wave run-up along a vertical plate
Molin, Bernard; Kimmoun, O.; Liu, Y.;
2010-01-01
Results from experiments on wave interaction with a rigid vertical plate are reported. The 5m long plate is set against the wall of a 30m wide basin, at 100m from the wavemaker. This set-up is equivalent to a 10m plate in the middle of a 60m wide basin. Regular waves are produced, with wavelengths...
A Spectral Element Method for Nonlinear and Dispersive Water Waves
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...
The interaction of long and short waves in dispersive media
Deconinck, Bernard; Nguyen, Nghiem V.; Segal, Benjamin L.
2016-10-01
The KdV equation models the propagation of long waves in dispersive media, while the NLS equation models the dynamics of narrow-bandwidth wave packets consisting of short dispersive waves. A system that couples the two equations to model the interaction of long and short waves is mathematically attractive and such a system has been studied over the last decades. We evaluate the validity of this system as a physical model, discussing two main problems. First, only the system coupling the linear Schrödinger equation with KdV has been derived in the literature. Second, the time variables appearing in the equations are of a different order. It appears that in the manuscripts that study the coupled NLS-KdV system, an assumption has been made that the coupled system can be derived, justifying its mathematical study. In fact, this is true even for the papers where the asymptotic derivation with the problems described above is presented. In addition to discussing these inconsistencies, we present an alternative system describing the interaction of long and short waves.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Traveling wave dispersal in partially sedentary age-structured populations
Le, Thuc Manh; Van Minh, Nguyen
2010-01-01
In this paper we present a thorough study on the existence of traveling waves in a mathematical model of dispersal in a partially sedentary age-structured population. This type of model was first proposed by Veit and Lewis in [{\\it Am. Nat.}, {\\bf 148} (1996), 255-274]. We choose the fecundity function to be the Beverton-Holt type function. We extend the theory of traveling waves in the population genetics model of Weinberger in [{\\it SIAM J. Math. Anal.}, {\\bf 13} (1982), 353-396] to the case when migration depends on age groups and a fraction of the population does not migrate.
On the propagation of truncated localized waves in dispersive silica
Salem, Mohamed
2010-01-01
Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.
Modeling and characterization of the SPIDER half-wave plate
Bryan, Sean A; Amiri, Mandana; Benton, Steve; Bihary, Richard; Bock, James J; Bond, J Richard; Bonetti, Joseph A; Chiang, H Cynthia; Contaldi, Carlo R; Crill, Brendan P; O'Dea, Daniel; Dore, Olivier; Farhang, Marzieh; Filippini, Jeffrey P; Fissel, Laura; Gandilo, Natalie; Golwala, Sunil; Gudmundsson, Jon E; Hasselfield, Matthew; Halpern, Mark; Helson, Kyle R; Hilton, Gene; Holmes, Warren; Hristov, Viktor V; Irwin, Kent D; Jones, William C; Kuo, Chao Lin; MacTavish, Carrie J; Mason, Peter; Morford, Tracy; Montroy, Thomas E; Netterfield, C Barth; Rahlin, Alexandra S; Reintsema, Carl D; Riley, Daniel; Ruhl, John E; Runyan, Marcus C; Schenker, Matthew A; Shariff, Jamil; Soler, Juan Diego; Trangsrud, Amy; Tucker, Rebecca; Tucker, Carole; Turner, Anthony
2010-01-01
Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation.
Pasyanos, M E
2005-03-21
This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, and have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant
Modeling Gravitational Waves to Test GR Dispersion and Polarization
Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano
2017-01-01
Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.
Optical dispersive shock waves in defocusing colloidal media
An, X.; Marchant, T. R.; Smyth, N. F.
2017-03-01
The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an algebraic equation for the medium response. In the limit of low light intensity, these equations reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results are compared with numerical solutions of the colloid equations.
The dispersion relations of dispersive Alfvén waves in superthermal plasmas
Gaelzer, Rudi; Ziebell, Luiz F.
2014-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power law dependence on the high-energy tail have been the subject of intense research by the space plasma community. Such functions, known as superthermal or kappa distributions, have been found to provide a better fitting to the VDF measured by several spacecraft in the plasma environment of the solar wind. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely propagating waves have been scarcely reported so far. In this work we introduce a mathematical formalism that provides expressions for the dielectric tensor components and subsequent dispersion relations for oblique propagating dispersive Alfvén waves (DAWs) resulting from a kappa VDF. We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions, such as the bi-kappa or product-bi-kappa. The effect of the kappa index and thermal corrections on the dispersion relations of DAW is discussed.
Comment on "Dispersion relation for MHD waves in homogeneous plasma"
Chandra, Suresh; Kumthekar, B K; Sharma, Monika
2009-01-01
Pandey & Dwivedi (2007) again tried to claim that the dispersion relation for the given set of equations must be a sixth degree polynomial. Through a series of papers, they are unnecessarily creating confusion. In the present communication, we have shown how Pandey & Dwivedi (2007) are introducing an additional root, which is insignificant. Moreover, five roots of both the polynomials are common and they are sufficient for the discussion of propagation of slow-mode and fast-mode waves.
Interaction of Lamb Waves with Domain Walls in an Iron Borate Plate
E.A. Zhukov
2015-12-01
Full Text Available This work presents the calculation results of the Lamb wave spectra in a plate of iron borate. Experimental data on how flexural vibrations in a borate plate influence its domain structure are provided.
Study on Scattering Wave Force of Horizontal and Vertical Plate Type Breakwaters
WANG Ke; ZHANG Xi; GAO Xin
2011-01-01
The interaction between wave and horizontal and vertical plates is investigated by the boundary element method,and the relations of wave exciting force with plate thickness,submergence and length are obtained.It is found that:1)The efficient wave exciting force exists while plate submergence is less than 0.5 m,and the plate is very thin with order O(0.005 m).2) The maximum heave wave exciting force exists,and it is the main factor for surface and submerged horizontal plate while the roll force can be ignored.3) The maximum sway wave exciting force exists,it is the main factor for surface or submerged vertical plate,and the roll force is about 20 times of horizontal plate.
Spinning wave plate design for retinal birefringence scanning
Irsch, K.; Gramatikov, B. I.; Wu, Y.-K.; Guyton, D. L.
2009-02-01
To enhance foveal fixation detection while bypassing the deleterious effects of corneal birefringence in retinal birefringence scanning (RBS), we developed a new RBS design introducing a double-pass spinning half wave plate (HWP) and a fixed double-pass retarder into the optical system. Utilizing the measured corneal birefringence from a data set of 300 human eyes, an algorithm and a related computer program, based on Mueller-Stokes matrix calculus, were developed in MATLAB for optimizing the properties of both wave plates. Foveal fixation detection was optimized with the HWP spun 9/16 as fast as the circular scan, with the fixed retarder having a retardance of 45° and fast axis at 90°. With this new RBS design, a significant statistical improvement of 7.3 times in signal strength, i.e. FFT power, was achieved for the available data set compared with the previous RBS design. The computer-model-optimized RBS design has the potential not only for eye alignment screening, but also for remote fixation sensing and eye tracking applications.
Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method.
Ahmad, Z A B; Gabbert, U
2012-09-01
In typical Lamb wave simulation practices, effects of plate edge reflections are often not considered in order to simplify the wave signal interpretations. Methods that are based on infinite plates such as the semi-analytical finite element method is effective in simulating Lamb waves as it excludes the effect of plate edges. However, the inclusion of plate edges in a finite plate could render this method inapplicable, especially for transient response simulations. Here, by applying the ratio of Lamb mode reflections at plate edges, and representing the reflection at plate edges using infinite plate solutions, the semi-analytical finite element method can be applied for transient response simulation, even when the plate is no longer infinite.
Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.
1993-10-01
The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
Lamb waves dispersion curves for diamond based piezoelectric layered structure
Sorokin, B. P.; Kvashnin, G. M.; Telichko, A. V.; Novoselov, A. S.; Burkov, S. I.
2016-03-01
The presence of spurious peaks in the amplitude-frequency response of diamond based piezoelectric layered structure was shown. Excitation of such peaks results in deterioration of an useful acoustical signal. It was shown that such spurious peaks should be associated with Lamb waves in a layered structure. By means of FEM analysis, the propagation of acoustic waves of different types in the piezoelectric layered structure "Al/AlN/Mo/(100) diamond" has been investigated in detail. By analyzing the elastic displacement patterns at frequencies from 0 up to 250 MHz, a set of all the possible acoustic waves, especially Lamb modes, have been studied, and dispersive curves of phase velocity have been plotted. A revised classification of Lamb modes has been introduced.
Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min
2016-01-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two 2D grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse magnetic spoof surface plasmon polaritons and a series of transverse electric bonding- and anti-bonding waveguide modes at surfaces. The RHT spectrum is frequency-selective, and highly geometrically tailorable. Our simulation also reveals thermally excited non-resonant surface waves in constituent materials can play a prevailing role for RHT at an extremely small separation between two plates, rendering metamaterial modes insignificant for the energy transfer process.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Effects of reverse waves on the hydrodynamic pressure acting on a dual porous horizontal plate
Kweon Hyuck-Min
2014-03-01
Full Text Available The seaward reverse wave, occurring on the submerged dual porous horizontal plate, can contribute to the reduction of the transmitted wave as it reflects the propagating wave. However, the collision between the propa¬gating and seaward reverse waves increases the water level and acts as a weight on the horizontal plate. This study investigated the characteristics of the wave pressure created by the seaward reverse wave through the analysis of expe¬rimental data. The analysis confirmed the following results: 1 the time series of the wave pressure showed reverse phase phenomena due to the collision, and the wave pressures acted simultaneously on both upper and lower surfaces of the horizontal plate; 2 the horizontal plate became repeatedly compressed and tensile before and after the occur¬rence of the seaward reverse wave; and 3 the seaward reverse wave created the total wave pressure to the maximum towards the direction of gravity, primarily on the upper plate. It was also confirmed that the wave distributions showed a similar trend to the wave steepness. Such outcome of the analysis will provide basic information to the structural analysis of the horizontal plate as a wave dissipater of the steel-type breakwater (STB.
Draft effect on wave action with a semi-infinite elastic plate
TENG Bin; GOU Ying; CHENG Liang; LIU Shuxue
2006-01-01
A method for analyzing reflection and transmission of ocean waves from a semi-infinite elastic plate with a draft is developed. The relation of energy conservation for plates with three different edge conditions (free, simply supported and built-in) is also derived. It is found that the present method satisfies the energy relation very well. The effects of draft on wave reflection and transmission coefficients as well as on the vertical vibration of the plates are examined through numerical tests. It is demonstrated that the zero draft assumption works well for low wave frequencies, but the effect of plate draft becomes significant for high wave frequencies.
Note: Lossless laser beam combiner employing a high-speed rotating half-wave plate
Yatsuka, E.; Yamamoto, T.; Hatae, T.; Torimoto, K.; Itami, K.
2017-07-01
We have developed a laser beam combiner employing a high-speed rotating half-wave plate based on the specific requirements of the Thomson scattering measurement systems in the ITER. The polarization extinction ratio of the output beam may exceed 1000 and was maintained for more than 1 h via feedback control of the half-wave plate rotation speed. The pointing fluctuations introduced by rotating the half-wave plate were in the order of microradians. The high-speed rotating half-wave plate provides a lossless means of combining laser beams together with stable beam pointing.
Note: Lossless laser beam combiner employing a high-speed rotating half-wave plate.
Yatsuka, E; Yamamoto, T; Hatae, T; Torimoto, K; Itami, K
2017-07-01
We have developed a laser beam combiner employing a high-speed rotating half-wave plate based on the specific requirements of the Thomson scattering measurement systems in the ITER. The polarization extinction ratio of the output beam may exceed 1000 and was maintained for more than 1 h via feedback control of the half-wave plate rotation speed. The pointing fluctuations introduced by rotating the half-wave plate were in the order of microradians. The high-speed rotating half-wave plate provides a lossless means of combining laser beams together with stable beam pointing.
Dispersive photonic crystals from the plane wave method
Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Direct analysis of dispersive wave fields from near-field pressure measurements
Horchens, L.
2011-01-01
Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic hol
Brum, J.; Bernal, M.; Gennisson, J. L.; Tanter, M.
2014-02-01
Non-invasive evaluation of the Achilles tendon elastic properties may enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave elastography has shown to be a powerful tool to estimate tissue mechanical properties. However, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding of the physics on the shear wave propagation in such a complex medium. First, tendon tissue is transverse isotropic. Second, tendons are characterized by a marked stiffness in the 400 to 1300 kPa range (i.e. fast shear waves). Hence, the shear wavelengths are greater than the tendon thickness leading to guided wave propagation. Thus, to better understand shear wave propagation in tendons and consequently to properly estimate its mechanical properties, a dispersion analysis is required. In this study, shear wave velocity dispersion was measured in vivo in ten Achilles tendons parallel and perpendicular to the tendon fibre orientation. By modelling the tendon as a transverse isotropic viscoelastic plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%). We show that parallel to fibres the shear wave velocity dispersion is not influenced by viscosity, while it is perpendicularly to fibres. Elasticity (found to be in the range from 473 to 1537 kPa) and viscosity (found to be in the range from 1.7 to 4 Pa.s) values were retrieved from the model in good agreement with reported results.
Wavenumber resonance in nonlinear wave interactions in the wake of a flat plate
Davila, Jose Benigno
The spatial traits of nonlinear wave interactions in transitioning flow in the symmetric wake of a flat plate were studied. The study combines the use of hot wire anemometry and digital analysis techniques for extracting frequency and wavenumber information from velocity fluctuation time series measurements. The linear spatial coherence was computed from velocity fluctuation data in order to determine if the frequency modes behave as waves, that is, spatially coherent fluctuations with a well defined dispersion relation. A new method was used to compute the mode triad wavenumber mismatch. The results were used to determine to what extent wavenumber resonance is present among quadratically interacting frequency resonant modes, as predicted by resonant wave interaction theory. The results show that, in the early part of the transition, instability modes interact nonlinearity to generate spatially coherent modes at frequencies above the instability range. Quadratically interacting, frequency resonant mode triads involve the transfer of energy to the harmonics of the fundamental instability exhibit good wavenumber resonance, as predicted by resonant wave interaction theory.
Laser-generated thermoelastic acoustic sources and acoustic waves in anisotropic plate
XU BaiQiang; WANG Feng; FENG Jun; WANG JiJun; SUN HongXiang; LUO Ying
2009-01-01
The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi-ber-reinforced composite plate has been investigated. A quantitative numerical model for the la-ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method.All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther-mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the effect on ultrasound waveform of the size of the laser volume source produces strong bipolar Iongitu-dinal waves and improves the amplitude and directivity of the longitudinal waves. A fiber-reinforced composite material exhibits isotropic or homogenous behavior for ultrasonic wave propagation per-pendicular to the fiber direction. For ultrasonic propagation along the fiber direction, ultrasonic dis-persion resulting from the inhomogeneous nature of the material affects the laser ultrasonic waveforms. As the dimensions of the laser pulse are increased in space and time, the displacement waveform be-comes broader and its magnitude decreases.
Bae, Jin Ho; Joo, Young Sang; Ham, Ji Woong; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-05-15
In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, to improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A0-mode Lamb wave should be minimized and the longitudinal leaky wave in liquid sodium should be generated within the range of the effective radiation angle. A new concept of ultrasonic waveguide sensors with a layered-structured plate is suggested for the non-dispersive propagation of A0-mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of a leaky wave in liquid sodium. In this work, the propagation and radiation of the leaky Lamb wave in the waveguide sensor coated with Beryllium has been performed by FEM simulations
Composite Materials NDE Using Enhanced Leaky Lamb Wave Dispersion Data Acquisition Method
Bar-Cohen, Yoseph; Mal, Ajit; Lih, Shyh-Shiuh; Chang, Zensheu
1999-01-01
The leaky Lamb wave (LLW) technique is approaching a maturity level that is making it an attractive quantitative NDE tool for composites and bonded joints. Since it was first observed in 1982, the phenomenon has been studied extensively, particularly in composite materials. The wave is induced by oblique insonification using a pitch-catch arrangement and the plate wave modes are detected by identifying minima in the reflected spectra to obtain the dispersion data. The wave behavior in multi-orientation laminates has been well documented and corroborated experimentally with high accuracy. The sensitivity of the wave to the elastic constants of the material and to the boundary conditions led to the capability to measure the elastic properties of bonded joints. Recently, the authors significantly enhanced the LLW method's capability by increasing the speed of the data acquisition, the number of modes that can be identified and the accuracy of the data inversion. In spite of the theoretical and experimental progress, methods that employ oblique insonification of composites are still not being applied as standard industrial NDE methods. The authors investigated the issues that are hampering the transition of the LLW to industrial applications and identified 4 key issues. The current capability of the method and the nature of these issues are described in this paper.
Fatigue crack detection in a plate girder using Lamb waves
Greve, D. W.; Oppenheim, I. J.; Wu, Wei; Zheng, Peng
2007-04-01
We report on the application of wafer-type PZT transducers to the detection of flaws in steel plate girders. In these experiments one transducer is used to emit a pulse and the second receives the pulse and reflections from nearby boundaries, flaws, or discontinuities (pitch-catch mode). In this application there will typically be numerous reflections observed in the undamaged structure. A major challenge is to recognize new reflections caused by fatigue cracks in the presence of these background reflections. A laboratory specimen plate girder was fabricated at approximately half scale, 910 mm deep with an h/t ratio of 280 for the web and a b/t ratio of 16 for the flanges, and with transverse stiffeners fabricated with a web gap at the tension flange. Two wafer-type transducers were mounted on the web approximately 175 mm from the crack location, one on each side of the stiffener. The transducers were operated in pitch-catch mode, excited by a windowed sinusoid to create a narrowband transient excitation. The transducer location relative to the crack corresponded to a total included angle of roughly 30 degrees in the path reflecting from the crack. Cyclic loading was applied to develop a distortion-induced fatigue crack in the web at the web gap location. After appearance of the crack, ultrasonic measurements were performed at a range of center frequencies below the cutoff frequency of the A1 Lamb wave mode. Subsequently the crack was extended mechanically to simulate crack growth under primary longitudinal (bending) stress and the measurements were repeated. Direct differencing of the signals showed arrivals at times corresponding to reflection from the crack location, growing in amplitude as the crack was lengthened mechanically. These results demonstrate the utility of Lamb waves for crack detection even in the presence of numerous background reflections.
Feature guided waves (FGW) in fiber reinforced composite plates with 90° transverse bends
Yu, Xudong; Ratassepp, Madis; Fan, Zheng; Manogharan, Prabhakaran; Rajagopal, Prabhu
2016-02-01
Fiber reinforced composite materials have been increasingly used in high performance structures such as aircraft and large wind turbine blades. 90◦ composite bends are common in reinforcing structural elements, which are prone to defects such as delamination, crack, fatigue, etc. Current techniques are based on local inspection which makes the whole bend area scanning time consuming and tedious. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of 90◦ composite laminated bends. In this study, the behavior of the bend-guided wave in the anisotropic composite material is investigated through modal studies by applying the Semi-Analytical Finite Element (SAFE) method, also 3D Finite Element (FE) simulations are performed to visualize the results and to obtain cross validation. To understand the influence of the anisotropy, three-dimensional dispersion surfaces of the guided modes in flat laminated plates are obtained, showing the dependence of the phase velocity with the frequency and the fiber orientation. S H0-like and S 0-like bend-guided modes are identified with energy concentrated in the bend region, limiting energy radiation into adjacent plates and thus achieving increased inspection length. Finally, parametric studies are carried out to further investigate the properties of these two bend-guided modes, demonstrating the variation of the group velocity, the energy concentration, and the attenuation with the frequency.
Guided lamb wave electroacoustic devices on micromachined AlN/Al plates.
Di Pietrantonio, Fabio; Benetti, Massimiliano; Cannatà, Domenico; Beccherelli, Romeo; Verona, Enrico
2010-05-01
An electroacoustic micro-device based on the propagation of guided acoustic Lamb waves in AlN/Al plate is described. The AlN thin film is deposited by sputtering technique, optimized to achieve a high degree of orientation (rocking curve full-width at half-maximum /sp lap/ 3.5 degrees ) of the c-axis perpendicular to the plate surface. The AlN plate is micromachined using anisotropic reactive ion etching (RIE), followed by isotropic RIE to remove the silicon underlayer. Simulation results for the dispersion phase velocity curves and the electromechanical coupling coefficient (K(2)) are obtained by the matrix method and by the finite element method and compared with experimental data. A delay line is implemented on the structure and tested for the propagation of the first symmetrical Lamb mode (s(0)) at the frequency of 1.22 GHz. Measurements have shown that the structure is suitable for implementation of arrays of electroacoustic devices on a single chip for application to both sensing devices and signal processing systems.
Shi Jing
2014-01-01
Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.
Wave transfer matrix for a spiral phase plate.
