WorldWideScience

Sample records for plate tectonics system

  1. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  2. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  3. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  4. Soft Plate and Impact Tectonics

    Science.gov (United States)

    Tikoff, Basil

    In the field of tectonics, most of our ideas are published in journals. This is not true of other fields, such as history, in which ideas are primarily published in books. Within my own field of structural geology, I can recall only one book, Strain Fades by E. Hansen (Springer-Verlag, 1971), which presents a new idea in book form. However, even this book is more useful for its philosophical approach and particular methodology of determining directions of folding, than for its overarching idea.Enter Soft Plate and Impact Tectonics, a new book with an interesting hypothesis that has been informally discussed in the geoscience community: A fundamental tenet of plate tectonics is incorrect—namely, that the plates are rigid. This assertion is evident when looking at any mountain range, and is perhaps most clearly stated in Molnar [1988].

  5. The tectonic plates are moving!

    CERN Document Server

    Livermore, Roy

    2018-01-01

    Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1...

  6. Subduction Drive of Plate Tectonics

    Science.gov (United States)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under

  7. Plate tectonics, habitability and life

    Science.gov (United States)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  8. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  9. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  10. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  11. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  12. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  13. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  14. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  15. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  16. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  17. History and Evolution of Precambrian plate tectonics

    Science.gov (United States)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by

  18. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  19. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  20. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    Science.gov (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  1. Oil prospection using the tectonic plate model

    Science.gov (United States)

    Pointu, Agnès

    2015-04-01

    Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast

  2. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  3. Learning Plate Tectonics Using a Pre-Analogy Step

    Science.gov (United States)

    Glesener, G. B.; Sandoval, W. A.

    2011-12-01

    Previous research has shown that children tend to demonstrate lower performance on analogical reasoning tasks at a causal relations level compared to most adults (Gentner & Toupin, 1986). This tendency is an obstacle that geoscience educators must overcome because of the high frequency of analogies used in geoscience pedagogy. In particular, analog models are used to convey complex systems of non-everyday/non-observable events found in nature, such as plate tectonics. Key factors in successful analogical reasoning that have been suggested by researchers include knowledge of the causal relations in the base analog (Brown & Kane, 1988; Gentner, 1988; Gentner & Toupin, 1986), and development of learning strategies and metaconceptual competence(Brown & Kane, 1988). External factors, such as guiding cues and hints have been useful cognitive supports that help students reason through analogical problems (Gick & Holyoak, 1980). Cognitive supports have been seen by researchers to decrease processing demands on retrieval and working memory (Richland, Zur, & Holyoak, 2007). We observed third and fourth graders learning about plate tectonics beginning with a pre-analogy step-a cognitive support activity a student can do before working with an analogy to understand the target. This activity was designed to aid students in developing their understanding of object attributes and relations within an analog model so that more focus can be placed on mapping the corresponding higher-order relations between the base and target. Students learned targeted concepts of plate tectonics, as measured by pre to post gains on items adapted from the Geosciences Concept Inventory. Analyses of classroom interaction showed that students used the object attributes and higher-order relations highlighted in the pre-analogy activity as resources to reason about plate boundaries and plate movement during earthquakes.

  4. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  5. Subduction and Plate Edge Tectonics in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust

  6. Petroleum and natural gas geology and plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, B.

    1984-01-01

    Several processes of oil and gas geology are studied in connection with plate-tectonical processes. Thus it becomes clear, that there is a distinct difference between the Paleozoic development of the European plate and the Mesozoic development. One can state, that the Paleozoic development is essentially influenced by the positions of the mobile belts and the cratonized parts of the plates. The development during Meso-Caenozoic is mainly characterized by crustal processes in the result of the disintegration of Pangaea.

  7. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  8. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  9. Plate Tectonics and Europa's Icy Shell

    Indian Academy of Sciences (India)

    defence of his theory with the 1915 publication of The Origin of Continents and Oceans. Wegener .... is one of the most promising places in our solar system to search .... Universe, Paperback Edition, Copernicus Books, pp.191–216, 2003.

  10. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  11. Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking

    Science.gov (United States)

    Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott

    2016-01-01

    Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…

  12. Ore-lead isotopes and Grenville plate tectonics

    International Nuclear Information System (INIS)

    Farquhar, R.M.; Fletcher, I.R.

    1980-01-01

    Recent advances in the 'whole earth' modelling of evolutionary processes of Pb isotopes shed light upon the origin of the metals found in various types of ore deposits. On the bases of these models and several recently published data sets, we believe that the ore deposits formed in various plate tectonic environments may carry 'isotopic fingerprints' which, when used with other characteristics such as mineral assemblages, may identify the depositional environments of many ore bodies. In the present study Pb-isotopic measurements have been made of a number of Precambrain mineralization types and localities throughout the Central Metasedimentary Belt of the Grenville Province. The data for individual deposits are at best ambiguous, but fall into two groups sufficiently distinctive to allow some degree of 'fingerprint' identification. Comparisons with data from other areas suggest that the major periods of sedimentation within the Central Metasedimentary Belt accompanied plate rifting and/or island arc tectonic activity, with most of the mineralized lead being derived from mantle sources. Detailed comparisons between the Grenville and other regions are uncertain, mainly because there are few detailed high-accuracy data sets from younger, tectonically unambiguous mineral occurrences. We suggest that once these data sets are availble, isotopic fingerprinting may become diagnostic for deposits ranging well back into the Precambrain

  13. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  14. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  15. Plate tectonic reconstruction of the Carpathian-Pannonian region

    Science.gov (United States)

    Csontos, L.; Vörös, A.

    2003-04-01

    Plate tectonics of the Carpathian area is controlled by microcontinents between the European and African margins and the relative movements of these margins. Beside the generally accepted Apulian (Austroalpine, West Carpathian, Dinaric) microcontinents two others: the Bihor-Getic (Tisza) and Drina-Ivanjica are introduced. The first was attached to the European margin, the second to the Apulian microcontinent. During Permian a major ocean was obliquely subducted south of the Apulian microcontinents. Drina-Ivanjica rifted off the Apulian microcontinent in the Late Permian-Middle Triassic, as a consequence of back-arc rifting. Short-lived oceans subducted by the end of Jurassic, causing Drina-Ivanjica to collide with the internal Dinaric-West Carpathian and Bihor-Getic margins. An external Penninic-Váhic ocean tract began opening in the Early Jurassic, separating the East Alpine-West Carpathian microcontinent (and its fauna) from the European shelf. Further south, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic (and its fauna) from the European shelf did not take place until the Middle-Late Jurassic. Two oroclinal bends: the Alcapa on the Dinaric margin and the Tisza-Dacia on the South Carpathian-Getic margin are essential elements of these reconstructions. Their bending (Aptian and Albian-Maastrichtian, respectively) are suggested by paleomagnetic and tectonic transport data. The two oroclinal bends are finally opposed and pushed into the Carpathian embayment by the Paleogene. In Miocene a back-arc basin develops on older tectonic elements. Differential rotations affect the wealded microcontinents.

  16. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    Science.gov (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  17. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  18. Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins

    Directory of Open Access Journals (Sweden)

    Maarten de Wit

    2018-05-01

    Full Text Available The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subduction-related processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2–3.6 Ga. Our work provides new constraints for modellers with rates of a ‘basket’ of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic. Keywords: Paleoarchean, Barberton Greenstone Belt, Onverwacht Suite, Geologic bedrock and structural maps, Geochemistry and geophysics, Plate tectonics

  19. Commentary: The Feasibility of Subduction and Implications for Plate Tectonics on Jupiter's Moon Europa

    Science.gov (United States)

    Kattenhorn, Simon A.

    2018-03-01

    A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.

  20. Plate tectonic regulation of global marine animal diversity

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  1. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  2. Gondwana Tales: an inquiry approach to plate tectonics

    Science.gov (United States)

    Domènech Casal, Jordi

    2014-05-01

    Plate tectonics and its effects on the constitution of seas and continents are key models in science education. Fossil evidences are usually taught in demostrative key when Wegener's discoverings about Pangea are introduced. In order to introduce inquiry-based science education (IBSE) approaches to this topic, we propose "Gondwana Tales", an activity where students are asked to use fossil data to reconstruct the geologic history of an imaginary planet. Grouped in independent teams, each team is furnished with stratigraphic columns from several sites containing faunistic successions of real organisms existing in the past in Earth. Students are told to reconstruct a model of the evolution of the continents, by making calculations of relative ages of the fossils, and relating each fossil to a geologic era. The different teams have incomplete and complementary information. After a first step where they have to propose a partial model based on incomplete data, each team receives a "visitor scientist" from another team, this implying an informal scientific communication event. This process is performed several times, engaging a discussion in each team and getting a final consensus model created by the whole class. Correct answer is not given to the students, even at the end of the activity, to keep the activity under the parameters of real scientific experience, where there is not a "correct answer" to compare. Instead of this, and following the IBSE standards, a reflection on the process is proposed to students. The lack of complete information and the need to collaborate are part of classroom dynamics focused to the understanding of the process of creation of the scientific knowledge. This activity is part of the C3 Project on Creation of Scientific Knowledge that is being applied in the school.

  3. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  4. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  5. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    Science.gov (United States)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  6. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    probability that oceanic crustal segments could founder in an organized way, producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga. Plate tectonics today is constituted of: (1 a continental drift system that started in the Early Archaean, driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons; (2 a subduction-driven system that started near the end of the Archaean.

  7. Barrel organ of plate tectonics - a new tool for outreach and education

    Science.gov (United States)

    Broz, Petr; Machek, Matěj; Šorm, Zdar

    2016-04-01

    Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www

  8. Coupling intensity and isostatic competition between subducting slab and overriding plate control trench motions and tectonics of the overriding plate

    Science.gov (United States)

    Wu, G.; Moresi, L. N.

    2017-12-01

    Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the

  9. The Rapid Drift of the Indian Tectonic Plate

    Science.gov (United States)

    Kumar, P.; Yuan, X.; Kumar, R.; Kind, R.; Li, X.; Chadha, R.

    2007-12-01

    The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago and consequently the opening of the Indian Ocean was caused by heating of the lithosphere from below by a large plume whose relicts are the Marion, Kerguelen and Reunion plumes. Plate reconstructions based on paleomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm/yr during late Cretaceous) subsequent to its breakup from the Gondwanaland and slowed down to ~5 cm/yr since the continental collision with Asia during the last ~50 Ma. The Australian and African plates moved comparatively lesser distances and at much lesser speed of 2-4 cm/yr. Antarctica remained almost stationary. This super mobility makes India unique compared to the other fragments of Gondwanaland. We propose that when the parts of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere played an important role in determining their speed. We estimated the thickness of the lithospheric plates of the different parts of Gondwanaland around the Indian Ocean using the S-receiver function technique. We found that the part of Gondwanaland with clearly the thinnest lithosphere has travelled with the highest speed - India. The lithospheric root in South Africa, Australia and Antarctica is between 180 and 300 km deep. The Indian lithosphere is in contrast only about 100 km thick. Our interpretation is that the plume that partitioned Gondwanaland has also melted the lower half of the Indian lithosphere thus permitting faster motion due to the ridge push or slab pull.

  10. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    Science.gov (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  11. A new plate tectonic concept for the eastern-most Mediterranean

    Science.gov (United States)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  12. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Szatmari, P. (Petrobras Research Center, Rio de Janeiro (Brazil))

    1989-08-01

    A somewhat speculative hypothesis of petroleum genesis in the upper lithosphere is proposed, based on Fischer-Tropsch synthesis. This hypothesis is distinct from both the organic (biogenic) model and the inorganic model of hydrocarbon degassing from the Earth's interior. The hypothesis presented in this paper proposes that petroleum liquids form by Fischer-Tropsch synthesis on magnetite and hematite catalysts when carbon dioxide (derived by massive metamorphic or igneous decarbonation of subducted sedimentary carbonates) reacts with hydrogen generated by the serpentinization (in the absence of air) of shallow-mantle lithosphere and ophiolite thrust sheets. Oblique plate movements may favor hydrocarbon formation by creating deep faults that aid fluid flow and serpentinization. The world's richest oil provinces, including those of the Middle East, may be tentatively interpreted to have formed by this mechanism. 8 figs., 1 tab.

  13. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  14. Intra-Arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry

    Science.gov (United States)

    Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola

    2010-05-01

    This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.

  15. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    Science.gov (United States)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  16. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics.

    Science.gov (United States)

    Bourguignon, Thomas; Tang, Qian; Ho, Simon Y W; Juna, Frantisek; Wang, Zongqing; Arab, Daej A; Cameron, Stephen L; Walker, James; Rentz, David; Evans, Theodore A; Lo, Nathan

    2017-04-01

    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.

  17. Plate tectonics hiati as the cause of global glaciations: 2. The late Proterozoic 'Snowball Earth'

    Science.gov (United States)

    Osmaston, M. F.

    2003-04-01

    A fundamental reappraisal of the mechanisms that drive plate tectonics has yielded the remarkable conclusion that, for at least the past 130 Ma, the principal agent has not been ridge-push or slab-pull but a CW-directed torque (probably of electromagnetic origin at the CMB) reaching the deep (>600 km, e.g.[1]) tectospheric keel of the Antarctica craton. Major changes in spreading direction marked both ends of the 122--85 Ma Cretaceous Superchron and started by forming the Ontong Java Plateau. Action of MORs as gearlike linkages has driven Africa and India CCW since Gondwana breakup and continues to drive the Pacific plate CCW. In the Arctic there is now no cratonic keel to pick up any corresponding polar torque, so northern hemisphere plate tectonics is far less active. The thesis of this contribution is that in the Neoproterozoic the lack of cratons at high latitudes would have deprived plate tectonics of this motivation, causing MORs to die (see below) and a major fall in sea-level, leading to global glaciation as outlined in Part 1 for the Huronian events. Like that seen during that first hiatus, dyke-swarm volcanism could have arisen from thermal shrinkage of the global lithosphere, providing CO2 and ash-covering that interrrupted glacial episodes. In oceanic settings this volcanism would have lowered pH and supplied Fe2+ for shallow bio-oxygenic action to deposit as BIF. My multifacet studies of the subduction process convince me that the rapid development of "flat-slab" interface profiles involves the physical removal of hanging-wall material in front of the downbend by basal subduction tectonic erosion (STE). Historically this, and its inferred ubiquity in the Archaean as the precursor to PSM (Part 1), suggests that the required subducting-plate buoyancy is thermal. Accordingly, a redesign [2] of the MOR process has incorporated the heat-containing LVZ as an integral part of the plate and luckily provides a lot more ridge-push to ensure the subduction of

  18. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  19. A probabilistic approach towards understanding how planet composition affects plate tectonics - through time and space.

    Science.gov (United States)

    Stamenkovic, V.

    2017-12-01

    We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are

  20. Tectonics and Non-isostatic Topography of the Mariana Trench and Adjacent Plates

    Science.gov (United States)

    Hongyu, L.; Lin, J.; Zhou, Z.; Zhang, F.

    2017-12-01

    Multi-types of geophysical data including multibeam bathymetry, sediment thickness, gravity anomaly, and crustal magnetic age were analyzed to investigate tectonic processes of the Mariana Trench and the surrounding plates. We calculated non-Airy-isostatic topography by removing from the observed bathymetry the effects of sediment loading, thermal subsidence, and Airy local isostatically-compensated topography. The Mariana Trench was found to be associated with a clearly defined zone of negative non-isostatic topography, which was caused by flexural bending of the subducting Pacific plate and with the maximum depth anomaly and flexural bending near the Challenger Deep. In contrast, the Caroline Ridge and Caroline Islands Chain have much more subdued non-isostatic topography, indicating their higher topography is largely compensated by thicker crust. Along the Mariana Trough, the northern and central segments appear to be associated with relatively low magma supply as indicated by the relatively low topography and thin crust. In contrast, the southern Mariana Trough is associated with relatively high magma supply as indicated by the relatively high and smoother topography, an axial high spreading center, and relatively thick crust. The southern end of the Mariana Trough was also found to be associated with positive non-isostatic topographic anomaly, which might be caused by the complex tectonic deformation of the overriding Mariana and Philippine Sea plates and their interaction with the subducting Pacific plate. Analysis further revealed that the southern Mariana Arc, located between the Mariana Trench and Mariana Trough, is associated with positive non-isostatic topographic anomalies, which may be explained by the late stage magmatic loading on the older and thus stronger lithospheric plate of the Mariana volcanic arc.

  1. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  2. Plate tectonic influences on Earth's baseline climate: a 2 billion-year record

    Science.gov (United States)

    McKenzie, R.; Evans, D. A.; Eglington, B. M.; Planavsky, N.

    2017-12-01

    Plate tectonic processes present strong influences on the long-term carbon cycle, and thus global climate. Here we utilize multiple aspects of the geologic record to assess the role plate tectonics has played in driving major icehouse­-greenhouse transitions for the past 2 billion years. Refined paleogeographic reconstructions allow us to quantitatively assess the area of continents in various latitudinal belts throughout this interval. From these data we are able to test the hypothesis that concentrating continental masses in low-latitudes will drive cooler climates due to increased silicate weathering. We further superimpose records of events that are believed to increase the `weatherability' of the crust, such as large igneous province emplacement, island-arc accretion, and continental collisional belts. Climatic records are then compared with global detrital zircon U-Pb age data as a proxy for continental magmatism. Our results show a consistent relationship between zircon-generating magmatism and icehouse-greenhouse transitions for > 2 billion years, whereas paleogeographic records show no clear consistent relationship between continental configurations and prominent climate transitions. Volcanic outgassing appears to exert a first-order control on major baseline climatic shifts; however, paleogeography likely plays an important role in the magnitude of this change. Notably, climatic extremes, such as the Cryogenian icehouse, occur during a combination of reduce volcanism and end-member concentrations of low-latitudinal continents.

  3. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  4. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  5. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  6. News and Views: Keep it down! AU becomes au, and is defined in metres; Kepler survey announces two planets in a binary star system; Is there plate tectonics on Mars? Vaporizing Earth - for research!

    Science.gov (United States)

    2012-10-01

    Division 1 of the IAU recommended that the astronomical unit - originally the length of the semi-major axis of the Earth's orbit - be redefined as a fixed number of kilometres. A team of observers using data from NASA's Kepler space observatory announced at the IAU General Assembly that they had discovered two planets orbiting a pair of binary stars, and that such planets could exist in the habitable zone of their system. The Red Planet has long been considered something of a dead planet as far as tectonic movements of its crust, but careful analysis of thermal and topographic images of the surface suggest the existence of major faults with horizontal slip along the Valles Marineris. The question of what would happen if Earth were to approach the Sun and start vaporizing has been modelled in order to help to model the composition of super-Earths.

  7. Feeling and Understanding Plate Tectonics - How can We attract Museum Visitors Attention?

    Science.gov (United States)

    Simon, Gilla; Apel, Michael

    2017-04-01

    Earthquakes, volcano eruptions and other natural hazards are commonly paid attention to, if news about disastrous events reach us. The mission of an Earth Science or Natural History Museum, however, goes beyond explaining the causes of natural disasters, but should also present science history and cutting edge research. Since dealing with a subject, especially with one, which seems to be in the abstract, is more effective, we realised two new projects where our visitors can feel and understand plate tectonics in a more exciting way. In 2015 we installed an earthquake simulator in our permanent exhibition to allow our visitors the physical experience of an earthquake. Because of static restrictions the simulator is housed in a container outside the building where it can be visited as a booked program upon prior reservation or by joining public tours on Sundays and special occasions. The simulation of six real earthquakes in two spatial directions is accompanied by a movie presenting facts about the earthquake itself (e.g. location, magnitude, damage and victims), but also general information about plate tectonics. This standard program takes about 20 minutes. During an educational program, however, not only the simulator is visited, but also the permanent exhibition, where the guide can focus on different aspects and then might choose specific earthquakes and information blocs in the simulator. In addition workshops with experiments are offered for school classes and other groups. This allows us to offer an individual program fitting to the visitor group. In 2016 we converted an old movie room to a state of the art media room. In cooperation with Media Informatics students we developed a quiz for three different levels and various themes like earthquakes, volcanoes, history and plate tectonics in general. Starting the quiz, a virtual earthquake destroys a building which will be reconstructed if the participants answer multiple choice questions correctly. Though, the

  8. Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): Insights from analog models

    OpenAIRE

    Duarte , João ,; Rosas , Filipe ,; Terrinha , Pedro; Gutscher , Marc-André ,; Malavielle , Jacques; Silva , Sonia; Matias , Luis

    2011-01-01

    International audience; In the Gulf of Cadiz key segment of the Africa-Iberia plate boundary (North-East Atlantic ocean), three main different modes of tectonic interference between a recently identified wrench system (SWIM) and the Gulf of Cadiz Accretionary Wedge (GCAW) were tested through analog sand-box modeling: a) An active accretionary wedge on top of a pre-existent inactive basement fault; b) An active strike-slip fault cutting a previously formed, inactive, accretionary wedge; and c)...

  9. Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate

    Science.gov (United States)

    Gianni, G. M.; Echaurren, A.; Folguera, A.; Likerman, J.; Encinas, A.; García, H. P. A.; Dal Molin, C.; Valencia, V. A.

    2017-11-01

    Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44°30‧S-46°S) and the Andes (Meseta de Chalia, 46°S) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and variations in lithospheric strength. The occurrence of Eocene growth-strata ( 44-40 Ma) suggests that contraction in the Andes and the Patagonian broken foreland was linked to the Incaic phase. Detection of synextensional deposits suggests that the broken foreland collapsed partially during Oligocene to early Miocene. During middle Miocene times, the Quechua contractional phase produced folding of Neogene volcanic rocks and olistostrome deposition at 17 Ma. Finally, the presented Te map shows that intraplate contraction related to Andean phases localized preferentially along weak lithospheric zones (Te < 15 km). Hence, the observed strain distribution in the PBF appears to be controlled by lateral variations in the lithospheric strength. Variations in this parameter could be related to thermo-mechanical weakening produced by intraplate rifting in Paleozoic-Mesozoic times.

  10. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    Science.gov (United States)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  11. Playing jigsaw with Large Igneous Provinces—A plate tectonic reconstruction of Ontong Java Nui, West Pacific

    Science.gov (United States)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele

    2015-11-01

    The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.

  12. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  13. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...

  14. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... the back. As the body accelerated, the foot was forced backward. The rotated disc was forced backward along a detachment fault that was bounded by lateral ramps. The interramp segment matches the width of the dinosaur's foot which created an imbricate fan thrust system that extended to the far end...