Rumala, Yisa S
2015-05-10
The wave transfer matrix (WTM) is applied to calculating various characteristics of a spiral phase plate (SPP) for the first time to our knowledge. This approach provides a more convenient and systematic approach to calculating properties of a multilayered SPP device. In particular, it predicts the optical wave characteristics on the input and output plane of the device when the SPP is fabricated on a substrate of the same refractive index as the SPP as well as on a substrate of a different refractive index compared to the SPP. The dependence of the parameters on the input laser frequency is studied in detail for a low finesse SPP etalon device for both cases. The equations derived from the WTM are used to show that a variation in input laser frequency causes the optical intensity pattern on the output plane to rotate, while preserving the topology of the optical vortex, i.e., the variation in laser frequency has a minimal effect on the parameters describing the azimuthal intensity modulation and orbital angular momentum content of the beam. In addition, the equations predict the presence of longitudinal modes in the SPP device.
Lamb Wave Dispersion Characterization Using Multiplexed Two-Wave Mixing Interferometry
Zhou, Yi; Zhang, Feifei; Krishnaswamy, Sridhar
2003-03-01
In recent work at Northwestern University, Multiplexed Two-Wave Mixing Interferometers (MTWM) have been developed. These systems are able to perform optical detection of ultrasonic motion over an array of points simultaneously. Optical phase gratings are used to create a detection-array of laser beams that are directed to the specimen. The detection array can be arranged in several ways on the test object. The scattered beams from the detection-array are collected and combined with a single reference beam in a photorefractive crystal to form a multiplexed two-wave mixing configuration. Each of the output beams from the photorefractive crystal is imaged on to a separate element of a photodetector array. The resulting MTWM system is capable of providing simultaneous optical detection (with high spatial resolution and sub-nanometer displacement sensitivities) at several points on a test object. The MTWM system can be used in several modes for laser ultrasonic NDE of flaws and materials characterization. In this paper we present recent advances and applications of this technology. An application of the MTWM system for fast recovery of Lamb wave dispersion curves is presented. We obtain the dispersive time-domain Lamb wave signals at multiple source-to-receiver distances. Following the algorithm of Alleyne and Cawley, these time-position domain signals are transformed to the frequency-wavenumber domain using a 2D FFT technique. The MTWM system enables rapid characterization of Lamb wave dispersion.
Kinetic Aspects of Dispersive Scale Alfvén Waves
Rankin, R.; Watt, C.; Lu, J.; Marchand, R.
2005-12-01
Ground-based observations and in-situ satellite measurements have firmly established that dispersive scale shear Alfvén waves (SAWs) are associated with electron acceleration on field lines threading the auroral oval. Electron acceleration is attributed to wave-particle interactions involving parallel electric fields in SAWs. In spite of this basic fact, there remains the significant problem of constructing appropriate theory that would explain how parallel electric fields are formed in SAWs across the full range of observed length and timescales. Two-fluid reduced MHD theory provides a conventional approach that is often used. However, it can be shown that at low wave frequencies, the predicted electric field strengths are insufficient to explain precipitation energies of electrons that vary from 100's of eV to several keV. In this paper, we identify the conditions under which two-fluid theory breaks down, and present results of kinetic wave modeling of standing SAWs and propagating SAW pulses. We quantify the conditions under which kinetic theory must be used, and discuss the essential ingredients which are necessary to explain the observed range of electron precipitation energies. Our results are compared with NASA FAST satellite data and data from the Canadian Space Agency rocket experiment GEODESIC
Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators
Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry
2016-01-01
The nonlinear propagation of optical pulses in dielectric waveguides and resonators provides a laboratory to investigate a wide range of remarkable interactions. Many of the resulting phenomena find applications in optical systems. One example is dispersive wave generation, the optical analog of Cherenkov radiation. These waves have an essential role in fiber spectral broadeners that are routinely used in spectrocopy and metrology. Dispersive waves form when a soliton pulse begins to radiate power as a result of higher-order dispersion. Recently, dispersive wave generation in microcavities has been reported by phase matching the waves to dissipative Kerr cavity (DKC) solitons. Here, it is shown that spatial mode interactions within a microcavity can also be used to induce dispersive waves. These interactions are normally avoided altogether in DKC soliton generation. The soliton self frequency shift is also shown to induce fine tuning control of the dispersive wave frequency. Both this mechanism and spatial mo...
Solitary and cnoidal wave scattering by a submerged horizontal plate in shallow water
Hayatdavoodi, Masoud; Ertekin, R. Cengiz; Valentine, Benjamin D.
2017-06-01
Solitary and cnoidal wave transformation over a submerged, fixed, horizontal rigid plate is studied by use of the nonlinear, shallow-water Level I Green-Naghdi (GN) equations. Reflection and transmission coefficients are defined for cnoidal and solitary waves to quantify the nonlinear wave scattering. Results of the GN equations are compared with the laboratory experiments and other theoretical solutions for linear and nonlinear waves in intermediate and deep waters. The GN equations are then used to study the nonlinear wave scattering by a plate in shallow water. It is shown that in deep and intermediate depths, the wave-scattering varies nonlinearly by both the wavelength over the plate length ratio, and the submergence depth. In shallow water, however, and for long-waves, only the submergence depth appear to play a significant role on wave scattering. It is possible to define the plate submergence depth and length such that certain wave conditions are optimized above, below, or downwave of the plate for different applications. A submerged plate in shallow water can be used as a means to attenuate energy, such as in wave breakers, or used for energy focusing, and in wave energy devices.
Trapping of surface gravity waves by a vertical flexible porous plate near a wall
Kaligatla, R. B.; Koley, S.; Sahoo, T.
2015-10-01
The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled based on the Euler-Bernoulli beam equation. Using the Green's function technique to the plate equation and associated boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green's second identity to the free-surface Green's function and the scattered velocity potentials on the two sides of the plate, a system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities of physical interest. Utilizing Green's identity, explicit expressions for the reflection coefficients are derived in terms of the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is more effective for trapping of water waves
Din, Ghiyas Ud [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad (Pakistan); Isotope Applications Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)], E-mail: fac192@pieas.edu.pk; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad (Pakistan); Khan, Iqbal Hussain [Isotope Applications Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)
2008-12-15
Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.
Park, Hee Su; Sharma, Aditya
2016-12-01
We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.
Parametric dispersion and amplification of acoustohelicon waves in piezoelectric semiconductors
Neogi, A.; Ghosh, S.
1991-01-01
Assuming that the origin of the nonlinear interaction lies in the second-order optical susceptibility arising from the nonlinear induced current density and using the coupled-mode theory, the parametric dispersion and amplification of acoustohelicon waves is analytically investigated in a longitudinally magnetized piezoelectric semiconductor of noncentrosymmetric nature. The relevant experiments have not been reported. The threshold value of the pump electric field E0th and its corresponding excitation intensity is obtained. The longitudinal magnetic field decreases the required magnitude of E0th for the excitation of parametric amplification. The phenomenon of self-defocusing of the signal in the prevailing case is found to be a consequence of the negative dispersive characteristics exhibited by the acoustohelicon waves. Numerical analyses are performed for an InSb crystal at 77 K, duly irradiated by frequency-doubled pulsed 10.6-μm CO2 lasers. The parametric gain constant is observed to be maximum when the cyclotron frequency ωc attains the magnitude equal to that of ω0, the incident laser frequency (=1.78×1014 s-1 ).
Lamb wave scattering by a surface-breaking crack in a plate
Datta, S. K.; Al-Nassar, Y.; Shah, A. H.
1991-01-01
An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.
Dispersion of Lamb waves in a honeycomb composite sandwich panel.
Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit
2015-02-01
Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems.
Strongly birefringent cut-wire pair structure as negative index wave plates at THz frequencies
Weis, P.; Paul, O.; Imhof, C.; Beigang, R; Rahm, M.
2009-01-01
We report a new approach for the design and fabrication of thin wave plates with high transmission in the terahertz (THz) regime. The wave plates are based on strongly birefringent cut-wire pair metamaterials that exhibit refractive indices of opposite signs for two orthogonal polarization components of an incident wave. As specific examples, we fabricated and investigated a quarter- and a half-wave plate that revealed a peak intensity transmittance of 74% and 58% at 1.34 THz and 1.3 THz, res...
Hyperbolic Mild Slope Equations with Inclusion of Amplitude Dispersion Effect: Regular Waves
JIN Hong; ZOU Zhi-li
2008-01-01
A new form of hyperbolic mild slope equations is derived with the inclusion of the amplitude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved numerically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model's performance on prediction of wave heights around breaking point for the wave motions in surf zone.
Axial dispersion of the liquid phase in a three-phase Karr reciprocating plate column
DEJAN U. SKALA
2004-07-01
Full Text Available The influence of the gas flow rate and vibration intensity in the presence of the solid phase (polypropylene spheres on axial mixing of the liquid phase in a three phase (gas-liquid-solid Karr reciprocating plate column (RPC was investigated. Assuming that the dispersion model of liquid flow could be used for the real situation inside the column, the dispersion coefficient of the liquid phase was determined as a function of different operating parameters. For a two-phase liquid-solid RPC the following correlation was derived: DL = 1.26(Af1.42 UL0.51 eS0.23 and a similar equation could be applied with ± 30 % confidence for the calculation of axial dispersion in the case of a three-phase RPC: DL = 1.30(Af0.47 UL0.42 UG0.03eS-0.23.
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad
2015-03-01
The optimum topology of bimaterial phononic crystal (PhCr) plates with one-dimensional (1D) periodicity to attain maximum relative bandgap width of low order Lamb waves is computationally investigated. The evolution of optimized topology with respect to filling fraction of constituents, alternatively stiff scattering inclusion, is explored. The underlying idea is to develop PhCr plate structures with high specific bandgap efficiency at particular filling fraction, or further with multiscale functionality through gradient of optimized PhCr unitcell all over the lattice array. Multiobjective genetic algorithm (GA) is employed in this research in conjunction with finite element method (FEM) for topology optimization of silicon-tungsten PhCr plate unitcells. A specialized FEM model is developed and verified for dispersion analysis of plate waves and calculation of modal response. Modal band structure of regular PhCr plate unitcells with centric scattering layer is studied as a function of aspect ratio and filling fraction. Topology optimization is then carried out for a few aspect ratios, with and without prescribed symmetry, over various filling fractions. The efficiency of obtained solutions is verified as compared to corresponding regular centric PhCr plate unitcells. Moreover, being inspired by the obtained optimum topologies, definite and easy to produce topologies are proposed with enhanced bandgap efficiency as compared to centric unitcells. Finally a few cases are introduced to evaluate the frequency response of finite PhCr plate structures produced by achieved topologies and also to confirm the reliability of calculated modal band structures. Cases made by consecutive unitcells of different filling fraction are examined in order to attest the bandgap efficiency and multiscale functionality of such graded PhCr plate structures. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Time-frequency analysis of SH waves in an isotropic plate bordered with one elastic solid layer
SONG Fuxian; LU Yi; ZHANG Dong; ZHU Zhemin
2006-01-01
A time-frequency analysis method is proposed to analyze the shear-horizontal (SH) waves propagating in an isotropic plate bordered with one elastic solid layer. To examine the validity of this approach, the SH wave signals simulated by the finite element modeling method are analyzed by the reassigned short-time Fourier transform. The extracted dispersion data are in good agreement with results derived from dispersion equations. Results indicate that an increase in the loading layer thickness can cause a decrease in the group velocity of the SH0 mode and the cut-off frequency of higher modes, implying a possibility for the evaluation of the loading layer thickness by using this method. The limitations of this method are also discussed in this paper.
Increased P-wave dispersion a risk for atrial fibrillation in adolescents with anorexia nervosa.
Ertuğrul, İlker; Akgül, Sinem; Derman, Orhan; Karagöz, Tevfik; Kanbur, Nuray
2016-01-01
Studies have shown that a prolonged P-wave dispersion is a risk factor for the development of atrial fibrillation. The aim of this study was to evaluate P-wave dispersion in adolescents with anorexia nervosa at diagnosis. We evaluated electrocardiographic findings, particularly the P-wave dispersion, at initial assessment in 47 adolescents with anorexia nervosa. Comparison of P-wave dispersion between adolescents with anorexia nervosa and controls showed a statistically significant higher P-wave dispersion in patients with anorexia nervosa (72 ± 16.3 msec) when compared to the control group (43.8 ± 9.5 msec). Percent of body weight lost, lower body mass index, and higher weight loss rate in the patients with anorexia nervosa had no effect on P-wave dispersion. Due to the fact that anorexia nervosa has a high mortality rate we believe that cardiac pathologies such as atrial fibrillation must also be considered in the medical evaluation.
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal
Zhou, Binbin; Bache, Morten
2015-01-01
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited...... in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phasematching wavelengths due to degenerate four-wave mixing to the soliton. We also...... observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations....
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
Zhou, Binbin; Bache, Morten
2015-09-15
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phase-matching wavelengths due to degenerate four-wave mixing to the soliton. We also observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations.
Performance Optimization of Dispersion-Managed WDM Systems Based on Four-Wave Mixing
无
2003-01-01
We systemically investigate the interchannel four-wave mixing (FWM) in dispersion-managed WDM systems with arbitrary launch position. We optimize the number of fiber sections, and the dispersion ratio for the system performance.
Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion
Pasyanos, M E
2008-05-15
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion
Gok, R; Mahdi, H; Al-Shukri, H; Rodgers, A J
2006-08-31
We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.
Benoit, M H; Nyblade, A A; Pasyanos, M E
2006-01-17
The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.
Nagy, Peter B; Simonetti, Francesco; Instanes, Geir
2014-09-01
Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes.
Existence of traveling waves for diffusive-dispersive conservation laws
Cezar I. Kondo
2013-02-01
Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.
Electromagnetic wave propagation through a slab of a dispersive medium
Ismail, Mohamed
2016-01-01
A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.
Water wave scattering by an elastic thin vertical plate submerged in finite depth water
Chakraborty, Rumpa; Mandal, B. N.
2013-12-01
The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here. The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate. Using the Green's function technique, from this boundary condition, the normal velocity of the plate is expressed in terms of the difference between the velocity potentials (unknown) across the plate. The two ends of the plate are either clamped or free. The reflection and transmission coefficients are obtained in terms of the integrals' involving combinations of the unknown velocity potential on the two sides of the plate, which satisfy three simultaneous integral equations and are solved numerically. These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.
Perelli, Alessandro; De Marchi, Luca; Marzani, Alessandro; Speciale, Nicolò
2012-02-01
A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance-frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cramèr-Rao lower bound.
Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid
2016-01-01
We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.
Characterization of surface properties of a solid plate using nonlinear Lamb wave approach.
Deng, Mingxi
2006-12-22
A nonlinear Lamb wave approach is presented for characterizing the surface properties of a solid plate. This characterization approach is useful for some practical situations where ultrasonic transducers cannot touch the surfaces to be inspected, e.g. the inside surfaces of sealed vessels. In this paper, the influences of changes in the surface properties of a solid plate on the effect of second-harmonic generation by Lamb wave propagation were analyzed. A surface coating with the different properties was used to simulate changes in the surface properties of a solid plate. When the areas and thicknesses of coatings on the surface of a given solid plate changed, the amplitude-frequency curves both of the fundamental waves and the second harmonics by Lamb wave propagation were measured under the condition that Lamb waves had a strong nonlinearity. It was found that changes in the surface properties might clearly affect the efficiency of second-harmonic generation by Lamb wave propagation. The Stress Wave Factors (SWFs) in acousto-ultrasonic technique were used for reference, and the definitions of the SWFs of Lamb waves were introduced. The preliminary experimental results showed that the second-harmonic SWF of Lamb wave propagation could effectively be used to characterize changes in the surface properties of the given solid plate.
A negative refractive index metamaterial wave plate for millimetre-wave applications
Mohamed, I.; Pisano, G.; Ng, M. W.; Maffei, B.; Haynes, V.; Ozturk, F.
2012-09-01
By use of a metamaterial based on the ‘cut wire pair’ geometry, highly birefringent wave plates may be constructed by virtue of the geometry’s ability of having a negative and positive refractive index along its perpendicular axes. Past implementations have been narrow band in nature due to the reliance on producing a resonance to achieve a negative refractive index band and the steep gradient in the phase difference that results. In this paper we attempt to design and manufacture a W-band quarter wave plate embedded in polypropylene that applies the Pancharatnam method to increase the useable bandwidth. Our modelling demonstrates that a broadening of the phase difference’s bandwidth defined as the region 90° +/- 2° is possible from 0.6% (101.7 GHz - 102.3 GHz) to 7.8% (86.2 GHz - 93.1 GHz). Our experimental results show some agreement with our modelling but differ at higher frequencies.
The Relationship Between Aging and P Wave Dispersion
İrfan Barutçu
2009-12-01
Full Text Available Objective: Atrial fibrillation (AF, commonly observed in advanced ages, displays striking age dependent increase and increased P wave dispersion (PWD has been shown to be a predictor of AF. In this studywe sought to determine whether P wave duration and PWD increase with aging. Method and Results: Eighty-three elderly subjects (group-I mean age 75±8 years and 40 healthy young subjects (group-II, mean age 37±6 years participated in this study. 12-lead ECG recorded at a paper speed of 50mm/s was obtained from each participant. Maximum (Pmax and minimum P wave duration (Pmin was measured manually with a caliper and the difference between two values was defined asPWD. Pmax and PWD were significantly higher in group-I compared to group-II. (98±8 vs. 93±8 p=0.01, 41±12 vs. 34±13 p=0.002, respectively. Among the elderly population when those with cardiovascular disorders such as hypertension, coronary artery disease and heart failure were excluded, Pmax and PWD were still significantly higher than the young population. (Pmax: 98±7 vs. 93±7, p=0.02 and PWD: 42±11 vs. 34±13, p=0.002. Moreover, on correlation analysis a positive correlation was detected between Pmaxand PWD and aging. (r=0.29, p=0.004; r=0.30, p=0.003 respectively.Conclusion: PWD shows age dependent increase and may be a useful marker for estimation the risk of developing AF seen in advanced ages.
Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)
2015-11-01
In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.
Hyperbolic Mild Slope Equations with Inclusion of Amplitude Dispersion Effect: Random Waves
无
2008-01-01
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is greatly saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.
Rossby wave energy dispersion from tropical cyclone in zonal basic flows
Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu
2016-04-01
This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.
A (2+1)-Dimensional Dispersive Long Wave Hierarchy and its Integrable Couplings
Huanhe Dong
2007-01-01
Under the frame of the (2+1)-dimensional zero curvature equation and Tu model,the (2+1)-dimensional dispersive long wave hierarchy is obtained. Furthermore, the loop algebra is expanded into a larger one. Moreover, a class of integrable coupling system for dispersive long wave hierarchy and (2+1)-dimensional multi-component integrable system will be investigated.
Andersen, T.V.; Hilligsøe, Karen Marie; Nielsen, C.K.;
2004-01-01
We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler...
DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR
GAO HONG; LIU SHENG-GANG
2000-01-01
A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.
Negative Dispersion of Lattice Waves in a Two-Dimensional Yukawa System
刘艳红; 刘斌; 杨思泽; 王龙
2002-01-01
Collective motion modes existing in a two-dimensional Yukawa system are investigated by molecular dynamics simulation. The dispersion relations of transverse and longitudinal lattice waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the parallel longitudinal wave is demonstrated by the simulation, and is explained by a physical model.
Broadband wave plates: Approach from one-dimensional photonic crystals containing metamaterials
Chen Yihang, E-mail: kallenmail@sina.co [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2011-02-14
Broadband wave plates working in subwavelength scale are realized by one-dimensional photonic crystals containing negative-index materials. It is demonstrated that the phase shift of reflected wave as a function of frequency changes smoothly within the stop band of the photonic crystal, while it changes sharply within the pass band. In the stop band, the difference between the phase of TE and that of TM reflected wave could remain constant in a rather wide frequency range. These properties are useful for designing compact wave plates or phase retarders which can be used in broad spectral bandwidth.
LI Xu-Dong; LIU Kai-Xin; ZHANG Guang-Sheng; WEN Shang-Gang; TAN Fu-Li
2008-01-01
@@ Interaction of shock waves in cement mortar plate is studied by digital speckle correlation method and digital high-speed photography technique. When the plates were destroyed by two detonators exploding at the same time, variation of shock wave field is obtained. Experimental results show that the interaction of shock waves will result in a nonlinear huge increase of local normal strain, leading to large deformation and serious destruction. However, the occurrence of this strongly nonlinear phenomenon sensitively depends on the interval between detonators, and it will only appear when the interval is smaller than the diameter of the region where shock waves exist.
Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas
Tahir, Asad A.; Schulz, Sebastian A.; De Leon, Israel; Boyd, Robert W.
2017-03-01
Plasmonic L-shaped antennas are an important building block of metasurfaces and have been used to fabricate ultra-thin wave plates. In this work we present principles that can be used to design wave plates at a wavelength of choice and for diverse application requirements using arrays of L-shaped plasmonic antennas. We derive these design principles by studying the behavior of the vast parameter space of these antenna arrays. We show that there are two distinct regimes: a weak inter-particle coupling and a strong inter-particle coupling regime. We describe the behavior of the antenna array in each regime with regards to wave plate functionality, without resorting to approximate theoretical models. Our work is the first to explain these design principles and serves as a guide for designing wave plates for specific application requirements using plasmonic L-shaped antenna arrays.
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
Efficiency of dispersive wave generation in dual concentric core microstructured fiber
Modotto, Daniele; Krupa, Katarzyna; Manili, Gabriele; Minoni, Umberto; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Labruyère, Alexis; Shalaby, Badr Mohammed; Leproux, Philippe; Wabnitz, Stefan; Aceves, Alejandro B
2015-01-01
We describe the generation of powerful dispersive waves that are observed when pumping a dual concentric core microstructured fiber by means of a sub-nanosecond laser emitting at the wavelength of~1064 nm. The presence of three zeros in the dispersion curve, their spectral separation from the pump wavelength, and the complex dynamics of solitons originated by the pump pulse break-up, all contribute to boost the amplitude of the dispersive wave on the long-wavelength side of the pump. The measured conversion efficiency towards the dispersive wave at 1548 nm is as high as 50%. Our experimental analysis of the output spectra is completed by the acquisition of the time delays of the different spectral components. Numerical simulations and an analytical perturbative analysis identify the central wavelength of the red-shifted pump solitons and the dispersion profile of the fiber as the key parameters for determining the efficiency of the dispersive wave generation process.
Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio
2017-07-01
Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.
WANG Shao-Kai; REN Ji-Gang; PENG Cheng-Zhi; JIANG Shuo; WANG Xiang-Bin
2007-01-01
We report a method to realize the arbitrary inverse unitary transformation imposed by a single-mode fibre on photon's polarization by the succession of two quarter-wave plates and a half-wave plate. The process of realization by polarization state vector. The method is meaningful in quantum communication experiment such as quantum teleportation, in which an unknown arbitrary quantum state should be kept to be unchanged in the case of using a single-mode fibre for time delay.
无
2000-01-01
When the rotatory inertia is taken into account, vibrations of a linear plate can be described by the Kirchhoff plate equation. Consider this equation with locally distributed control forces and some boundary condition which is the simply supported boundary condition for a rectangular plate. In this paper, the authors establish exact controllability of the system in terms of the equivalence to exact internal controllability of the wave equation, by means of a frequency domain characterization of exact controllability introduced recently in [11].
Scattering of Fexural Gravity Waves by a Two-Dimensional Thin Plate
Sudeshna Banerjee
2017-01-01
Full Text Available An approximate analysis based on standard perturbation technique together with an application of Green’s integral theorem is used in this paper to study the problem of scattering of water waves by a two dimensional thin plate submerged in deep ocean with ice cover. The reﬂection and transmission coefﬁcients upto ﬁrst order are obtained in terms of the shape function describing the plate and are studied graphically for different shapes of the plate.
Simulated Obstructive Sleep Apnea Increases P-Wave Duration and P-Wave Dispersion
Wons, Annette M.; Rossi, Valentina; Bratton, Daniel J.; Schlatzer, Christian; Schwarz, Esther I.; Camen, Giovanni; Kohler, Malcolm
2016-01-01
Background A high P-wave duration and dispersion (Pd) have been reported to be a prognostic factor for the occurrence of paroxysmal atrial fibrillation (PAF), a condition linked to obstructive sleep apnea (OSA). We tested the hypothesis of whether a short-term increase of P-wave duration and Pd can be induced by respiratory manoeuvres simulating OSA in healthy subjects and in patients with PAF. Methods 12-lead-electrocardiography (ECG) was recorded continuously in 24 healthy subjects and 33 patients with PAF, while simulating obstructive apnea (Mueller manoeuvre, MM), obstructive hypopnea (inspiration through a threshold load, ITH), central apnea (AP), and during normal breathing (BL) in randomized order. The P-wave duration and Pd was calculated by using dedicated software for ECG-analysis. Results P-wave duration and Pd significantly increased during MM and ITH compared to BL in all subjects (+13.1ms and +13.8ms during MM; +11.7ms and +12.9ms during ITH; p<0.001 for all comparisons). In MM, the increase was larger in healthy subjects when compared to patients with PAF (p<0.05). Conclusion Intrathoracic pressure swings through simulated obstructive sleep apnea increase P-wave duration and Pd in healthy subjects and in patients with PAF. Our findings imply that intrathoracic pressure swings prolong the intra-atrial and inter-atrial conduction time and therefore may represent an independent trigger factor for the development for PAF. PMID:27071039
Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics
JIN Yan-Fang; XIONG Chun-Yang; FANG Jing; FERRARI Mauro
2009-01-01
Using the Voigt model, we analyze wave propagation in viscoelastic granular media with a monatomic lattice, planar simple cubic package and cubical-tetrahedral assembly within the context of doublet mechanics. Microstrains of elongation between the doublet particles are considered in the models. Wave dispersive relations are derived from dynamic equations of the particles involved in the media, and phase velocities and attenuations of the dispersive waves are obtained for the different assemblies. Variations in these dispersion characteristics are analyzed with the changes of cell interval, modulus, and wave frequency. The relations between micro-constants and macro-parameters are presented under the condition of non-scale continuity of the media.
Radi, Zohir; Yelles-Chaouche, Abdelkrim; Corchete, Victor; Guettouche, Salim
2017-09-01
We resolve the crust and upper mantle structure beneath Northeast Algeria at depths of 0-400 km, using inversion of fundamental mode Rayleigh wave. Our data set consists of 490 earthquakes recorded between 2007 and 2014 by five permanent broadband seismic stations in the study area. Applying a combination of different filtering technics and inversion method shear wave velocities structure were determined as functions of depth. The resolved changes in Vs at 50 km depth are in perfect agreement with crustal thickness estimates, which reflect the study area's orogenic setting, partly overlying the collision zone between the African and Eurasian plates. The inferred Moho discontinuity depths are close to those estimated for other convergent areas. In addition, there is good agreement between our results and variations in orientations of regional seismic anisotropy. At depths of 80-180 km, negative Vs anomalies at station CBBR suggest the existence of a failed subduction slab.
Ho-Ming Su
Full Text Available The P wave parameters measured by 12-lead electrocardiogram (ECG are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR. This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC and corrected P wave maximum duration (PWdurMaxC. Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9% reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms (log-rank P = 0.004 and PWdurMaxC > median (117.9 ms (log-rank P<0.001 were associated with progression to renal end point. Multivariate forward Cox-regression analysis identified increased PWdisperC (hazard ratio [HR], 1.024; P = 0.001 and PWdurMaxC (HR, 1.029; P = 0.001 were independently associated with progression to renal end point. Our results demonstrate that increased PWdisperC and PWdurMaxC were independently associated with progression to renal end point. Screening patients by means of PWdisperC and PWdurMaxC on 12 lead ECG may help identify a high risk group of rapid renal function decline.
Correlation of P-wave dispersion with insulin sensitivity in obese adolescents.
Sert, Ahmet; Aslan, Eyup; Buyukınan, Muammer; Pirgon, Ozgur
2017-03-01
P-wave dispersion is a new and simple electrocardiographic marker that has been reported to be associated with inhomogeneous and discontinuous propagation of sinus impulses. In the present study, we evaluated P-wave dispersion in obese adolescents and investigated the relationship between P-wave dispersion, cardiovascular risk factors, and echocardiographic parameters. We carried out a case-control study comparing 150 obese adolescents and 50 healthy controls. Maximum and minimum P-wave durations were measured using a 12-lead surface electrocardiogram, and P-wave dispersion was calculated as the difference between these two measures. Echocardiographic examination was also performed for each subject. Multivariate linear regression analysis with stepwise variable selection was used to evaluate parameters associated with increased P-wave dispersion in obese subjects. Maximum P-wave duration and P-wave dispersion were significantly higher in obese adolescents than control subjects (143±19 ms versus 117±20 ms and 49±15 ms versus 29±9 ms, pdispersion was positively correlated with body mass index, waist and hip circumferences, systolic and diastolic blood pressures, total cholesterol, serum levels of low-density lipoprotein cholesterol, triglycerides, glucose, and insulin, homoeostasis model assessment for insulin resistance score, left ventricular mass, and left atrial dimension. P-wave dispersion was negatively correlated with high-density lipoprotein cholesterol levels. By multiple stepwise regression analysis, left atrial dimension (β: 0.252, p=0.008) and homoeostasis model assessment for insulin resistance (β: 0.205; p=0.009) were independently associated with increased P-wave dispersion in obese adolescents. Insulin resistance is a significant, independent predictor of P-wave dispersion in obese adolescents.
Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates (Preprint)
2012-03-01
particularly as compared to most bulk wave NDE methods, Lamb wave are particularly sensitive to changes in the propagation environment, such as... Wilcox , and J. E. Michaels, “Efficient temperature compensation strategies for guided wave structural health monitoring,” Ultrasonics, 50, pp. 517...Liu, “Effects of residual stress on guided waves in layered media,” Rev. Prog. Quant. NDE , 17, D. O. Thompson and D. E. Chimenti (Eds.), Plenum Press
Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate
Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji
2017-01-01
In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.
Luo, Zhi; Zeng, Liang; Lin, Jing; Hua, Jiadong
2017-02-01
Dispersion effect of Lamb wave will cause wave-packets to spread out in space and time, making received signals hard to be interpreted. Though the conventional dispersion compensation method can restrain dispersion effect, waveform deformation still remains in the compensated results. To eliminate dispersion effect completely, a reshaped excitation dispersion compensation method is proposed in this paper. The method compensates the dispersed signal to the same shape as the original excitation by generating a reshaped excitation and then mapping the received signal from time domain to distance domain. Simulations and experiments are conducted for the validation of the waveform correction of the reshaped excitation dispersion compensation method. Applied in the traditional delay-and-sum algorithm, the new dispersion compensation method can effectively enhance the resolution of the damage imaging.
Javad Rostami
2017-06-01
Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the
Rostami, Javad; Tse, Peter W T; Fang, Zhou
2017-06-06
Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for
DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR FLEXURAL WAVES IN THIN PLATE WITH CUTOUT
GAO Suo-wen; WANG Yue-sheng; ZHANG Zi-mao; MA Xing-rui
2005-01-01
The theoretical analysis and numerical calculation of scattering of elastic waves and dynamic stress concentrations in the thin plate with the cutout was studied using dual reciprocity boundary element method (DRM). Based on the work equivalent law, the dual reciprocity boundary integral equations for flexural waves in the thin plate were established using static fundamental solution. As illustration, numerical results for the dynamic stress concentration factors in the thin plate with a circular hole are given.The results obtained demonstrate good agreement with other reported results and show high accuracy.
Wang, Zhaojun; Zhou, Xiaoming
2016-12-01
The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.
Nobili, Andrea; Radi, Enrico; Lanzoni, Luca
2017-08-01
The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Sundkvist, David; Krasnoselskikh, V; Bale, S D; Schwartz, S J; Soucek, J; Mozer, F
2012-01-13
Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.
SHU Wei-Xing; LUO Hai-Lu; LI Fei; REN Zhong-Zhou
2006-01-01
@@ We investigate the propagation of electromagnetic waves at the interface between an isotropic material and the anisotropic medium with a unique dispersion relation. We show that the refraction behaviour of E-polarized waves is opposite to that of H-polarized waves, though the dispersion relations for E- and H-polarized waves are the same. It is found that waves exhibit different propagation properties in anisotropic media with different sign combinations of the permittivity and permeability tensors. Some interesting properties of propagation are also found in the special anisotropic media, leading to potential applications.
Fuh, Andy Ying-Guey; Li, Ming Shian; Wu, Shing Trong
2011-07-04
This study investigates the transversely propagating waves in a body-centered tetragonal photonic crystal based on a holographic polymer-dispersed liquid crystal film. Rotating the film reveals three different transverse propagating waves. Degeneracy of optical Bloch waves from reciprocal lattice vectors explains their symmetrical distribution.
Broad-angle negative reflection and focusing of elastic waves from a plate edge
Veres, Istvan A.; Grünsteidl, Clemens; Stobbe, David M.; Murray, Todd W.
2016-05-01
Guided elastic waves in plates, or Lamb waves, generally undergo reflection and mode conversion upon encountering a free edge. In the case where a backward-propagating Lamb wave is mode-converted to a forward-propagating wave or vice versa, the mode-converted wave is reflected on the same side of the surface normal as the incident wave. In this paper, we study such negative reflection and show that this effect can be achieved over a broad angular range at a simple plate edge. We demonstrate, through both numerical and experimental approaches, that a plate edge can act as a lens and focus a mode-converted Lamb wave field. Furthermore, we show that as the wave vectors of the incident and mode-converted Lamb waves approach each other, the mode-converted field nearly retraces the incident field. We propose that broad-angle negative reflection may find application in the nondestructive testing of structures supporting guided waves and in the development of new acoustic devices including resonators, lenses, and filters.
An infrared achromatic quarter-wave plate designed based on simulated annealing algorithm
Pang, Yajun; Zhang, Yinxin; Huang, Zhanhua; Yang, Huaidong
2017-03-01
Quarter-wave plates are primarily used to change the polarization state of light. Their retardation usually varies depending on the wavelength of the incident light. In this paper, the design and characteristics of an achromatic quarter-wave plate, which is formed by a cascaded system of birefringent plates, are studied. For the analysis of the combination, we use Jones matrix method to derivate the general expressions of the equivalent retardation and the equivalent azimuth. The infrared achromatic quarter-wave plate is designed based on the simulated annealing (SA) algorithm. The maximum retardation variation and the maximum azimuth variation of this achromatic waveplate are only about 1.8 ° and 0.5 ° , respectively, over the entire wavelength range of 1250-1650 nm. This waveplate can change the linear polarized light into circular polarized light with a less than 3.2% degree of linear polarization (DOLP) over that wide wavelength range.
Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang; Xu Bai-Qiang; Zhang Hua; Gao Qian; Zhang Shu-Yi
2011-01-01
This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.
Unusual energy properties of leaky backward Lamb waves in a submerged plate.
Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E
2017-05-01
It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling and experimental investigations of Lamb waves focusing in anisotropic plates
Chapuis, Bastien [Departement Materiaux et Structures Composites, ONERA, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France); Terrien, Nicolas [CETIM, 74 route de la Joneliere, 44326 Nantes Cedex 3 (France); Royer, Daniel, E-mail: Bastien.Chapuis@onera.fr [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris 7, CNRS UMR 7587, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)
2011-01-01
The phenomenon of Lamb waves focusing in anisotropic plates is theoretically and experimentally investigated. An analysis based on a far field approximation of the Green's function shows that Lamb waves focusing is analog to the phonon focusing effect. In highly anisotropic structures like composite plates the focusing of A{sub 0} and S{sub 0} mode is strong; the energy propagates preferentially in the fibre directions, which are minima of the slowness. This has to be taken into account when developing, for example, a transducer array for structural health monitoring systems based on Lamb waves in order to avoid dead zones.
Stock sheets of polycarbonate as inexpensive low-order optical wave plates
Kavanaugh, James; Green, Adam
2008-04-01
We show that commercially available transparent polycarbonate sheets often have linear retardances in the quarter- to half-wave range for visible light. Sheets with thicknesses from 1/16'' to 3/16'' act as zero- to third-order retarders that are modestly stable with temperature and uniform with position. By adjusting the sheets' tilt and orientation angles, they can be tuned to desired retardances, although they are not as sensitive to these parameters as are higher-order wave plates. Since they are readily available and inexpensive, these sheets make good candidates as easily machined, large-aperture wave plates for general laboratory use.
Frequency dispersion of small-amplitude capillary waves in viscous fluids
Denner, Fabian
2016-01-01
This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wavenumber of critical damping based on a harmonic oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wavenumber, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic timescales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodyn...
EXPERIMENTAL STUDY ON TOTAL UPLIFT FORCES OF WAVES ON HORIZONTAL PLATES
ZHOU Yi-ren; CHEN Guo-ping; WANG Deng-ting
2004-01-01
The total uplift forces of waves acting on hori zontal plates are the important basis for the design of maritime hollow-trussed structures. In this paper, an experimental study on the total uplift forces of waves on horizontal plates was conducted by a series of model tests. The results show that the maximum total uplift forces do not necessarily occur with the maximum impact pressure intensity synchronously.On the basis of the test results, formation mechanism of the total uplift forces of waves as well as its influencing factors were analyzed in detail, and an equation for calculation of the maximum total uplift forces of waves on plates was put forward. Lots of test data shows the present equation is in good agreement with the test results.
General solution of cumulative second harmonic by Lamb wave propagation in a solid plate
Deng Mingxi
2008-01-01
A straightforward approach has been developed for the general solution of cumulative second harmonic by Lamb wave propagation in a solid plate. The present analyses of second-harmonic generation by Lamb waves focus on the cases where the phase velocity of the fundamental Lamb wave is exactly or approximately equal to that of the double frequency Lamb wave (DFLW). Based on the general solution obtained, the numerical analyses show that the cumulative second-harmonic fields are associated with the position of excitation source and the difference between the phase velocity of the fundamental Lamb wave and that of the dominant DFLW component.
Solitary SH waves in two-layered traction-free plates
Djeran-Maigre, Irini; Kuznetsov, Sergey
2008-01-01
A solitary wave, resembling a soliton wave, is observed when analyzing the linear problem of polarized shear (SH) surface acoustic waves propagating in elastic orthotropic two-layered traction-free plates. The analysis is performed by applying a special complex formalism and the Modified Transfer Matrix (MTM) method. Conditions for the existence of solitary SH waves are obtained. Analytical expressions for the phase speed of the solitary wave are derived. To cite this article: I. Djeran-Maigre, S. Kuznetsov, C. R. Mecanique 336 (2008).
Increased P-wave dispersion in patients with newly diagnosed lichen planus
Sahin, Musa; Bilgili, Serap Gunes; Simsek, Hakki; Akdag, Serkan; Akyol, Aytac; Gumrukcuoglu, Hasan Ali; Yaman, Mehmet; Bayram, Yasemin; Karadag, Ayse Serap
2013-01-01
OBJECTIVE: Lichen planus is a chronic inflammatory autoimmune mucocutaneous disease. Recent research has emphasized the strong association between inflammation and both P-wave dispersion and dyslipidemia. The difference between the maximum and minimum P-wave durations on an electrocardiogram is defined as P-wave dispersion. The prolongation of P-wave dispersion has been demonstrated to be an independent risk factor for developing atrial fibrillation. The aim of this study was to investigate P-wave dispersion in patients with lichen planus. METHODS: Fifty-eight patients with lichen planus and 37 age- and gender-matched healthy controls were included in this study. We obtained electrocardiographic recordings from all participants and used them to calculate the P-wave variables. We also assessed the levels of highly sensitive C-reactive protein, which is an inflammatory marker, and the lipid levels for each group. The results were reported as the means ± standard deviations and percentages. RESULTS: The P-wave dispersion was significantly higher in lichen planus patients than in the control group. Additionally, highly sensitive C-reactive protein, LDL cholesterol, and triglyceride levels were significantly higher in lichen planus patients compared to the controls. There was a significant positive correlation between highly sensitive C-reactive protein and P-wave dispersion (r = 0.549, p<0.001) in lichen planus patients. CONCLUSIONS: P-wave dispersion increased on the surface electrocardiographic measurements of lichen planus patients. This result may be important in the early detection of subclinical cardiac involvement. Increased P-wave dispersion, in terms of the tendency for atrial fibrillation, should be considered in these patients. PMID:23778479
Increased P-wave dispersion in patients with newly diagnosed lichen planus
Musa Sahin
2013-06-01
Full Text Available OBJECTIVE: Lichen planus is a chronic inflammatory autoimmune mucocutaneous disease. Recent research has emphasized the strong association between inflammation and both P-wave dispersion and dyslipidemia. The difference between the maximum and minimum P-wave durations on an electrocardiogram is defined as P-wave dispersion. The prolongation of P-wave dispersion has been demonstrated to be an independent risk factor for developing atrial fibrillation. The aim of this study was to investigate P-wave dispersion in patients with lichen planus. METHODS: Fifty-eight patients with lichen planus and 37 age- and gender-matched healthy controls were included in this study. We obtained electrocardiographic recordings from all participants and used them to calculate the P-wave variables. We also assessed the levels of highly sensitive C-reactive protein, which is an inflammatory marker, and the lipid levels for each group. The results were reported as the means ± standard deviations and percentages. RESULTS: The P-wave dispersion was significantly higher in lichen planus patients than in the control group. Additionally, highly sensitive C-reactive protein, LDL cholesterol, and triglyceride levels were significantly higher in lichen planus patients compared to the controls. There was a significant positive correlation between highly sensitive C-reactive protein and P-wave dispersion (r = 0.549, p<0.001 in lichen planus patients. CONCLUSIONS: P-wave dispersion increased on the surface electrocardiographic measurements of lichen planus patients. This result may be important in the early detection of subclinical cardiac involvement. Increased P-wave dispersion, in terms of the tendency for atrial fibrillation, should be considered in these patients.
Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Chang Kyu; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Moon Soo; Lee, Jong Hyun [Chungnam National Univ., Daejeon (Korea, Republic of)
2013-12-15
Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm{sup 3} were fabricated. Additional heat treatment was applied to convert the uranium particles into UAl{sub x} compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAl{sub x} dispersion targets, while increasing the uranium density in the target plates.
Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion
Wabnitz, Stefan
2013-01-01
In analogy with ocean waves running up towards the beach, shoaling of prechirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schr\\"odinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion.
Songling Huang
2016-05-01
Full Text Available This paper proposes a new cross-hole tomography imaging (CTI method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs. The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.
Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei
2016-05-02
This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.
Anas Almowarai
2015-01-01
Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.
Dalton, David R.; Slawinski, Michael A.; Stachura, Piotr; Stanoev, Theodore
2016-01-01
We examine two types of guided waves: the Love and the quasi-Rayleigh waves. Both waves propagate in the same model of an elastic isotropic layer above an elastic isotropic halfspace. From their dispersion relations, we calculate their speeds as functions of the elasticity parameters, mass densities, frequency and layer thickness. We examine the sensitivity of these relations to the model and wave properties.
Kim, Young H. [Dept. of Physics and Earth Science, Korea Science Academy of KAIST, Busan (Korea, Republic of); Sung, Jin Woo [Dept. of Physics and Astronomy, Seoul National University, Seoul, (Korea, Republic of)
2013-06-15
In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.
M. Caputo
1998-06-01
Full Text Available Since the dispersion and attenuation properties of dielectric and anelastic media, in the frequency domain, are expressed by similar formulae, as shown experimentally by Cole and Cole (1941 and Bagley and Torvik (1983, 1986 respectively, we note that the same properties may be represented in the time domain by means of an equation of the same form; this is obtained by introducing derivatives of fractional order into the system functions of the media. The Laplace Transforms (LT of such system functions contain fractional powers of the imaginary frequency and are, therefore, multivalued functions defined in the Riemann Sheets (RS of the function. We determine the response of the medium (dielectric o anelastic to a generic signal summing the time domain representation due to the branches of the solutions in the RSs of the LT. It is found that, if the initial conditions are equal in all the RSs, the solution is a sum of two exponentials with complex exponents, if the initial conditions are different in some of the RSs, then a transient for each of those RSs is added to the exponentials. In all cases a monochromatic wave is split into a set of waves with the same frequency and slightly different wavelengths which interfere and disperse. As a consequence a monochromatic electromagnetic wave with frequency around 1 MHz in water has a relevant dispersion and beats generating a tunnel effect. In the atmosphere of the Earth the dispersion of a monochromatic wave with frequency around 1 GHz, like those used in tracking artificial satellites, has a negligible effect on the accuracy of the determination of the position of the satellites and the positioning of the bench marks on the Earth. We also find the split eigenfunctions of the free modes of infinite plates and shells made of dielectric and anelastic media.
Control of Rayleigh-like waves in thick plate Willis metamaterials
Diatta, André; Achaoui, Younes; Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien
2016-12-01
Recent advances in control of anthropic seismic sources in structured soil led us to explore interactions of elastic waves propagating in plates (with soil parameters) structured with concrete pillars buried in the soil. Pillars are 2 m in diameter, 30 m in depth and the plate is 50 m in thickness. We study the frequency range 5 to 10 Hz, for which Rayleigh wave wavelengths are smaller than the plate thickness. This frequency range is compatible with frequency ranges of particular interest in earthquake engineering. It is demonstrated in this paper that two seismic cloaks' configurations allow for an unprecedented flow of elastodynamic energy associated with Rayleigh surface waves. The first cloak design is inspired by some approximation of ideal cloaks' parameters within the framework of thin plate theory. The second, more accomplished but more involved, cloak design is deduced from a geometric transform in the full Navier equations that preserves the symmetry of the elasticity tensor but leads to Willis' equations, well approximated by a homogenization procedure, as corroborated by numerical simulations. The two cloaks's designs are strickingly different, and the superior efficiency of the second type of cloak emphasizes the necessity for rigour in transposition of existing cloaks's designs in thin plates to the geophysics setting. Importantly, we focus our attention on geometric transforms applied to thick plates, which is an intermediate case between thin plates and semi-infinite media, not studied previously. Cloaking efficiency (reduction of the disturbance of the wave wavefront and its amplitude behind an obstacle) and protection (reduction of the wave amplitude within the center of the cloak) are studied for ideal and approximated cloaks' parameters. These results represent a preliminary step towards designs of seismic cloaks for surface Rayleigh waves propagating in sedimentary soils structured with concrete pillars.
Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material
Burhan Zamir; Rashid Ali
2011-01-01
A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.
Plate acoustic waves for low frequency delay line delaying signals up to 0.5 ms
Zaitsev, B. D.; Kuznetsova, I. E.; Zemnyukov, N. E.; Proidakov, V. I.; Teplykh, A. A.
2010-01-01
At present time there exists the problem of development of main memory elements based on the delay of electromagnetic signal with frequency of ˜100 kHz on hundreds microseconds. This paper is devoted to theoretical and experimental investigation of the possibility of development of corresponding acoustic delay lines. It was supposed to use the antisymmetric acoustic waves of zero order propagating in thin (compared to wavelength) metal plates. In this connection, we theoretically studied the parameters of A0 waves propagating in plates of various metals such as brass, bronze, copper, steel, and aluminum. For analysis of wave propagation in aforementioned plates, we used the standard motion equation and constitutive material equation for investigated medium as well as corresponding mechanical boundary conditions. As a result, the phase and group velocities versus parameter hf (h= plate thickness, f= wave frequency) were calculated for A0 wave propagating in mentioned above plates. It has been found that for steel plate the delay time about 0.5 ms can be achieved at the lengths of waveguide L=0.373, 0.737, and 0.971 m for h=0.175, 0.5, and 1.0 mm, respectively at f=120 kHz. The theoretical results were verified by experiment, which showed the possibility of development of corresponding delay lines with delay time ˜500 mks and acceptable insertion loss. In experiments, the excitation and reception of A0 waves were performed by the standard piezoelectric transducers of longitudinal waves and prismatic steel concentrators. The details of theoretical analysis and experiment are described.
Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.; Yan, Min
2016-09-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer process.
AlSi matrices for U(Mo) dispersion fuel plates
Leenaers, A.; Van den Berghe, S.; Detavernier, C.
2013-08-01
Several irradiation experiments of U(Mo) dispersion fuel performed with aluminum as matrix resulted in unacceptable swelling of the fuel plate due to the formation of an interaction layer between Al and U(Mo). It was found that an improvement in fuel behavior can be achieved by adding Si to the Al matrix and creating a Si rich preformed layer which delays the formation of the interaction layer. Such Al-Si matrices can be formed either by mixing silicon powder with aluminum or using an AlSi alloy. AlSi alloy powders have very different mechanical properties which complicate fuel plate fabrication. Aging experiments on AlSi alloys reveal that giving the alloy the correct heat treatment results in a homogenous dispersion of fine Si precipitates in a soft and strain free Al matrix. The diffusion of such small precipitates towards the U(Mo) particles will be more effective than the transportation of Si from the larger Si particles used in a mixture matrix. Out of pile experiments are performed to show the difference between using a mixture or an alloy for the interaction with U(Mo). It was found that the U(Mo) particles dispersed in an AlSi alloy matrix have a more uniform Si rich preformed layer after heat treatment. the thermal component of the in-pile diffusion (340 °C); the fabrication behavior (450 °C); the enhanced diffusion due to fission product recoils (550 °C). At the same time, they have been chosen at values where literature data exists for comparison [26]. Although only the true in-reactor behavior can provide final conclusions, the results of these out-of-pile tests provide some good indications on the expected relative behavior. Table 3 provides an overview of the experiment.After the thermal treatment, the pellets are removed from the capsules and cut in their longitudinal direction. One half of the pellet is embedded in epoxy resin and polished on successively finer grid finishing on cloth using 1 μm diamond paste.The samples have been investigated
Control of Rayleigh-like waves in thick plate Willis metamaterials
Diatta, Andre; Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien
2016-01-01
Recent advances in control of anthropic seismic sources in structured soil led us to explore interactions of elastic waves propagating in plates (with soil parameters) structured with concrete pillars buried in the soil. Pillars are $40$ m in depth and the plate is $100$ m in thickness, so that typical frequencies under study are in the frequency range 4 to 8 Hz, which is compatible with frequency ranges of particular interest in earthquake engineering. It is demonstrated in this paper that two seismic cloaks' configurations allow for an unprecedented flow of elastodynamic energy associated with Rayleigh surface waves. These designs are inspired by some ideal cloaks' parameters deduced from a geometric transform in the Navier equations that preserves the symmetry of the elasticity tensor but leads to Willis' equations as corroborated by numerical simulations. Importantly, we focus our attention on geometric transforms applied to thick plates, which is an intermediate case between thin plates and semi-infinite...
Pisano, Giampaolo; Ade, Peter A R; de Bernardis, Paolo; De Maagt, Peter; Ellison, Brian; Henry, Manju; Ng, Ming Wah; Schortt, Brian; Tucker, Carole
2016-01-01
The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half wave plates (HWPs) in front of polarization sensitive detectors. Large operational bandwidths are required when the same device is meant to work simultaneously across different frequency bands. Previous realizations of half wave plates, ranging from birefringent multi-plate to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and the experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization and it is based on the different phase-shift experienced by two orthogonal polarizations respectively reflecting off an electric conductor and off an artificial magnetic conductor.
Pisano, Giampaolo; Maffei, Bruno; Ade, Peter A R; de Bernardis, Paolo; de Maagt, Peter; Ellison, Brian; Henry, Manju; Ng, Ming Wah; Schortt, Brian; Tucker, Carole
2016-12-20
The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half-wave plates (HWPs) in front of polarization-sensitive detectors. Large operational bandwidths are required when the same device is meant to work simultaneously across different frequency bands. Previous realizations of half-wave plates, ranging from birefringent multi-plates to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization, and it is based on the different phase-shift experienced by two orthogonal polarizations reflecting, respectively, off an electric conductor and an artificial magnetic conductor.
Analysis of errors induced by λ/4 wave plate in fiber-optic current sensor system
杨瑞峰
2008-01-01
1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.
A numerical modeling for the wave forcing of floating thin plate
Basirat Tabrizi, H. [Amirkabir Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir, H.Basirat@dal.ca; Kouchaki Motlaq, M. [Islamic Azad Univ., Dept. of Graduate Studies, Arak (Iran, Islamic Republic of)
2004-07-01
A finite difference scheme based on central difference, which is applicable to the thin plate floating on intermediate depth water subjected to wave force, is developed. The floating structure analyzed as a plate with unit width and expressed by an elastic bending theory. The fluid flow expressed as an incompressible, inviscid and steady that the potential theory can apply. Here, the water wave elevation assumed the same as the bending displacement structure at the interface. The distribution of the displacement amplitude of structure and the wave amplitude varies in a wavy pattern in the middle part and increases greatly near the edge of plate. The present method verified by comparing quantitatively with the reported experimental and theoretical results of others. (author)
The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D
2016-02-01
Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D.
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Chakraborty, Rumpa; Mondal, Arpita; Gayen, R.
2016-10-01
In this paper, we present an alternative method to investigate scattering of water waves by a submerged thin vertical elastic plate in the context of linear theory. The plate is submerged either in deep water or in the water of uniform finite depth. Using the condition on the plate, together with the end conditions, the derivative of the velocity potential in the direction of normal to the plate is expressed in terms of a Green's function. This expression is compared with that obtained by employing Green's integral theorem to the scattered velocity potential and the Green's function for the fluid region. This produces a hypersingular integral equation of the first kind in the difference in potential across the plate. The reflection coefficients are computed using the solution of the hypersingular integral equation. We find good agreement when the results for these quantities are compared with those for a vertical elastic plate and submerged and partially immersed rigid plates. New results for the hydrodynamic force on the plate, the shear stress and the shear strain of the vertical elastic plate are also evaluated and represented graphically.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Topological material layout in plates for vibration suppression and wave propagation control
Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard
2009-01-01
We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin pl...... effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device.......We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...
W-band Pancharatnam half-wave plate based on negative refractive index metamaterials.
Mohamed, Imran; Pisano, Giampaolo; Ng, Ming Wah
2014-04-01
Electromagnetic metamaterials, made from arrangements of subwavelength-sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, Δn>1. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of finite element method and transmission line models was used to optimize the final design. Experimental results are compared with the modeled data.
W-Band Pancharatnam Half Wave Plate Based on Negative Refractive Index Metamaterials
Mohamed, Imran; Ng, Ming Wah
2014-01-01
Electromagnetic metamaterials, made from arrangements of subwavelength sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, $\\Delta n>1$. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of Finite Element Method and Transmission Line models were used to optimise the final design. Experimental results are compared to the modelled data.
Study of transient wave propagation in plates using double pulse TV holography
Lopes, H.; Guedes, R. M.; M. A. P. Vaz; Rodrigues, J.D.
2004-01-01
This work presents a numerical and experimental study of the transient response of an isotropic plate. A low mass impact is used to generate the bending wave propagation. Displacements due to the bending wave propagation were assessed using an out-of-plane double pulse TV holography set-up. A PZT transducer is used to record the impact force and its temporal evolution. A novel experimental technique is presented for determination of the stress field in the plate using the out-of-plane ...
Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures
Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou
2015-01-01
Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.
A large aperture reflective wave-plate for high-intensity short-pulse laser experiments
Aurand, Bastian; Zhao, Huanyu; Kuschel, Stephan; Wünsche, Martin; Jäckel, Oliver; Heyer, Martin; Wunderlich, Frank; Kaluza, Malte C; Paulus, Gerhard G; Kuehl, Thomas
2012-01-01
We report on a reflective wave-plate system utilizing phase-shifting mirrors (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The scalability of multilayer optics to large apertures and the suitability for high-intensity broad-bandwidth laser beams make reflective wave-plates an ideal tool for experiments on relativistic laser-plasma interaction. Our measurements confirm the preservation of the pulse duration and spectrum when a 30-fs Ti:Sapphire laser beam passes the system.
PECULIARITIES OF LAMB WAVE PROPAGATION THROUGH TWO-LAYERED THIN PLATE MATERIALS
A. R. Baev
2008-01-01
Full Text Available Peculiarities of the plate wave propagation through two-layered thin plate have been analyzed and formulas for velocity determination of the quickest plate mode have been proposed. The ascertained interaction makes it possible to determine coating layer thickness in accordance with the given and known elastic parameters of contacting materials. On the basis of the developed methodology experiments have been carried out that revealed qualitative and quantitative correspondence between theoretical and experimental data. The paper shows a principle possibility for assessment of material separation surface by time propagation data of the investigated mode .
Density functional calculations of spin-wave dispersion curves.
Kleinman, Leonard; Niu, Qian
1998-03-01
Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.
Sieber, P E; Werner, D H
2014-12-29
In this work a new technique for synthesizing metamaterials using Bézier surfaces is introduced. First, the computational efficiency for the optimization of a reconfigurable Bézier quarter-wave plate metasurface is compared to the popular technique of optimizing pixelized surfaces via a binary Genetic Algorithm (GA). For the presented design methodology, a real valued optimization technique is employed which is based on the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). When compared to the GA, the optimizations of Bézier surfaces using CMA-ES are shown to consistently arrive at better solutions with an order of magnitude reduction in the required number of function evaluations. Additionally, more examples of Bézier metasurfaces are presented in the form of broadband quarter-wave and half-wave plate designs operating at optical wavelengths, subsequently exhibiting bandwidths which outperform metasurface designs found in the current literature.
Colli, A.N. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)
2011-08-30
Highlights: {center_dot} The type of turbulence promoters has a strong influence on the hydrodynamics. {center_dot} The dispersion model is appropriate for expanded plastic turbulence promoters. {center_dot} The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.
Analysis and enhancement of flexural wave stop bands in 2D periodic plates
Song, Yubao [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Feng, Leping [The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Wen, Jihong, E-mail: wenjihong_nudt1@vip.sina.com [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); Yu, Dianlong; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China)
2015-07-17
The band structure and enhancement of flexural wave stop bands in a 2D periodic plate are investigated. A unified method for analysing and designing the stop band of the plates with various attached structures is proposed. The effect of attached structures is considered based on their equivalent parameters (added equivalent mass and equivalent moment of inertia). The influences of the equivalent parameters on the band structures are studied. Three cases are considered: adding pure equivalent mass, pure equivalent moment of inertia and the combination of these two. The stop bands are enhanced via the multi interaction between the host plate and the attached structure. The enhancement pattern is determined, and several ways to obtain a wider combined stop band are presented. The frequency response functions of corresponding finite periodic plates are calculated to verify the stop bands and their enhancement in a number of typical cases. - Highlights: • A unified method for studying the stop band of the plates with various simplified attached structures is proposed. • The enhancement of flexural wave stop bands in a 2D phononic plate is investigated. • The stop bands are widened via multi interaction between the host plate and the attached structure. • The enhancement pattern is determined and several ways to get a wider stop band are presented.
On the dissipation and dispersion of entropy waves in heat transferring channel flows
Fattahi, A.; Hosseinalipour, S. M.; Karimi, N.
2017-08-01
This paper investigates the hydrodynamic and heat transfer effects on the dissipation and dispersion of entropy waves in non-reactive flows. These waves, as advected density inhomogeneities downstream of unsteady flames, may decay partially or totally before reaching the exit nozzle, where they are converted into sound. Attenuation of entropy waves dominates the significance of the subsequent acoustic noise generation. Yet, the extent of this decay process is currently a matter of contention and the pertinent mechanisms are still largely unexplored. To resolve this issue, a numerical study is carried out by compressible large eddy simulation of the wave advection in a channel subject to convective and adiabatic thermal boundary conditions. The dispersion, dissipation, and spatial correlation of the wave are evaluated by post-processing of the numerical results. This includes application of the classical coherence function as well as development of nonlinear quantitative measures of wave dissipation and dispersion. The analyses reveal that the high frequency components of the entropy wave are always strongly damped. The survival of the low frequency components heavily depends on the turbulence intensity and thermal boundary conditions of the channel. In general, high turbulence intensities and particularly heat transfer intensify the decay and destruction of the spatial coherence of entropy waves. In some cases, they can even result in the complete annihilation of the wave. The current work can therefore resolve the controversies arising over the previous studies of entropy waves with different thermal boundary conditions.
Directional cloaking of flexural waves in a plate with a locally resonant metamaterial.
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Rupin, Matthieu
2015-04-01
This paper deals with the numerical design of a directional invisibility cloak for backward scattered elastic waves propagating in a thin plate (A0 Lamb waves). The directional cloak is based on a set of resonating beams that are attached perpendicular to the plate and are arranged at a sub-wavelength scale in ten concentric rings. The exotic effective properties of this locally resonant metamaterial ensure coexistence of bandgaps and directional cloaking for certain beam configurations over a large frequency band. The best directional cloaking was obtained when the resonators' length decreases from the central to the outermost ring. In this case, flexural waves experience a vanishing index of refraction when they cross the outer layers, leading to a frequency bandgap that protects the central part of the cloak. Numerical simulation shows that there is no back-scattering in these configurations. These results might have applications in the design of seismic-wave protection devices.
Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques
Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)
2014-12-15
Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.
Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.
2016-08-01
Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.
Relativistic regimes for dispersive shock-waves in non-paraxial nonlinear optics
Gentilini, Silvia; Conti, Claudio
2014-01-01
We investigate the effect of non-paraxiality in the dynamics of dispersive shock waves in the defocusing nonlinear Schroedinger equation. We show that the problem can be described in terms of a relativistic particle moving in a potential. Lowest order corrections enhance the wave-breaking and impose a limit to the highest achievable spectrum in an amount experimentally testable.
Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system
Lei Yan; Ma Song-Hua; Fang Jian-Ping
2013-01-01
By using a mapping approach and a linear variable separation approach,a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived.Based on the derived solutions and using some multi-valued functions,we obtain some novel folded localized excitations of the system.
Anomalous negative dispersion in bone can result from the interference of fast and slow waves.
Marutyan, Karen R; Holland, Mark R; Miller, James G
2006-11-01
The goal of this work was to show that the apparent negative dispersion of ultrasonic waves propagating in bone can arise from interference between fast and slow longitudinal modes, each exhibiting positive dispersion. Simulations were carried out using two approaches: one based on the Biot-Johnson model and one independent of that model. Results of the simulations are mutually consistent and appear to account for measurements from many laboratories that report that the phase velocity of ultrasonic waves propagating in cancellous bone decreases with increasing frequency (negative dispersion) in about 90% of specimens but increases with frequency in about 10%.
无
2011-01-01
This letter reports experimental observation of a direct correlation between the acoustic nonlinearity parameter (NP) measured with nonlinear Rayleigh waves and the accumulation of plasticity damage in an AZ31 magnesium alloy plate specimen.Rayleigh waves are generated and detected with wedge transducers,and the NPs are measured at different stress levels.The results show that there is a significant increase in the NPs with monotonic tensile loads surpassing the material's yielding stress.The research sugge...