  15. From Dearth to El Dorado: Andean Nature, Plate Tectonics, and the Ontologies of Ecuadorian Resource Wealth

    Directory of Open Access Journals (Sweden)

    David Kneas

    2018-03-01

    Full Text Available Since the early 1990s, the Ecuadorian government has pledged to convert the nation into a “mining country” of global standing. Contemporary claims of mineral wealth, however, stand in stark contrast to previous assessments. Indeed, through much of the 20th century, geologists described Ecuador as a country of mineral dearth. Exploring the process through which Ecuador seemingly transitioned from a nation of resource scarcity to one of mineral plenty, I demonstrate how assessments of Ecuador’s resource potential relate to ideas of Andean nature. Promoters of resource abundance have emphasized Andean uniformity and equivalence—the notion that Ecuador’s mineral wealth is inevitable by virtue of the resource richness of its Andean neighbors. Geologists who have questioned Ecuador’s mineral content, on the other hand, have emphasized Andean heterogeneity. In the recent promotion of Ecuador’s resource potential, notions of Andean uniformity have been bolstered by models of subsoil copper that emerged in the in 1970s in the context of plate-tectonic theory. In highlighting the linkage between ideas of Andean nature and appraisals of Ecuadorian resource potential since the late 19th century, I outline the dialectics between nature and natural resources that underpin processes of resource becoming.

  16. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.

    Science.gov (United States)

    Ikari, Matt J; Kopf, Achim J

    2017-11-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  17. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  18. Tectonics of the Philippine Sea plate before and after 52 Ma subduction initiation to form the Izu-Bonin-Mariana arc

    Science.gov (United States)

    Ishizuka, O.; Tani, K.; Harigane, Y.; Umino, S.; Stern, R. J.; Reagan, M. K.; Hickey-Vargas, R.; Yogodzinski, G. M.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    Robust tectonic reconstruction of the evolving Philippine Sea Plate for the period immediately before and after subduction initiation 52 Ma to form the Izu-Bonin-Mariana (IBM) arc is prerequisite to understand cause of subduction initiation (SI) and test competing hypotheses for SI such as spontaneous or induced nucleation. Understanding of nature and origin of overriding and subducting plates is especially important because plate density is a key parameter controlling SI based on numerical modeling (e.g., Leng and Gurnis 2015). There is increasing evidence that multiple geological events related to changing stress fields took place in and around Philippine Sea plate about the time of SI 52 Ma (Ishizuka et al., 2011). For our understanding of the early IBM arc system to increase, it is important to understand the pattern and tempo of these geological events, particularly the duration and extent of seafloor spreading in the proto arc associated with SI, and its temporal relationship with spreading in the West Philippine Basin (WPB). IODP Exp. 351 provided evidence of SI-related seafloor spreading west of the Kyushu-Palau Ridge (Arculus et al., 2015). Planned age determination of the basement crust at Site U1438 will constrain the timing and geometry of SI-related spreading and its relationship to variation in mode of spreading in the WPB including rotation of spreading axis. Some tectonic reconstructions suggest that part of the IBM arc could have formed on "young" WPB crust. Dredging of the northern Mariana forearc crust and mantle in 2014 aimed to test this hypothesis. Preliminary data indicates that early arc crustal section of the N. Mariana forearc is geochemically and temporally similar to that exposed in the Bonin and southern Mariana forearcs. New tectonic reconstructions for the nascent IBM system will be presented based on these observations.

  19. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  20. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2018-01-01

    Full Text Available Many geological and geochemical changes are recorded on Earth between 3 and 2 Ga. Among the more important of these are the following: (1 increasing proportion of basalts with “arc-like” mantle sources; (2 an increasing abundance of basalts derived from enriched (EM and depleted (DM mantle sources; (3 onset of a Great Thermal Divergence in the mantle; (4 a decrease in degree of melting of the mantle; (5 beginning of large lateral plate motions; (6 appearance of eclogite inclusions in diamonds; (7 appearance and rapid increase in frequency of collisional orogens; (8 rapid increase in the production rate of continental crust as recorded by zircon age peaks; (9 appearance of ophiolites in the geologic record, and (10 appearance of global LIP (large igneous province events some of which correlate with global zircon age peaks. All of these changes may be tied directly or indirectly to cooling of Earth's mantle and corresponding changes in convective style and the strength of the lithosphere, and they may record the gradual onset and propagation of plate tectonics around the planet. To further understand the changes that occurred between 3 and 2 Ga, it is necessary to compare rocks, rock associations, tectonics and geochemistry during and between zircon age peaks. Geochemistry of peak and inter-peak basalts and TTGs needs to be evaluated in terms of geodynamic models that predict the existence of an episodic thermal regime between stagnant-lid and plate tectonic regimes in early planetary evolution.

  1. Tectonic Storytelling with Open Source and Digital Object Identifiers - a case study about Plate Tectonics and the Geopark Bergstraße-Odenwald

    Science.gov (United States)

    Löwe, Peter; Barmuta, Jan; Klump, Jens; Neumann, Janna; Plank, Margret

    2014-05-01

    The communication of advances in research to the common public for both education and decision making is an important aspect of scientific work. An even more crucial task is to gain recognition within the scientific community, which is judged by impact factor and citation counts. Recently, the latter concepts have been extended from textual publications to include data and software publications. This paper presents a case study for science communication and data citation. For this, tectonic models, Free and Open Source Software (FOSS), best practices for data citation and a multimedia online-portal for scientific content are combined. This approach creates mutual benefits for the stakeholders: Target audiences receive information on the latest research results, while the use of Digital Object Identifiers (DOI) increases the recognition and citation of underlying scientific data. This creates favourable conditions for every researcher as DOI names ensure citeability and long term availability of scientific research. In the developed application, the FOSS tool for tectonic modelling GPlates is used to visualise and manipulate plate-tectonic reconstructions and associated data through geological time. These capabilities are augmented by the Science on a Halfsphere project (SoaH) with a robust and intuitive visualisation hardware environment. The tectonic models used for science communication are provided by the AGH University of Science and Technology. They focus on the Silurian to Early Carboniferous evolution of Central Europe (Bohemian Massif) and were interpreted for the area of the Geopark Bergstraße Odenwald based on the GPlates/SoaH hardware- and software stack. As scientific story-telling is volatile by nature, recordings are a natural means of preservation for further use, reference and analysis. For this, the upcoming portal for audiovisual media of the German National Library of Science and Technology TIB is expected to become a critical service

  2. SECULAR CHANGES IN RELATIONSHIPS BETWEEN PLATE-TECTONIC AND MANTLE-PLUME ENGENDERED PROCESSES DURING PRECAMBRIAN TIME

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2016-01-01

    Full Text Available Paradoxically, the lists of “proxies” of both plate- and plume-related settings are devoid of even a mention of the high-grade metamorphic rocks (granulite, amphibolite and high-temperature eclogite facies. However, the granulite-gneiss belts and areas which contain these rocks, have a regional distribution in both the Precambrian and the Phanerozoic records. The origin and evolution of the granulite-gneiss belts correspond to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and pyroclastic flow deposits; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that spreads over the fill of rift depressions also. Granulite-gneiss complexes of the East European Craton form one of the main components of the large oval intracontinental tectonic terranes of regional or continental rank. Inclusion of the granulite-gneiss complexes from Eastern Europe, North and South America, Africa, India, China and Australia in discussion of the problem indicated in the title to this paper, suggests consideration of a significant change in existing views on the relations between the plate- and plume-tectonic processes in geological history, as well as in supercontinent assembly and decay. The East European and North American cratons are fragments of the long-lived supercontinent Lauroscandia. After its appearance at ~2.8 Ga, the crust of this supercontinent evolved under the influence of the sequence of powerful mantle plumes (superplumes up to ~0.85 Ga. During this time Lauroscandia was subjected to rifting, partial breakup and the following reconstruction of the continent. The processes of plate-tectonic type (rifting with the transition to spreading and closing of the short-lived ocean with subduction within Lauroscandia were controlled by the superplumes. Revision of the

  3. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ?The fit of the continents around the Atlantic?

    OpenAIRE

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160?Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900?m),...

  4. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    International Nuclear Information System (INIS)

    Lenardic, A.; Crowley, J. W.

    2012-01-01

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees, for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ( s uper-Earths ) . The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.

  5. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  6. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Briestenský, Miloš; Rowberry, Matthew David; Stemberk, Josef; Stefanov, P.; Vozár, J.; Šebela, S.; Petro, L.; Bella, P.; Gaal, L.; Ormukov, Ch.

    2015-01-01

    Roč. 66, č. 5 (2015), s. 427-438 ISSN 1335-0552 R&D Projects: GA MŠk LM2010008; GA MŠk OC 625.10; GA ČR GA205/05/2770; GA ČR GA205/06/1828; GA ČR GA205/09/2024 Institutional support: RVO:67985891 Keywords : Eurasian Plate * Balkan Peninsula * active tectonics research * aseismic transient deformations * slow-slip phenomena Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2015 http://www.geologicacarpathica.com/browse-journal/volumes/66-5/article-780

  7. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  8. Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Stemmerik, Lars; Dahl-Jensen, T.

    2010-01-01

    a highly complex, Paleozoic–early Cenozoic pre-opening setting. However, due to extreme ice conditions, very little is known about the offshore areas seawards of – and between – the peninsulas. Consequently, prevailing structural-tectonic models of the margin tend to be significantly oversimplified...... anticipated. In particular, we interpret strong margin segmentation along N/NE-striking fault structures. The structures are likely to have formed by Late Mesozoic–early Cenozoic strike-slip tectonics and have continued to be active during the late Cenozoic. A more than 8 km deep sedimentary basin...

  9. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  10. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  11. Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2001-12-01

    Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also

  12. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    Science.gov (United States)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  13. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  14. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    Science.gov (United States)

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  15. Application of plate tectonics to the location of new mineral targets in the Appalachians. Progress report no. 3

    International Nuclear Information System (INIS)

    Kutina, J.

    1979-01-01

    This report is concerned with the application of plate tectonics to the location of new mineral targets in the U.S. It reviews analyses presented in previous reports which suggest that the basement of the Central and Eastern U.S. consists of large crustal blocks separated by major zones of tectonic weakness. The curvature of the Appalachian Fold Belt appears to be related to the east-west boundaries caused by subsiding and uplifting at these zones. A plot of epigenetic uranium occurrences reveals that they tend to cluster along the greater curvatures of the Appalachian orogeny. These findings have led to a systematic study of the regularities in the distribution of ore deposits in the Appalachians presented in this report. They include a description of geologic and geographic base maps, preparation of maps showing distribution of individual minerals, and regularities in the distribution of uranium in the Appalachians. Comments on the segmentation of the Appalachian orogeny by transverse lineaments are presented. The report contains seventeen maps of the eastern half of the U.S. showing specific mineral deposits in relation to geologic formations

  16. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    Science.gov (United States)

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  17. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  18. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints

    Science.gov (United States)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.

    2014-12-01

    Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below

  19. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  20. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  1. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria

    Directory of Open Access Journals (Sweden)

    Briestenský Miloš

    2015-10-01

    Full Text Available The EU-TecNet monitoring network uses customized three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and following extension, across the monitored fault. The data from Bacho Kiro, recorded across a NE–SW striking fault, show sinistral strike-slip along the fault and subsidence of the north-western block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites show evidence of simultaneous displacement anomalies and this observation is interpreted as a reflection of the plate-wide propagation of a tectonic pressure pulse towards the end of 2012.

  2. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    Science.gov (United States)

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  3. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  4. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  5. The Strabo digital data system for Structural Geology and Tectonics

    Science.gov (United States)

    Tikoff, Basil; Newman, Julie; Walker, J. Doug; Williams, Randy; Michels, Zach; Andrews, Joseph; Bunse, Emily; Ash, Jason; Good, Jessica

    2017-04-01

    We are developing the Strabo data system for the structural geology and tectonics community. The data system will allow researchers to share primary data, apply new types of analytical procedures (e.g., statistical analysis), facilitate interaction with other geology communities, and allow new types of science to be done. The data system is based on a graph database, rather than relational database approach, to increase flexibility and allow geologically realistic relationships between observations and measurements. Development is occurring on: 1) A field-based application that runs on iOS and Android mobile devices and can function in either internet connected or disconnected environments; and 2) A desktop system that runs only in connected settings and directly addresses the back-end database. The field application also makes extensive use of images, such as photos or sketches, which can be hierarchically arranged with encapsulated field measurements/observations across all scales. The system also accepts Shapefile, GEOJSON, KML formats made in ArcGIS and QGIS, and will allow export to these formats as well. Strabo uses two main concepts to organize the data: Spots and Tags. A Spot is any observation that characterizes a specific area. Below GPS resolution, a Spot can be tied to an image (outcrop photo, thin section, etc.). Spots are related in a purely spatial manner (one spot encloses anther spot, which encloses another, etc.). Tags provide a linkage between conceptually related spots. Together, this organization works seamlessly with the workflow of most geologists. We are expanding this effort to include microstructural data, as well as to the disciplines of sedimentology and petrology.

  6. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    Science.gov (United States)

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  7. How We Got to the Northern Hemisphere Ice Ages: Late Miocene Global Cooling and Plate Tectonic CO2 Forcing

    Science.gov (United States)

    Herbert, T.; Dalton, C. A.; Carchedi, C.

    2017-12-01

    The evolution of Earth's climate between "refrigeration" of East Antarctica and the onset of cyclic Northern Hemisphere glaciation spanned more than 11 Myr. In the latest Miocene (Messinian) time, approximately half way on this journey, changes on land, ranging from the expansion of arid zones to major floral and faunal ecosystem shifts, accelerated. Recent compilations of marine surface temperatures reveal that global cooling from the Miocene Optimum (14-16Ma) also accelerated in late Miocene (7-5.35 Ma) time to reach temperatures not much above Holocene conditions. Both hemispheres cooled in parallel, with the changes amplified at higher latitudes in comparison to the tropics. Despite the strong circumstantial case for CO2 decline as the dominant cause of late Miocene climatic and evolutionary change, proxy indicators of CO2concentrations paint an equivocal picture of greenhouse forcing. Here we provide evidence that global sea floor spreading (SFS) rates decelerated at exactly the times of major climatic cooling, linking a decline in tectonic degassing (at both subduction zones and mid-ocean ridges) to fundamental shifts in the global carbon cycle. Our work utilizes newly available global compilations of seafloor fabric and marine magnetic anomalies provided by the NSF-funded Global Seafloor Fabric and Magnetic Lineation Data Base Project. Previous global compilations of SFS typically binned estimates over 10 Myr increments, losing critical resolution on the timescale of late Neogene climate changes. We further improve the signal:noise of SFS estimates by incorporating recent advances in the astronomical calibration of the Miocene geomagnetic polarity timescale. We use two approaches to compile spreading rate estimates over the past 20 Myr at each spreading system: optimized finite rotation calculations, and averages of sea floor-spreading derived from the distances of magnetic lineations along flow lines on the sea floor. Weighted by ridge length, we find an 25

  8. Tectonics, topography, and river system transition in East Tibet: Insights from the sedimentary record in Taiwan

    Science.gov (United States)

    Lan, Qing; Yan, Yi; Huang, Chi-Yue; Clift, Peter D.; Li, Xuejie; Chen, Wenhuang; Zhang, Xingchang; Yu, Mengming

    2014-09-01

    The Cenozoic in East Asia is marked by major changes in tectonics, landscapes, and river systems, although the timing and nature of such changes remains disputed. We investigate the geochemistry and neodymium isotope character of Cenozoic mudstones spanning the breakup unconformity in the Western Foothills of Taiwan in order to constrain erosion and drainage development in southern China during the opening of the South China Sea. The La/Lu, Eu/Eu*, Th/Sc, Th/La, Cr/Th, and ɛNd values in these rocks show an abrupt change between ˜31 and 25 Ma. Generally the higher ɛNd values in sediments deposited prior to 31 Ma indicate erosion from Phanerozoic granitic sources exposed in coastal South China, whereas the lower ɛNd values suggest that the main sources had evolved to inland southern China by ˜25 Ma. The SHRIMP U-Pb ages of zircons from a tuff, together with biostratigraphy data constrain the breakup unconformity to be between ˜39 and 33 Ma, suggesting that the seafloor spreading in the South China Sea commenced before ˜33 Ma. This is significantly older than most of the oceanic crust preserved in the deeper part of the basin. Diachronous westward younging of the breakup unconformities and provenance changes of basins are consistent with seafloor spreading propagating from east to west. Initial spreading of the South China Sea prior to ˜33 Ma corresponds to tectonic adjustment in East Asia, including extrusion of the Indochina block and the rotation and eastward retreat of the subducting Pacific Plate.

  9. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  10. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  11. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    Science.gov (United States)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  12. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault

    Science.gov (United States)

    Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth

    1989-01-01

    The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.

  13. Automatic system for localization and recognition of vehicle plate numbers

    OpenAIRE

    Vázquez, N.; Nakano, M.; Pérez-Meana, H.

    2003-01-01

    This paper proposes a vehicle numbers plate identification system, which extracts the characters features of a plate from a captured image by a digital camera. Then identify the symbols of the number plate using a multilayer neural network. The proposed recognition system consists of two processes: The training process and the recognition process. During the training process, a database is created using 310 vehicular plate images. Then using this database a multilayer neural network is traine...

  14. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    Science.gov (United States)

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  15. Integrated geographic information systems (IGIS) analysis and definition of the tectonic framework of northern Mexico

    Science.gov (United States)

    Martinez Pina, Carlos Manuel

    Crustal rupture structures reactivated in the course of the tectonic history of northern Mexico are the surface expressions of planes of weakness, in the form of simple or composite rectilinear features or slightly curved, defined as lineaments. Unless otherwise defined as strike-slip faults, lineaments are part of parallel and sub-parallel oblique convergent or oblique divergent tectonic zones cross cutting the Sierra Madre Occidental and northern Mexico, in a NW trend. These shear zones are the response to the oblique subduction of the Farallon plate beneath North America. Kinematic analysis of five selected sites in northern Mexico, three basins and two compressional shear zones, proved possible a combination of shear mechanism diagram and models from analogue materials, with satellite imagery and geographic information systems, as an aid to define strike-slip fault motion. This was done using a reverse engineering process by comparing geometries. One of the sites assessed, involving the Parras Basin, Coahuila Block (CB), San Marcos fault, a postulated PBF-1 fault, allowed for palinpastic reconstruction of the CB that corroborated the results of the vector motion defined, in addition to an extension of ˜25% in a northwest southeast direction. A GIS-based compilation and georeferenced regional structural studies by several researchers were used as ground control areas (GCA); their interpolation and interpretation, resulted in a tectonic framework map of northern Mexico. In addition, shaded relief models overlaid by the lineaments / fault layer allowed structural analyses of basins related to these major structures. Two important results were obtained from this study: the Tepehuanes-San Luis-fault (TSL) and the Guadalupe fault, named herein, displaces the Villa de Reyes graben, and the Aguascalientes graben, respectively, to the SE, confirming their left lateral vector motion; afterwards TSL was displaced south by the right lateral strike slip Taxco-San Miguel de

  16. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  17. DISCUSSION: When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?

    Science.gov (United States)

    Stern, R. J.; Gerya, T.; Sobolev, S. V.; Tackley, P.

    2015-12-01

    Because all 5 presentations in the Union session "When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?" will have 5 minute discussion periods, the scheduled 15 minute end-of-session discussion period is intended to allow other perspectives to be presented by the scientific community. We invite brief (2 powerpoint slides) comments from the community about any aspect of the topic at hand. We encourage anyone who has something pertinent or interesting to say to submit 2 powerpoint slides directly to any one of the four co-convenors listed on this abstract. The first slide should be a simple title with the name and affiliation of the commenter. The second slide should be the content of the comment. The convenors will compile all of these that are submitted up to the noon on the day before the session occurs, when we will upload the compiled files in the order that they were received (if we have received digital scans of signed waivers by that time, see below). During the discussion, we will call on those who have submitted 2 slides to the podium to make their points in 2 minutes or less (total time from being called to leaving the podium). Because this AGU Union session including the discussion period will be live-streamed and recorded, all Discussion Session commenters will be required to sign an AGU waiver acknowledging this and giving permission to be recorded. These will be sent via e-mail to those who submit 2 slide powerpoints. Commenters that do not sign and return the waiver will be scheduled after all commenters who have returned signed waivers and AGU will terminate live streaming and recording accordingly. If no one submits anything then we will have open discussion from the floor. We will also advertise the Monte Verita conference in Locarno Switzerland 17-22 July 2016. This conference will explore in greater detail the 5 key aspects of Plate Tectonic evolution briefly

  18. Orion Boiler Plate Airdrop Test System

    Science.gov (United States)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  19. Performance of the PBX-M passive plate stabilization system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, R.; Bernabei, S.

    1994-02-01

    The PBX-M passive plate stabilization system provides significant stabilization of long-wavelength external kink modes, the slowing of vertical instability growth rates, and the amelioration of disruption characteristics. The passive plate stabilization system has allowed the use of LHCD and IBW to induce current density and pressure profile modifications, and m = 1 divertor biasing for modifying edge plasma transport. Improvements in the passive plate system insulators and support structures have provided reliable operation. Impurity influxes with the close-fitting passive plates are low. Solid target boronization is applied routinely to reduce conditioning time and maintain clean conditions

  20. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history

    NARCIS (Netherlands)

    Ren, Y.; Stutzmann, E.; Hilst, R.D. van der; Besse, J.

    2007-01-01

    We combine results from seismic tomography and plate motion history to investigate slabs of subducted lithosphere in the lower mantle beneath the Americas. Using broadband waveform cross correlation, we measured 37,000 differential P and S traveltimes, 2000 PcP-P and ScS-S times along a wide

  1. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.

  2. Transmission of climate, sea-level, and tectonic singals across river systems

    NARCIS (Netherlands)

    Forzoni, A.

    2015-01-01

    This thesis investigates the impact of climatic, tectonic, and sea-level changes (external forcing) on river systems (source-to-sink) and how these changes are recorded in the stratigraphic record. It describes a newly developed numerical tool (PaCMod) to simulate the complex fluvial system sediment

  3. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    Science.gov (United States)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  4. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Ruderman, M.

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  5. The Automated System for Identification of License Plates of Cars

    Directory of Open Access Journals (Sweden)

    FRATAVCHAN, V.

    2008-04-01

    Full Text Available The paper focuses on the automated traffic rule control system. It examines the basic scheme of the system, basic constituents, principles of constituent interactions, search methods of moving objects, localization, and identification of the license plate.

  6. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  7. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics

    Directory of Open Access Journals (Sweden)

    N. Wright

    2013-03-01

    Full Text Available A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.

  8. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  9. Evaluating Picture Quality of Image Plates in Digital CR Systems

    International Nuclear Information System (INIS)

    Kwak, Byung Joon; Ji Tae Jeong

    2011-01-01

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  10. A Malaysian Vehicle License Plate Localization and Recognition System

    Directory of Open Access Journals (Sweden)

    Ganapathy Velappa

    2008-02-01

    Full Text Available Technological intelligence is a highly sought after commodity even in traffic-based systems. These intelligent systems do not only help in traffic monitoring but also in commuter safety, law enforcement and commercial applications. In this paper, a license plate localization and recognition system for vehicles in Malaysia is proposed. This system is developed based on digital images and can be easily applied to commercial car park systems for the use of documenting access of parking services, secure usage of parking houses and also to prevent car theft issues. The proposed license plate localization algorithm is based on a combination of morphological processes with a modified Hough Transform approach and the recognition of the license plates is achieved by the implementation of the feed-forward backpropagation artificial neural network. Experimental results show an average of 95% successful license plate localization and recognition in a total of 589 images captured from a complex outdoor environment.