Reflection and transmission of Lamb waves at an imperfect joint of plates
Mori, Naoki; Biwa, Shiro; Hayashi, Takahiro
2013-01-01
The reflection and transmission of Lamb waves at an imperfect joint of plates are analyzed numerically by the modal decomposition method and the hybrid finite element method. The joint is modeled as a spring-type interface characterized by distributed normal and tangential stiffnesses. The analysis is focused on a low-frequency range where the lowest-order symmetric and antisymmetric Lamb waves are the only propagating modes. The frequency-dependent reflection and transmission characteristics...
Dispersion of axially symmetric waves in fluid-filled cylindrical shells
Bao, X.L.; Überall, H.; Raju, P. K.
2000-01-01
, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves......Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves...
Three kinds of nonlinear dispersive waves in elastic rods with finite deformation
ZHANG Shan-yuan; LIU Zhi-fang
2008-01-01
On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, and taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations are derived. Qualitative analysis of three kinds of nonlinear equations are presented. It is shown that these equations have homoclinic or heteroclinic orbits on the phase plane, corresponding to solitary wave or shock wave solutions, respectively. Based on the principle of homogeneous balance, these equations are solved with the Jacobi elliptic function expansion method. Results show that existence of solitary wave solution and shock wave solution is possible under certain conditions. These conclusions are consistent with qualitative analysis.
Scattering of Lamb waves in a composite plate
Bratton, Robert; Datta, Subhendu; Shah, Arvind
1991-01-01
A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
2009-01-01
It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...
The spin wave dispersion of NdCu 2 in strong magnetic fields
Kramp, S.; Loewenhaupt, M.; Rotter, M.
2000-03-01
The study of the spin wave excitation spectrum in NdCu 2 revealed a pronounced minimum which forms an energy gap. Previous experiments showed that the gap energy remains finite in external magnetic fields parallel to the b-axis. In this paper we report on measurements of the spin wave dispersion in strong magnetic fields applied parallel to the c-direction (hard magnetization axis). The spin wave gap changes its position and soft mode behavior at a magnetic phase transition is observed. The comparison with the dispersion at μ 0H ||b=3 T reveals the anisotropy between ( ac)-plane and b-axis.
Tso, Rhondale; Chen, Yanbei; Stein, Leo
2016-01-01
We propose a generic, phenomenological approach to modifying the dispersion of gravitational waves, independent of corrections to the generation mechanism. This model-independent approach encapsulates all previously proposed parametrizations, including Lorentz violation in the Standard-Model Extension, and provides a roadmap for additional theories. Furthermore, we present a general approach to include modulations to the gravitational-wave polarization content. The framework developed here can be implemented in existing data analysis pipelines for future gravitational-wave observation runs.
Time-domain flexural wave intensity estimation in orthotropic Kirchhoff plates
Halkyard, C. R.; Masson, P.
2016-04-01
In this paper, a method for estimating the vibrational energy flow associated with the flexural vibration of an orthotropic Kirchhoff plate, in the time-domain, is presented. The approach is based on the plane propagating wave solution to the equation of motion, and uses a Fourier series approximation of the wave field. The various linear and angular velocities, shear forces and moments that are needed to calculate the energy flow are estimated by digitally filtering and combining the outputs of an array of sensors. A similar approach is used to reconstruct the local wave field to provide an estimate of the wave propagation direction. The theoretical basis of the approach is described, and design considerations for the sensor array and for the filters used for parameter estimation are discussed. Simulations are presented for plane flexural waves and for transient transverse point force excitation of a range of orthotropic plates having different material properties, using a simulated array of velocity sensors. These simulations show that the method can provide accurate estimates of the magnitude and direction of the vibrational energy flow, as well as of the propagation direction of a single wave train or 'burst', provided that the sensor array is sufficiently distant from the excitation point. This is consistent with preliminary experimental measurements, also presented in this paper, performed on a composite orthotropic plate.
Koduru, Jaya P.; Rose, Joseph L.
2014-10-01
Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1-3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure.
Simulation of Asymmetric Lamb Waves for Sensing and Actuation in Plates
A. Ghoshal
2005-01-01
Full Text Available Two approaches used for monitoring the health of thin aerospace structures are active interrogation and passive monitoring. The active interrogation approach generates and receives diagnostic Lamb waves to detect damage, while the passive monitoring technique listens for acoustic waves caused by damage growth. For the application of both methods, it is necessary to understand how Lamb waves propagate through a structure. In this paper, a Physics-Based Model (PBM using classical plate theory is developed to provide a basic understanding of the actual physical process of asymmetric Lamb mode wave generation and propagation in a plate. The closed-form model uses modal superposition to simulate waves generated by piezoceramic patches and by simulated acoustic emissions. The generation, propagation, reflection, interference, and the sensing of the waves are represented in the model, but damage is not explicitly modeled. The developed model is expected to be a useful tool for the Structural Health Monitoring (SHM community, particularly for studying high frequency acoustic wave generation and propagation in lieu of Finite Element models and other numerical models that require significant computational resources. The PBM is capable of simulating many possible scenarios including a variety of test cases, whereas experimental measurements of all of the cases can be costly and time consuming. The model also incorporates the sensor measurement effect, which is an important aspect in damage detection. Continuous and array sensors are modeled, which are efficient for measuring waves because of their distributed nature.
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.
Effect of electron inertia on dispersive properties of Alfvén waves in cold plasmas
Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil
2017-10-01
The effect of electron inertia on Alfvén wave propagation is investigated in the framework of the two-fluid theory in a compressible magnetized plasma. The linear analysis of the governing equations manifests the dispersion relation of the circularly polarized Alfvén waves where the electron inertia is found to act as a source of dispersion. In the finite amplitude limit, the nonlinear Alfvén wave may be described by the Derivative Nonlinear Schrödinger equation (DNLSE) modified by third order dispersion arising due to finite electron inertia. The derived equation seems to be novel with respect to what exists in the literature of Alfvén wave dynamics. We have shown that this electron inertia modified DNLSE is completely integrable and an analytical solution is demonstrated with vanishing boundary conditions. The results are expected to be of special importance in the context of space and laboratory plasmas.
Love wave dispersion in anisotropic visco-elastic medium
G. GIR SUBHASH
1978-06-01
Full Text Available The paper presents a study on Love wave propagation in a anisotropic
visco-elastic layer overlying a rigid half space. The characteristic frequency
equation is obtained and the variation of the wave number with frequency
under the combined effect of visco-elasticity and anisotropy is analysed
in detail. The results show that the effect of visco-elasticity on the
wave is similar to that of anisotropy as long as the coefficient of anisotropy
is less than unity.
Yuksel DOGAN, Aliye SOYLU, Gulay A. EREN, Sule POTUROGLU, Can DOLAPCIOGLU, Kenan SONMEZ, Habibe DUMAN, Isa SEVINDIR
2011-01-01
Full Text Available Background: In inflammatory bowel disease (IBD number of thromboembolic events are increased due to hypercoagulupathy and platelet activation. Increases in mean platelet volume (MPV can lead to platelet activation, this leads to thromboembolic events and can cause acute coronary syndromes. In IBD patients, QT-dispersion and P-wave dispersion are predictors of ventricular arrhythmias and atrial fibrilation; MPV is accepted as a risk factor for acute coronary syndromes, we aimed at evaluating the correlations of these with the duration of disease, its localization and activity.Methods: The study group consisted of 69 IBD (Ulcerative colitis n: 54, Crohn's Disease n:15 patients and the control group included 38 healthy individuals. Disease activity was evaluated both endoscopically and clinically. Patients with existing cardiac conditions, those using QT prolonging medications and having systemic diseases, anemia and electrolyte imbalances were excluded from the study. QT-dispersion, P-wave dispersion and MPV values of both groups were compared with disease activity, its localization, duration of disease and the antibiotics used.Results: The P-wave dispersion values of the study group were significantly higher than those of the control group. Duration of the disease was not associated with QT-dispersion, and MPV levels. QT-dispersion, P-wave dispersion, MPV and platelet count levels were similar between the active and in mild ulcerative colitis patients. QT-dispersion levels were similar between IBD patients and the control group. No difference was observed between P-wave dispersion, QT-dispersion and MPV values; with regards to disease duration, disease activity, and localization in the study group (p>0.05.Conclusions: P-wave dispersion which is accepted as a risk factor for the development of atrial fibirilation was found to be high in our IBD patients. This demonstrates us that the risk of developing atrial fibrillation may be high in patients
Reymond, Dominique
2017-04-01
We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.
Radchenko, G S [Institute of Physics, South Federal University, Rostov-on-Don 344090 (Russian Federation); Pedagogical Institute of South Federal University, Rostov-on-Don 344022 (Russian Federation)], E-mail: grig1980@mail.ru
2008-08-07
In this paper we propose a novel theoretical approach to the description of acoustic oscillations in plated piezoelectric structures. The expansion of acoustic Lamb and longitudinal waves in such structures and the fundamental effective properties of them are described. A considerable enhancement of piezoelectric properties in such objects under an applied alternating electric field has been found.
Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid
Indeitsev, Dmitrij; Sorokin, Sergey
2012-01-01
of salty water. The former one produces fluid loading at the plate, whereas the latter one is bounded by the sea bottom. We employ classical asymptotic methods to identify significant regimes of wave motion in the compound three-component waveguide. The roles of parameters involved in the problem...
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M.; Sheikh, Umber
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads ...
Lotekar, Ajay; Kakad, Amar; Kakad, Bharati
2016-10-01
One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.
Experimental Investigation of Instantaneous Properties of Wave Slamming on the Plate
无
2007-01-01
The purpose of this paper is to investigate the instantaneous properties of wave slamming on the plate structure of an open structure. The advanced instantaneous measuring technique-Particle Image Velocimetry (PIV) is applied to acquire the instantaneous velocity field of wave slamming. From the cross-correlation analysis results of the images captured by the CCD camera, the flow fields of wave impacting on the structure are displayed visually, and the instantaneous whole-field fluid velocity vectors are obtained. The relation between the instantaneous peak impacting pressures and the instantaneous velocities of water particles is studied by probability analysis.
Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves
Andreev, P A
2015-01-01
Microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. Our derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the role of the curvature of the nanocylinders on the force of the exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.
THE CAUCHY PROBLEM FOR SOME DISPERSIVE WAVE EQUATIONS
Zhang Wenling
2004-01-01
In this paper, we consider the Cauchy problem for some dispersive equations. By means of nonlinear estimate in Besov spaces and fixed point theory, we prove the global well-posedness of the above problem. What's more, we improve the scattering result obtained in [1].
Wave Motion in an Ice Covered Ocean Due to Small Oscillations of a Submerged Thin Vertical Plate
Paramita Maiti; Puspendu Rakshit; Sudeshna Banerjea
2015-01-01
In this paper we study the problem of generation of surface waves produced due to a) rolling of the plate and b) presence of a line source in front of a fixed vertical plate. The amplitudes of radiated waves at large distance from the plate, in both cases, are obtained by a suitable application of Green’s integral theorem. These are then studied graphically for various values of the ice cover parameter.
Dispersion durations of P-wave and QT interval in children treated with a ketogenic diet.
Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; Işgüder, Rana; Çeleğen, Kübra; Meşe, Timur
2014-04-01
Limited data are available on the effects of a ketogenic diet on dispersion duration of P-wave and QT-interval measures in children. We searched for the changes in these measures with serial electrocardiograms in patients treated with a ketogenic diet. Twenty-five drug-resistant patients with epilepsy treated with a ketogenic diet were enrolled in this study. Electrocardiography was performed in all patients before the beginning and at the sixth month after implementation of the ketogenic diet. Heart rate, maximum and minimum P-wave duration, P-wave dispersion, and maximum and minimum corrected QT interval and QT dispersion were manually measured from the 12-lead surface electrocardiogram. Minimum and maximum corrected QT and QT dispersion measurements showed nonsignificant increase at month 6 compared with baseline values. Other previously mentioned electrocardiogram parameters also showed no significant changes. A ketogenic diet of 6 months' duration has no significant effect on electrocardiogram parameters in children. Further studies with larger samples and longer duration of follow-up are needed to clarify the effects of ketogenic diet on P-wave dispersion and corrected QT and QT dispersion. Copyright © 2014 Elsevier Inc. All rights reserved.
Influence of baffle plate geometry on decay of shock waves propagating in a beamline
Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Sugiyama, Hiroshi; Ando, Masami
1998-06-01
Dependency of geometries of baffle plates in a shock tube on the decay of shock waves was investigated to find an optimal design for acoustic delay lines (ADLs) in beamlines of a synchrotron radiation facility. Fabricating a thin orifice, a coned baffle plate, a diverging tube and a converging tube as a model of the ADL, we performed pressure measurement with piezo-pressure transducers by using a dedicated shock tube and two-dimensional flow visualization around the model by means of Schlieren photography. According to the results of pressure measurements, a theory of one-dimensional steady flow employed generally is not available for the coned baffle. The decay ratios defined by the strength of incident and transmitted shock waves clearly differ among the four types of the ADL models, although all of the models have the same aperture. These results suggest that non-steady phenomena observed by the Schlieren photography, such as shock wave reflection and diffraction, viscous flow behind shock waves, may be involved in shock wave decay through baffle plates. (author)
Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films.
Janantha, P A Praveen; Sprenger, Patrick; Hoefer, Mark A; Wu, Mingzhong
2017-07-14
The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y_{3}Fe_{5}O_{12} thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.
Experimental determination of whistler wave dispersion relation in the solar wind
Stansby, D; Chen, C H K; Matteini, L
2016-01-01
The origins and properties of large amplitude whistler wave packets in the solar wind are still unclear. In this Letter we utilise single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wave packets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarised, travel anti-sunward and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.
Stress Wave Dispersion in Large-Diameter SHPB and Its Manifold Manifestations
王永刚; 王礼立
2004-01-01
The wave dispersion due to the lateral inertia in the split Hopkinson pressure bar(SHPB) with large-diameter bar is numerically analyzed by means of the LS-DYNA3D code. The results show that, ① the stress distribution across the bar section is non-uniform along the radius direction and such non-uniformity depends on the material Poisson ratio and propagation distance; ② with increasing the bar diameter, the high frequency oscillations are notably enhanced and the rise time of wave front becomes longer, meanwhile the amplitude of the stress wave attenuates; ③ with decreasing the rise time of wave front, the wave dispersion markedly enhanced, particularly in the large diameter bar. All of those effects should not be neglected in order to obtain accurate results by the SHPB test.
Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning
2017-08-01
Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-path propagation of acoustical wave and time reversal field in a solid plate
WU Hao; ZHANG Bixing; WANG Chenghao
2005-01-01
The multi-path effect of the acoustical wave in a solid plate is studied. The multireflection and wave conversion of the cylindrical compressional and shear waves, which are excited by an infinite strip on a free surface of the solid plate, are analyzed thoroughly by the far-field approximation method. The concise analytical representations of the cylindrical waves are obtained. The time reversal processing is then applied to the propagation of the cylindrical waves and analyzed theoretically and experimentally. It is shown that the waves coming from different array elements and different paths all arrive at the original place after the time reversal operation. It indicates that the time reversal can compensate automatically the wave aberration caused by the multi-path effect. The self-adaptive focusing of the time reversal field is also analyzed quantificationally by the focusing gain and the ratio of the principal to the second lobe. The effects of the focus position and the aperture of the transducer array on the focused field are also investigated. It shows that theoretical and experimental results are consistent to each other very well.
Modulation theory, dispersive shock waves and Gerald Beresford Whitham
Minzoni, A. A.; Smyth, Noel F.
2016-10-01
Gerald Beresford (GB) Whitham, FRS, (13th December, 1927-26th January, 2014) was one of the leading applied mathematicians of the twentieth century whose work over forty years had a profound, formative impact on research on wave motion across a broad range of areas. Many of the ideas and techniques he developed have now become the standard tools used to analyse and understand wave motion, as the papers of this special issue of Physica D testify. Many of the techniques pioneered by GB Whitham have spread beyond wave propagation into other applied mathematics areas, such as reaction-diffusion, and even into theoretical physics and pure mathematics, in which Whitham modulation theory is an active area of research. GB Whitham's classic textbook Linear and Nonlinear Waves, published in 1974, is still the standard reference for the applied mathematics of wave motion. In honour of his scientific achievements, GB Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959 and a Fellow of the Royal Society in 1965. He was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.
Broadband Lamb wave trapping in cellular metamaterial plates with multiple local resonances.
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-03-20
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc.
Seung, Hong Min; Kim, Hoe Woong; Kim, Yoon Young
2013-09-01
As an effective tool to inspect large plates, omni-directional guided wave transducers have become more widely used to form phased-array inspection systems. While omni-directional Lamb wave transducers have been successfully utilized in the systems, omni-directional Shear-Horizontal (SH) wave transducers have not been investigated. In this paper, we propose an omni-directional SH magnetostrictive patch transducer that consists of an annular magnetostrictive patch, a toroidal coil and a permanent magnet. After presenting the unique configuration of the proposed transducer and its working principle, the omni-directivity of the developed transducer is verified through simulations and experiments conducted in an aluminum plate. The frequency characteristics of the proposed transducer depending on the patch size are also investigated as the underlying reference data for future construction of an SH phased-array system.
Effect of End Plates on the Performence of a Wells Turbine for Wave Energy Conversion
Manabu Takao; Toshiaki Setoguchi; Yoichi Kinoue; Kenji Kaneko
2006-01-01
In order to improve the performance of the Wells turbine for wave energy conversion,the effect of end plates on the turbine characteristics has been investigated experimentally by model testing under steady flow conditions.The end plate attached to the tip of the original rotor blade is slightly larger than the original blade profile.The characteristics of the Wells turbine with end plates have been compared with those of the original Wells turbine,i.e.,the turbine without end plate.As a result,it has been concluded that the characteristics of the Wells turbine with end plates are superior to those of the original Wells turbine and the characteristics are dependent on the size and position of end plate.Furthermore,the effect of annular plate on the turbine performance,which encircles the turbine and is attached to the tip,was investigated as an additional experiment.However,its device was not effective in improving the turbine characteristics.
Third harmonic generation of shear horizontal guided waves propagation in plate-like structures
Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)
2016-04-15
The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.
Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space
Sukumar Saha
2011-01-01
Full Text Available Dispersion of Love waves is studied in a fibre-reinforced layer resting on monoclinic half-space. The wave velocity equation has been obtained for a fiber-reinforced layer resting on monoclinic half space. Shear wave velocity ratio curve for Love waves has been shown graphically for fibre reinforced material layer resting on various monoclinic half-spaces. In a similar way, shear wave velocity ratio curve for Love waves has been plotted for an isotropic layer resting on various monoclinic half-spaces. From these curves, it has been observed that the curves are of similar type for a fibre reinforced layer resting on monoclinic half-spaces, and the shear wave velocity ratio ranges from 1.14 to 7.19, whereas for the case isotropic layer, this range varies from 1.0 to 2.19.
Optical gyroscope with controllable dispersion in four wave mixing regime.
Mikhailov, Eugeniy; Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina
2016-05-01
We present our work towards realization of the fast-light gyroscope prototype, in which the sensitivity enhancement (compared to a regular laser gyroscopes) is achieved by adjusting the intra-cavity dispersion. We discuss schematics and underlying nonlinear effects leading to the negative dispersion in Rb vapor: level structure, optically addressed transitions, and configuration of the resonant cavity. We investigate dependence of the pulling factor (i.e., the ratio of the lasing frequency shift with the change of the cavity length to the equivalent resonance frequency shift in the empty cavity) on pump lasers detunings, power, and density of the atomic vapor. The observation of the pulling factor exceeding unity implies the gyroscope sensitivity improvement over the regular system This work is supported by Naval Air Warfare Center STTR program N68335-11-C-0428.
Microscopic Models for Electromagnetic Wave Propagation in Highly Dispersive Media
1990-06-18
rotations, the effects of pressure and temperature and to show the classes of density fluctuations in I which give spatial dispersion, ie, the k- dependance ...complex plane the response e (co, Q) lives on some Riemann surface which is determined by the k- dependance . 2. Talks and Publications Three talks were...sources of 1- dependance (k- dependance in Fourier transform variables) have been identified. One is bubbles or cavitation which scatter the propagating
A Finite Difference-Augmented Peridynamics Method for Wave Dispersion
2014-10-21
model using a blending function in 1D, though again, the focus is on preset, unchang- ing local/ nonlocal regions. In contrast, this work will focus on...Fracture. 2014; 190:39-52. 14. ABSTRACT A method is presented for the modeling of brittle elastic fracture which combines peridynamics and a finite...propagation modeling , while peridynamics is automatically inserted in high strain areas to model crack initiation and growth. The dispersion
Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation
M. B. A. Mansour
2009-01-01
In this paper, we consider a dissipative-dispersive nonlinear equation appliable to many physical phenomena. Using the geometric singular perturbation method based on the theory of dynamical systems, we investigate the existence of its traveling wave solutions with the dissipative terms having sufficiently small coefficients. The results show that the traveling waves exist on a two-dimensional slow manifold in a three-dimensional system of ordinary differential equations (ODEs). Then, we use the Melnikov method to establish the existence of a homoclinic orbit in this manifold corresponding to a solitary wave solution of the equation. Furthermore, we present some numerical computations to show the approximations of such wave orbits.
Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza
2017-01-01
In this paper, wave propagation analysis of functionally graded size-dependent nanobeams embedded in elastic foundation exposed to a longitudinal magnetic field is conducted based on nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also the presence of cutoff and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.
铝板中Lamb波检测的实验研究%Experiment investigations of Lamb waves in an aluminum plate
陈军; 李志浩; 林莉; 侯云霞; 马清杰
2011-01-01
Lamb波在传播过程中具有频散及多模态特性,若相关参数选择不当,会导致在实际应用中信号相互叠加而无法识别.本文基于Lamb波的频散曲线是其频散方程实数解分布的特点,采用二分法绘制了铝板中Lamb波的频散曲线、波结构曲线和入射角曲线.根据曲线选择SO模态的Lamb波对1mm厚铝板中不同类型的缺陷进行检测.实验结果表明,SO模态的Lamb波对裂纹型缺陷和贯穿型缺陷十分敏感,但对于裂纹型缺陷,其幅值变化并不与缺陷大小成线性关系,并且SO模态Lamb波的声场指向性十分集中,在偏离声束轴线时无法检测到缺陷.%Lamb waves have dispersive and multi-modal characteristics during its propagation.In actual applications, the multi-modal signals overlap and the useful modes can not be identified if relevant parameters are not properly selected.The dispersion, wave structure and incident angle curves of Lamb waves in an aluminum plate are drawn with dichotomy based on the characteristics that the Lamb wave dispersion curve is the distribution of real solutions of a Lamb wave dispersion equation.SO mode Lamb wave is selected to detect the flaws with different types in 1 mm thick aluminum plate based on the dispersion curve.The results show that SO mode Lamb wave is very sensitive to cracks and through defects;however, the amplitude of SO mode don't change linearly with the defect size.Meanwhile, the sound field directivity of SO mode Lamb wave is very concentrated, and the defects deviated from the beam axis can not be detected.
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Dispersive surface waves along partially saturated porous media
Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.
2006-01-01
Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100 Hz–1 MHz). A modified Biot theory of poromechanics is implemented which takes into account the interact
Lyapunov exponents and particle dispersion in drift wave turbulence
Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.
1996-01-01
The Hasegawa-Wakatani model equations for resistive drift waves are solved numerically for a range of values of the coupling due to the parallel electron motion. The largest Lyapunov exponent, lambda(1), is calculated to quantify the unpredictability of the turbulent flow and compared to other...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
Zhang, Xinyu; Yin, Yin; Guo, Yanrong; Fan, Ning; Lin, Haoming; Liu, Fulong; Diao, Xianfen; Dong, Changfeng; Chen, Xin; Wang, Tianfu; Chen, Siping
2015-05-01
The viscoelastic properties of the human cornea can provide valuable information for clinical applications such as the early detection of corneal diseases, better management of corneal surgery and treatment and more accurate measurement of intra-ocular pressure. However, few techniques are capable of quantitatively and non-destructively assessing corneal biomechanics in vivo. The cornea can be regarded as a thin plate in which the vibration induced by an external vibrator propagates as a Lamb wave, the properties of which depend on the thickness and biomechanics of the tissue. In this study, pulses of ultrasound radiation force with a repetition frequency of 100 or 200 Hz were applied to the apex of corneas, and the linear-array transducer of a SonixRP system was used to track the tissue motion in the radial direction. Shear elasticity and viscosity were estimated from the phase velocities of the A0 Lamb waves. To assess the effectiveness of the method, some of the corneas were subjected to collagen cross-linking treatment, and the changes in mechanical properties were validated with a tensile test. The results indicated that the shear modulus was 137 ± 37 kPa and the shear viscosity was 3.01 ± 2.45 mPa · s for the group of untreated corneas and 1145 ± 267 kPa and was 0.16 ± 0.11 mPa · s for the treated group, respectively, implying a significant increase in elasticity and a significant decrease in viscosity after collagen cross-linking treatment. This result is in agreement with the results of the mechanical tensile test and with reports in the literature. This initial investigation illustrated the ability of this ultrasound-based method, which uses the velocity dispersion of low-frequency A0 Lamb waves, to quantitatively assess both the elasticity and viscosity of corneas. Future studies could discover ways to optimize this system and to determine the feasibility of using this method in clinical situations.
Multimodal sparse reconstruction in guided wave imaging of defects in plates
Golato, Andrew; Santhanam, Sridhar; Ahmad, Fauzia; Amin, Moeness G.
2016-07-01
A multimodal sparse reconstruction approach is proposed for localizing defects in thin plates in Lamb wave-based structural health monitoring. The proposed approach exploits both the sparsity of the defects and the multimodal nature of Lamb wave propagation in plates. It takes into account the variation of the defects' aspect angles across the various transducer pairs. At low operating frequencies, only the fundamental symmetric and antisymmetric Lamb modes emanate from a transmitting transducer. Asymmetric defects scatter these modes and spawn additional converted fundamental modes. Propagation models are developed for each of these scattered and spawned modes arriving at the various receiving transducers. This enables the construction of modal dictionary matrices spanning a two-dimensional array of pixels representing potential defect locations in the region of interest. Reconstruction of the region of interest is achieved by inverting the resulting linear model using the group sparsity constraint, where the groups extend across the various transducer pairs and the different modes. The effectiveness of the proposed approach is established with finite-element scattering simulations of the fundamental Lamb wave modes by crack-like defects in a plate. The approach is subsequently validated with experimental results obtained from an aluminum plate with asymmetric defects.
Dispersion relations with crossing symmetry for pipi D and F wave amplitudes
Kaminski, R
2011-01-01
A set of once subtracted dispersion relations with imposed crossing symmetry condition for the pipi D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed pipi interactions and are very useful tools to test the pipi amplitudes. One of the goals of this work is to provide a complete set of equations required for easy use. Full analytical expressions are presented. Along with the well known dispersion relations successful in testing the pipi S- and P-wave amplitudes, those presented here for the D and F waves give a complete set of tools for analyzes of the pipi interactions.
,
2012-01-01
During previous numerical experiments on isotropic turbulence of surface gravity waves we observed formation of the long wave background (condensate). It was shown (Korotkevich, Phys. Rev. Lett. vol. 101 (7), 074504 (2008)), that presence of the condensate changes a spectrum of direct cascade, corresponding to the flux of energy to the small scales from pumping region (large scales). Recent experiments show that the inverse cascade spectrum is also affected by the condensate. In this case mechanism proposed as a cause for the change of direct cascade spectrum cannot work. But inverse cascade is directly influenced by the linear dispersion relation for waves, as a result direct measurement of the dispersion relation in the presence of condensate is necessary. We performed the measurement of this dispersion relation from the direct numerical experiment. The results demonstrate that in the region of inverse cascade influence of the condensate cannot be neglected.
Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise
Cabot, M. A.
The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
On the propagation mechanism of a detonation wave in a round tube with orifice plates
Ciccarelli, G.; Cross, M.
2016-09-01
This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.
Dispersion characteristics of a slow wave structure with a modified photonic band gap
Gao Xi; Yang Zi-Qiang; Cao Wei-Ping; Jiang Yan-Nan
2011-01-01
This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.
Formation of Vector Solitary waves with Mixed Dispersion in Bose-Einstein Condensates
Plaja, L.; Roman, J. San
2005-01-01
We demonstrate the existence of a new class of two-component vector solitary waves in which dispersion coefficients have of opposite signs. Stability is achieved by inclusion of an additional linear coupling between the vector components that counterbalances the instability produced by the mixed dispersion and the non-linearity. In addition, we demonstrate that these solutions are experimentally observable as gap vector solitons in Bose-Einstein condensates located in oscillating optical latt...
Zhou, Binbin
2015-01-01
We experimentally observe long-wavelength dispersive waves generation in a BBO crystal. A soliton was formed in normal GVD regime of the crystal by a self-defocusing and negative nonlinearity through phase-mismatched quatradic interaction. Strong temporal pulse compression confirmed the formation of soliton during the pulse propagation inside the crystal. Significant dispersive wave radiation was measured in the anomalous GVD regime of the BBO crystal. With the pump wavelengths from 1.24 to 1.4 $\\mu$m, tunable dispersive waves are generated around 1.9 to 2.2 $\\mu$m. The observed dispersive wave generation is well understood by simulations.
Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface
Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui
2015-10-01
Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices.
Travelling Wave Solutions in Nonlinear Diffusive and Dispersive Media
Bazeia, D; Raposo, and E.P.
1998-01-01
We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effects of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1+1 dimensional phi^{4} and phi^{6} field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned.
Seismic wave attenuation and velocity dispersion in UAE carbonates
Ogunsami, Abdulwaheed Remi
Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact
Modeling and measurement of angle-beam wave propagation in a scatterer-free plate
Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.
2017-02-01
Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.
Bandyopadhyay, P; Sen, A; Kaw, P K
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits
Anderson, Dalton; Maiden, Michelle; Lowman, Nicholas; Schubert, Marika; Hoefer, Mark
2016-11-01
Dispersive shock waves (DSWs) and solitons are fundamental structures in dispersive hydrodynamics, but studies have been severely constrained. Here we report on a novel testbed called the conduit system where one fluid is moved through another via a fluid pipe with virtually no mass diffusion. The interfacial dynamics of this pipe are conservative and are modeled by a scalar, nonlinear, dispersive wave equation, similar to those describing a superfluid. Resultantly, the interfacial waves are effectively dissipationless, which enables high fidelity observations of coherent phenomena such as large amplitude DSWs. Experiments involving solitons, wavebreaking leading to DSWs, and their interactions will be presented. The results include the refraction and absorption of a soliton by a DSW and the refraction of a DSW by a second DSW, resulting in two-phase behavior. Excellent agreement between nonlinear wave averaging, numerics, and laboratory experiments will be presented. The nonlinear wave dynamics observed in this model system have implications for a broad range of other conservative dispersive hydrodynamic systems. NSF.
Observation of dispersive shock waves developing from initial depressions in shallow water
Trillo, S.; Klein, M.; Clauss, G. F.; Onorato, M.
2016-10-01
We investigate surface gravity waves in a shallow water tank, in the limit of long wavelengths. We report the observation of non-stationary dispersive shock waves rapidly expanding over a 90 m flume. They are excited by means of a wave maker that allows us to launch a controlled smooth (single well) depression with respect to the unperturbed surface of the still water, a case that contains no solitons. The dynamics of the shock waves are observed at different levels of nonlinearity equivalent to a different relative smallness of the dispersive effect. The observed undulatory behavior is found to be in good agreement with the dynamics described in terms of a Korteweg-de Vries equation with evolution in space, though in the most nonlinear cases the description turns out to be improved over the quasi linear trailing edge of the shock by modeling the evolution in terms of the integro-differential (nonlocal) Whitham equation.
Dispersion of Extensional and Torsional Waves in Porous Cylinders with Patchy Saturation
Berryman, J G; Pride, S R
2002-03-20
Laboratory experiments on wave propagation through saturated and partially saturated porous media have often been conducted on porous cylinders that were initially fully saturated and then allowed to dry while continuing to acquire data on the wave behavior. Since it is known that drying typically progresses from the outside to the inside, a sensible physical model of this process is concentric cylinders having different saturation levels--the simplest example being a fully dry outer cylindrical shell together with a fully wet inner cylinder. We use this model to formulate the equations for wave dispersion in porous cylinders for patchy saturation (i.e., drainage) conditions. In addition to multiple modes of propagation obtained numerically from these dispersion relations, we find two distinct analytical expressions for torsional wave modes.
Lateral Variations of Rayleigh-Wave Dispersions in the Philippine Sea Region
Wen-Yen Chang
2007-01-01
Full Text Available Fresh two-dimensional group and phase-velocity distribution maps of the Philippine Sea and surrounding areas are constructed using the tomographic inversion of more than 2500 Rayleigh-wave dispersion curves in the 20- to 120-sec period range. The results show that, for the periods used, both the group and phase-velocity variation patterns are very close to the geological and topographic features and are also consistent with previous studies of magnetic anomalies and evolutionary history of the Philippine Basin. On average, the periods of the peak group-velocity for the West Philippine Basin and the Oki-Daito ridge are about 40 and 32 sec for the Parece Vela and Shikoku basins. This implies that the lithosphere of the western Philippine Sea Basin is thicker, which is related to plate cooling and seafloor age. For most of the examined periods, the high velocity symmetry of the two sides of the Central Basin Ridge in the West Philippine Basin coincides well with the evolutionary history of the Philippine Sea Basin, and may be taken as additional evidence confirming the existence of the ridge. The group and phase-velocity distributions for periods longer than 80 sec are smooth throughout the whole Philippine Sea Basin, which implies that the upper mantle beneath the Philippine Sea Basin is nearly homogeneous at depths of 100 - 200 km. Moreover, the group and phase velocities in the region of the East Volcano Belt and Active Marginal Basin remain almost constant in the 36- to 80-sec period range, which indicates that the boundary between the lithosphere and asthenosphere is probably not obvious in this area.
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
Military jet pilots have higher p-wave dispersions compared to the transport aircraft aircrew.
Çakar, Mustafa; Metin, Süleyman; Balta, Şevket; Öztürk, Cengiz; Demirkol, Sait; Çakmak, Tolga; İnal, Satılmış; Çelik, Turgay; İyisoy, Atilla; Ünlü, Murat; Şen, Ahmet
2016-01-01
For the purpose of flight safety military aircrew must be healthy. P-wave dispersion (PWD) is the p-wave length difference in an electrocardiographic (ECG) examination and represents the risk of developing atrial fibrillation. In the study we aimed at investigating PWD in healthy military aircrew who reported for periodical examinations. Seventy-five asymptomatic military aircrew were enrolled in the study. All the subjects underwent physical, radiologic and biochemical examinations, and a 12-lead electrocardiography. P-wave dispersions were calculated. The mean age of the study participants was 36.15±8.97 years and the mean p-wave duration was 100.8±12 ms in the whole group. Forty-seven subjects were non-pilot aircrew, and 28 were pilots. Thirteen study subjects were serving in jets, 49 in helicopters, and 13 were transport aircraft pilots. Thirty-six of the helicopter and 11 of the transport aircraft aircrew were non-pilot aircrew. P-wave dispersion was the lowest in the transport aircraft aircrew, and the highest in jet pilots. P-wave dispersions were similar in the pilots and non-pilot aircrew. Twenty-three study subjects were overweight, 19 had thyroiditis, 26 had hepatosteatosis, 4 had hyperbilirubinemia, 2 had hypertension, and 5 had hyperlipidemia. The PWD was significantly associated with thyroid-stimulating hormone (TSH) levels. Serum uric acid levels were associated with p-wave durations. Serum TSH levels were the most important predictor of PWD. When TSH levels were associated with PWD, uric acid levels were associated with p-wave duration in the military aircrew. The jet pilots had higher PWDs. These findings reveal that military jet pilots may have a higher risk of developing atrial fibrillation, and PWD should be recorded during periodical examinations. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Military jet pilots have higher p-wave dispersions compared to the transport aircraft aircrew
Mustafa Çakar
2016-08-01
Full Text Available Objectives: For the purpose of flight safety military aircrew must be healthy. P-wave dispersion (PWD is the p-wave length difference in an electrocardiographic (ECG examination and represents the risk of developing atrial fibrillation. In the study we aimed at investigating PWD in healthy military aircrew who reported for periodical examinations. Material and Methods: Seventy-five asymptomatic military aircrew were enrolled in the study. All the subjects underwent physical, radiologic and biochemical examinations, and a 12-lead electrocardiography. P-wave dispersions were calculated. Results: The mean age of the study participants was 36.15±8.97 years and the mean p-wave duration was 100.8±12 ms in the whole group. Forty-seven subjects were non-pilot aircrew, and 28 were pilots. Thirteen study subjects were serving in jets, 49 in helicopters, and 13 were transport aircraft pilots. Thirty-six of the helicopter and 11 of the transport aircraft aircrew were non-pilot aircrew. P-wave dispersion was the lowest in the transport aircraft aircrew, and the highest in jet pilots. P-wave dispersions were similar in the pilots and non-pilot aircrew. Twenty-three study subjects were overweight, 19 had thyroiditis, 26 had hepatosteatosis, 4 had hyperbilirubinemia, 2 had hypertension, and 5 had hyperlipidemia. The PWD was significantly associated with thyroid-stimulating hormone (TSH levels. Serum uric acid levels were associated with p-wave durations. Serum TSH levels were the most important predictor of PWD. Conclusions: When TSH levels were associated with PWD, uric acid levels were associated with p-wave duration in the military aircrew. The jet pilots had higher PWDs. These findings reveal that military jet pilots may have a higher risk of developing atrial fibrillation, and PWD should be recorded during periodical examinations.
Resonant-state expansion for wave guides with a Sellmeier dispersion
Doost, M B
2015-01-01
The resonant-state expansion (RSE), a rigorous perturbative method developed in electrodynamics for non-dispersive optical systems is further developed to treat wave guides with a Sellmeier dispersion. For media which can be described by these types of dispersion over the relevant frequency range, such as optical glass, the perturbed problem can be solved by diagonalising a second-order eigenvalue problem. In the case of a single resonance at zero frequency, this is simplified to a generalised eigenvalue problem. Results are presented using analytically solvable planar waveguides and parameters of BK7 glass, for a perturbation in the waveguide width. The efficiency of using either an exact dispersion over all frequencies or an approximate dispersion over a narrow frequency range is compared.
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Kadota, Michio; Tanaka, Shuji
2016-07-01
There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
WEN Xiao-Yong
2009-01-01
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
Effects of Single Dose Energy Drink on QT and P-Wave Dispersion
Huseyin Arinc
2013-12-01
Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.
A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves
Hyunjo Jeong; Sungjong Cho; Wei Wei
2011-01-01
@@ We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves.We first consider the flexural wave (A mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver.The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect.The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of- flight information on the defect location.One of the side-band signals is then extracted as a pure defect signal.A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors.The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect.
Damage localization in metallic plate structures using edge-reflected lamb waves
Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S.
2016-08-01
This paper presents a model-based guided ultrasonic waves imaging algorithm, in which multiple ultrasonic echoes caused by reflections from the plate’s boundaries are leveraged to enhance imaging performance. An analytical model is proposed to estimate the envelope of scattered waves. Correlation between the estimated and experimental data is used to generate images. The proposed method is validated through experimental tests on an aluminum plate instrumented with three low profile piezoelectric transducers. Different damage conditions are simulated including through-thickness holes. Results are compared with two other imaging localization methods, that is, delay and sum and minimum variance.
Stroboscopic interferometry for characterization and improvement of flexural plate-wave transducers
Rembe, Christian; Caton, Pamela; White, Richard M.; Muller, Richard S.
2001-10-01
We describe an improved stroboscopic interferometer system making possible static-deformation measurements of MEMS structures as well as motion measurements at frequencies up to 1MHz. The time resolution of the system is determined by the width of the strobed laser pulse. To demonstrate high-frequency measurement capabilities, we investigate acoustic waves on a flexural plate-wave micropump developed at the Berkeley Sensor & Actuator Center. We also characterize the micropump with a commercial micro scanning vibrometer (Polytec). The results are compared and different features of the two systems are discussed.
Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid
Indeitsev, Dmitrij; Sorokin, Sergey
2012-01-01
In several technical applications, for example, in the Arctic off-shore oil industry, it is necessary to predict waveguide properties of floating elastic plates in contact with a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular...... concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, we assume that an inhomogeneous fluid may be modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer...... of salty water. The former one produces fluid loading at the plate, whereas the latter one is bounded by the sea bottom. We employ classical asymptotic methods to identify significant regimes of wave motion in the compound three-component waveguide. The roles of parameters involved in the problem...
A polarization gadget with two quarter wave plates: Application to Mueller Polarimetry
Reddy, Salla Gangi; Perumangattu, Chithrabhanu; Singh, R P; Simon, R
2014-01-01
We show that there are number of ways to transform an arbitrary polarization state to another with just two quarter wave plates (QWP). We have verified this geometrically using the trajectories of the initial and final polarization states corresponding to all the fast axis orientations of a QWP on the Poincare sphere. The exact analytical expression for the locus of polarization states has also been given that describes the trajectory. An analytical treatment of the equations obtained through matrix operations corresponding to the transformation supports the geometrical representation. This knowledge can be used to obtain the Mueller matrix by just using quarter wave plates which has been shown experimentally by exploiting projections of the output states on the input states.
1D profiling using highly dispersive guided waves
Volker, Arno; Brandenburg, Martijn
2017-02-01
Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Last year an approach was presented using a phase inversion of guided waves that propagated around the circumference of a pipe. This approach works well for larger corrosion spots, but shows significant under-sizing of small spots due to lack of sufficient phase rotation. In this paper the use of arrival time and amplitude loss of higher order circumferential passes is evaluated. Using higher order passes increases sensitivity for sizing smaller defects. Different defect profiles are assumed and the change in arrival time and amplitude loss are calculated using a wave equation based approach for different defect widths and depths. This produces a differential travel time and amplitude change map as function of defect depth and defect width. The actually measured travel time change and amplitude change produces two contours in these maps. Calculating the intersection point gives the defect dimensions. The contours for amplitude loss and travel time change are quite orthogonal, this yields a good discrimination between deep and shallow defects. The approach is evaluated using experimental data from different pipes contain artificial and real defects.
Propagation and dispersion of whistler waves generated by fast reconnection onset
Singh, Nagendra
2013-02-01
The role of whistler mode during the onset of magnetic reconnection (MR) has been widely suggested, but the manifestations of its highly dispersive and anisotropic propagation properties in reconnection events remain largely unclear. Comparing results from a recently developed theoretical model for reconnection in terms of whistler's dispersive behavior with those reported from laboratory experiments on fast spontaneous magnetic reconnection, we demonstrate that the onset of fast reconnection in electron current layers (ECLs) emits whistler wave packets. The time scale of the explosively fast reconnection events are inversely related to the whistler mode frequencies at the lower end of the whistler frequency band. The wave packets in this frequency band have a characteristic angular dispersion, which marks the initial opening of the reconnection exhaust angle. The multidimensional propagation of the whistler for the reconnection with a strong guide magnetic field is investigated, showing that the measured propagation velocities of the reconnection electric field along the guide field in the Versatile Toroidal Facility at MIT quantitatively compare with the group velocities of the whistler wave packets. The whistler mode dispersive properties measured in laboratory experiments without a guide magnetic field in the magnetic reconnection experiments at Princeton also compare well with the theoretically predicted dispersion of the wave packets depending on the ECL width. Fast normalized reconnection rates extending to ˜0.35 at the MR onset in thin ECLs imply whistler wave propagation away from the onset location. We also present evidences for the whistler wave packets being emitted from reconnection diffusion region as seen in simulations and satellite observations.
Fomichev, Vladislav; Yadrenkin, Mikhail; Shipko, Evgeny
2016-10-01
Summarizing of experimental studies results of the local MHD-interaction at hypersonic air flow near the plate is presented. Pulsed and radiofrequency discharge have been used for the flow ionization. It is shown that MHD-effect on the shock-wave structure of the flow is significant at test conditions. Using of MHD-interaction parameter enabled to defining characteristic modes of MHD-interaction by the force effect: weak, moderate and strong.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent
Application of particle swarm optimization to interpret Rayleigh wave dispersion curves
Song, Xianhai; Tang, Li; Lv, Xiaochun; Fang, Hongping; Gu, Hanming
2012-09-01
Rayleigh waves have been used increasingly as an appealing tool to obtain near-surface shear (S)-wave velocity profiles. However, inversion of Rayleigh wave dispersion curves is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this study, we proposed and tested a new Rayleigh wave dispersion curve inversion scheme based on particle swarm optimization (PSO). PSO is a global optimization strategy that simulates the social behavior observed in a flock (swarm) of birds searching for food. A simple search strategy in PSO guides the algorithm toward the best solution through constant updating of the cognitive knowledge and social behavior of the particles in the swarm. To evaluate calculation efficiency and stability of PSO to inversion of surface wave data, we first inverted three noise-free and three noise-corrupted synthetic data sets. Then, we made a comparative analysis with genetic algorithms (GA) and a Monte Carlo (MC) sampler and reconstructed a histogram of model parameters sampled on a low-misfit region less than 15% relative error to further investigate the performance of the proposed inverse procedure. Finally, we inverted a real-world example from a waste disposal site in NE Italy to examine the applicability of PSO on Rayleigh wave dispersion curves. Results from both synthetic and field data demonstrate that particle swarm optimization can be used for quantitative interpretation of Rayleigh wave dispersion curves. PSO seems superior to GA and MC in terms of both reliability and computational efforts. The great advantages of PSO are fast in locating the low misfit region and easy to implement. Also there are only three parameters to tune (inertia weight or constriction factor, local and global acceleration constants). Theoretical results exist to explain how to tune these parameters.
Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters
Rosenberg, Brian; Mundon, Timothy
2016-11-01
Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.
Ultrasonic Beam Radiation of an A0 Leaky Lamb Wave in a Plate Waveguide Sensor
Bae, Jin Ho; Joo, Young Sang; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Rhee, Hui Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
As the sodium coolant of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection cannot be used for carrying out an in-service inspection of the internal structures under a sodium level. An ultrasonic wave should be applied for an under-sodium viewing of the internal structures in a reactor vessel. Immersion sensors and waveguide sensors have been applied to the under-sodium visualization. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor has the advantages of a long lifetime and stable application. Recently, a new plate waveguide sensor has been developed for the versatile applications in the under-sodium viewing application. In the plate waveguide sensor, the A0 leaky Lamb wave is utilized for the long distance propagation and the effective radiation capability in a fluid. And a new technique is presented which is capable of steering an ultrasonic beam of a waveguide sensor without a mechanical movement of the sensor assembly. In this paper, the experimental study of the radiation beam profile of the A0 leaky Lamb wave in a plate waveguide sensor is carried out
Imaging the Southeast Caribbean Plate Margin with Teleseismic P-wave Tomography
Bravo, T. K.; Pavlis, G. L.
2007-12-01
As part of the Bolivar Project, the Passive Array Group (authors plus Funvisis; University of the West Indies; University of California, San Diego; and Rice University) operated a 113 station, broadband array in Venezuela and the southern Antilles. The combined array ran from December 2003 to May 2005 with stations running from the craton south of the Orinoco River to OBS instruments located on oceanic crust of the Caribbean plate. This collaborative geological and geophysical study of the Caribbean-South American Plate boundary was designed to investigate the large scale structure and tectonic framework of this northern boundary of South America. We measured P wave residuals from 382 teleseismic events with a two-step procedure. First, we used a new array processing method to cross-correlate vertical component data with an array beam computed through a robust, nonlinear stacking method. Second, we reviewed the cross-correlation results adding picks manually for stations that did not correlate reliably with the array beam. We used these P wave residuals to construct a series of P- wave tomographic models of this region. Robust features seen in these models include: (1) a high velocity upper mantle under the craton grading to lower velocities under the Orinoco basin; (2) higher velocities are seen in western Venezuela that correlate with the subducting Nazca plate; and (3) the subduction of the Atlantic at the Antilles Arc is marginally resolved in the northwest corner of the study area.
Prolonged P-Wave and QT Dispersion in Children with Inflammatory Bowel Disease in Remission
Yılmaz, Nuh; Kutluk, Günsel; Dedeoğlu, Reyhan; Öztarhan, Kazım; Tulunoğlu, Aras; Şap, Fatih
2017-01-01
Objectives. Ulcerative colitis (UC) and Crohn's disease (CD) are chronic inflammatory bowel diseases (IBD) with unclear underlying aetiologies. Severe cardiac arrhythmias have been emphasised in a few studies on adult IBD patients. This study aimed to investigate the alteration of the P-wave and QT interval dispersion parameters to assess the risk of atrial conduction and ventricular repolarisation abnormalities in pediatric IBD patients. Patients and Methods. Thirty-six IBD patients in remission (UC: 20, CD: 16) aged 3–18 years and 36 age- and sex-matched control patients were enrolled in the study. Twelve-lead electrocardiograms were used to determine durations of P-wave, QT, and corrected QT (QTc) interval dispersion. Transthoracic echocardiograms and 24-hour rhythm Holter recordings were obtained for both groups. Results. The P-wave dispersion, QT dispersion, and QTc interval dispersion (Pdisp, QTdisp, and QTcdisp) were significantly longer in the patient group. The mean values of Pminimum, Pmaximum, and QTcminimum were significantly different between the two groups. The echocardiography and Holter monitoring results were not significantly different between the groups. Furthermore, no differences in these parameters were detected between the CD and UC groups. Conclusion. Results suggest that paediatric IBD patients may carry potential risks for serious atrial and ventricular arrhythmias over time even during remission.
Stability mechanisms for plate-like nanoparticles immersed in a macroion dispersion
Jimenez-Angeles, Felipe; Odriozola, Gerardo; Lozada-Cassou, Marcelo [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)
2009-10-21
An integral equation theory and Monte Carlo simulations are applied to study a model macroion solution confined between two parallel plates immersed in a 1:1 electrolyte and the macroions' counterions. We analyze the cases in which plates are: (a) uncharged; (b) when they are like-charged to the macroions; (c) when they are oppositely charged to the macroions. For all cases a long range oscillatory behavior of the induced charge density between the plates is found (implying an overcompensation/undercompensation of the plates' charge density) and a correlation between the confined and outside fluids. The behavior of the force is discussed in terms of the macroion and ion structure inside and outside the plates. A good agreement is found between theoretical and simulation results.
Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo
2016-01-01
We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...
Nonpropagating Solitons in (2+1)-Dimensional Dispersive Long-Water Wave System
FANG Jian-Ping; ZHENG Chun-Long; LIU Qing
2005-01-01
With the help of an extended mapping approach, a new type of variable separation excitation with three arbitrary functions of the (2+1)-dimensional dispersive long-water wave system (DLW) is derived. Based on the derived variable separation excitation, abundant non-propagating solitons such as dromion, ring, peakon, and compacton etc.are revealed by selecting appropriate functions in this paper.
Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui;
2013-01-01
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good...
Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma
Marklund, G B M; Shukla, P K
2006-01-01
A dispersion relation for electromagnetic wave propagation in a strongly magnetized cold plasma is deduced, taking photon-photon scattering into account. It is shown that the combined plasma and quantum electrodynamic effect is important for understanding the mode-structures in magnetar and pulsar atmospheres. The implications of our results are discussed.
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
Eldeberky, Y.; Madsen, Per A.
1999-01-01
This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary c...
Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.
1983-03-01
Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron
Zhang, X.|info:eu-repo/dai/nl/304835773
2009-01-01
This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for
Zhang, X.
2009-01-01
This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for
WANG Qi; CHEN Yong; LI Biao; ZHANG Hong-Qing
2004-01-01
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e.,the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.
QT wave dispersion in patients with panic disorder
Murad Atmaca; Mustafa Yavuzkir; Filiz Izci; M. Gurkan Gurok; Sahin Adiyaman
2012-01-01
[Objective] QT dispersion (QTd),defined as the maximal inter-lead difference in QT intervals on 12 leads of the surface electrocardiogram (ECG),reflects the regional heterogeneity of ventricular repolarization and has been suggested as an important marker for risk of arrhythmia in addition to the QT interval.Some investigators proposed that it might be a predisposing factor for arrhythmic events and sudden death.Thus,we aimed to investigate whether QTd differs in patients with panic disorder from that in healthy controls.[Methods] In 40 panic disorder patients and 40 healthy controls,Qmax,Qmin,and QTd values were measured.In addition,the Hamilton depression rating scale and the panic agoraphobia scale were scored for both patients and healthy volunteers.[Results] Qmax and Qmin values in the panic disorder patients were significantly higher than those in healthy controls.The mean corrected QTd was significantly greater in the patients than in the controls.One-way analysis of covariance (ANCOVA,using left atrial size,age and heart rate as covariates) also corrected the significant difference.In addition,ANCOVA revealed a significant main effect for the diagnosis,indicating a significantly higher QTd for patients compared with controls.[Conclusion]QTd might be associated with panic disorder.Future studies in larger samples evaluating the effects of treatment are required.
Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers
Sharma, Mohit
2015-01-01
This paper presents a three layer index guided lead silicate (SF57) photonic crystal fiber which simultaneously promises to yield large effective optical nonlinear coefficient and low anomalous dispersion that makes it suitable for supercontinuum generation. At an operating wavelength 1550 nm, the typical optimized value of anomalous dispersion and effective nonlinear coefficient turns out to be ~4 ps/km/nm and ~1078 W^(-1) km^(-1), respectively. Through numerical simulation it is realized that the designed fiber promises to exhibit three octave spanning supercontinuum from 900 to 7200 nm by using 50 fs sech optical pulses of 5 kW peak power. Due to the cross-phase modulation and four-wave mixing processes, a long range of red-shifted dispersive wave generated, which assist to achieve such large broadening. In addition, we have investigated the compatibility of supercontinuum generation with input pulse peak power increment and briefly discussed the impact of nonlinear processes on supercontinuum generation.
Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers
Sharma, Mohit; Konar, S.
2016-03-01
This article presents a three-layer index guided lead silicate (SF57) photonic crystal fiber which simultaneously promises to yield large effective optical nonlinear coefficient and low anomalous dispersion that makes it suitable for supercontinuum (SC) generation. At an operating wavelength 1550 nm, the typical optimized value of anomalous dispersion and effective nonlinear coefficient turns out to be ~4 ps/km/nm and ~1078 W-1km-1, respectively. Through numerical simulation, it is realized that the designed fiber promises to exhibit three octave spanning SC from 900 to 7200 nm using 50 fs 'sech' optical pulses of 5 kW peak power. Due to the cross-phase modulation and four-wave mixing processes, a long range of red-shifted dispersive wave generated, which assists to achieve such large broadening. In addition, we have investigated the compatibility of SC generation with input pulse peak power increment and briefly discussed the impact of nonlinear processes on SC generation.
A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate
Gouker, Mark A.; Smith, Glenn S.
1992-05-01
A moderate-gain, easily constructed, millimeter-wave IC antenna based on the Fresnel zone plate has been developed. The gain and beamwidth of the antenna can be varied by adjusting the diameter and focal length of the zone plate. A theory is developed which accurately predicts the on-axis gain, beamwidth, and sidelobe levels of antennas with zone-plate focal lengths greater than 8-9 lambda. Graphs are presented to aid in the design of other IC zone-plate antennas. The performance of the antenna without the reflector and lambda/4 spacer was investigated. The gain of the antenna with nothing behind the zone plate is found to approach that of the fully configured antenna with the lambda/4 spacer and reflector. The reflection from the open rings which is responsible for this phenomenon is enhanced as the dielectric constant of the substrate is increased. Thus, on substrates with high permittivity the reflector and lambda/4 spacer may not be necessary.
Ultrasonic guided wave detection of scatterers on large clad steel plates
Gong, Peng; Harley, Joel B.; Berges, Mario; Junker, Warren R.; Greve, David W.; Oppenheim, Irving J.
2016-04-01
"Clad steel" refers to a thick carbon steel structural plate bonded to a corrosion resistant alloy (CRA) plate, such as stainless steel or titanium, and is widely used in industry to construct pressure vessels. The CRA resists the chemically aggressive environment on the interior, but cannot prevent the development of corrosion losses and cracks that limit the continued safe operation of such vessels. At present there are no practical methods to detect such defects from the exposed outer surface of the thick carbon steel plate, often necessitating removing such vessels from service and inspecting them visually from the interior. In previous research, sponsored by industry to detect and localize damage in pressurized piping systems under operational and environmental changes, we investigated a number of data-driven signal processing methods to extract damage information from ultrasonic guided wave pitch-catch records. We now apply those methods to relatively large clad steel plate specimens. We study a sparse array of wafer-type ultrasonic transducers adhered to the carbon steel surface, attempting to localize mass scatterers grease-coupled to the stainless steel surface. We discuss conditions under which localization is achieved by relatively simple first-arrival methods, and other conditions for which data-driven methods are needed; we also discuss observations of plate-like mode properties implied by these results.
Baba, Toshitaka; Takahashi, Narumi; Kaneda, Yoshiyuki; Ando, Kazuto; Matsuoka, Daisuke; Kato, Toshihiro
2015-12-01
Because of improvements in offshore tsunami observation technology, dispersion phenomena during tsunami propagation have often been observed in recent tsunamis, for example the 2004 Indian Ocean and 2011 Tohoku tsunamis. The dispersive propagation of tsunamis can be simulated by use of the Boussinesq model, but the model demands many computational resources. However, rapid progress has been made in parallel computing technology. In this study, we investigated a parallelized approach for dispersive tsunami wave modeling. Our new parallel software solves the nonlinear Boussinesq dispersive equations in spherical coordinates. A variable nested algorithm was used to increase spatial resolution in the target region. The software can also be used to predict tsunami inundation on land. We used the dispersive tsunami model to simulate the 2011 Tohoku earthquake on the Supercomputer K. Good agreement was apparent between the dispersive wave model results and the tsunami waveforms observed offshore. The finest bathymetric grid interval was 2/9 arcsec (approx. 5 m) along longitude and latitude lines. Use of this grid simulated tsunami soliton fission near the Sendai coast. Incorporating the three-dimensional shape of buildings and structures led to improved modeling of tsunami inundation.
Prosser, William H.
1991-01-01
Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.
A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity
Jiansheng Liu
2014-07-01
Full Text Available Dispersion equation is an important tool for analyzing propagation properties of acoustic waves in layered structures. For Love wave (LW sensors, the dispersion equation with an isotropic-considered substrate is too rough to get accurate solutions; the full dispersion equation with a piezoelectric-considered substrate is too complicated to get simple and practical expressions for optimizing LW-based sensors. In this work, a dispersion equation is introduced for Love waves in a layered structure with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive expression for mass sensitivity is also derived based on the dispersion equation. The new equations are in simple forms similar to the previously reported simplified model with an isotropic substrate. By introducing the Maxwell-Weichert model, these equations are also applicable to the LW device incorporating a viscoelastic guiding layer; the mass velocity sensitivity and the mass propagation loss sensitivity are obtained from the real part and the imaginary part of the complex mass sensitivity, respectively. With Love waves in an elastic SiO2 layer on an ST-90°X quartz structure, for example, comparisons are carried out between the velocities and normalized sensitivities calculated by using different dispersion equations and corresponding mass sensitivities. Numerical results of the method presented in this work are very close to those of the method with a piezoelectric-considered substrate. Another numerical calculation is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too big, the effect on the real part of the velocity and the mass velocity sensitivity is relatively small; the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding layer.
Effect of Habitual Cigarette Smoking on P Wave Duration and Dispersion
Ali Metin Esen
2010-12-01
Full Text Available In this study, P wave duration and dispersion (PWD were measured in 30 heavy smoker, 30 light smoker and 30 nonsmoker subjects. There were no significant difference among heavy smokers, light smokers and nonsmokers with respect to maximum P wave duration and PWD (117±9ms, 116±8ms, 115±6ms ANOVA p=0.78, and 48±10ms, 45±11ms, 43±8ms, one-way ANOVA p=0.14, respectively. Minimum P wave duration was also similar in three groups. (69±10 ms, 70±13ms, 72±9ms, one-way ANOVA p=0.51. We also found no dose dependent-relation betweenthe duration of smoking, the number of cigarettes smoked, and P wave duration. Habitual cigarette smoking alone does not alter P wave duration and PWD in otherwise healthy young subjects.
Hakan Ozaltun; Herman Shen; Pavel Madvedev
2010-11-01
This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.
Experimental Determination of Whistler Wave Dispersion Relation in the Solar Wind
Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L.
2016-09-01
The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.
Dispersive MHD waves and alfvenons in charge non-neutral plasmas
K. Stasiewicz
2008-08-01
Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.
Clack, C
2009-01-01
The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas, 15, 2310 (2008)] and Alfv\\'en resonance by Clack \\emph{et al.} [A&A,494, 317 (2009)], is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfv\\'{e}n dissipative layer and are partly reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of ener...
Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave
Snipes, Erica; Williams, Jeremiah
2009-04-01
A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).
Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria
2010-05-01
Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies
Jianfei Yin
2015-01-01
Full Text Available Prediction of bending wave transmission across systems of coupled plates which incorporate periodic ribbed plates is considered using Statistical Energy Analysis (SEA in the low- and mid-frequency ranges and Advanced SEA (ASEA in the high-frequency range. This paper investigates the crossover from prediction with SEA to ASEA through comparison with Finite Element Methods. Results from L-junctions confirm that this crossover occurs near the frequency band containing the fundamental bending mode of the individual bays on the ribbed plate when ribs are parallel to the junction line. Below this frequency band, SEA models treating each periodic ribbed plate as a single subsystem were shown to be appropriate. Above this frequency band, large reductions occur in the vibration level when propagation takes place across successive bays on ribbed plates when the ribs are parallel to the junction. This is due to spatial filtering; hence it is necessary to use ASEA which can incorporate indirect coupling associated with this transmission mechanism. A system of three coupled plates was also modelled which introduced flanking transmission. The results show that a wide frequency range can be covered by using both SEA and ASEA for systems of coupled plates where some or all of the plates are periodic ribbed plates.
Dengjiang Wang
2016-11-01
Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.