  11. Source to Sink Tectonic Fate of Large Oceanic Turbidite Systems and the Rupturing of Great and Giant Megathrust Earthquakes (Invited)

    Science.gov (United States)

    Scholl, D. W.; Kirby, S. H.; von Huene, R.

    2010-12-01

    OCEAN FLOOR OBSERVATIONS: Oceanic turbidite systems accumulate above igneous oceanic crust and are commonly huge in areal and volumetric dimensions. For example, the volume of the Zodiac fan of the Gulf of Alaska is roughly 300,000 cubic km. Other large oceanic systems construct the Amazon cone, flood the Bay of Bengal abyss, and accumulate along trench axes to thickness of 1 to 7 km and lengths of 1000 to 3000 km, e.g., the Aleutian-Alaska, Sumatra-Andaman, Makran, and south central Chile Trenches. THE ROCK RECORD: Despite the large dimensions of oceanic turbidite systems, they are poorly preserved in the rock record. This includes oceanic systems deposited in passive-margin oceans, e.g., the Paleozoic Iapetus and Rheric oceans of the Atlantic realm, This circumstance does not apply to Cretaceous and E. Tertiary rock sequences of the north Pacific rim where oceanic turbidite deposits are preserved as accretionary complexes, e.g., the Catalina-Pelona-Orocopia-Rand schist of California and the Chugach-Kodiak complex of Alaska. These rock bodies are exhumed crustal underplates of once deeply (15-30 km) subducted oceanic turbidite systems. PATH FROM SOURCE TO TECTONIC SINK: The fate of most oceanic turbidite systems is to be removed from the sea floor and, ultimately, destroyed. This circumstance is unavoidable because most of them are deposited on lower plate crust destined for destruction in a subduction zone. During the past 4-5 myr alone a volume of 1-1.5 million cubic km of sediment sourced from the glaciated drainages of the Gulf of Alaska flooded the 3000-km-long Aleutian-Alaska trench axis. A small part of this volume accumulated tectonically as a narrow, 10-30-km wide accretionary frontal prism. But about 80 percent was subducted and entered the subduction channel separating the two plates. The subduction channel, roughly 1 km thick, conveys the trench turbidite deposits landward down dip along the rupturing width of the seismogenic zone. SEISMIC CONSEQUENCE

  12. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  13. Active tectonics and earthquake potential of the Myanmar region

    OpenAIRE

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-01-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subd...

  14. Get Beyond Limits: From Colloidal Tectonics Concept to the Engineering of Eco-Friendly Catalytic Systems

    Directory of Open Access Journals (Sweden)

    Loïc Leclercq

    2018-05-01

    Full Text Available The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supracolloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supracolloidal particles with higher degrees of organization (Graphical Abstract. These (supracolloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart, and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry.”

  15. Automatic Number Plate Recognition System for IPhone Devices

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2013-06-01

    Full Text Available This paper presents a system for automatic number plate recognition, implemented for devices running the iOS operating system. The methods used for number plate recognition are based on existing methods, but optimized for devices with low hardware resources. To solve the task of automatic number plate recognition we have divided it into the following subtasks: image acquisition, localization of the number plate position on the image and character detection. The first subtask is performed by the camera of an iPhone, the second one is done using image pre-processing methods and template matching. For the character recognition we are using a feed-forward artificial neural network. Each of these methods is presented along with its results.

  16. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    Science.gov (United States)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex

  17. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  18. River history and tectonics.

    Science.gov (United States)

    Vita-Finzi, C

    2012-05-13

    The analysis of crustal deformation by tectonic processes has gained much from the clues offered by drainage geometry and river behaviour, while the interpretation of channel patterns and sequences benefits from information on Earth movements before or during their development. The interplay between the two strands operates at many scales: themes which have already benefited from it include the possible role of mantle plumes in the breakup of Gondwana, the Cenozoic development of drainage systems in Africa and Australia, Himalayan uplift in response to erosion, alternating episodes of uplift and subsidence in the Mississippi delta, buckling of the Indian lithospheric plate, and changes in stream pattern and sinuosity along individual alluvial channels subject to localized deformation. Developments in remote sensing, isotopic dating and numerical modelling are starting to yield quantitative analyses of such effects, to the benefit of geodymamics as well as fluvial hydrology. This journal is © 2012 The Royal Society

  19. A Malaysian Vehicle License Plate Localization and Recognition System

    OpenAIRE

    Ganapathy Velappa; Dennis LUI Wen Lik

    2008-01-01

    Technological intelligence is a highly sought after commodity even in traffic-based systems. These intelligent systems do not only help in traffic monitoring but also in commuter safety, law enforcement and commercial applications. In this paper, a license plate localization and recognition system for vehicles in Malaysia is proposed. This system is developed based on digital images and can be easily applied to commercial car park systems for the use of documenting access of parking services,...

  20. High resolution Fresnel zone plate laser alignment system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Fischer, G.E.; Ruland, R.E.; Wang, T.

    1992-03-01

    The existing Fresnel zone plate laser alignment system is currently being extended and upgraded for the Final Focus Test Beam (FFTB). Previously, the resolution of this system has been several tens of micrometers. After the upgrade, the resolution will be a few micrometers. Details of the upgrade as well as simulation and experimental results will be presented

  1. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  2. Plate tectonics: A supercontinental boost

    Science.gov (United States)

    Lenardic, Adrian

    2017-01-01

    180 million years ago Earth's continents were amalgamated into one supercontinent called Pangaea. Analysis of oceanic crust formed since that time suggests that the cooling rate of Earth was enhanced in the wake of Pangaea's dispersal.

  3. Thermal History of Planetary Objects: From Asteroids to super-Earths, from plate-tectonics to life (Runcorn-Florensky Medal Lecture)

    Science.gov (United States)

    Spohn, Tilman

    2013-04-01

    planets - like the Earth - the volatile budget matters for the interior evolution. With plate tectonics, large-scale volatile cycles are invoked. On the Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. A model is presented that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The biosphere enters the model through its effect on continental erosion and through a reduction of the activation barrier to metamorphic reactions (e.g., Kim et al., 2004) in sediment layers. An abiotic world is found to have a much drier mantle than the present Earth but may have a similar surface coverage by continents. The reduced rate of continental crust production on the abiotic world would be balanced by a reduced rate of continent erosion. Through the effect of water on the mantle rheology, the biotic world would tend to be tectonically more active and have a more rapid long-term carbon-silicate cycle. J. Kim, H. Dong, J. Seabaugh, S. W. Newell, D. D. Eberl, Science 303, 830-832, 2004 N. H. Sleep, D. K. Bird, E. Pope, Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 M. T. Rosing, D. K. Bird, N. H. Sleep, W. Glassley, F. Albarede, Paleo3 232, 90-113, 2006

  4. Simulation of tectonic evolution of the Kanto basin of Japan since 1 Ma due to subduction of the Pacific and Philippine sea plates and collision of the Izu-Bonin arc

    Science.gov (United States)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2015-04-01

    The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  5. Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc

    Science.gov (United States)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2016-06-01

    The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  6. EVALUATION OF A KILN INCORPORATING AN OSCILLATING PLATE AIRFLOW SYSTEM

    OpenAIRE

    Campean,Mihaela; Marinescu,Ion; Ispas,Mihai

    2003-01-01

    Boards of spruce (Picea abies) were dried in a pilot kiln with an oscillating plate that provides -"alternating air movement in the stack". The paper outlines the airflow concept and provides results for drying time and quality.It is suggested that the system has certain advantages which make it suitable as an alternative to conventional drying, especially for small-sized enterprises

  7. Auditory signal design for automatic number plate recognition system

    NARCIS (Netherlands)

    Heydra, C.G.; Jansen, R.J.; Van Egmond, R.

    2014-01-01

    This paper focuses on the design of an auditory signal for the Automatic Number Plate Recognition system of Dutch national police. The auditory signal is designed to alert police officers of suspicious cars in their proximity, communicating priority level and location of the suspicious car and

  8. Improving greater trochanteric reattachment with a novel cable plate system.

    Science.gov (United States)

    Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan

    2013-03-01

    Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Tectonic History and Deep Structure of the Demerara Plateau from Combined Wide-Angle and Reflection Seismic Data and Plate Kinematic Reconstructions

    Science.gov (United States)

    Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.

    2017-12-01

    Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern

  10. Geomorphic Response to Spatial and Temporal Tectonic uplift on the Kenya Rift of East African Rift System

    Science.gov (United States)

    Xue, L.; Abdelsalam, M. G.

    2017-12-01

    Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.

  11. An Edge-Based Macao License Plate Recognition System

    Directory of Open Access Journals (Sweden)

    Chi-Man Pun

    2011-04-01

    Full Text Available This paper presents a system to recognize Macao license plates. Sobel edge detector is employed to extract the vertical edges, and an edge composition algorithm is proposed to combine the edges into candidate plate regions. They are further examined on the existence of the character qMq by a verification algorithm. A row separation algorithm is also proposed to cater both one-row and two-row types of plates. Projection analysis and template matching methods are exploited to segment and recognize the characters. Various pre and post processing steps are proposed other than traditional implementation so as to improve the recognition accuracy. This work achieves a high recognition rate of 95%.

  12. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  13. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  14. Development of simplified nuclear dry plate measuring system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y; Ohta, I [Utsunomiya Univ. (Japan). Faculty of Education; Tezuka, I; Tezuka, T; Makino, K

    1981-08-01

    A simplified nuclear dry plate measuring system was developed. The system consists of a microscope, an ITV camera, a monitor TV, an XY tracker and a micro-computer. The signals of the images of tracks in a nuclear dry plate are sent to the XY tracker, and shown on the monitor TV. The XY tracker displays a pointer on the monitor TV, and makes the output signal of its XY coordinate. This output signal is analyzed by the microcomputer. The software for the measuring process is composed of a program system written in BASIC and the machine language. The data in take, the expansion of the range of measurement and the output of analyzed data are controlled by the program. The accuracy of the measurement of coordinate was studied, and was about 0.39 micrometer for 10 micrometer distance.

  15. [Development of polyaxial locking plate screw system of sacroiliac joint].

    Science.gov (United States)

    Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu

    2014-09-01

    To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw

  16. Habitability from Tidally Induced Tectonics

    Science.gov (United States)

    Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary

    2018-04-01

    The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.

  17. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2018-01-01

    Full Text Available To better understand Earth's present tectonic style–plate tectonics–and how it may have evolved from single plate (stagnant lid tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment (plate motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, which we informally call “planetoids” and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m3 or greater from 20 icy planetoids (including the gaseous and icy giant planets with ρ = 2200 kg/m3 or less. We define the “Tectonic Activity Index” (TAI, scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing (inferred from impact crater density. Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate (rocky planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is

  18. Faulting and hydration of the Juan de Fuca plate system

    Science.gov (United States)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  19. Seafloor morphology of the Eurasia-Nubia (Africa) plate boundary between the Tore-Madeira Rise and the Straits of Gibraltar: a case of coexistent Mesozoic through Present day features of tectonic, oceanographic and sedimentary origin

    Science.gov (United States)

    Terrinha, Pedro; Duarte, João.; Valadares, Vasco; Batista, Luis; Zitellini, Nevio; Grácia, Eulalia; Lourenço, Nuno; Rosas, Filipe; Roque, Cristina

    2010-05-01

    The joint use of more than 10.000 km multichannel seismic reflection profiles and 180.000km2 of multibeam swath bathymetry and backscatter allowed for a new vision of the seafloor tectonic and geomorphic processes of the area that encompasses the present day plate boundary between Africa and Eurasia, between the Gibraltar Straits and the Tore-Madeira Rise, in the southern sector of the North Atlantic Ocean. The interpretation of this data allowed for the detailed description of the seafloor morphology (i.e. a morphologic map) and the classification of the morphologic features in what respects the genetic process and age. It can be seen that in the same region coexist morphologic features that result from tectonic processes associated with the Triassic-Cretaceous break-up of Pangea, the Paleogene-Miocene compressive phase, the Miocene through Present subduction under the Gibraltar Arc (Gutscher et al., 2002), the Pliocene-Quaternary wrench tectonics and possible coeval plate boundary (Zitellini et al., 2009), the Present day mud volcanism and propagation of the compressive deformation along the West Continental Margin of Portugal (Terrinha et al., 2009). Interpretation of the seismic profiles together with the bathymetry allows the understanding of endogenous and exogenous processes that creates reliefs associated with active structures (related to the Miocene through Present compressive stress field). Other reliefs generated in Mesozoic times by analogous processes can be as well preserved as these active ones. In what concerns exogenous processes, the analysis of the two datasets (reflection seismics and bathymetry) allowed for the description of morphologic features associated with oceanic currents that interact with the seafloor forming these important features. As is the case of the well known active contourites but also less known features, like giant scours at 4 km water depth that have recently been described, suggesting the interaction of deep currents and

  20. The analysis of the Tectonics - SSS - Seismicity System in the 3D-model of the Rasvumchorr Mine - Central Open Pit Natural and Technical System (Khibiny)

    Science.gov (United States)

    Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim

    2017-04-01

    Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural

  1. Petrogenesis and tectonic association of rift-related basic Panjal dykes from the northern Indian plate, North-Western Pakistan: evidence of high-Ti basalts analogous to dykes from Tibet

    Science.gov (United States)

    Sajid, Muhammad; Andersen, Jens; Arif, Mohammad

    2017-10-01

    Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.

  2. Petrogenesis and tectonic association of rift-related basic Panjal dykes from the northern Indian plate, North-Western Pakistan: evidence of high-Ti basalts analogous to dykes from Tibet

    Science.gov (United States)

    Sajid, Muhammad; Andersen, Jens; Arif, Mohammad

    2018-06-01

    Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (evolution of dolerites, which also show depletion in rare earth elements (REEs) and other incompatible elements compared to the amphibolites. The equilibrium partial melting models from primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.

  3. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  4. Tectonic Geomorphology.

    Science.gov (United States)

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  5. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  6. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    Science.gov (United States)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to

  7. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  8. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  9. Note on: "Inevitability of Plate Tectonics on Super-Earths" by Valencia, O Connell and Sasselov, arXiv preprint 0710.0699

    OpenAIRE

    Omerbashich, Mensur

    2008-01-01

    Valencia et al. recently claimed that the mass of a Super-Earth (SE) is a sole factor in determining whether a SE is tectonically active or not. However, mass resolving astrometry is unable to discern between a SE and its moons if any. The fact that no exomoons have been discovered yet is rather a matter of instrumentation imperfection at the present, not of physical absence of exomoons. This, with recently discovered relationships between geometric and physical properties in astronomical bod...

  10. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    Science.gov (United States)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006

  11. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  12. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  13. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia

    Science.gov (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim

    2017-04-01

    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  14. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    Science.gov (United States)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon

  15. Evolution of Golpazari-Huyuk karst system (Bilecik-Turkey: indications of morpho-tectonic controls

    Directory of Open Access Journals (Sweden)

    Ekmekci Mehmet

    2004-12-01

    Full Text Available The Golpazari-Huyuk karst system is located in the Central Sakarya Basin whose geomorphologic evolution is mainly controlled by the Post-Miocene epirogenic continental rise. Drastic change in the drainage pattern and dissection of the carbonate platform were the major consequences of this tectonic movement. Rapid incision of the Sakarya river changed the position of the erosion base which consequently distorted the direction of surface and subsurface flow. The Golpazari and Huyuk plains are two topographically distinct, flat bottomed geomorphic features separated by a carbonate rock relief. The difference in elevation between these 10 km distant plains is 350 m. Morphological, geological and hydrological behavior of the plains suggests that the both have functioned as closed basins connected to each other through subsurface flow paths. Drainage has changed from subsurface to surface after the emplacement of the Sakarya river into its modern course. In this study, the authors suggest a conceptual model to reconstruct the hydrological-geomorphological processes that have been effective in the evolution of this karst area. The methodology is based on the records preserved in the morphological and sedimentological archives as well as the hydrogeological setting in the study area. According to the suggested model, the present landscape which exhibits a late stage of karstification has evolved in three main phases, after an initial stage attributed to Lower Miocene. The first phase represents karstification of carbonate rocks of Jurassic age at the Huyuk area and the limestone of Paleocene age at the Golpazari area. This region must have been significantly elevated from the karstification (erosion base. The geomorphologic and drainage setting reveal that the karstification was controlled mainly by major drainage elements in Late Miocene-Early Pliocene.The second phase is characterized by the uplift of the region and the subsequent rapid incision of

  16. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  17. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    Science.gov (United States)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  18. Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton

    Science.gov (United States)

    Campos Neto, Mario da Costa; Basei, Miguel Angelo Stipp; Assis Janasi, Valdecir de; Moraes, Renato

    2011-12-01

    The southern Brasília Orogen is organized in a pile of nappes that records the Neoproterozoic history of the subduction and collision between passive and active margins, respectively belonging to the São Francisco and Paranapanema Plates. The whole pile of allochthons comprises the rootless Andrelândia Nappe System (the upper kyanite-bearing granulite of Três Pontas-Varginha Nappe, the intermediate high-pressure amphibolite-to eclogite facies of Liberdade Nappe and the lower Andrelândia Nappe) that is located below an Andean-type magmatic arc (Socorro-Guaxupé Nappe) and overrides the Lima Duarte Nappe and the Carrancas Nappe System. The tectonic units of the Andrelândia Nappe System seem to be exotic to the São Francisco Plate. The retroeclogite of the Liberdade Nappe yielded a 670 Ma SHRIMP U-Pb age in zircon, that is interpreted as the age of N-MORB-type basic magmatism. Detrital zircon grains of proximal flysh deposits of wackes in the Andrelândia Nappe present similar ages that reflect the crystallization in its source area. Both, rocks present Nd isotopic juvenile signatures with T DM in the range of 1.4 to 1.1 Ga. Rhyacian orthogneisses occur as slices in the Liberdade Nappe and have Nd isotope signature of juvenile source. The building of the collision pile of the whole system of nappes was diachronic and records a continuous outward migration of the orogen. The main structure is a middle crust-level duplex. The propagation of the structure and the metamorphism advanced progressively from the upper to the lower nappes, as is shown by U-Pb monazite ages in the range of 618-595 Ma for the Andrelândia Nappe System and 590-575 Ma for the Carrancas and Lima Duarte nappes.

  19. The parameterization of microchannel-plate-based detection systems

    Science.gov (United States)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.

    2016-10-01

    The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.

  20. Dual PD Control Regulation with Nonlinear Compensation for a Ball and Plate System

    Directory of Open Access Journals (Sweden)

    Sergio Galvan-Colmenares

    2014-01-01

    Full Text Available The normal proportional derivative (PD control is modified to a new dual form for the regulation of a ball and plate system. First, to analyze this controller, a novel complete nonlinear model of the ball and plate system is obtained. Second, an asymptotic stable dual PD control with a nonlinear compensation is developed. Finally, the experimental results of ball and plate system are provided to verify the effectiveness of the proposed methodology.

  1. Everyday Tectonics?

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    Frascari and Kenneth Frampton (Harris & Berke 1997, Read 2000, Frascari 1984, Frampton 1995kilder). Whereas the focus upon everyday architecture seems to have lost its momentum too quickly, tectonic theory in architecture has been steadily growing as a field of research in architecture, especially related...

  2. Erosion Modeling of the High Contraction Chromium Plated Crusader Gun System

    National Research Council Canada - National Science Library

    Sopok, S

    2003-01-01

    Thermal-chemical- mechanical erosion modeling predictions are given for the high contraction chromium plated Crusader gun system based on extensive cannon firing, inspection, characterization, and experimental data...

  3. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    International Nuclear Information System (INIS)

    Zilberman, E.; Wachs, D.

    1988-01-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations

  4. To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: A prospective study

    OpenAIRE

    Bali, Rishi K.; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani

    2013-01-01

    Aims: The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. Materials and Methods: This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inio...

  5. Relative motions of the Australian, Pacific and Antarctic plates estimated by the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeff

    1995-01-01

    Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.

  6. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China

    Directory of Open Access Journals (Sweden)

    Franco Pirajno

    2011-04-01

    Full Text Available In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB. The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there are numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style mafic–ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front, sandstone-hosted U mineralisation completes the rich mineral endowment of the northern Xinjiang terranes.

  7. Formwork tectonics

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: Based on the concept of techné and framed in architectural studies of tectonics and an experimental practice of making, this paper investigates the multiple technological roles of textiles in fabric formwork for concrete in four analytical studies of experimental data of the author......’s doctoral dissertation Fabric Formwork for Concrete – Investigations into Formwork Tectonics and Stereogeneity in Architectural Constructions. In the paper only textile roles are discussed but it is suggested that a study of multiple technological roles of key formwork elements will emphasize...... their potential as ‘common denominators’ between architects, engineers and builders. Findings include textile used for the ‘textilization’ of concrete and the ‘concretization’ of textiles as two opposite starting points in fabric-forming. Recent research into thin-shell construction using fabric formwork is shown...

  8. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    Science.gov (United States)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  9. Entrance C - New Automatic Number Plate Recognition System

    CERN Multimedia

    2013-01-01

    Entrance C (Satigny) is now equipped with a latest-generation Automatic Number Plate Recognition (ANPR) system and a fast-action road gate.   During the month of August, Entrance C will be continuously open from 7.00 a.m. to 7.00 p.m. (working days only). The security guards will open the gate as usual from 7.00 a.m. to 9.00 a.m. and from 5.00 p.m. to 7.00 p.m. For the rest of the working day (9.00 a.m. to 5.00 p.m.) the gate will operate automatically. Please observe the following points:       Stop at the STOP sign on the ground     Position yourself next to the card reader for optimal recognition     Motorcyclists must use their CERN card     Cyclists may not activate the gate and should use the bicycle turnstile     Keep a safe distance from the vehicle in front of you   If access is denied, please check that your vehicle regist...

  10. Tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2016-01-01

    Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.

  11. 78 FR 59065 - Interview Room Recording System Standard and License Plate Reader Standard Workshops

    Science.gov (United States)

    2013-09-25

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1632] Interview Room..., Department of Justice. ACTION: Notice of the Interview Room Recording System Standard and License Plate... performance standards for Interview Room Recording Systems and License Plate Readers used by criminal justice...

  12. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania

    Science.gov (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.

    2003-04-01

    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  13. Numerical Simulation of the Borehole Magnetic Field for Resolving the Possible Rotation of Tectonic Basins and Plates during ICDP and IODP Experiments

    Science.gov (United States)

    Lee, S. M.; Parq, J. H.

    2017-12-01

    An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are

  14. Experimental Study of an SWH System with V-Shaped Plate

    Directory of Open Access Journals (Sweden)

    Jalaluddin

    2016-05-01

    Full Text Available Solar energy is known as an environmentally friendly energy source with a wide range of applications. This energy can be utilized in various applications such as domestic and industrial water heating using solar water heating (SWH systems. The thermal performance of an SWH system using a V-shaped absorber plate is presented in this study. Two SWH systems with different absorber plates, i.e. a flat-plate and a V-shaped plate, have been investigated experimentally. First, the absorptivity of the absorber plates was calculated analytically. The optimum V-shaped configuration with angle at β = 21° (V-shaped dimensions t = 4 cm and l = 4 cm was determined from various V-shaped plate absorbers based on their absorptivity and applied in the experimental study. Two SWH systems were installed and tested at a low flowrate of 0.5 L/min and at a high flowrate of 2 L/min. The results showed that the SWH system with V-shaped plate absorber had a 3.6-4.4% better performance compared with that of the system with flat-plate absorber.

  15. The Demonstrator for the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [www.epos.cineca.it

  16. A Real-time License Plate Detection System for Parking Access

    Directory of Open Access Journals (Sweden)

    Roenadi Koesdijarto

    2010-08-01

    Full Text Available The automatic and real-time license plate detection system can be used as an access control entry of vehicles into the parking area. The problem is how to recognize the vehicles that will go into the parking lot and how to recognize various types of license plates in various light conditions quickly and accurately. In this research, the prototype was developed with a detection system to recognize the vehicles that will enter the parking area, and a license plate recognition system. In the license plate recognition system, the Fourier transform and Hidden Markov model method have proposed to detect location of license plate and as characters segmentation to recognize Indonesia license plates. The research results have shown that the developed prototype system has successfully recognized all Indonesia license plates in several of light condition and camera position. The percentage of plate recognition in the real-time experiment is 84.38%, and the average execution time for all recognition process is 5.834 second.

  17. A radiophotoluminescent glass plate system for medium-sized field dosimetry

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Koyanagi, Hiroki; Shiraki, Takashi; Saegusa, Shigeki; Sasaki, Katsutake; Oritate, Takashi; Mima, Kazuo; Miyazawa, Masanori; Ishidoya, Tatsuyo; Ohtomo, Kuni; Yoda, Kiyoshi

    2005-01-01

    A two-dimensional radiophotoluminescent system for medium-sized field dosimetry has been developed using a silver-activated phosphate glass plate with a dimension of 120 mmx120 mmx1 mm and a readout unit comprising a UV excitation lamp and a CCD imager. A dose ranging from 0 to 400 cGy, provided by a 6 MV x-ray beam, was delivered to the glass plate oriented perpendicularly to the beam and positioned in a water phantom at a depth of 10 cm, where the center of the glass plate coincided with the linac isocenter. After the dose delivery, the glass plate was placed in the readout system. The CCD output intensity increased linearly with the applied dose. The angular dependence of response on the direction of radiation incidence was measured by rotating the glass plate in the water phantom, indicating that the output remained constant up to 75 deg. from perpendicular incident direction, followed by a steep reduction down to 85% at an angle of 90 deg. A lateral dose distribution resulting from a 60 mmx60 mm irradiation was compared between the glass plate and an x-ray film having had the same exposure, showing that the glass plate and the x-ray film led to identical dose distributions. The dose reproducibility for a glass plate and the sensitivity variation among different glass plates were also evaluated

  18. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany

    Directory of Open Access Journals (Sweden)

    Ulrich Schreiber

    2013-05-01

    Full Text Available In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  19. Lighting system for the lower core plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Feuillet, P.; Bonin, J.P.

    1986-01-01

    The invention proposes a grazing lighting system for the lower core plate, creating an excellent contrast and offering a good estimation of the relief; it can stay at the same place during the whole or at least the greater part of the core refueling operation. This lighting system is proposed for a reactor of which the lower core plate has fuel assembly centering elements. It has a sealed vessel with a transparent side wall containing several lights independently controlled and each one illuminating a sector of its wall. The vessel has a bottom aimed at resting on the lower plate and provided with centering and holding means acting with several of the said centering means through the plate, and/or apertures for coolant through the plate, and an upper container provided with gripping and handling elements and sealed conduits for electrical cables feeding the lights [fr

  20. The European Plate Observing System (EPOS) Services for Solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  1. Tectonic reactivation in the Indian Ocean: Evidences from seamount morphology and manganese nodule characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Khadge, N.H.

    The Central Indian Ocean Basin (CIOB) was subjected to tectonic reactivation in geological past which is unusual for a basin occurring on an apparently single tectonic plate. ENE-WSW trending latitude parallel zone of reactivation across the central...

  2. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  3. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    Science.gov (United States)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE "pure" extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  4. To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: A prospective study.

    Science.gov (United States)

    Bali, Rishi K; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani

    2013-07-01

    The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required.

  5. TECTONIC POSITION OF MARBLE MELANGES IN THE EARLY PALEOZOIC ACCRETION-COLLISIONAL SYSTEM OF THE WESTERN PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    V. S. Fedorovsky

    2014-01-01

    Full Text Available The Early Paleozoic collisional system located in the Olkhon region at the western shores of Lake Baikal resulted from collision of the Siberian paleocontinent and a complex aggregate composed by fragments of a microcontinent, island arcs, back-arc structures and accretionary prisms. The main events were associated with complete manifestation of shear tectogenesis initiated by oblique collision. The current structure includes tectonically displaced components of ancient geodynamic systems that used to have been located dozens and hundreds of kilometres apart. Horizontal amplitudes of tectonic displacement seem to have been quite high; however, numerical data are still lacking to support this conclusion. Information about the structure of the upper crust in the Paleozoic is also lacking as only deep metamorphic rocks (varying from epidote-amphibolite to granulite facies are currently outcropped. Formations comprising the collisional collage are significantly different in composition and protoliths, and combinations of numerous shifted beds give evidence of a 'bulldozer' effect caused by the collisional shock followed by movements of crushed components of the ocean-continent zone along the margin of the Siberian paleocontinent. As evidenced by the recent cross-section, deep horizons of the Early Paleozoic crust comprise the collisional system between the Siberian craton and the Olkhon composite terrain. A permanent inclusion in the collisional combinations of rocks are unusual synmetamorphic injected bodies of carbonate rocks. Such rocks comprise two groups, marble melanges and crustal carbonate melted rocks. Obviously, carbonate rocks (that composed the original layers and horizons of stratified beds can become less viscous to a certain degree at some locations during the process of oblique collision and acquire unusual properties and can thus intrude into the surrounding rocks of silicate composition. Such carbonate rocks behave as protrusions

  6. Stress and displacement analysis of a core plate, i.e. grid-perforated plate compound, modelled as an equivalent beam system

    International Nuclear Information System (INIS)

    Frank, R.; Engel, R.

    1979-01-01

    The core support plate is a very important component of the reactor pressure vessel internals. Therefore, an exact stress analysis is desired. This analysis will cause high computer costs with a detailed FEM-model because of the complexity of this compound system. In this paper, a method is suggested to solve the problem with a much cheaper beam element model. The main problem is to establish an equivalent beam system with nearly the same stiffness property as the perforated circular plate stiffened by a grid. Furthermore, the system must allow to determine the maximum stresses with sufficient accuracy. The calculation of the equivalent beam stiffness is based on the analysis of perforated plates by T. SLOT and W.J. O'DONNELL. This analysis method utilizes the concept of the equivalent solid plate. In this method, the perforated plate is replaced by a solid one which is geometrically similar to the perforated plate but has modified values of the elastic constants. The simple equivalent beam system of one half of the core support plate (symmetry) was loaded with a pressure difference and stresses and displacements were analysed. After that, these results were compared with the stress and displacement analysis of a part of the real structure. This substructure was discretized by three-dimensional 20-node brick-elements. The comparison of the results of the two models shows that the stresses and displacements, calculated with the simple beam model, are in good agreement with those of the real structure. (orig.)

  7. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    Science.gov (United States)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  8. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin

    Science.gov (United States)

    Suo, Yanhui; Li, Sanzhong; Yu, Shan; Somerville, Ian D.; Liu, Xin; Zhao, Shujuan; Dai, Liming

    2014-07-01

    Tectonic migration is a common geological process of basin formation and evolution. However, little is known about tectonic migration in the western Pacific margins. This paper focuses on the representative Cenozoic basins of East China and its surrounding seas in the western Pacific domain to discuss the phenomenon of tectonic jumping in Cenozoic basins, based on structural data from the Bohai Bay Basin, the South Yellow Sea Basin, the East China Sea Shelf Basin, and the South China Sea Continental Shelf Basin. The western Pacific active continental margin is the eastern margin of a global convergent system involving the Eurasian Plate, the Pacific Plate, and the Indian Plate. Under the combined effects of the India-Eurasia collision and retrogressive or roll-back subduction of the Pacific Plate, the western Pacific active continental margin had a wide basin-arc-trench system which migrated or ‘jumped’ eastward and further oceanward. This migration and jumping is characterized by progressive eastward younging of faulting, sedimentation, and subsidence within the basins. Owing to the tectonic migration, the geological conditions associated with hydrocarbon and gashydrate accumulation in the Cenozoic basins of East China and its adjacent seas also become progressively younger from west to east, showing eastward younging in the generation time of reservoirs, seals, traps, accumulations and preservation of hydrocarbon and gashydrate. Such a spatio-temporal distribution of Cenozoic hydrocarbon and gashydrate is significant for the oil, gas and gashydrate exploration in the East Asian Continental Margin. Finally, this study discusses the mechanism of Cenozoic intrabasinal and interbasinal tectonic migration in terms of interplate, intraplate and underplating processes. The migration or jumping regimes of three separate or interrelated events: (1) tectonism-magmatism, (2) basin formation, and (3) hydrocarbon-gashydrate accumulation are the combined effects of the

  9. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    Science.gov (United States)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  10. The seismicity of Ethiopia; active plate tectonics

    Science.gov (United States)

    Mohr, P.

    1981-01-01

    "But I tell you, when you look at the way the pieces of the northeastern portion of the African continent seem to fit together, separated by a narrow gulf, you could almost make a believer [in continental drift] of anybody" Astronaut Harrison Schmidt, on the view from Apollo 17.

  11. Marginal inherited structures impact on the oblique convergent N American Plate/ Central Caribbean plate-boundary in the Northern Caribbean. The tectonic evolution since Miocene times based on Haiti data acquired onshore and offshore since 2012- a step toward an ADP Drilling Proposal (Haiti-DRILL).

    Science.gov (United States)

    Ellouz, N.; Hamon, Y.; Deschamps, R.; Battani, A.; Wessels, R.; Boisson, D.; Prepetit, C.; Momplaisir, R.

    2017-12-01

    Since Early Paleogene times, the North Caribbean plate is colliding obliquely with the south continental part of the old N. American Margins, which is represented by various segments from West to East, inherited from Jurassic times. Location, amount of displacement, rotation and the structural deformation of these margin segments, resulting from the dislocation of the continental N American margin, are not clearly yet established. At present, the plate limits are marked either by two left lateral faults west and inside Haiti (OSF in the North and EPGF in the South), oblique collision front (further west in Cuba), oblique subducted segments (to the East, Porto-Rico). From our recent works operated both offshore (Haiti-SIS and Haiti-BGF surveys 2012-2015) and onshore (field campaigns 2013-2017) in Haitian zone, the position of the present-day and paleo major limits have been redefined. These paleolimits have been reconstructed up to early Miocene times, based on: restoration of regional structural cross-sections, sedimentology and on paleoenvironement studies. In a preliminary way, we analyzed the complexity of the tectonic heritage with possible nature, heterogeneity of the crustal fragments and associated margins close to Haiti (age, structure, environment, location of the dislocated blocks through times) which profoundly impact the partitioning of the deformation along this complex transformed margin. The change in the structure wavelength, decollement level variations are primary constraints in the restoration of the main units and do impose a deep connection along specific segments either related to strike-slip or to splay faults. The asymmetry on the repartition of the fault activity tend to prove that the past motion related to "EPGF transfer zone" is mainly partitioned in Haiti to the North of the present-day EPGF position. At present, these results are still coherent with the distribution of the aftershoks registered after 2010, and with the present

  12. Biomechanical properties of orthogonal plate configuration versus parallel plate configuration using the same locking plate system for intra-articular distal humeral fractures under radial or ulnar column axial load.

    Science.gov (United States)

    Kudo, Toshiya; Hara, Akira; Iwase, Hideaki; Ichihara, Satoshi; Nagao, Masashi; Maruyama, Yuichiro; Kaneko, Kazuo

    2016-10-01

    Previous reports have questioned whether an orthogonal or parallel configuration is superior for distal humeral articular fractures. In previous clinical and biomechanical studies, implant failure of the posterolateral plate has been reported with orthogonal configurations; however, the reason for screw loosening in the posterolateral plate is unclear. The purpose of this study was to evaluate biomechanical properties and to clarify the causes of posterolateral plate loosening using a humeral fracture model under axial compression on the radial or ulnar column separately. And we changed only the plate set up: parallel or orthogonal. We used artificial bone to create an Association for the Study of Internal Fixation type 13-C2.3 intra-articular fracture model with a 1-cm supracondylar gap. We used an anatomically-preshaped distal humerus locking compression plate system (Synthes GmbH, Solothurn, Switzerland). Although this is originally an orthogonal plate system, we designed a mediolateral parallel configuration to use the contralateral medial plate instead of the posterolateral plate in the system. We calculated the stiffness of the radial and ulnar columns and anterior movement of the condylar fragment in the lateral view. The parallel configuration was superior to the orthogonal configuration regarding the stiffness of the radial column axial compression. There were significant differences between the two configurations regarding anterior movement of the capitellum during axial loading of the radial column. The posterolateral plate tended to bend anteriorly under axial compression compared with the medial or lateral plate. We believe that in the orthogonal configuration axial compression induced more anterior displacement of the capitellum than the trochlea, which eventually induced secondary fragment or screw dislocation on the posterolateral plate, or nonunion at the supracondylar level. In the parallel configuration, anterior movement of the capitellum or

  13. Structural assessments of plate type support system for APR1400 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tung; Namgung, Ihn, E-mail: inamgung@kings.ac.kr

    2017-04-01

    Highlights: • This paper investigates plate-type support structure for the reactor vessel of the APR 1400. • The tall column supports of APR1400 reactor challenges in seismic and severe accident events. • A plate-type support of reactor vessel was proposed and evaluated based on ASME code. • The plate-type support was assessed to show its higher rigidity than column-type. - Abstract: This paper investigates an alternative form of support structure for the reactor vessel of the APR 1400. The current reactor vessel adopts a four-column support arrangement locating on the cold legs of the vessel. Although having been successfully designed, the tall column structure challenges in seismic events. In addition, for the mitigation of severe accident consequences, the columns inhibit ex-vessel coolant flow, hence the elimination of the support columns proposes extra safety advantages. A plate-type support was proposed and evaluated for the adequacy of meeting the structural stiffness by Finite Element Analysis (FEA) approach. ASME Boiler and Pressure Vessel Code was used to verify the design. The results, which cover thermal and static structural analysis, show stresses are within allowable limits in accordance with the design code. Even the heat conduction area is increased for the plate-type of support system, the results showed that the thermal stresses are within allowable limits. A comparison of natural frequencies and mode shapes for column support and plate-type support were presented as well which showed higher fundamental frequencies for the plate-type support system resulting in greater rigidity of the support system. From the outcome of this research, the plate-type support is proven to be an alternative to current APR column type support design.

  14. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model.

    Science.gov (United States)

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Separation of Cadmium in Printing Industrial Liquid Waste by Electromagnetic Plating System

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    To prevent incidence of environmental contamination and its effect to society health and other mortal, poisonous and dangerous substance waste have to be managed peculiarly by minimizing or eliminating the nature of its danger. Various processing have been developed to degrade the waste rate for example sorption, flotation, flocculation, etc., but the yield of the degradation of metal rate can not fulfill permanent standard quality of liquid waste. Because of the reason explained before, its important to make a new breakthrough as one of final phase processing alternative named reductant electromagnetic plating. Waste to be degraded in this research is cadmium. In fact cadmium represent the foregain metal for human and is not require at all in human body for metabolism process. Though plenty of cadmium exploited, but during for centuries it caused the food poisoned because this metal insoluble in organic acid. Separation of cadmium rate with electromagnetic plating influenced by time process, concentration, current strength, and type of electrode plate. Result of research indicate that the optimum time processing if using plate of copper electrode is during 30 minute and using plate of aluminium electrode is during 20 minute. Optimum of strong current that used in process of electromagnetic plating is only 0.8 Ampere and concentration effective is 5 mg / L. The most effective type of electrode plate for reducing cadmium from waste by using electromagnetic plating is aluminium. Appliance of electromagnetic plating system is very compatible used for the reduction of cadmium and others metal for feed concentration (1 - 5) mg/L .at the price efficiency of reduction is (95 - 98) %, standard quality of liquid waste is (0.05 - 1) mg/L. (author)

  16. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  17. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems

    Science.gov (United States)

    Castaing, C.

    1991-05-01

    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  18. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  19. Virtual haptic system for intuitive planning of bone fixation plate placement

    Directory of Open Access Journals (Sweden)

    Kup-Sze Choi

    2017-01-01

    Full Text Available Placement of pre-contoured fixation plate is a common treatment for bone fracture. Fitting of fixation plates on fractured bone can be preoperatively planned and evaluated in 3D virtual environment using virtual reality technology. However, conventional systems usually employ 2D mouse and virtual trackball as the user interface, which makes the process inconvenient and inefficient. In the paper, a preoperative planning system equipped with 3D haptic user interface is proposed to allow users to manipulate the virtual fixation plate intuitively to determine the optimal position for placement on distal medial tibia. The system provides interactive feedback forces and visual guidance based on the geometric requirements. Creation of 3D models from medical imaging data, collision detection, dynamics simulation and haptic rendering are discussed. The system was evaluated by 22 subjects. Results show that the time to achieve optimal placement using the proposed system was shorter than that by using 2D mouse and virtual trackball, and the satisfaction rating was also higher. The system shows potential to facilitate the process of fitting fixation plates on fractured bones as well as interactive fixation plate design.

  20. Observations in the Past of Solar System Bodies with MAO NANU Plate Archives

    Science.gov (United States)

    Sergeeva, T. P.; Golovnya, V. V.; Yizhakevych, E. M.; Shatokhina, S. V.; Sergeev, A. V.

    2006-04-01

    The plate archives of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine contain more than 100,000 images of minor planets with magnitude up to 16.7m. About 10% of the minor planets, found on our archival plates, were discovered many years after taking the plates. So we can rediscover them by so called "observation in the past" and obtain their positions for improvement of the dynamical models of their motions. Other Solar System bodies for which we try to get "observation in the past" are the external planets satellites. The criteria for chosen objects, the search methods, identification and determination of positions are discussed. The first results of the asteroids and the external planet satellites search in MAO plate archives are presented.

  1. GMFilter and SXTestPlate: software tools for improving the SNPlex™ genotyping system

    Directory of Open Access Journals (Sweden)

    Schreiber Stefan

    2009-03-01

    Full Text Available Abstract Background Genotyping of single-nucleotide polymorphisms (SNPs is a fundamental technology in modern genetics. The SNPlex™ mid-throughput genotyping system (Applied Biosystems, Foster City, CA, USA enables the multiplexed genotyping of up to 48 SNPs simultaneously in a single DNA sample. The high level of automation and the large amount of data produced in a high-throughput laboratory require advanced software tools for quality control and workflow management. Results We have developed two programs, which address two main aspects of quality control in a SNPlex™ genotyping environment: GMFilter improves the analysis of SNPlex™ plates by removing wells with a low overall signal intensity. It enables scientists to automatically process the raw data in a standardized way before analyzing a plate with the proprietary GeneMapper software from Applied Biosystems. SXTestPlate examines the genotype concordance of a SNPlex™ test plate, which was typed with a control SNP set. This program allows for regular quality control checks of a SNPlex™ genotyping platform. It is compatible to other genotyping methods as well. Conclusion GMFilter and SXTestPlate provide a valuable tool set for laboratories engaged in genotyping based on the SNPlex™ system. The programs enhance the analysis of SNPlex™ plates with the GeneMapper software and enable scientists to evaluate the performance of their genotyping platform.

  2. Petrology, geochemistry and tectonic settings of the mafic dikes and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    margins of the basin, whereas, others are aligned .... areas of mantle upwelling, igneous intrusions, deep ... to and during the sedimentary accumulation, and ...... The development of continental margins in plate tectonic theory; J. Aust. Petrol.

  3. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  4. Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk.

    Science.gov (United States)

    Royster, E; Godden, S; Goulart, D; Dahlke, A; Rapnicki, P; Timmerman, J

    2014-01-01

    The objective of this study was to validate use of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate (University of Minnesota Laboratory for Udder Health, St. Paul) to identify common mastitis pathogens in milk. A total of 283 quarter and composite milk samples submitted to the University of Minnesota Laboratory for Udder Health during the spring of 2010 were cultured simultaneously using 3 methods: standard laboratory culture (reference method) and the Minnesota Easy Culture System II Bi-Plate and Tri-Plate methods. Bi-Plate and Tri-Plate cultures were incubated for 18 to 24h and interpreted by 2 independent, untrained readers within 5h of each other. An experienced technician completed the standard laboratory culture. For each sample, all 3 study personnel recorded the culture result (yes/no) for each of the following diagnostic categories: no bacterial growth (NG), mixed (2 organisms), contaminated (3 or more organisms), gram-positive (GP), gram-negative (GN), Staphylococcus spp., Streptococcus spp., Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Enterococcus spp., Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Klebsiella spp., and other. For each category, the prevalence, sensitivity, specificity, accuracy, and predictive values of a positive and negative test were calculated, and the agreement between readers and between each reader and the laboratory was assessed. Specificity, overall accuracy, and negative predictive values were generally high (>80%) for the Bi-Plate and Tri-Plate for each category. Sensitivity and positive predictive values were intermediate (>60%) or high (>80%) for the broad categories of NG, GP, GN, Staphylococcus spp. and Streptococcus spp., and for Staph. aureus, but were generally lower (negative predictive value for Streptococcus spp., and higher interreader agreement for some of the more specific categories. Our conclusion was that Bi-Plate and Tri-Plate results will

  5. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75

    1985-01-01

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  6. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.

    Science.gov (United States)

    Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira

    2018-02-16

    High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.

  7. Oscillations of a spring-magnet system damped by a conductive plate

    Science.gov (United States)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  8. Oscillations of a spring–magnet system damped by a conductive plate

    International Nuclear Information System (INIS)

    Ladera, C L; Donoso, G

    2013-01-01

    We study the motion of a spring–magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level. (paper)

  9. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  10. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    Science.gov (United States)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  11. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    International Nuclear Information System (INIS)

    Xu, S C; Li, J Q; Zhang, R

    2006-01-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible

  12. The alternative concept of global tectonics

    Science.gov (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael

    2016-04-01

    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set

  13. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real-time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real-time constraints. A detailed dynamic model of the system is derived for the simulation study. By neglecting the high-order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input-output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  14. Aptian sedimentation in the Recôncavo-Tucano-Jatobá Rift System and its tectonic and paleogeographic significance

    Science.gov (United States)

    Freitas, Bernardo T.; Almeida, Renato P.; Carrera, Simone C.; Figueiredo, Felipe T.; Turra, Bruno B.; Varejão, Filipe G.; Assine, Mario L.