Transformation cloaking and radial approximations for flexural waves in elastic plates
Brun, M; Jones, I S; Movchan, A B; Movchan, N V
2014-01-01
It is known that design of elastic cloaks is much more challenging than the design idea for acoustic cloaks, cloaks of electromagnetic waves or scalar problems of anti-plane shear. In this paper, we address fully the fourth-order problem and develop a model of a broadband invisibility cloak for channelling flexural waves in thin plates around finite inclusions. We also discuss an option to employ efficiently an elastic pre-stress and body forces to achieve such a result. An asymptotic derivation provides a rigorous link between the model in question and elastic wave propagation in thin solids. This is discussed in detail to show connection with non-symmetric formulations in vector elasticity studied in earlier work.
Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock
A. P. Dimmock
2013-08-01
Full Text Available Low frequency waves in the foot of a supercritical quasi-perpendicular shock front have been observed since the very early in situ observations of the terrestrial bow shock (Guha et al., 1972. The great attention that has been devoted to these type of waves since the first observations is explained by the key role attributed to them in the processes of energy redistribution in the shock front by various theoretical models. In some models, these waves play the role of the intermediator between the ions and electrons. It is assumed that they are generated by plasma instability that exist due to the counter-streaming flows of incident and reflected ions. In the second type of models, these waves result from the evolution of the shock front itself in the quasi-periodic process of steepening and overturning of the magnetic ramp. However, the range of the observed frequencies in the spacecraft frame are not enough to distinguish the origin of the observed waves. It also requires the determination of the wave vectors and the plasma frame frequencies. Multipoint measurements within the wave coherence length are needed for an ambiguous determination of the wave vectors. In the main multi-point missions such as ISEE, AMPTE, Cluster and THEMIS, the spacecraft separation is too large for such a wave vector determination and therefore only very few case studies are published (mainly for AMPTE UKS AMPTE IRM pair. Here we present the observations of upstream low frequency waves by the Cluster spacecraft which took place on 19 February 2002. The spacecraft separation during the crossing of the bow shock was small enough to determine the wave vectors and allowed the identification of the plasma wave dispersion relation for the observed waves. Presented results are compared with whistler wave dispersion and it is shown that contrary to previous studies based on the AMPTE data, the phase velocity in the shock frame is directed downstream. The consequences of this
Purves, Murray; Parkes, David
2016-05-01
Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.
Chun-Chuan Liu; Feng-Ming Li; Ting-Wei Liang; Wen-Hu Huang
2011-01-01
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.
2013-12-01
Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.
Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta
2014-01-01
Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Hybrid dispersive media with controllable wave propagation: A new take on smart materials
Bergamini, Andrea E., E-mail: andrea.bergamini@empa.ch [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600, Dübendorf (Switzerland); Zündel, Manuel [ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Flores Parra, Edgar A.; Ermanni, Paolo [ETH Zürich, Composite Materials and Adaptive Structures Laboratory, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Delpero, Tommaso [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ruzzene, Massimo [Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Atlanta, Georgia 30332-0405 (United States)
2015-10-21
In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel
Hybrid dispersive media with controllable wave propagation: A new take on smart materials
Bergamini, Andrea E.; Zündel, Manuel; Flores Parra, Edgar A.; Delpero, Tommaso; Ruzzene, Massimo; Ermanni, Paolo
2015-10-01
In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel
Full 3D dispersion curve solutions for guided waves in generally anisotropic media
Hernando Quintanilla, F.; Lowe, M. J. S.; Craster, R. V.
2016-02-01
Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials. These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.
2008-01-01
A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present a11eviative method using the porous plate wall in a tunnel
Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo
2016-10-01
In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
L amb波频散特性的数值仿真研究%Numerical Simulation Study on Lamb Wave Dispersion Curves
张燕; 龚立娇
2014-01-01
Lamb波频散特性是进行超声波损伤检测的前提，采用窄带脉冲信号作为激励信号产生 Lamb波，并在matlab环境下采用二分法对Lamb波的瑞利-兰姆频率方程进行了数值仿真，绘制了Lamb波在复合材料层合板中传播的频散特性曲线并分析了其特点，为超声波无损检测提供了重要的参考依据。%Dispersion curves are of great important to Lamb wave in ultrasonic nondestructive testing.The nar-row-band pulse was employed to generate Lamb wave.Rayleigh-Lamb equation was analyzed and a numerical calcu-lation method for Lamb wave dispersion curves was presented based on matlab,by which the phase velocity curves and group velocity curves of Lamb wave in composite material plate were plotted respectively.It was of significance for the use of Lamb wave in nondestructive testing.
Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H
2014-11-01
Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture.
Flores Parra, Edgar; Bergamini, Andrea E.; Ermanni, Paolo
2017-04-01
This work reports on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a mechanical waveguide in the form of an elastic beam, and an electrical network. The network configuration investigated is an LC high-pass, consisting of a series of capacitors connected in series through grounded inductors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam thus coupling the two waveguides. The coupling is characterized by a coincidence frequency/wavenumber corresponding to the intersection of the dispersion curves. At this coincidence frequency, the hybrid medium features attenuation of wave motion as a result of the energy transfer to the electrical network. This energy exchange is depicted in the dispersion by eigenvalue crossing, a particular case of eigenvalue veering. This paper presents the numerical investigations of the wave propagation in the considered medium, and validates the numerical findings with experimental evidence of the wave transmission characteristics. Moreover, the dispersion properties of the electrical network are further studied by varying the inductances thus exploiting the tunability of the periodic electrical domain, i.e: monoatomic and diatmomic unit cell configurations. The LC high-pass network offers several advantages over other configurations, from ease of implementation as the piezoelectric elements are not grounded, to a smaller inductance values to achieve attenuation at a given frequency. Such media could be interfaced with more complex electrical networks to create a new type of smart materials.
Localization of Dispersive Alfvén Wave in Solar wind plasmas and Turbulent Spectrum
Sharma, Swati; Sharma, R. P.
2016-07-01
Solar wind turbulence at large inertial scales is well known for decades and believed to consist of Alfvén cascade. The inertial range of Solar wind turbulence can be described by a magnetohydrodynamic model. But at small scales the MHD description is not valid. At scales of the order of proton inertial length, Alfvén cascade excites kinetic Alfvén wave or fast wave or whistler wave that carries wave energy to smaller scales. On the other hand, parallel propagating right(R) and left(L) circularly polarized Alfvén/ ion cyclotron wave in the framework of Hall MHD are also thought to be essential ingredients of the solar wind turbulence. Recently, He et.al[1] have used the magnetic field data from the STEREO spacecraft to calculate the magnetic helicities in the solar wind turbulence and reported the possible existence of Alfvén -cyclotron waves and their coexistence with the right handed polarized fluctuations. In the present article we intend to study the right circularly polarized dispersive Alfvén wave (DAW) and their role in the solar wind turbulence. The inclusion of the Hall term causes the dispersion of the AW which, in the present study, is considered on account of the finite frequency (frequency comparable to ion gyro frequency) of the pump wave. Filamentation instability has been reported to occur for the case of circularly polarized dispersive Alfvén wave (DAW) propagating parallel to ambient magnetic field. In the present study, the instability arises on account of the transverse density perturbations of the acoustic wave that may couple nonlinearly with the Alfvén wave and the driven ponderomotive force sequentially leads to growth of density perturbations. Numerical simulation involves finite difference method for the time domain and pseudo spectral method for the spatial domain. The power spectrum is investigated which shows a steepening for scales larger than the proton inertial length. These findings have been reported by Alexandrova et al
Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves.
West, Paul R; Kinsey, Nathaniel; Ferrera, Marcello; Kildishev, Alexander V; Shalaev, Vladimir M; Boltasseva, Alexandra
2015-01-14
Hyperbolic metamaterials (HMMs) have shown great promise in the optical and quantum communities due to their extremely large, broadband photonic density of states. This feature is a direct consequence of supporting photonic modes with unbounded k-vectors. While these materials support such high-k waves, they are intrinsically confined inside the HMM and cannot propagate into the far-field, rendering them impractical for many applications. Here, we demonstrate how the magnitude of k-vectors can be engineered as the propagating radiation passes through media of differing dispersion relations (including type II HMMs and dielectrics) in the in-plane direction. The total outcoupling efficiency of waves in the in-plane direction is shown to be on average 2 orders of magnitude better than standard out-of-plane outcoupling methods. In addition, the outcoupling can be further enhanced using a proposed tapered HMM waveguide that is fabricated using a shadowed glancing angle deposition technique; thereby proving the feasibility of the proposed device. Applications for this technique include converting high-k waves to low-k waves that can be out-coupled into free-space and creating extremely high-k waves that are quickly quenched. Most importantly, this method of in-plane outcoupling acts as a bridge through which waves can cross between the regimes of low-k waves in classical dielectric materials and the high-k waves in HMMs with strongly reduced reflective losses.
Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.
Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud
2013-12-16
The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.
Dispersion relations with crossing symmetry for pipi D and F wave amplitudes
Kaminski, R.
2011-01-01
A set of once subtracted dispersion relations with imposed crossing symmetry condition for the pipi D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed pipi interactions and are very useful tools to test the pipi amplitudes. One of the goals of this work is to provide a complete set o...
Dispersion Analysis of Gravity Waves in Fluid Media Discretized by Energy-Orthogonal Finite Elements
José Brito Castro, Francisco
2014-11-01
This article studies the dispersion of gravity waves in fluid media discretized by the finite element method. The element stiffness matrix is split into basic and higher-order components which are respectively related to the mean and deviatoric components of the gradient of displacement potential. This decomposition is applied to the kinetic energy. The dispersion analysis yields a correlation between the higher-order kinetic energy and the kinetic energy error. The use of this correlation as a reference to apply the higher-order energy as an error indicator for the sloshing modes computed by the finite element method is explored.
Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves
Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole
2008-01-01
We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....
Lamb waves propagation in a novel metal-matrix phononic crystals plate
Li, Suobin; Chen, Tianning; Wang, Xiaopeng; Xi, Yanhui
2016-09-01
In this paper, the propagation properties of Lamb waves in a novel phononic crystals (PCs) plate composed of a square array of double-sided composite taper stubs, which are deposited on a 2D locally resonant PC plate that composes of an array of rubber fillers embedded in the steel plate is studied. It is shown that the spring-mass system of the resonator will be decoupled by introducing the rubber filler, and then the out-of-plane band gap (BG) and the in-plane BG can be adjusted into the same lowest frequency range, respectively (the out-of-plane BG is adjusted by the rubber filler and the in-plane BG is adjusted by the taper stub). As a result, the frequency range of the generated complete BG is between 59-93 Hz due to the overlap between the in-plane and out-of-plane BG. Compared with the classic double-sided stubbed PC plate, the relative bandwidth of the BG is enlargement by a factor of 5.5 and the location of the BG is reduced by a factor of 5.5 in the proposed structure. It provides an effective way for metal-matrix PCs to obtain complete BGs in low-frequency range (below 100 Hz), which has potential for the reduction of the vibration at low frequency in practical case.
Wu, Junru; Layman, Christopher; Liu, Jun
2004-02-01
A fundamental mathematical framework for applications of Doublet Mechanics to ultrasound propagation in a discrete material is introduced. A multiscale wave equation, dispersion relation for longitudinal waves, and shear waves are derived. The van Hove singularities and corresponding highest frequency limits for the Mth-order wave equations of longitudinal and shear waves are determined for a widely used microbundle structure. Doublet Mechanics is applied to soft tissue and low-density polyethylene. The experimental dispersion data for soft tissue and low-density polyethylene are compared with results predicted by Doublet Mechanics and an attenuation model based on a Kramers-Kronig relation in classical continuum mechanics.
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Jiang, Shixiao W.; Lu, Haihao; Zhou, Douglas; Cai, David
2016-08-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β-Fermi-Pasta-Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.
Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-01-01
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc. PMID:25790858
Multipole expansion of Green's function for guided waves in a transversely isotropic plate
Lee, Heung Son; Kim, Yoon Young [Seoul National University, Seoul (Korea, Republic of)
2015-05-15
The multipole expansion of Green's function in a transversely isotropic plate is derived based on the eigenfunction expansion method. For the derivation, Green's function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal) wave eigenfunctions. The specific form of the derived Green's function facilitates the handling of general scattering problems in an elastic plate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integral transform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work as the kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformed space, Green's function is explicitly derived by using the orthogonality. As an application of the derived Green's function, a scattering problem is solved by the transition matrix method.
Numerical design optimization of an EMAT for A0 Lamb wave generation in steel plates
Seher, Matthias; Huthwaite, Peter; Lowe, Mike; Nagy, Peter; Cawley, Peter
2014-02-01
An electromagnetic acoustic transducer (EMAT) for A0 Lamb wave generation on steel plates is developed to operate at 0.50 MHz-mm. A key objective of the development is to maximize the excitation and reception of the A0 mode, while minimizing those of the S0 mode. The chosen EMAT design consists of an induction coil and a permanent magnet. A finite element (FE) model of the EMAT is developed, coupling the electromagnetic and elastodynamic phenomena. An optimization process using a genetic algorithm is implemented, employing the magnet diameter and liftoff distance from the plate as design parameters and using the FE model to calculate the fitness. The optimal design suggested by the optimization process is physically implemented and the experimental measurements are compared to the FE simulation results. In a further step, the variations of the design parameters are studied numerically and the proposed EMAT design exhibits a robust behavior to small changes of the design parameters.
Bykov, Victor G.; Trofimenko, Sergey V.
2016-12-01
Based on the statistical analysis of spatiotemporal distribution of earthquake epicenters and perennial geodetic observation series, new evidence is obtained for the existence of slow strain waves in the Earth. The results of our investigation allow us to identify the dynamics of seismicity along the northern boundary of the Amurian plate as a wave process. Migration of epicenters of weak earthquakes (2 ≤ M ≤ 4) is initiated by the east-west propagation of a strain wave front at an average velocity of 1000 km yr-1. We have found a synchronous quasi-periodic variation of seismicity in equally spaced clusters with spatial periods of 3.5 and 7.26° comparable with the length of slow strain waves. The geodetic observations at GPS sites in proximity to local active faults show that in a number of cases, the GPS site coordinate seasonal variations exhibit a significant phase shift, whereas the time series of these GPS sites differ significantly from a sinusoid. Based on experimental observation data and the developed model of crustal block movement, we have shown that there is one possible interpretation for this fact that the trajectory of GPS station position disturbance is induced by migration of crustal deformation in the form of slow waves.
Muñoz Mateo, A.; Brand, J.
2015-12-01
We analyse the dynamical properties of three-dimensional solitary waves in cylindrically trapped Bose-Einstein condensates. Families of solitary waves bifurcate from the planar dark soliton and include the solitonic vortex, the vortex ring and more complex structures of intersecting vortex lines known collectively as Chladni solitons. The particle-like dynamics of these guided solitary waves provides potentially profitable features for their implementation in atomtronic circuits, and play a key role in the generation of metastable loop currents. Based on the time-dependent Gross-Pitaevskii equation we calculate the dispersion relations of moving solitary waves and their modes of dynamical instability. The dispersion relations reveal a complex crossing and bifurcation scenario. For stationary structures we find that for μ /{\\hslash }{ω }\\perp \\gt 2.65 the solitonic vortex is the only stable solitary wave. More complex Chladni solitons still have weaker instabilities than planar dark solitons and may be seen as transient structures in experiments. Fully time-dependent simulations illustrate typical decay scenarios, which may result in the generation of multiple separated solitonic vortices.
Zulhan, Zulfakriza; Saygin, Erdinc; Cummins, Phil; Widiyantoro, Sri; Nugraha, Andri Dian; Luehr, Birger-G.; Bodin, Thomas
2015-04-01
Our previous study on MERAMEX data (Zulfakriza et al., 2014) obtained features of the tomographic images which correlate well with the surface geology of central Java in periods between 1 to 12 sec. Kendeng Basin and active volcanoes in the central part of this region are clearly imaged with low group velocities with values around 0.8 km/sec, while the carbonate structures in the southern part of the region correspond to higher group velocities in the range of 1.8 to 2.0 km/sec. In this current study, we invert dispersion curves obtained from seismic noise tomography to estimate shear wave-depth profiles of the region. The results are used to discuss the spatial variation of shear wave velocities for a depth range down from the surface to upper crust. Most of the shear wave velocity anomalies, including the upper crustal areas of the Kendeng basin and active volcanoes, are consistent with our previous study of Rayleigh wave group velocities and fit to the regional geology. Keywords: Dispersion Inversion; shear wave velocity; Central Java, Indonesia. Reference: Zulfakriza, Z., Saygin, E., Cummins, P., Widiyantoro, S., Nugraha, A., Luehr, B.-G., Bodin, T., 2014. Upper crustal structure of central Java, Indonesia, from transdimensional seismic ambient noise tomography. Geophys. J. Int. 197.
Determination of Lamb wave dispersion curves by means of Fourier transform
Hora P.
2012-06-01
Full Text Available This work reports on methods for determination of Lamb wave dispersion curves by means of Fourier transform (FT. Propagating Lamb waves are sinusoidal in both the frequency domain and the spatial domain. Therefore, the temporal FT may be carried out to go from the time to the frequency domain, and then the spatial FT may be carried out to go to the frequency–wave-number domain, where the amplitudes and the wave-numbers of individual modes may be measured. The result of this transform will be a 2D array of amplitudes at discrete frequencies and wave-numbers. Other method of determination of dispersion curves is based on the solution of FEM task in frequency domain. The frequency spectrum of a time-dependent excitation is defined using FT. Since a small number of frequencies are sufficient to achieve a correct representation of a wide variety of temporal excitations, this approach considerably speeds up the computation by avoiding the temporal FT and by decreasing the number of calculation steps.
PROPAGATION AND DISPERSION OF SAUSAGE WAVE TRAINS IN MAGNETIC FLUX TUBES
Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2015-06-10
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75–1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes
Oliver, R.; Ruderman, M. S.; Terradas, J.
2015-06-01
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
2010-01-01
day TIWs. 1. Introduction Mixed Rossby-Gravity waves (often referred to as Yanai waves) play an important role in a variety of phenomena in the...significant role in the SST and SSH variability caused by 17-day TIWs especially in the northern hemisphere. 3. Cross-correlation analysis The phase...penetrating from the upper troposphere into the lower strato - sphere. J. Meteor. Soc. Japan, 47, 167–182. Zangvil, A., 1975: Temporal and spatial
Traveling wave dispersal in partially sedentary age-structured biological populations
Le, Thuc Manh; Van Minh, Nguyen
2010-01-01
In this paper we present a thorough study on the existence of traveling waves in a mathematical model of dispersal in a partially sedentary age-structured population. This type of model was first proposed by Veit and Lewis in [{\\it Am. Nat.}, {\\bf 148} (1996), 255-274]. We choose the fecundity function to be the Beverton-Holt type function. We extend the theory of traveling waves in the population genetics model of Weinberger in [{\\it SIAM J. Math. Anal.}, {\\bf 13} (1982), 353-396] to the case when migration depends on age groups and a fraction of the population does not migrate.
NUMEREICAL ANALYSIS OF FOUR WAVE MIXING AND EXTRACTION OF DISPERSION PARAMETERS OF THE FIBRE
S.Sugumaran
2013-04-01
Full Text Available Four wave mixing generally occurs when two or more different wavelengths from two or more sources are launched into the fibre, resulting in a new wavelength known as idler (different from thegiven wavelengths. Here in this paper the efficiency of the generation of idler and the power of idler will be numerically simulated for two wave fibre transmissions. From this simulation, a curve will be obtained between power of idler and wavelength separation between signal and pump source, which will be used topropose a power independent method for extraction of dispersion parameters of a fibre.
Dispersion Relation of a Surface Wave at a Rough Metal-Air Interface
Kotelnikov, Igor
2016-01-01
We derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.
Bloch Wave Approach to the Optics of Crystals: The Role of Spatial Dispersion
2000-09-29
of Crystals: The Role of Spatial Dispersion S. Ponti, C. Oldano, and M. Becchi Dipartimento di Fisica del Politecnico di Torino Corso Duca degli...explicitly depends on the wave vector k of the internal plane wave, i.e. F = F(k). The 408 tensor field e(r) is well known for many periodic liquid...structure: eG-eG_+(3) where = (y + q-)21 _ (k + qj(k + q -) (4) 1 is the 3 x 3 identity matrix, (k + q-) (k + q- is a dyadic product, and the vectors
Al-Jabr, Ahmad Ali
2013-03-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
Coste, C; Coste, Christophe; Lund, Fernando
1999-01-01
Previous results on the scattering of surface waves by vertical vorticity on shallow water are generalized to the case of dispersive water waves. Dispersion effects are treated perturbatively around the shallow water limit, to first order in the ratio of depth to wavelength. The dislocation of the incident wavefront, analogous to the Aharonov-Bohm effect, is still observed. At short wavelengths the scattering is qualitatively similar to the nondispersive case. At moderate wavelengths, however, there are two markedly different scattering regimes according to wether the capillary length is smaller or larger than depends both on phase and group velocity. The validity range of the calculation is the same as in the shallow water case: wavelengths small compared to vortex radius, and low Mach number. The implications of these limitations are carefully considered.