    2017-12-01

    This study, based on detailed sedimentologic and stratigraphic analysis of the Aptian succession preserved in the Recôncavo-Tucano-Jatobá Rift System (RTJ), present new elements for biostratigraphic correlation and paleogeographic reconstruction in the mid-Cretaceous South Atlantic realm, supporting novel interpretations on the tectonic and sedimentary evolution related to the W-Gondwana breakup. The Aptian sedimentary succession in the RTJ has been referred to as Marizal Formation, and interpreted as post-rift deposits. Detailed sedimentologic and stratigraphic studies of these deposits enabled the recognition and individualization of two distinctive sedimentary units that can be traced in the entire RTJ. These units are here described and named Banzaê and Cícero Dantas members of the Marizal Formation. Their contact is locally marked by the fossiliferous successions of the here proposed Amargosa Bed, lying at the top of the Banzaê Member. Both members of the Marizal Formation record large river systems captured by the Tucano Basin with the local development of eolian dune fields and fault-bounded alluvial fans. The Amargosa Bed represents a regional-scale base level change preserved between the Aptian fluvial successions along the RTJ. Hence, the studied sedimentary record presents important implications for the timing and direction of marine ingressions affecting NE-Brazil interior basins during the Aptian. A remarkable contrast in preserved fluvial architecture between the Banzaê Member, characterized by connected channel bodies, and the Cícero Dantas Member, characterized by isolated channel bodies within overbank fines, is here reported. The main interpreted control for the observed contrast in fluvial stratigraphy is sedimentary yield variation. The interval is also subject to the interpretation of a regional shift in the mechanism responsible for the subsidence of the basins formed during the Cretaceous break-up of the Central South Atlantic. This

  15. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  16. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  17. Biomechanical evaluation of a new MatrixMandible plating system on cadaver mandibles.

    Science.gov (United States)

    Gateno, Jaime; Cookston, Christopher; Hsu, Sam Sheng-Pin; Stal, Drew N; Durrani, Salim K; Gold, Jonathan; Ismaily, Sabir; Alexander, Jerry W; Noble, Philip C; Xia, James J

    2013-11-01

    Current mandibular plating systems contain a wide range of plates and screws needed for the treatment of mandibular reconstruction and mandibular fractures. The authors' hypothesis was that a single diameter screw could be used in all applications in a plating system. Therefore, the purpose of this study was to test if the 2.0-mm locking screws could replace the 2.4-mm screws to stabilize a 2.5-mm-thick reconstruction plate in the treatment of mandibular discontinuity. Thirty-six fresh human cadaveric mandibles were used: 18 were plated using 2.0-mm locking screws (experimental) and the other 18 were plated using 2.4-mm locking screws (control). Each group was further divided into 3 subgroups based on the site of loading application: the ipsilateral (right) second premolar region, the central incisal region, and the contralateral (left) first molar region. The same ipsilateral (right) mandibular angular discontinuity was created by the same surgeon. The mandible was mounted on a material testing machine. The micromotions between the 2 segments, permanent and elastic displacements, were recorded after incremental ramping loads. The magnitude of screw back-out and the separation between plate and bone were recorded using a laser scanner (resolution, 0.12 mm) before and after the loading applications. The data were processed. Descriptive analyses and a general linear model for repeated measures analysis of variance were performed. There was no statistically significant difference in permanent displacement (mean, 1.16 and 0.82 mm, respectively) between the 2.0-mm and 2.4-mm screw groups. There also was no statistically significant difference in elastic displacement between the 2 groups (mean, 1.48 and 1.21 mm, respectively). Finally, there were no statistically significant differences in screw back-out or separation between plate and bone between the 2 groups. All means for screw back-out and separation between screw and bone for each group were judged within the

  18. Sectional Rail System as Base for a Plate Covering

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention concerns a sectional rail system which is constructed with the known outer rails with U-shaped cross-section and intermediate rails with C-shaped cross-section, and which is peculiar in that each of the retention means of the outer rail includes at least one stop pin which i...

  19. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Govers, R.; Wortel, R.

    2014-01-01

    The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the “Bahamas Collision”) is generally invoked as a cause of this fragmentation. We propose that a second

  20. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  1. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  2. A study and development of a system for the determination of porus plates permeability

    International Nuclear Information System (INIS)

    Leitao Junior, C.B.; Zorzetto, L.F.

    1989-07-01

    A device employed for the study of flux in porous media and another one employed for the determination of permeability of porous plate are presented in this work. Experimental data and calculation obtained from the above cited systems are also presented. (author) [pt

  3. Chaotic synchronization of vibrations of a coupled mechanical system consisting of a plate and beams

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    Full Text Available In this paper mathematical model of a mechanical system consisting of a plate and either one or two beams is derived. Obtained PDEs are reduced to ODEs, and then studied mainly using the fast Fourier and wavelet transforms. A few examples of the chaotic synchronizations are illustrated and discussed.

  4. Survey explores active tectonics in northeastern Caribbean

    Science.gov (United States)

    Carbó, A.; Córdoba, D.; Muñoz-Martín, A.; Granja, J.L.; Martín-Dávila, J.; Pazos, A.; Catalán, M.; Gómez, M.; ten Brink, Uri S.; von Hillebrandt, Christa; Payero, J.

    2005-01-01

    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al., 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary.Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies.

  5. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  6. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  7. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  8. Arabian Plate Deformation: The role of inherited structures in the localization of strain in the Red Sea extensional system

    Science.gov (United States)

    Aldaajani, T.; Furlong, K.; Malservisi, R.

    2017-12-01

    The Red Sea rift structural architecture changes dramatically along strike from narrow localized spreading (with creation of new oceanic crust) in the south to asymmetrical diffuse extension north of 21 ° latitude. The region of diffuse extension falls within a triangle that is bounded to the east by the Sarhan graben, (a Cenozoic failed rift), to the west by the northern Red Sea Rift, and to the south by the Makkah-Madinah-Nafud (MMN) volcanic line. Geological observations appear to show that tectonic stresses acting on inherited structures within the NW Arabian margin are associated with the region of diffuse extension. In contrast, in the southern Red Sea, a single strong block within the SW Arabian margin led to localize the extension there. Using current velocities from more than 30 GNSS stations distributed within the Arabian plate, we are able to map its rigidity and the distribution of strain along the plate margin. The data show that the transition between the two styles of extension within the Red Sea (crustal accretion vs crustal extension) corresponds with a transition between rigid behavior and diffuse extension within the Arabian Plate. This suggests that the preexisting structures within the Arabian plate play a significant role in the style of extension along the Red Sea margin.

  9. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Directory of Open Access Journals (Sweden)

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  10. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  11. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.; Hwang, C.-C.

    2008-01-01

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers

  12. Mechanical System Analysis of C-Frame for Steel Plate Thickness Gauge

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2007-01-01

    Nuclear base instrument is not only applied in the area of research such as medical and agriculture sciences, but also in the field of industry especially for thickness gauge. To the present at the steel industry, the gauge that is applied to cut plate thickness using infra-red ray method, it cannot result in accurately data. To solve that case, it is developed a thickness gauge of steel plate by using gamma ray method that it is named C-Frame. This thickness gauge is hoped that it could control in cutting the steel plate by on-line, accurate, and safe, therefore, it could socialize the advanced technology in the nuclear field to support the production process in domestic industries (national industries). The present study yields the calculations of mechanical system of that C-Frame including structure, detector support, source container of radioisotope, and transmission system, be also computed by running Professional Microsoft Fortran Version 5.10, NISA-II program, and AutoCAD program. From the obtained results could be known that the design meets the requirement, so that could be employed properly to measure the thickness of plate in the steel industries. (author)

  13. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  14. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  15. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  16. Accessory mineral records of tectonic environments? (Invited)

    Science.gov (United States)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  17. Tectonics and stratigraphy of the East Brazil Rift system: an overview

    Science.gov (United States)

    Hung Kiang Chang; Kowsmann, Renato Oscar; Figueiredo, Antonio Manuel Ferreira; Bender, AndréAdriano

    1992-10-01

    The East Brazilian Rift system (Ebris) constitutes the northern segment of the South Atlantic rift system which developed during the Mesozoic breakup of South America and Africa. Following crustal separation in the Late Aptian, it evolved into a passive continental margin. Along the continental margin six basins are recognized, while three onshore basins form part of an aborted rift. Three continental syn-rift stratigraphic sequences are recognized, spanning Jurassic to Barremian times. The Jurassic (Syn-rift I) and Neocomian (Syn-rift II) phases were most active in the interior rift basins. During the Barremian (Syn-rift III), rift subsidence rates were twice as large as during the Neocomian (Syn-rift II), both in the interior rift and in the marginal rift segments, indicating that rift axis did not migrate from the interior to the marginal setting. Rift magmatism was centered on the southern EBRIS and peaked between 130 and 120 Ma during syn-rift phase II. Rift phase III was followed by a transitional marine, evaporitic megasequence of Aptian age, which directly overlies the rift unconformity and a marine drift megasequence which spans Albian to Recent times. During the Late Cretaceous, sedimentation rates responded to first-order eustatic sea-level fluctuations. Tertiary accelerated sedimentation rates can be related to local clastic supply which filled in spaces inherited from previous starved conditions. Between 60 and 40 Ma, post-rift magmatism, centered on the Abrolhos and Royal Charlotte banks, is probably related to development of a hot spot associated with the Vitória-Trindade Seamount Chain. Although crossing three distinct Precambrian tectono-thermal provinces, ranging from Archean through Late Proterozoic, rift structures follow a general NE trend, subparallel to the principal basement fabric. A NW-SE oriented stress field appears to be compatible with both Neocomian and Barremian phases of crustal extension. Profiles transverse to the rift axis

  18. A neural network based artificial vision system for licence plate recognition.

    Science.gov (United States)

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  19. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  20. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  1. Geomorphology, tectonics, and exploration

    Science.gov (United States)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  2. Development of Portable Automatic Number Plate Recognition System on Android Mobile Phone

    Science.gov (United States)

    Mutholib, Abdul; Gunawan, Teddy S.; Chebil, Jalel; Kartiwi, Mira

    2013-12-01

    The Automatic Number Plate Recognition (ANPR) System has performed as the main role in various access control and security, such as: tracking of stolen vehicles, traffic violations (speed trap) and parking management system. In this paper, the portable ANPR implemented on android mobile phone is presented. The main challenges in mobile application are including higher coding efficiency, reduced computational complexity, and improved flexibility. Significance efforts are being explored to find suitable and adaptive algorithm for implementation of ANPR on mobile phone. ANPR system for mobile phone need to be optimize due to its limited CPU and memory resources, its ability for geo-tagging image captured using GPS coordinates and its ability to access online database to store the vehicle's information. In this paper, the design of portable ANPR on android mobile phone will be described as follows. First, the graphical user interface (GUI) for capturing image using built-in camera was developed to acquire vehicle plate number in Malaysia. Second, the preprocessing of raw image was done using contrast enhancement. Next, character segmentation using fixed pitch and an optical character recognition (OCR) using neural network were utilized to extract texts and numbers. Both character segmentation and OCR were using Tesseract library from Google Inc. The proposed portable ANPR algorithm was implemented and simulated using Android SDK on a computer. Based on the experimental results, the proposed system can effectively recognize the license plate number at 90.86%. The required processing time to recognize a license plate is only 2 seconds on average. The result is consider good in comparison with the results obtained from previous system that was processed in a desktop PC with the range of result from 91.59% to 98% recognition rate and 0.284 second to 1.5 seconds recognition time.

  3. Centralized Gap Clearance Control for Maglev Based Steel-Plate Conveyance System

    Directory of Open Access Journals (Sweden)

    GUNEY, O. F.

    2017-08-01

    Full Text Available The conveyance of steel-plates is one of the potential uses of the magnetic levitation technology in industry. However, the electromagnetic levitation systems inherently show nonlinear feature and are unstable without an active control. Well-known U-shaped or E-shaped electromagnets cannot provide redundant levitation with multiple degrees of freedom. In this paper, to achieve the full redundant levitation of the steel plate, a quadruple configuration of U shaped electromagnets has been proposed. To resolve the issue of instability and attain more robust levitation, a centralized control algorithm based on a modified PID controller (I PD is designed for each degree of freedom by using the Manabe canonical polynomial technique. The model of the system is carried out using electromechanical energy conversion princi¬ples and verified by 3-D FEM analysis. An experimental bench is built up to test the system performance under trajectory tracking and external disturbance excitation. The results confirm the effectiveness of the proposed system and the control approach to obtain a full redundant levitation even in case of disturbances. The paper demonstrates the feasibility of the con¬veyance of steel plates by using the quadruple configuration of U-shaped electromagnets and shows the merits of I-PD controller both in stabilization and increased robust levitation.

  4. Effects of Damping Plate and Taut Line System on Mooring Stability of Small Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2015-01-01

    Full Text Available Ocean wave energy can be used for electricity supply to ocean data acquisition buoys. A heaving buoy wave energy converter is designed and the damping plate and taut line system are used to provide the mooring stability for better operating conditions. The potential flow assumption is employed for wave generation and fluid structure interactions, which are processed by the commercial software AQWA. Effects of damping plate diameter and taut line linking style with clump and seabed weights on reduction of displacements in 6 degrees of freedom are numerically studied under different operating wave conditions. Tensile forces on taut lines of optimized mooring system are tested to satisfy the national code for wire rope utilization.

  5. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  6. System for uranium superficial density measurement in U3Si2 MTR fuel plates using radiography

    International Nuclear Information System (INIS)

    Hey, Martin A.; Gomez Marlasca, Fernando

    2003-01-01

    The paper describes a method for measuring uranium superficial density in high density uranium silicide (U 3 Si 2 ) MTR fuel plates, through the use of industrial radiography, a set of patterns built for this purpose, a transmission optical densitometer, and a quantitative model of analysis and measurement. Our choice for this particular method responds to its high accuracy, low cost and easy implementation according to the standing quality control systems. (author)

  7. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    Science.gov (United States)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and

  8. Characterization of an in vivo thyroid 131I monitoring system using an imaging plate

    International Nuclear Information System (INIS)

    Hirota, Masahiro; Saze, Takuya; Nishizawa, Kunihide

    2004-01-01

    The effects of neck diameter, thyroid volume, and prethyroid tissue thickness on a count-activity conversion coefficient and the detection limit of a thyroid 131 I monitoring system with an imaging plate (IP) were estimated by using an anthropomorphic thyroid-neck phantom. The conversion coefficient and detection limit of the IP system was approximately constant for normal Japanese adults regardless of their neck diameters, thyroid volumes, and prethyroid tissue thicknesses. The IP system is a new option for thyroid 131 I monitoring

  9. The application of PS printing plate with Biimidazole photosensitive initiating systems

    International Nuclear Information System (INIS)

    Li Lidong; Xu Jinqi; Gao Fang; Yang Yongyuan

    1999-01-01

    The ultraviolet photosensitive initiating system is composed of 4,4'-bis(N,N'-dimethyl-amino)benzophenone(MK), 2-chlorohexaarylbiimidazole(o-C1-HABI) and a hydrogen donor co-initiator n-dodecyl mercaptan(SH). Under the irradiation by high pressure mercury lamp, the relationship between the photo-polymerization rate of MMA and the concentration of each component of the system, including MK, o-C1-HABI and SH, was studied. The excellent results have been obtained through studying the system's application on PS lithographic printing plate

  10. Tectonic Theory and Practice

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning

    2010-01-01

    ’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system...... and assembly processes, seems a paradoxical challenge which has left prefabricated houses raw constructions rather than inhabitable homes. Based on the hypothesis that home is determined spatially via sensuous impressions of interiority at the threshold of furniture: The bath in Le Corbusier’s ‘Villa Savoye...... in the development of novel prefab solutions. This is pursued trough a deductive study comparing Gottfried Semper’s theories on the origins of construction with Werner Blaser’s technical and practical studies of the joint. In combining Blaser’s constructive understanding of the joint with the interior softness...

  11. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  12. Comparative evaluation of 2.3 mm locking plate system vs conventional 2.0 mm non locking plate system for mandibular condyle fracture fixation: a seven year retrospective study.

    Science.gov (United States)

    Zhang, J; Wang, X; Wu, R-H; Zhuang, Q-W; Gu, Q P; Meng, J

    2015-01-01

    This retrospective study evaluated the efficacy of a 2.3 mm locking plate/screw system compared with a 2.0-mm non-locking plate/screw system in fixation of isolated non comminuted mandibular condyle fractures. Surgical records of 101 patients who received either a 2.3 mm locking plate (group A, n = 51) or 2.0 mm non locking plate (group B, n = 50) were analyzed. All patients were followed up to a minimum of 6 months postoperatively and evaluated for hardware related complications, occlusal stability, need for and duration of MMF and mandibular functional results. Four complications occurred in the locking group and eighteen in the non locking group with complication rates equalling 8% and 36% respectively. When comparing the overall results according to plates used, the χ2 test showed a statistically significant difference between the locking and non locking plates (p Mandibular condyle fractures treated with a 2.3 mm locking plate exhibited stable osteosynthesis, were associated with minimal complications and resulted in acceptable mandibular range of motion compared with a 2.0 mm non locking plate.

  13. European Plate Observing System - Norway (EPOS-N): A National Consortium for the Norwegian Implementation of EPOS

    Science.gov (United States)

    Atakan, Kuvvet; Tellefsen, Karen

    2017-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Science: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS-Norway is therefore in line with the European vision of EPOS, i.e. monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures for solid Earth science. The EPOS-Norway project started in January 2016 with a national consortium consisting of six institutions. These are: University of Bergen (Coordinator), NORSAR, National Mapping Authority, Geological Survey of Norway, Christian Michelsen Research and University of Oslo. EPOS-N will during the next five years focus on the implementation of three main components. These are: (i) Developing a Norwegian e-Infrastructure to integrate the Norwegian Solid Earth data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories, (ii) Improving the monitoring capacity in the Arctic, including Northern Norway and the Arctic islands, and (iii) Establishing a national Solid Earth Science Forum providing a constant feedback mechanism for improved integration of multidisciplinary data, as well as training of young scientists for future utilization of all available solid Earth observational data through a single e-infrastructure. Currently, a list of data, data products, software and services (DDSS) is being prepared. These elements will be integrated in the EPOS-N data/web-portal, which will allow users to browse, select and download

  14. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard

    2015-01-01

    through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  15. General purpose - expert system for the analysis and design of base plates

    International Nuclear Information System (INIS)

    Al-Shawaf, T.D.; Hahn, W.F.; Ho, A.D.

    1987-01-01

    As an expert system, the IMPLATE program uses plant specific information to make decisions in modeling and analysis of baseplates. The user supplies a minimum of information which is checked for validity and reasonableness. Once this data is supplied, the program automatically generates a compatible mesh and finite element model from its data base accounting for the attachments, stiffeners, anchor bolts and plate/concrete interface. Based on the loading direction, the program deletes certain degrees of freedom and performs a linear or a nonlinear solution, whichever is appropriate. Load step sizes and equilibrium iteration are automatically selected by the program to ensure a convergent solution. Once the analysis is completed, a code check is then performed and a summary of results is produced. Plots of the plate deformation pattern and stress contours are also generated. (orig.)

  16. Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2005-01-01

    Tectonics has been an inherent part of the architectural field since the Greek temples while the digital media is new to the field. This paper is built on the assumption that in the intermediate zone between the two there is a lot to be learned about architecture in general and the digital media...... in particular. A model of the aspects in the term tectonics – epresentation, ontology and culture – will be presented and used to discuss the current digital tools’ ability in tectonics. Furthermore it will be discussed what a digital tectonic tool is and could be and how a connection between the digital...... and tectonic could become a part of the architectural education....

  17. TERRAIN TECTONICS OF THE CENTRAL ASIAN FOLDED BELT

    Directory of Open Access Journals (Sweden)

    M. M. Buslov

    2014-01-01

    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  18. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, Joseph [Partnership for Home Innovation, Upper Marlboro, MD (United States); Kochkin, Vladimir [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2016-01-01

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  19. An ion beam tracking system based on a parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Carter, I. P.; Ramachandran, K.; Dasgupta, M.; Hinde, D. J.; Rafiei, R.; Luong, D. H.; Williams, E.; Cook, K. J.; McNeil, S.; Rafferty, D. C.; Harding, A. B.; Muirhead, A. G.; Tunningley, T.

    2013-01-01

    A pair of twin position-sensitive parallel plate avalanche counters have been developed at the Australian National University as a tracking system to aid in the further rejection of unwanted beam particles from a 6.5 T super conducting solenoid separator named SOLEROO. Their function is to track and identify each beam particle passing through the detectors on an event-by-event basis. In-beam studies have been completed and the detectors are in successful operation, demonstrating the tracking capability. A high efficiency 512-pixel wide-angle silicon detector array will then be integrated with the tracking system for nuclear reactions studies of radioactive ions. (authors)

  20. Development of an economic solar heating system with cost efficient flat plate collectors

    Science.gov (United States)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  1. Investigation of one-dimensional heat flow in a solarflat plate collector with sun tracing system

    Directory of Open Access Journals (Sweden)

    H Samimi Akhijahani

    2016-09-01

    variation of total heat flow over the time at different surfaces of the collector is determined by using equation 3: 3 Two cases (solar panel with rotation and without rotation were considered for testing. Data measuring was carried out for 9 hours from 8 to 17. The fluid flow rate was 0.0185m3.s-1. The dryer was installed in an environment with air temperature of 31.6 oC and 31.8 oC, with the air velocity of 0.58 m.s-1 and 0.54 m.s-1 and with the relative air humidity of about 21%and 21.5% at the first and second days, respectively. The dryer had an automatic temperature controller to fix the air temperature with an accuracy of ±0.1 oC. An anemometer Yk-2005AM model was used to regulate the required air velocity. The output data of the thermocouples was recorded by a digital thermometer (DL-9601A, Lutron that was connected to a computer using RS232 cable and recorded the temperature at required point every an hour. The relative humidity of the ambient was measured every hour with a digital hygrometer (HT.3600, Taiwan, accuracy of 3%. By assembling controlling system with a DC motor, a precious photocell and a proper mechanism, the frame would rotate by the sun and followed solar radiation, therefore more solar energy produced in solar panel. Results and Discussion The results of the experiments showed that the heat transfer process increased in both cases from the early morning and reached to its maximum value around 12 to 14 o’clock. The trend was more homogeneous in the dryer by absorber plate without rotation due to the decline of the heat accumulation. The mean temperature rise in the solar dryer without rotation was 37oC and in the solar dryer with rotation was 54oC. Because of the rotation of solar plate, variations of solar radiation were low. Therefore, by rotation of the solar dryer panel the temperature rise was 27oC. The values of heat transfer coefficient in the solar dryer with rotation were decreased by the time. This reduction in the hours before noon is

  2. Plated copper substrates for the LASL Antares CO2 laser system

    International Nuclear Information System (INIS)

    Blevins, D.J.; Munroe, J.L.

    1979-01-01

    Antares is a large carbon-dioxide laser system presently under construction at the Los Alamos Scientific Laboratory (LASL). Antares will be part of the LASL High Energy Gas Laser Facility (HEGLF). Its purpose will be to investigate inertial confinement fusion with light of 10.6-μm wavelength. Most of the optics comprising Antares will be reflectors and, for many reasons, copper is the material of choice. The mirrors range in size from 2.5 cm in diameter to 45 cm in diameter. The copper must be very pure to help maximize damage threshold, making plated copper an attractive solution. The final mirror should be very stable, i.e., characterized by very low microcreep. This makes an alloy a more suitable substrate candidate than pure copper. For Antares, all of the smaller mirrors will be made of copper plated onto an aluminum-bronze substrate, and all of the larger mirrors will be made of copper plated onto aluminum alloy 2124. This paper discusses how this design was arrived at and the methods used to assure a satisfactory mirror

  3. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  4. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  5. A multichannel deflection plates control system for the ALF facility at the APS

    International Nuclear Information System (INIS)

    Deriy, B.

    2006-01-01

    A deflection plates control system was developed as part of SPIRIT (Single Photon Ionization/Resonant Ionization to Threshold), a new secondary neutral mass spectrometry (SNMS) instrument that uses tunable vacuum ultraviolet light from the APS ALF (Argonne Linear Free-electron laser) facility for postionization. The system comprises a crate controller with PC104 embedded computer, 32 amplifiers, and two 1-kV power supplies. Thirty-two D/A converters are used to control voltages at the deflection plates within ± 400 V with 100-mV resolution. An algorithm for simultaneous sweeping of up to 16 XY areas with 10-(micro)s time resolution also has been implemented in the embedded computer. The purpose of the system is to supply potentials to various ion optical elements for electrostatic control of keV primary and secondary ion beams in this SNMS instrument. The control system is of particular value in supplying (1) bipolar potentials for steering ions, (2) multiple potentials for octupole lenses that shape the ion beams, and (3) ramped deflection potentials for rastering the primary ion beam. The system has been in use as part of the SPIRIT instrument at the ALF facility since 2002.

  6. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  7. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  8. Studies on the hydrodynamic properties of the sieve plate pulsed column for 30% TRPO-kerosene/nitric acid system

    International Nuclear Information System (INIS)

    Ma Ronglin; Chen Jing; Xu Shiping; Wu Qiulin; Tai Derong; Song Chongli

    2000-01-01

    The hydrodynamic properties of the sieve plate pulsed column for 30% TRPO-kerosene/nitric acid system is studied. With the organic phase or aqueous phase as the continuous one, the dispersed phase behaves mainly as coalescing or dispersing, respectively. The sieve plate pulsed column has a fairish flooding throughput for this system. Under the same pulsation intensity, the flooding throughput for the organic phase as the continuous one is more than that for the aqueous phase as the continuous one

  9. Application of an imaging plate system to in vivo thyroid 131I monitoring

    International Nuclear Information System (INIS)

    Hirota, M.; Saze, T.; Nishizawa, K.

    2002-01-01

    An imaging plate (IP) system was applied to in vivo thyroid radioactive iodine 131 ( 131 I) monitoring. Thyroid contamination by 131 I occurs when medical staffs and patient's families take in 131 I used as treatment agent for thyroid cancer and hyperthyroidism in nuclear medicine, inhabitants take in 131 I released into environment by an accident of nuclear facilities, or worker take in 131 I used by experiment of research. The IP system is a two-dimensional integrating radiation detector which is a plate thinly coated plastic sheet with a kind of phosphore. The IP was exposed to a neck-thyroid phantom loaded 131 I aqueous solution. The IP system displayed a thyroid image that reflects a unique shape characteristic of the thyroid gland. A 131 I thyroid imaging allows visual confirmation of thyroid contamination by 131 I. The counting efficiency was approximately constant when neck diameter, thyroid volume and prethyroid tissue thickness varied within the normal adult. The detection limit of 450Bq was about 1/65 of the screening level of 30kBq. The IP system is applicable for thyroid 131 I monitoring

  10. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, Joseph [Home Innovation Research Labs, Upper Marlboro, MD (United States); Kochkin, Vladimir [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-29

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  11. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  12. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  13. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    Science.gov (United States)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  14. Robust multi-model predictive control of multi-zone thermal plate system

    Directory of Open Access Journals (Sweden)

    Poom Jatunitanon

    2018-02-01

    Full Text Available A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. The mathematical model used in the design was determined through a system identification process. The results showed that when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a system designed to work over a wide range of operating conditions.

  15. Identification of damage in plates using full-field measurement with a continuously scanning laser Doppler vibrometer system

    Science.gov (United States)

    Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.

    2018-05-01

    An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.

  16. Glacial and tectonic influence on terrestrial organic carbon delivery to high latitude deep marine systems: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    Science.gov (United States)

    Childress, L. B.; Ridgway, K. D.

    2014-12-01

    Glacial and tectonic processes on active margins are intrinsically coupled to the transport of sediment and associated organic carbon (OC). Glaciation/deglaciation and the formation of ice sheets can alter the quantity and composition of OC delivered to the marine environment. Over geologic time scales (>1 Ma), exhumation and mass wasting of sedimentary rock from uplifted accretionary wedges inject recycled OC (e.g. kerogen), along with modern OC into the marine environment. The sedimentary record of glacial and tectonic processes along the southern Alaska margin is particularly well preserved at Integrated Ocean Drilling Program (IODP) Site U1417. Lithofacies of Site U1417 can be divided into 3 sedimentary packages that we interpret as linked to the onset of tidewater glaciation along, and tectonic convergence of the Yakutat Terrane with, the continental margin of northwestern Canada and southern Alaska. Based on previous studies linking the development of the Cordilleran Ice Sheet and the movement of the Yakutat Terrane to the development of the Surveyor Fan System, we hypothesize biogeochemical variations in the deposited sediments as a result of changing provenance. Preservation of terrestrial OC that has been documented in sediments of the Alaskan continental shelf margin and sediment routing through the deep-sea Surveyor Channel from the Pleistocene to modern time implies a long-term conduit for this OC to reach the distal portion of the Surveyor Fan system. To correlate marine deposits with terrestrial formations, bulk geochemical and detailed biomarker analyses are used to delineate source material. Preliminary bulk OC content and stable carbon isotope analyses of the Yakataga, Poul Creek, and Kultheith Fms. reveal notable differences. Detailed biomarker analysis by pyrolysis-gas chromatograph-mass spectrometry has revealed further differences between the three primary formations. Using the biogeochemical fingerprints of the Yakataga, Poul Creek, and coal

  17. Development of a nickel plated aluminum krypton-81m target system.

    Science.gov (United States)

    Alrumayan, F; Okarvi, S M; Nagatsu, K; Yanbawi, S; Aljammaz, I

    2017-03-01

    A fully automated system was developed to produce rubidium-81 ( 81 Rb), based on the nat Kr (p, n) 81 Rb reaction. The energy incident on the target was 26MeV. Only 6MeV was stopped inside the gas and the remainder was stopped by a specially designed flange. The target body was characterized by its conical shape and its inner walls were chemically plated with 100±10µm of nickel (Ni). Ni is advantageous as a fairly good conductor of heat whose surface can resist solutions. Additionally, the Ni plated target allowed potassium chloride to dissolve 81 Rb, with no further effect on the target body. The system produced 81 Rb with a production yield of approximately 4.5mCi/µAh, which is close to the calculated expected yield of 5.3mCi/µAh. The system is able to deliver reliable and reproducible radioactivity for patients and can be operated up to 1500µAh before preventive maintenance is due. Key steps in designing the 81 Rb target for selected energy ranges are reported here. Copyright © 2016. Published by Elsevier Ltd.

  18. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  19. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  20. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  1. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  2. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  3. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  4. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  5. Comparative evaluation of image quality in computed radiology systems using imaging plates with different usage time

    International Nuclear Information System (INIS)

    Lazzaro, M.V.; Luz, R.M. da; Capaverde, A.S.; Silva, A.M. Marques da

    2015-01-01

    Computed Radiology (CR) systems use imaging plates (IPs) for latent image acquisition. Taking into account the quality control (QC) of these systems, imaging plates usage time is undetermined. Different recommendations and publications on the subject suggest tests to evaluate these systems. The objective of this study is to compare the image quality of IPs of a CR system, in a mammography service, considering the usage time and consistency of assessments. 8 IPs were used divided into two groups: the first group included 4 IPs with 3 years of use (Group A); the second group consisted of 4 new IPs with no previous exposure (Group B). The tests used to assess the IP's quality were: Uniformity, Differential Signal to Noise Ratio (SDNR), Ghost Effect and Figure of Merit (FOM). Statistical results show that the proposed tests are shown efficient in assessing the conditions of image quality obtained in CR systems in mammography and can be used as determining factors for the replacement of IP's. Moreover, comparing the two sets of IP, results led to the replacement of all the set of IP’s with 3 years of use. This work demonstrates the importance of an efficient quality control, not only with regard to the quality of IP's used, but in the acquisition system as a whole. From this work, these tests will be conducted on an annual basis, already targeting as future work, monitoring the wear of IP's Group B and the creation of a baseline for analysis and future replacements. (author)

  6. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    OpenAIRE

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-01-01

    The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...

  7. GEOMAGNETIC CONJUGACY OF MODERN TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. Ya. Khachikyan

    2013-01-01

    Full Text Available An earthquake is an element of the global electric circuit (GEC –  this new idea suggested in the space age is tested in our study. In the frame of the GEC concept, one may expect that tectonic structures of the northern and southern hemispheres may be magnetically conjugated. It is found that the midocean ridges of the southern hemisphere, located along the boundary of the Antarctic lithosphere plate, are magnetically conjugated with the areas of the junction of continental orogens and platforms in the northern hemisphere. The closest geomagnetic conjugacy exists between the southern boundary of Nazca lithospheric plate and the northern boundaries of Cocos and Caribbean lithospheric plates.

  8. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  9. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    Science.gov (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  10. Post-Jurassic tectonic evolution of Southeast Asia

    Science.gov (United States)

    Zahirovic, Sabin; Seton, Maria; Dietmar Müller, R.; Flament, Nicolas

    2014-05-01

    The accretionary growth of Asia, linked to long-term convergence between Eurasia, Gondwana-derived blocks and the Pacific, resulted in a mosaic of terranes for which conflicting tectonic interpretations exist. Here, we propose solutions to a number of controversies related to the evolution of Sundaland through a synthesis of published geological data and plate reconstructions that reconcile both geological and geophysical constraints with plate driving forces. We propose that West Sulawesi, East Java and easternmost Borneo rifted from northern Gondwana in the latest Jurassic, collided with an intra-oceanic arc at ~115 Ma and subsequently sutured to Sundaland by 80 Ma. Although recent models argue that the Southwest Borneo core accreted to Sundaland at this time, we use volcanic and biogeographic constraints to show that the core of Borneo was on the Asian margin since at least the mid Jurassic. This northward transfer of Gondwana-derived continental fragments required a convergent plate boundary in the easternmost Tethys that we propose gave rise to the Philippine Archipelago based on the formation of latest Jurassic-Early Cretaceous supra-subduction zone ophiolites on Halmahera, Obi Island and Luzon. The Late Cretaceous marks the shift from Andean-style subduction to back-arc opening on the east Asian margin. Arc volcanism along South China ceased by ~60 Ma due to the rollback of the Izanagi slab, leading to the oceanward migration of the volcanic arc and the opening of the Proto South China Sea (PSCS). We use the Apennines-Tyrrhenian system in the Mediterranean as an analogue to model this back-arc. Continued rollback detaches South Palawan, Mindoro and the Semitau continental blocks from the stable east Asian margin and transfers them onto Sundaland in the Eocene to produce the Sarawak Orogeny. The extrusion of Indochina and subduction polarity reversal along northern Borneo opens the South China Sea and transfers the Dangerous Grounds-Reed Bank southward to

  11. The Research of Tectonic Framework and the Fault Activity in Large Detachment Basin System on Northern Margin of South China Sea

    Science.gov (United States)

    Pan, L., Sr.; Ren, J.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This

  12. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    Science.gov (United States)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  13. EXPANDA-75: one-dimensional diffusion code for multi-region plate lattice heterogeneous system

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Katsuragi, Satoru; Suzuki, Tomoo; Ogitsu, Makoto.

    1975-08-01

    An advanced treatment has been developed for analyzing a multi-region plate lattice heterogeneous system using the coarse group constants set provided for a homogeneous system. The essential points of this treatment are modification of effective admixture cross sections and improvement of effective elastic removal cross sections. By this treatment the heterogeneity effects for flux distributions and effective cross sections in the unit cell can be reproduced accurately in comparison with the ultra fine group treatment which consumes huge amounts of computing time. Based on the present treatment and using the JAERI-Fast set, a one-dimensional diffusion code, EXPANDA-75, was developed for extensive use for analyses of fast critical experiments. The user's guide is also presented in this report. (auth.)

  14. The role of 3D plating system in mandibular fractures: A prospective study

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2013-01-01

    Full Text Available Aim: The aim of our study was to evaluate the advantages and disadvantages of 3D plating system in the treatment of mandibular fractures. Patients and Methods: 20 mandibular fractures in 18 patients at various anatomic locations and were treated by open reduction and internal fixation using 3D plates. All patients were followed at regular intervals of 4 th , 8 th and 12 th weeks respectively. Patients were assessed post-operatively for lingual splay and occlusal stability. The incidence of neurosensory deficit, infection, masticatory difficulty, non-union, malunion was also assessed. Results: A significant reduction in lingual splay (72.2% and occlusal stability (72.2% was seen. The overall complication rate was (16.6% which included two patients who developed post-operative paresthesia of lip, three patients had infection and two cases of masticatory difficulty which later subsided by higher antibiotics and 4 weeks of MMF. No evidence of non-union, malunion was noted. Conclusion: A single 3D 2 mm miniplate with 2 mm × 8 mm screws is a reliable and an effective treatment modality for mandibular fracture.

  15. Tectonic and metallogenic model for northeast Asia

    Science.gov (United States)

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major

  16. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns

  17. Manipulation robot system based on visual guidance for sealing blocking plate of steam generator

    International Nuclear Information System (INIS)

    Duan Xingguang; Wang Yonggui; Li Meng; Kong Xiangzhan; Liu Qingsong

    2016-01-01

    To reduce labor intensity and irradiation exposure time inside the steam generator during the maintenance period of the nuclear power plant, a blocking plate manipulation robot system, including manipulation robot and pneumatic control console, is developed as an automatic remote-control tool to help staff to complete sealing steam generator primary pipes. The manipulation robot for fastening/loosening bolts utilizes visual guidance for target position, and the recognition algorithm is exerted to extract the bolt center coordinate values from image captured by camera in the procedure. The control strategy based on the position and current feedback is proposed for single bolt operation and whole bolts automatic operation. Meanwhile, the virtual interactive interface and remote monitoring are designed to improve the operability and safety. Finally, the relative experiments have verified the work effectiveness and the future work would be discussed. (author)

  18. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  19. Trochanteric Fixation With a Third-Generation Cable-Plate System: An Independent Experience.

    Science.gov (United States)

    Stewart, Andrew D; Abdelbary, Hesham; Beaulé, Paul E

    2017-09-01

    Greater trochanteric fracture/nonunion can be a devastating complication with significant functional impact after total hip arthroplasty, and their fixation remains a challenge because of the significant forces being transmitted as well as the poor bone quality often associated with these fractures. The objective of this study is to investigate the rates of reoperation and trochanteric nonunion using a third-generation cable-plate system at one center. Thirty-five patients, mean age 72.9 years (range 46-98 years) with 24 women and 11 men, underwent fixation of their fractured greater trochanter using a third-generation cable-plate system. The indications were: periprosthetic fracture (n = 17), complex primary arthroplasty (n = 5), and complex revision arthroplasty (n = 13). Primary outcomes included rates of reoperation and radiographic union. At a mean follow-up of 2.5 years, trochanteric union rate was 62.9% with nonunion rate of 31.4%, and fibrous union in 5.7%. In regard to quality of initial apposition, only 40% achieved a perfect bone on bone reduction. Ten patients (28.6%) had evidence of wire breakage. Five patients (14.3%) required reoperation and removal of the internal fixation because of lateral hip pain. Fixation of the trochanteric fractures remains a challenge with a relatively high reoperation rate. Poor bone quality and capacity to maintain a stable reduction continue to make this complication after total hip arthroplasty a difficult problem to solve. Copyright © 2017. Published by Elsevier Inc.

  20. Study on radioactive fallout from Fukushima nuclear accident by plant samples using an imaging plate system

    International Nuclear Information System (INIS)

    Minowa, Haruka

    2011-01-01

    The radioactive fallout from the Fukushima nuclear accident was investigated by the radiation images of plant samples using an Imaging Plate System. Plant samples exposed by an imaging plate BASIII 2040 (Fujifilm, Japan) in overnight to one week, and radiation images were read by Typhoon FLA7000 (GE Healthcare Japan Corp.). Identifying and quantitative analysis of radionuclides were measured by Auto Well Gamma System ARC-380CL (Aloha Co. Ltd., Tokyo, Japan). In the cross-sectional images of the bamboo shoot, the radioactive material is shown in heterogeneous distribution, it was found that it concentrated on the tip of the edible portion, and thin skin. These radionuclides were identified as "1"3"7Cs, "1"3"4Cs, and "4"0K. "4"0K is a natural radionuclide, on the other hand "1"3"7Cs and "1"3"4Cs would be derived from the accident of the Fukushima Daiichi Nuclear Power Plant. A high concentration of "1"3"4Cs was shown at the distance of 150 mm from the base of the bamboo shoot by cross-sectional cutting into the width of about 1 mm. It was estimated about 1 kBq of "1"3"4Cs would be included in about 400 g (wet weight) of this one bamboo shoot in an edible part. Imaging data suggests that the contamination of radioactive cesium in this bamboo shoot was caused not by the extraneous attachment but by the absorption from roots. Because bamboo is gather water from extensive area, bamboo shoot concentrates the radioactive material contained in the rain even at low concentrations of radioactive materials in soil. (author)

  1. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    Science.gov (United States)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the

  2. Remote sensing as a preliminary analysis for the detection of active tectonic structures: an application to the Albanian orogenic system

    Directory of Open Access Journals (Sweden)

    Andrea Favretto

    2013-12-01

    Full Text Available As is well known, both the traditional direct geological and geophysical survey methods used to identify geologic features are very expensive and time-consuming procedures. In this regard, remote sensing methods applied to multispectral and medium spatial resolution satellite images allow a more focused approach with respect to the more specific geologic methods. This is achieved by a preliminary land inspection carried out by the semi-automated analysis of satellite imagery. This avoids wasting resources as the geological/geophysical survey methods can be later applied only to those zones suspected of having certain tectonic activity (derived by the remotely sensed imagery. This paper will evaluate an ASTER sensor satellite image (and its derived Digital Elevation Model or DEM, in order to point out the suspected presence of active geologic structures (faults. The area in question is west – central Albania. The results of the remote sensing procedures are later compared with the established data for the same area taken by satellite images, in order to verify the reliability of the adopted method. The source of the established data has been from the bibliography.

  3. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Kochkin, V. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.

  4. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.

    1989-01-01

    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  5. Tectonic design strategies

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    as the poetics of construction, thus it may be considered as an essential activity in the development of the architectural design process.  Similar to the complex nature of the tectonic, the design process is an ongoing movement of interpretation, mediation, and decision making where the skills of the architect...

  6. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    1999-01-01

    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kahn...

  7. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2012-01-01

    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  8. Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator

    Science.gov (United States)

    Ghosh, Amal K.

    2010-09-01

    The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).

  9. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  10. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  11. Development of automatic nuclear emulsion plate analysis system and its application to elementary particle reactions, 2

    International Nuclear Information System (INIS)

    Ushida, Noriyuki; Otani, Masashi; Kumazaki, Noriyasu

    1984-01-01

    This system is composed of precise coordinate measuring apparatuses, a stage controller and various peripherals, employing NOVA 4/C as the host computer. The analyzed results are given as the output to a printer or an XY plotter. The data required for experiment, sent from Nagoya University and others, are received by the host computer through an acoustic coupler, and stored in floppy disks. This paper contains simple explanation on the monitor for the events which occur immediately after the on-line measurement ''MTF 1'', the XY plotter and the acoustic coupler, which hold important position in the system in spite of low cost, due to the development of useful program, as those were not described in the previous paper. The three-dimensional reconstruction of tracks and various errors, corrective processing and analytical processing after corrective processing as off-line processing are also described. In addition, the application of the system was made to the E-531 neutrino experiment in Fermi National Accelerator Laboratory, which attempted to measure the life of the charm particles generated in neutrino reaction with a composite equipment composed of nuclear plates and various counters. First, the outline of the equipment, next, the location of neutrino reaction and the surveillance of charm particle decay using MTF program as the analyzing method at the target, and thirdly, the emulsion-counter data fitting are explained, respectively. (Wakatsuki, Y.)

  12. Tectonic feedback and the earthquake cycle

    Science.gov (United States)

    Lomnitz, Cinna

    1985-09-01

    The occurrence of cyclical instabilities along plate boundaries at regular intervals suggests that the process of earthquake causation differs in some respects from the model of elastic rebound in its simplest forms. The model of tectonic feedback modifies the concept of this original model in that it provides a physical interaction between the loading rate and the state of strain on the fault. Two examples are developed: (a) Central Chile, and (b) Mexico. The predictions of earthquake hazards for both types of models are compared.

  13. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    Science.gov (United States)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  14. Towards absolute plate motions constrained by lower-mantle slab remnants

    NARCIS (Netherlands)

    Meer, D.G. van der; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.; Torsvik, T.H.

    2010-01-01

    Since the first reconstruction of the supercontinent Pangaea, key advances in plate tectonic reconstructions have been made1. Although the movement of tectonic plates since the start of the mid-Cretaceous period (~100 million years (Myr) ago) is relatively well understood1, 2, the longitudinal

  15. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  16. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  17. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  18. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    International Nuclear Information System (INIS)

    Tolosa, S.C.; Marajofsky, A.

    2004-01-01

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate

  19. An expert system to analyze homogeneity in fuel element plates for research reactors

    International Nuclear Information System (INIS)

    Cativa Tolosa, Sebastian; Marajofsky, Adolfo

    2004-01-01

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up.This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to X-ray images. These images are generated when the X-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized X-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate. (author)

  20. A critical appraisal of the phene-plate biochemical fingerprinting system for epidemiological subtyping of Salmonella typhimurium

    DEFF Research Database (Denmark)

    On, S.L.W.; Baggesen, Dorte Lau

    1996-01-01

    The efficacy and reproducibility of the Phene-Plate (PhP) system (Biosys Inova, Stockholm, Sweden) for biochemical fingerprinting of Salmonella typhimurium was investigated. Duplicate and replicate assays on 40 epidemiologically related and unrelated strains were performed in two batches of PhP-48......P-types which are epidemiologically unjustified, (ii) tests currently recommended for PhP-typing S. typhimurium may be somewhat unstable and not satisfactory for fingerprinting purposes, (iii) caution must be exercised when comparing data from different batches of PhP-48 plates, and (iv) best results...

  1. High-Throughput Lipolysis in 96-Well Plates for Rapid Screening of Lipid-Based Drug Delivery Systems

    DEFF Research Database (Denmark)

    Mosgaard, Mette D; Sassene, Philip J; Mu, Huiling

    2017-01-01

    The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were...

  2. Reverse Less Invasive Stabilization System (LISS) Plating for Proximal Femur Fractures in Poliomyelitis Survivors: A Report of Two Cases.

    Science.gov (United States)

    Yao, Chen; Jin, Dongxu; Zhang, Changqing

    2017-11-15

    BACKGROUND Poliomyelitis is a neuromuscular disease which causes muscle atrophy, skeletal deformities, and disabilities. Treatment of hip fractures on polio-affect limbs is unique and difficult, since routine fixation methods like nailing may not be suitable due to abnormal skeletal structures. CASE REPORT We report one femoral neck fracture and one subtrochanteric fracture in polio survivors successfully treated with reverse less invasive stabilization system (LISS) plating technique. Both fractures were on polio-affected limbs with significant skeletal deformities and low bone density. A contralateral femoral LISS plate was applied upside down to the proximal femur as an internal fixator after indirect or direct reduction. Both patients had uneventful bone union and good functional recovery. CONCLUSIONS Reverse LISS plating is a safe and effective technique to treat hip fractures with skeletal deformities caused by poliomyelitis.

  3. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Taherian, Hessam

    2012-01-01

    plate solar collectors in a humid area, Babol, Iran, is assessed both experimentally and numerically. Different methods available in the literature are reviewed and by using a widely accepted model, the sky temperature is determined. The mathematical model for a flat plate solar collector is used...... as a guideline to derive the governing equations of a night sky radiator. Then, a cooling loop, including a storage tank, pump, connecting pipes, and a radiator has been studied experimentally. The water is circulated through the unglazed flat-plate radiator having 4 m2 of collector area at night to be cooled...

  4. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  5. Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows™

    Science.gov (United States)

    Ortner, Hugo; Reiter, Franz; Acs, Peter

    2002-12-01

    TectonicVB for Macintosh and TectonicsFP for Windows TM operating systems are two menu-driven computer programs which allow the shared use of data on these environments. The programs can produce stereographic plots of orientation data (great circles, poles, lineations). Frequently used statistical procedures like calculation of eigenvalues and eigenvectors, calculation of mean vector with concentration parameters and confidence cone can be easily performed. Fault data can be plotted in stereographic projection (Angelier and Hoeppener plots). Sorting of datasets into homogeneous subsets and rotation of tectonic data can be performed in interactive two-diagram windows. The paleostress tensor can be calculated from fault data sets using graphical (calculation of kinematic axes and right dihedra method) or mathematical methods (direct inversion or numerical dynamical analysis). The calculations can be checked in dimensionless Mohr diagrams and fluctuation histograms.

  6. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  7. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte

    2015-01-01

    . On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative......By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... conditions of the built environment. We see an increasing number of square meters in ordinary housing, in commercial buildings and in public buildings such as hospitals and schools that are dealt with as performative structural frameworks rather than qualitative spaces for habitation and contemplation...

  8. A palaeomagnetic perspective of Precambrian tectonic styles

    Science.gov (United States)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  9. Sandbox Tectonics As A Teaching Tool

    Science.gov (United States)

    Delaughter, J.

    2005-12-01

    obvious manner. Because the experiments produce tangible results, the students experience them on a more visceral level and may be able to incorporate the concepts better than they would through a description or computer simulation of the effects (Klosko et al., 2000). And, as the equipment used is very inexpensive, the experiment is well within the means of almost any school system. References Carey, S., R. Evans, M. Honda, E. Jay, C. Unger, 1989, ``An experiment is when you try it and see if it works'': A study of grade 7 students' understanding of the construction of knowledge, International Journal of Science Education, 11, 514-529 DeLaughter, J., S. Stein, C. Stein, K. R. Bain, 1998, Preconceptions abound among students in an introductory earth science course, EOS, 79, 429+432 Dominguez, S, J. Malavieille, S. Lallemand, 2000, Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments, Tectonics, 19(1), 182-196 Herbert, B., 2003, The role of scaffolding student metacognition in developing mental models of complex, Earth and environmental systems. DFG-NSF International Workshops on Research and Development in Mathematics and Science Education, November 19-21, 2003, Washington D.C. http://geoexplorer.tamu.edu/dfgnsf/WG1.html Horsfield, W.T., 1977, An experimental approach to basement controlled faulting, Geologie en Mijnbouw, 56, 363-370 Klosko, E., J. DeLaughter, S. Stein, 2000, Technology in introductory geophysics: the high - low mix, Computers & Geosciences, 26(6), 693-698

  10. A new method of the light irradiation image by the computed radiography (imaging plate) system

    International Nuclear Information System (INIS)

    Aiba, Susumu; Nishi, Katsuki.

    1997-01-01

    There are two method for the purpose of diagnosing medically by using gamma-ray light irradiation image. One is to use of the scintillation camera for gamma-ray, the other is to use of the photostimulable luminescence point by the secondary excitation of the image plate (IP) system for X-ray. The standpoint of the spatial resolution at the total medical image, using gamma-ray, the first can get the image on a short time, but the first is a poor image quality, and the second is good image quality, but the second can get the image on a long time, because of insensitive to gamma-ray. We report on the improvement for IP's week point by our proposal method, and by our clinical and quantitative analysis data, to use the highly efficient IP (ST-III). We make the improvement on the imaging time (from 30 minutes to 20 minutes), and the inprocessing time (from 33-50 minutes to 27 minutes) for a former method on an organism. We strongly believe that our convenience improvement method, and our clinical quantitative analysis data can contribute to the wide application as well as the quality up for the clinical diagnosis to use gamma-ray. (author)

  11. Reduction of rib fractures with a bioresorbable plating system: preliminary observations.

    Science.gov (United States)

    Vu, Kim-Chi; Skourtis, Mia E; Gong, Xi; Zhou, Minhao; Ozaki, Wayne; Winn, Shelley R

    2008-05-01

    Operative fixation of rib fractures can reduce morbidity and mortality. Currently, resorbable fixation devices are used in a variety of surgical procedures. A standard osteotomy was prepared in 30 New Zealand white rabbits at the 12th rib. Eighteen had surgical repair with bioresorbable plates and 12 underwent nonoperative management. Half the animals in each group were killed at 3-week postfracture and the remaining animals were killed at 6-week postfracture. Ribs were radiographed and processed histologically to assess fracture healing. Rib reduction was defined as the alignment of the rib ends in a structural condition similar to the prefractured state and quantitative radiomorphometry measured the radiopaque callus surrounding the rib injury sites. Statistical analysis was performed using Fisher's exact test and an unpaired Student's t test and significance was established at p rib fractures remained reduced in the operative group, whereas zero of six and three of six of the rib fractures remained reduced, respectively, in the nonoperative group. A statistically significant increase in radiopaque callus surrounding the rib injury sites was observed at 3 and 6 weeks in the fixed groups. Fixation of rib fractures with a bioresorbable miniplate system was superior to nonoperative treatment at the 3-week interval, with a statistically significant increase in radiopaque callus formation at both 3 and 6 weeks. Additional studies will evaluate the biomechanical outcomes and degradation tissue response after extended in vivo intervals.

  12. Deciphering detailed plate kinematics of the Indian Ocean and developing a unified model for East Gondwanaland reconstruction: An Indian-Australian-French initiative

    Digital Repository Service at National Institute of Oceanography (India)

    Yatheesh, V.; Dyment, J.; Bhattacharya, G.C.; Muller, R.D.

    The Indian Ocean formed as a result of the fragmentation and dispersal of Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major tectonic...

  13. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    Science.gov (United States)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  14. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  15. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  16. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  17. A counterexample of the Euler condition: the Appell–Hamel dynamical system on a horizontally moving plate

    International Nuclear Information System (INIS)

    Shan-Shan, Xu; Shu-Min, Li; Jamal, Berakdar

    2009-01-01

    As a counterexample of the Euler condition for nonholonomic constraint problems [H. C. Shen, Acta Phys. Sin. 54, 2468 (2005)], we investigate the Apell–Hamel dynamical system on a horizontally moving plate. The inconsistency of the results with Newton mechanics suggests that the Euler condition is not a universal model for nonlinear nonholonomic systems. This is attributed to the fact that the virtual displacements so obtained are not normal to the constraint forces. (general)

  18. Cyclic carbonate sedimentation in the Upper Triassic Dachstein Limestone, Austria: The role of patterns of sediment supply and tectonics in a platform-reef-basin system

    Energy Technology Data Exchange (ETDEWEB)

    Satterley, A.K. [Univ. Innsbruck (Austria). Inst. fuer Geologie und Palaeontologie

    1996-03-01

    This study addresses the origin of the famous Lofer cycles by looking at the sedimentology of an entire depositional system. More than 700 m of platform Lofer cycles at the Steinernes Meer are analyzed, and the transition from those peritidal Lofer cycles through cyclic and noncyclic sediments of the adjacent Hochkoenig reef complex to the Hochkoenig reef slope and both Koessen and Hallstatt basin successions is outlined. This paper stresses the notion of a dynamic balance between random deposition and reworking within an unpredictable and complex sedimentary system, rather than orderly sedimentation in response to orbital forcing. The role of random vertical tectonic downdropping is considered here but has rarely been fully considered in previous studies of cyclic carbonates. It may not be realistic to assume that subsidence over time can be accurately represented by a smooth trace in areas where subsidence is partly or wholly fault controlled. Throughout this paper, the term periodic is used to indicate events with a specific temporal recurrence interval. Aperiodic is used to describe temporally recurrent events that lack a controlled recurrence interval. Aperiodic events described in this paper could also be loosely considered random.

  19. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  20. New tectonic data constrain the mechanisms of breakup along the Gulf of California

    Science.gov (United States)

    Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David

    2014-05-01

    The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San

  1. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System

    NARCIS (Netherlands)

    Balen, R.T. van; Houtgast, R.F.; Wateren, F.M. van der; Berghe, J. van den; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  2. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System.

    NARCIS (Netherlands)

    van Balen, R.T.; Houtgast, R.F.; van der Wateren, F.M.; Vandenberghe, J.; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  3. Stability of midface fracture repair using absorbable plate and screw system pilot holes drilled and pin placement at angles other than 90°.

    Science.gov (United States)

    Carron, Michael A; Zuliani, Giancarlo; Pereira, Lucio; Abuhamdan, Maher; Thibault, Adrianna; Dau, Nathan; Bir, Cynthia

    2014-01-01

    Conventional plating systems use titanium plates for fixation of fractures, with benefits of strength and biocompatibility. However, titanium plates require that screws be placed at a 90° angle to the pilot holes. In the midface, this becomes extremely difficult. Today, a variety of craniomaxillofacial osteosynthesis systems are available, including resorbable plating systems. Specifically, the KLS Martin Sonic Weld system ultrasonically fuses the plate and the head of the pin when placed and will fill the pilot hole grooves completely even at less than 90° angles, which provides a tremendous advantage in midface fracture repair. To determine if the KLS Martin Sonic Weld system provides plate-screw construct stability in human heads even when placed at acute angles at the midface buttresses. DESIGN, SETTING, AND SPECIMENS: Twenty cadaveric head specimens with the mandible removed were prepared by creating osteotomies in the midface buttresses bilaterally. Specimens were defleshed and placed in a 2-part testing rig to hold and position the head for testing in a standard material testing system. Testing was performed at the Wayne State University Bioengineering test laboratories, Detroit, Michigan, using an Instron device and high-speed camera. Specimens were plated on one side of the midface using the KLS Martin Sonic Weld system with pilot holes and pins placed at 90° angles. On the contralateral side, the buttresses were plated with the KLS Martin Sonic Weld system at 60°, 45°, and 30° angles. Data were collected using the TDAS data acquisition system and were compared with matched pairs within each specimen. Ultrasonically vibrated pins placed into absorbable mini-plates at less than 90° angles with the KLS Martin Sonic Weld system were compared with the same amount of stress as the system placed at a 90° angle before demonstrating plate-screw construct failure. RESULTS Fifty-seven paired tests were collected, with 114 total tests. Twenty failures were

  4. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  5. Near Fault Observatories (NFO) services and integration plan for European Plate Observing System (EPOS) Implementation Phase

    Science.gov (United States)

    Chiaraluce, Lauro

    2016-04-01

    the services provided by other Thematic Core Services for the standard data (e.g. seismic and geodetic) and on the direct access to the e-infrastructures of individual NFOs via the Integrated Core Services web services for access and distribution of non standard data (e.g. strain- and tilt-meters, geochemical and electro- magneto-telluric data). We will collaborate with the other groups possessing the same data on data harmonization in terms of both format and metadata description to optimise and facilitate the integration and interoperability processes. The services will include a Virtual Laboratory, novel visualization tools for data and products describing the anatomy of active faults and the physical processes governing earthquake generation. VL is an online engagement and knowledge sharing initiative for communicating to the other scientists, stockholders and the public the state of scientific knowledge concerning earthquake source and tectonic processes generating catastrophic events. The availability of real-time data provides the unique opportunity of observing all phases of the earthquake rupture. It is thus of crucial importance developing methodologies to follow in real-time the evolution of the event (e.g. Earthquake Early Warning systems). NFOs are ideal infrastructures for hosting testing centers where a variety of scientific algorithms for real-time monitoring can be independently evaluated. Besides the interest for fundamental science, such developments have a societal impact and can attract new stakeholders such as industry partners who are interested in adopting in such (e.g. EEW) technologies.

  6. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.

  7. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  8. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    Science.gov (United States)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  9. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  10. Spatial distribution of the earthquakes in the Vrancea zone and tectonic correlations

    International Nuclear Information System (INIS)

    Bala, Andrei; Diaconescu, Mihai; Biter, Mircea

    2001-01-01

    The tectonic plate evolution of the whole Carpathian Arc and Pannonian back-arc Basin indicates that at least three tectonic units have been in contact and at the same time in relative motion: the East European Plate, the Moesian plate and the Intra-Alpine plate. There were plotted graphically all the earthquake hypocentres from the period 1982-2000 situated in an area which includes Vrancea zone. Because of the great number of events plotted, they were found to describe well the limits of the tectonic plate (plate fragment?) which is supposed to be subducted in this region down to 200 km depth. The hypothesis of a plate fragment delaminated from an older subduction can not be overruled. These limits were put in direct relations with the known geology and tectonics of the area. Available fault plane solutions for the crustal earthquakes are analyzed in correlation with the main faults of the area. A graphic plot of the sunspot number is correlated with the occurrence of the earthquakes with magnitudes greater than 5. (authors)

  11. Laminar dispersion in parallel plate sections of flowing systems used in analytical chemistry and chemical engineering

    NARCIS (Netherlands)

    Kolev, S.D.; Kolev, Spas D.; van der Linden, W.E.

    1991-01-01

    An exact solution of the convective-diffusion equation for fully developed parallel plate laminar flow was obtained. It allows the derivation of theoretical relationships for calculating the Peclet number in the axially dispersed plug flow model and the concentration distribution perpendicular to

  12. The Use of the String of Pearls Locking Plate System in the Stabilisation of a Comminuted Calcaneal Fracture in a Giant Breed Dog

    Directory of Open Access Journals (Sweden)

    A. B. Scrimgeour

    2011-01-01

    Full Text Available An eight-year-old male Pyrenean mountain dog was presented with a comminuted fracture of the right calcaneus following motor vehicle trauma. The fracture was stabilised with a plate-rod construct, using the String of Pearls locking plate system and an intramedullary pin. Healing was uncomplicated.

  13. Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry

    Directory of Open Access Journals (Sweden)

    Sedat Yayla

    2017-01-01

    Full Text Available The most widely utilized process of produced water treatment is considered to be use of coalescing or corrugated plate systems in the oil industry because these systems have promising results in the acceleration of the separation process. Even use of corrugated plate systems seem to be effective in separation processes, the geometrical parameters of the plate system could greatly influence the performance of separation process. In this study, a two-dimensional computational fluid dynamics model for coalescing plates was developed to investigate Reynolds number and plate hole shape on separation efficiency. Spacing between plates was set to 12 mm while fluid mixture’s Reynolds number varied between 5 and 45 for the computational model. Hole profile and dimensions were determined to be cylindrical, rectangular and ellipse shapes as 10, 15 and 20 mm based on hydraulic diameter definition, respectively. Furthermore, when hole profiles of coalescing plates were chosen to be ellipse and rectangular shapes, separation efficiency nearly stayed constant regardless of hole dimension. The study also reported that change of oil fraction from 5% to 15% caused approximately 30% increase in the separation efficiency. The investigation also revealed Reynolds number of the mixture was inversely proportional to the separation efficiency. It was also found that the highest separation efficiency was obtained for a cylindrical shape with a hole diameter of 15 mm when distance between plates was 12 mm and Reynolds number was 18.

  14. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.

    1987-10-01

    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  15. Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution

    Directory of Open Access Journals (Sweden)

    Franco Pirajno

    2016-05-01

    Full Text Available In this contribution we use VMS mineral systems in the Bryah rift-basin to constrain the tectonic setting of the widespread mafic and ultramafic magmatism that characterises the rift-basin in question. Two distinct, but temporally closely associated, lithostratigraphic sequences, Narracoota and Karalundi Formations, are discussed. The Karalundi Formation is the main host of VMS mineral systems in the region. The Karalundi Formation consists of turbiditic and immature clastic sediments, which are locally intercalated with basaltic hyaloclastites, dolerites and banded jaspilites. We propose that the basaltic hyaloclastites, dolerites and clastics and jaspilites rocks, form a distinct unit of the Karalundi Formation, named Noonyereena Member. The VMS mineral systems occur near the north-east trending Jenkin Fault and comprise the giant and world-class DeGrussa and the Red Bore deposits. The nature of these deposits and their intimate association with terrigenous clastic rocks and dominantly marine mafic volcanic and subvolcanic rocks, as well as the common development of peperitic margins, are considered indicative of a Besshi-type environment, similar to that of present-day Gulf of California. Our Re-Os age data from a primary pyrite yielded a mean model age of 2012 ± 48 Ma, which coincides (within error with recent published Re-Os data (Hawke et al., 2015 and confirms the timing of the proposed geodynamic evolution. We propose a geodynamic model that attempts to explain the presence of the Narracoota and Karalundi Formations as the result of mantle plume activity, which began with early uplift of continental crust with intraplate volcanism, followed by early stages of rifting with the deposition of the Karalundi Formation (and Noonyereena Member, which led to the formation of Besshi-type VMS deposits. With on-going mantle plume activity and early stages of continental separation, an oceanic plateau was formed and is now represented by mafic

  16. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the

  17. Neotectonics of the Roer Valley rift system; style and rate of crustal deformation inferred from syn-tectonic sedimentation

    NARCIS (Netherlands)

    Berg, van den M.W.

    1995-01-01

    River sediments of the Meuse, Rhine and local Belgian systems have been preserved in various parts of the Roer Valley rift. Age-altitude positions of Meuse terraces provide a detailed record of neotectonic regional uplift. It shows accelerations and decelerations superimposed on a long-term average

  18. Triassic to Cenozoic multi-stage intra-plate deformation focused near the Bogd Fault system, Gobi Altai, Mongolia

    Directory of Open Access Journals (Sweden)

    Douwe J.J. van Hinsbergen

    2015-09-01

    Full Text Available The Gobi Altai region of southern Mongolia has been in the Eurasian plate interior since the mid-Mesozoic, yet has experienced episodic phases of deformation since that time. In this paper, we document field evidence to characterize and date the intra-plate tectonic history of the Gobi Altai region from the Triassic to the present. To this end, we provide detailed mapping of the structure and stratigraphy of the eastern flanks of Mt. Ih Bogd that contains the widest variety of rock-time units in the area. We carry out geochronological analysis of basaltic lavas and basement granite in the area. We demonstrate that a crystalline basement with a 502 ± 8 Ma granitoid (U/Pb underwent two phases of basin formation in the Mesozoic, which we date with new 40Ar/39Ar lava ages of 218.5 ± 1.5, 123.2 ± 0.7 and 124.8 ± 1.2 Ma, respectively. Both phases are linked to deposition of fluvio-lacustrine sediments and trap-like basaltic volcanics, with cumulative thicknesses of 1000–1500 m. Both basins were likely north-facing half-grabens that developed under ∼N–S extension, but were subsequently overthrusted by Paleozoic and older crystalline basement during a less well constrained, but likely mid-Cretaceous phase of N–S shortening and basin inversion. Our results are consistent with recent seismic imaging of rift basins ∼100 km to the NE of the study area where a similar history was reconstructed. The multiple phases of intra-plate deformation appear to have parallel structural trends, most likely due to reactivated Paleozoic basement structures created during the original terrane amalgamation of the Central Asian Orogenic Belt continental crust. This strong basement heterogeneity may predispose it to reactivation, and make it sensitive to changes in the overall stress field of the Eurasian plate driven by forces at its margins and base. Detailed study of Mongolia's multi-stage tectonic history may thus provide a key proxy for the long

  19. Transition From a Magmatic to a Tectonic Rift System : Seismotectonics of the Eyasi- Manyara Region, Northern Tanzania, East Africa

    Science.gov (United States)

    Albaric, J.; Perrot, J.; Deschamps, A.; Deverchere, J.; Wambura, R. F.; Tiberi, C.; Petit, C.; Le Gall, B.; Sue, C.

    2008-12-01

    How a rift system propagates and breaks throughout a cold and thick continental crust remains poorly known. Only few places allow to address the question. In the East African Rift System (EARS), the eastern magma- rich branch abruptly splits into two amagmatic arms (the Eyasi and Manyara faulted systems), south of a E-W volcanic chain (the Ngorongoro-Kilimanjaro transverse volcanic belt), as crossing the Archaean Tanzanian craton margin. We present the first detailed seismotectonic picture of the Eyasi-Manyara rifts where a network of ~25 seismometers was settled from June to November 2007 (SEISMO-TANZ'07 seismological experiment). From the seismicity recorded by the network, we identify active faults and discuss the stress field framework obtained from the inversion of focal mechanisms. We use the determined depth of earthquakes (1) to discuss the crustal structure of the transition zone from a magma-rich to a magma-starved section of the EARS and (2) to further emphasize the rheological control on depth distributions in the EARS (Albaric et al., Tectonophysics, 2008). The stress and strain directions deduced from our work are also used to question recently published kinematics and conceptual models of the EARS (Calais et al., Geol. Soc. London, 2006 ; Le Gall et al., Tectonophysics, 2008).

  20. Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2016-01-01

    Full Text Available A novel tuned heave plate energy-harvesting system (THPEH is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD and is composed of spring supports, a power take-off system (PTO and four movable heave plates. The permanent magnet linear generators (PMLG are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions.

  1. Favorable Structural–Tectonic Settings and Characteristics of Globally Productive Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Hinz, Nick [UNR; Coolbaugh, Mark [ATLAS Geosciences Inc; Shevenell, Lisa [ATLAS Geosciences Inc; Stelling, Pete [WWU; Melosh, Glenn [GEODE; Cumming, William [Cumming Geoscience

    2016-02-19

    There are currently 74 productive geothermal systems associated with volcanic centers (VCs) in arcs globally, including actively producing systems, past producing systems, and systems with successful flow tests. The total installed or tested capacity of these 74 geothermal systems is 7,605 MWe, ranging from 0.7 MWe each at Copahue, Chile and Barkhatnaya Sopka, Kamchatka to 795 MWe, Larderello, Italy, and averaging 90.5 MWe per system. These 74 productive VCs constitute 10% of 732 VCs distributed across more than a dozen major arcs around the world. The intra-arc (within-arc) tectonic setting is highly variable globally, ranging from extension to transtension, transpression, or compression. Furthermore, the shear strain associated with oblique plate convergence can be accommodated by either intra-arc or arc-marginal deformation. The structural-tectonic settings of these 74 productive VCs were characterized to add to a global catalog of parameters to help guide future exploration, development, and regional resource potential.

  2. Image quality in conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Bautz, W.; Saebel, M.

    2000-01-01

    Purpose: Comparison of image quality between conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system, two digital storage plate systems and two digital systems in CCD-technique. Additionally, the radiograms of one digital phosphor storage plate system were post-processed emphasizing contrast and included in the comparison. Results: The detectability of details was the best with the digital mammography in CCD-technique in comparison with the conventional film screen technique resp. digital phosphor storage plate in magnification technique. Conclusions: Based on these results there is the possibility to replace the conventional film screen system by further studies - this has to be confirmed. (orig.) [de

  3. Management of pediatric mandibular fractures using bioresorbable plating system - Efficacy, stability, and clinical outcomes: Our experiences and literature review.

    Science.gov (United States)

    Singh, Mahinder; Singh, R K; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2016-01-01

    The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients.

  4. Management of pediatric mandibular fractures using bioresorbable plating system – Efficacy, stability, and clinical outcomes: Our experiences and literature review

    Science.gov (United States)

    Singh, Mahinder; Singh, R.K.; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2015-01-01

    Aims The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Methods Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Results Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). Conclusion 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients. PMID:27195206

  5. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  6. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  7. Alfred Wegener - From Continental Drift to Plate Tectonics

    Indian Academy of Sciences (India)

    rise to such incredible heights? What makes ... pattern of land and sea throughout the geological history of the. Earth. ..... eventually reaches a level that exceeds the slipping-point of rocks on either .... Clement of Florida International. University ...

  8. GIS and geodatabases application to global scale plate tectonics modelling

    OpenAIRE

    Hochard, Cyril; Stampfli, Gérard

    2008-01-01

    Les reconstructions palinspastiques fournissent le cadre idéal à de nombreuses études géologiques, géographiques, océanographique ou climatiques. En tant qu’historiens de la terre, les “reconstructeurs” essayent d’en déchiffrer le passé. Depuis qu’ils savent que les continents bougent, les géologues essayent de retracer leur évolution à travers les âges. Si l’idée originale de Wegener était révolutionnaire au début du siècle passé, nous savons depuis le début des années « soixante » que les c...

  9. GIS and geodatabases application to global scale plate tectonics modelling

    OpenAIRE

    Hochard, C.

    2008-01-01

    Les reconstructions palinspastiques fournissent le cadre idéal à de nombreuses études géologiques, géographiques, océanographique ou climatiques. En tant qu?historiens de la terre, les "reconstructeurs" essayent d?en déchiffrer le passé. Depuis qu?ils savent que les continents bougent, les géologues essayent de retracer leur évolution à travers les âges. Si l?idée originale de Wegener était révolutionnaire au début du siècle passé, nous savons depuis le début des années « soixante » que les c...

  10. Water in geodynamical models of mantle convection and plate tectonics

    Science.gov (United States)

    Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.

    2017-12-01

    The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.

  11. Learning about Plate Tectonics through Argument-Writing

    Science.gov (United States)

    Klein, Perry D.; Samuels, Boba

    2010-01-01

    In a quasi-experimental study (N = 60), grade 7/8 teachers students were taught to write arguments in content-area subjects. After instruction, students drew on document portfolios to write on a new topic: "Do the continents drift?" In a MANCOVA, students who participated in argument instruction scored significantly higher than a control…

  12. The tectonic plates are shifting: cultural change vs. mural dyslexia.

    Science.gov (United States)

    Cohn, Kenneth; Friedman, Leonard H; Allyn, Thomas R

    2007-01-01

    In response to a rapidly changing healthcare marketplace, a variety of new business models have arisen, including new specialties (hospitalists), selective care (concierge medicine), and joint ventures (ambulatory surgical centers, specialty hospitals), some with hospitals and others with independent vendors. Since both hospitals and physicians are feeling the squeeze of rising expenses, burdensome regulations, heightened consumer expectations, and stagnant or decreasing reimbursement, the response to global economic competition and the need to improve clinical and financial outcomes can bring physicians and hospitals together rather than drive them farther apart. In response to perceived threats, physicians and hospital executives can engage in defensive reasoning that may feel protective but can also lead to mural dyslexia, the inability or unwillingness to see the handwriting on the wall. The strategies of positive deviance (finding solutions that already exist in the community rather than importing best practices), appreciative inquiry (building on success rather than relying solely on root-cause analyses of problems), and structured dialogue (allowing practicing physicians to articulate clinical priorities rather than assuming they lack the maturity and will to come to consensus) are field-tested approaches that allow hospital leaders to engage practicing physicians and that can help both parties work more interdependently to improve patient care in a dynamically changing environment. Physician-hospital collaboration based on transparency, active listening, and prompt implementation can offer sustainable competitive advantage to those willing to embark on a lifetime learning journey.

  13. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  14. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  15. Multi-scale tectonic controls on fluvial terrace formation in a glacioeustatically-dominated river system: inference from the lower Min¿o terrace record

    NARCIS (Netherlands)

    Viveen, W.

    2013-01-01

    The general aim of this thesis is to untangle the interacting effects of climate, glacioeustacy, and regional, and local tectonics on fluvial terrace formation. The NW Iberian lower Miño River valley was chosen as a study site, because for this region, a very detailed, long-term,

  16. On the plumbing system of volcanic complexes: field constraints from the Isle of Skye (UK) and FEM elasto-plastic modelling including gravity and tectonics.

    Science.gov (United States)

    Bistacchi, A.; Pisterna, R.; Romano, V.; Rust, D.; Tibaldi, A.

    2009-04-01

    The plumbing system that connects a sub-volcanic magma reservoir to the surface has been the object of field characterization and mechanical modelling efforts since the pioneering work by Anderson (1936), who produced a detailed account of the spectacular Cullin Cone-sheet Complex (Isle of Skye, UK) and a geometrical and mechanical model aimed at defining the depth to the magma chamber. Since this work, the definition of the stress state in the half space comprised between the magma reservoir and the surface (modelled either as a flat surface or a surface comprising a volcanic edifice) was considered the key point in reconstructing dike propagation paths from the magma chamber. In fact, this process is generally seen as the propagation in an elastic media of purely tensional joints (mode I or opening mode propagation), which follow trajectories perpendicular to the least compressive principal stress axis. Later works generally used different continuum mechanics methodologies (analytic, BEM, FEM) to solve the problem of a pressure source (the magma chamber, either a point source or a finite volume) in an elastic (in some cases heterogeneous) half space (bounded by a flat topography or topped by a "volcano"). All these models (with a few limited exceptions) disregard the effect of the regional stress field, which is caused by tectonic boundary forces and gravitational body load, and consider only the pressure source represented by the magma chamber (review in Gudmundsson, 2006). However, this is only a (sometimes subordinate) component of the total stress field. Grosfils (2007) first introduced the gravitational load (but not tectonic stresses) in an elastic model solved with FEM in a 2D axisymmetric half-space, showing that "failure to incorporate gravitational loading correctly" affect the calculated stress pattern and many of the predictions that can be drawn from the models. In this contribution we report on modelling results that include: 2D axisymmetric or true

  17. GEODYNAMIC ACTIVITY OF MODERN STRUCTURES AND TECTONIC STRESS FIELDS IN NORTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    L. P. Imaeva

    2017-01-01

    Full Text Available Based on the analysis of changes in the stress-strain state of the crust at the boundary of the Eurasian and North American tectonic plates, we develop a dynamic model of the main seismogenerating structures inNortheast Asia. We have established a regularity in changes of geodynamic regimes within the interplate boundary between the Kolyma-Chukotka crustal plate and the Eurasian, North American and Pacific tectonic plates: spreading in the Gakkel Ridge area; rifting in the Laptev Sea shelf; a mixture of tectonic stress types in the Kharaulakh segment; transpression in the Chersky seismotectonic zone, in the segment from the Komandor to the Aleutian Islands, and in the Koryak segment; and crustal stretching in the Chukotka segment.

  18. Tectonics in the Northwestern West Philippine Basin

    Institute of Scientific and Technical Information of China (English)

    Ni Xianglong; Wu Shiguo; Shinjo Ryuichi

    2008-01-01

    The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagnma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

  19. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F. [Egypt−Japan University of Science and Technology, Chemicals and Petrochemicals Engineering Department (Egypt); Abdel-Rahman, A. B. [Egypt−Japan University of Science and Technology, Electronics and Communications Engineering Department (Egypt)

    2016-09-15

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  20. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    International Nuclear Information System (INIS)

    El-Tayeb, A.; El-Shazly, A. H.; Elkady, M. F.; Abdel-Rahman, A. B.

    2016-01-01

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O 3 in air discharge, O 3 in water, and H 2 O 2 ) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  1. Teaching Tectonics to Undergraduates with Web GIS

    Science.gov (United States)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  2. A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays

    Science.gov (United States)

    1981-01-01

    The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.

  3. Convergent plate margin dynamics : New perspectives from structural geology, geophysics and geodynamic modelling

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2010-01-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide.

  4. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-01-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flowforce the

  5. Teaching And Learning Tectonics With Web-GIS

    Science.gov (United States)

    Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.

    2012-12-01

    Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key

  6. Gravity and magnetic anomalies of the Cyprus arc and tectonic implications

    Science.gov (United States)

    Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.

    2003-04-01

    In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland

  7. Biological modulation of tectonics

    Science.gov (United States)

    Sleep, N. H.; Bird, D. K.

    2008-12-01

    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  8. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  9. Heat/mass transfer on effusion plate with circular pin fins for impingement/effusion cooling system with initial crossflow

    International Nuclear Information System (INIS)

    Hong, Sung Kook; Rhee, Dong Ho; Cho, Hyung Hee

    2005-01-01

    Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging jet, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing 16%∼22% enhancement of overall Sh value at high blowing ratio of M=1.5

  10. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din; Hassanein, Ahmed

    2009-01-01

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m 2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  11. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu

    2009-12-15

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  12. Morphological expression of active tectonics in the Southern Alps

    Science.gov (United States)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion

  13. A trial fabrication of activity standard surface sources and positional standard surface sources for an imaging plate system

    International Nuclear Information System (INIS)

    Sato, Yasushi; Hino, Yoshio; Yamada, Takahiro; Matsumoto, Mikio

    2003-01-01

    An imaging plate system can detect low level activity, but quantitative analysis is difficult because there are no adequate standard surface sources. A new fabrication method was developed for standard surface sources by printing on a sheet of paper using an ink-jet printer with inks in which a radioactive material was mixed. The fabricated standard surface sources had high uniformity, high positional resolution arbitrary shapes and a broad intensity range. The standard sources were used for measurement of surface activity as an application. (H. Yokoo)

  14. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  15. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    This paper is related to previous research by the authors that examine the phenomenon of tectonics as architectural design theory and method. These studies have shown that the notion of tectonics at large is associated with exclusive architecture, and that, as a profession architects have...... to develop methods for applying tectonic knowledge extracted from significant existing examples for developing future practical methods (Frampton 2002: 81). The specific intention of this paper is to push the understanding of tectonics further, into the scale of the urban context and thereby to discuss...... using Hansen’s work as a case study. (Beim & Madsen (ed.) 2014) Methodologically this has been done by applying the notion of ‘urban tectonics’ inspired by the work of Eduard F. Sekler, as a critical lens. (Sekler 1964, Sekler 1965) Through this lens we study how Hansen was able to treat culture...

  16. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  17. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    Science.gov (United States)

    Reinen, L. A.; Yule, J. D.

    2014-12-01

    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  18. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  19. Public regulations towards a tectonic architecture

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2006-01-01

    's activities has primarily been to support the optimization of the building process through ‘trimmed building’ and ‘partnering’ that only takes the immediate economic benefits of the changes to the building process into account and as such has no measures for architectural quality. The public initiatives so......Public regulations can support tectonic architecture by changes to the tendering system, supporting new organizational structures of the building industry in public building projects and suggesting a focus on innovation through increased research and development activity. The Danish state...... are happening very slowly which is understandable when there is no economic incitement for the industry to change. A change of these public regulations from sticks to carrots could create the economic incitement for the building industry to create tectonic architecture and thereby develop the building industry...

  20. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    Science.gov (United States)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  1. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    Science.gov (United States)

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  2. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  3. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    Science.gov (United States)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  4. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    Science.gov (United States)

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  5. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  6. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    Science.gov (United States)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing

  7. Application of heavy-ion microbeam system at Kyoto University: Energy response for imaging plate by single ion irradiation

    International Nuclear Information System (INIS)

    Tosaki, M.; Nakamura, M.; Hirose, M.; Matsumoto, H.

    2011-01-01

    A heavy-ion microbeam system for cell irradiation has been developed using an accelerator at Kyoto University. We have successfully developed proton-, carbon-, fluorine- and silicon-beams in order to irradiate a micro-meter sized area with ion counting, especially single ion irradiation. In the heavy-ion microbeam system, an imaging plate (IP) was utilized for beam diagnostics on the irradiation. The IP is widely used for radiography studies in biology. However, there are a few studies on the low linear energy transfer (LET) by single ions, i.e., low-intensity exposure. Thus we have investigated the energy response for the IP, which can be utilized for microbeam diagnostics.

  8. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  9. Loads specification and embedded plate definition for the ITER cryoline system

    Science.gov (United States)

    Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.

    2015-12-01

    ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.

  10. Buckling analysis of laminated plates using the extended Kantorovich method and a system of first-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Singhatanadgid, Pairod; Jommalai, Panupan [Chulalongkorn University, Bangkok (Thailand)

    2016-05-15

    The extended Kantorovich method using multi-term displacement functions is applied to the buckling problem of laminated plates with various boundary conditions. The out-of-plane displacement of the buckled plate is written as a series of products of functions of parameter x and functions of parameter y. With known functions in parameter x or parameter y, a set of governing equations and a set of boundary conditions are obtained after applying the variational principle to the total potential energy of the system. The higher order differential equations are then transformed into a set of first-order differential equations and solved for the buckling load and mode. Since the governing equations are first-order differential equations, solutions can be obtained analytically with the out-of-plane displacement written in the form of an exponential function. The solutions from the proposed technique are verified with solutions from the literature and FEM solutions. The bucking loads correspond very well to other available solutions in most of the comparisons. The buckling modes also compare very well with the finite element solutions. The proposed solution technique transforms higher-order differential equations to first-order differential equations, and they are analytically solved for out-of-plane displacement in the form of an exponential function. Therefore, the proposed solution technique yields a solution which can be considered as an analytical solution.

  11. Implementation of a quality assurance system for the design and manufacturing of fuel assembly MTR-plate type

    International Nuclear Information System (INIS)

    Koll, J.H.

    1987-01-01

    Since more than 30 years ago, fuel assemblies (FA) of the MTR-Plate type, for research reactors, have been developed and produced using well known technologies, with different methods for the design, manufacturing, quality control and subsequent verification of FA behaviour, as well as of the design data. The FA and its reliability has been improved through the recycling of the obtained information. No nuclear accidents or major incidents have taken place that can be blamed to FA due to design, manufacturing or its use. Since the 70's, the use of Quality Assurance methodology has been increased, especially for Nuclear Power Plants, in order to ensure safety for these reactors. The use of QA for reactors for research, testing or other uses, has also been steadily increased, not only due to safety reasons, but also because of its convenience for a good operation, being presently a common requirement of the operator of the installation. Herewith is described the way the QA system that has been developed for the design, manufacturing, quality control and supply of MTR-plate type FA, at the Development Section of the Argentine Atomic Energy Commission (CNEA). (Author)

  12. Subsidence of the South Polar Terrain and global tectonic of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2016-04-01

    Introduction: Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ˜200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust (like on Mercury). Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special dynamical process that could explain this paradox. Our hypothesis states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypothesis is presented in [2] and [3]. We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. Methods and results: The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied, that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ˜0.05 mmṡyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ˜0.02 mmṡyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ˜0.02 mmṡyr-1 for the Newtonian rheology. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the

  13. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    transtensional zone of long offset strike-slip faults and intervening basins (the modern Gulf of California basin and transform fault system). Within and adjacent to this zone the fault patterns continued to evolve, with new plate boundary strike-slip faults breaking into previously intact blocks of continent. These new strike-slip faults were not accompanied by any widespread zones of tectonic rotation. This suggests that if widespread rotations are occurring, plate boundary transtension has not yet localized and the strike-slip faults are not yet accommodating most of the plate boundary slip. The cessation of widespread and significant vertical axis rotations could indicate strain localization and the increasing importance of throughgoing strike-slip faults (a precursor to fully oceanic rifting) along a transtensional plate boundary.

  14. Mimas: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  15. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to

  16. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  17. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  18. Atomic mechanisms of γ' precipitate plate growth in the Al-Ag system

    International Nuclear Information System (INIS)

    Howe, J.M.

    1985-03-01

    Energy-dispersive x-ray spectroscopy results that the precipitates have the composition Ag 2 Al. High-resolution electron microscopy of γ' precipitates in both // and // orientations shows that all interfaces of the precipitate are largely coherent with the matrix and are faceted along low-energy (111) and (110) matrix plans, due to the influence of surface and elastic strain energies on the transformation. Further comparison between experimental and calculated high-resolution images of the precipitate/matrix interface and of Shockley partial dislocation ledges on the precipitate faces demonstrates that both thickening and lengthening of γ' precipitate plates occurs by the passage of the Shockley partial dislocations along alternate (111) matrix planes by a terrace-ledge-kink mechanism. These images and electron diffraction information also indicate that the γ' precipitates are ordered, where the A-planes in the precipitate contain nearly pure Ag and the B-planes have the composition Al 2 Ag, and that the limiting reaction in the growth process is the substitutional diffusion of Ag cross kinks in the Shockley partial dislocations, which terminate in the Ag-rich A-planes. The terraces between ledges are atomically flat and ledges are uniformly stepped-down from the centers to the edges of isolated precipitates. Convergent-beam electron diffraction (CBED) analyses of γ' precipitates indicate that they have the space group P6 3 /mmc. Effect of specimen thickness on symmetry determinations by CBED was also examined for an α-titanium sample. Results show that the symmetries observed in CBED patterns from thin specimens may be due to the limited thickness of the specimen, rather than to the actual space group of the material

  19. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  20. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  1. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    Science.gov (United States)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive

  2. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  3. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  4. Laterally Loaded Nail-Plates

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Rathkjen, Arne

    Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...

  5. Tectonics: The meaning of form

    DEFF Research Database (Denmark)

    Christiansen, Karl; Brandt, Per Aage

    Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill and insi...... perspectives. You can read the chapters in any order you like – from the beginning, end or the middle. There is no correct order. The project is methodologically inductive: the more essays you read, the broader your knowledge of tectonics get....

  6. Diagnostic accuracy of phosphor plate systems and conventional radiography in the detection of simulated internal root resorption.

    Science.gov (United States)

    Vasconcelos, Karla de Faria; Rovaris, Karla; Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Távora, Débora de Melo; Bóscolo, Frab Norberto

    2017-11-01

    To evaluate the performance of conventional radiography and photostimulable phosphor (PSP) plate in the detection of simulated internal root resorption (IRR) lesions in early stages. Twenty single-rooted teeth were X-rayed before and after having a simulated IRR early lesion. Three imaging systems were used: Kodak InSight dental film and two PSPs digital systems, Digora Optime and VistaScan. The digital images were displayed on a 20.1″ LCD monitor using the native software of each system, and the conventional radiographs were evaluated on a masked light box. Two radiologists were asked to indicate the presence or absence of IRR and, after two weeks, all images were re-evaluated. Cohen's kappa coefficient was calculated to assess intra- and interobserver agreement. The three imaging systems were compared using the Kruskal-Wallis test. For interexaminer agreement, overall kappa values were 0.70, 0.65 and 0.70 for conventional film, Digora Optima and VistaScan, respectively. Both the conventional and digital radiography presented low sensitivity, specificity, accuracy, positive and negative predictive values with no significant difference between imaging systems (p = .0725). The performance of conventional and PSP was similar in the detection of simulated IRR lesions in early stages with low accuracy.

  7. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  8. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H. [Department of Energy Resources and Environmental Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Alexandria 21934 (Egypt); Ahmed, Mahmoud; Youssef, M.S. [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt)

    2010-09-15

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle ({gamma}) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l{sub w}/l{sub pl}), where (l{sub w}/l{sub pl}) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l{sub w}/l{sub pl}) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle ({gamma}). In addition, increasing ({gamma}) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l{sub w}/l{sub pl}). It was found that for any value of the plate oblique angle ({gamma}), the friction factor decreases with the increase of the values of (l{sub w}/l{sub pl}) and Re, respectively. (author)

  9. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Youssef, M.S.

    2010-01-01

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle (γ) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l w /l pl ), where (l w /l pl ) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l w /l pl ) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle (γ). In addition, increasing (γ) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l w /l pl ). It was found that for any value of the plate oblique angle (γ), the friction factor decreases with the increase of the values of (l w /l pl ) and Re, respectively.

  10. Investigation of heat transfer and fluid flow in transitional regime inside a channel with staggered plates heated by radiation for PV/T system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Abdel-Gaied, S.M.

    2013-01-01

    This study investigates experimentally and theoretically the effects of operating and configuration parameters on convection heat transfer process and fluid flow characteristics for air flowing in transitional regimes through parallel plate channels with staggered plates segments heated by radiant heat flux. This configuration is to be utilized in air heater solar collectors and/or in a combined photovoltaic and air heater solar collector systems (PV/T). The operating parameters tested were Reynolds number (Re) values ranging from 2580 to 4650 with a combination of incident radiation heat flux (q inc ) values of 400, 700, and 1000 W/m 2 , respectively. The experimental results show that the local Nusselt number (Nu x ) is not unique function of the axial distance, in addition, a linear relationship between Re and apparent friction factor (f) was observed. Moreover, the model results show that combination of Re values in the laminar flow regime with proper selection of both plate's length and thickness can lead to enhancement in the heat transfer from the plate segments to the air stream. This is due to self-oscillatory flow mixer in wake zone behind each plate segment. Consequently, this will lead to avoid the need of more pumping power for the case of the flow falling within the transitional regime in the channel. - Highlights: • The local heat transfer coefficient is not unique function in the axial distance. • A linear relationship between Reynolds number and apparent friction factor is observed for Re > 3500. • The plate thickness is the dominant parameter affects both values of the heat transfer and friction factor. • Shorter plates' length, at any plate thickness, leads to periodic boundary layers interruption mechanisms

  11. Do cratons preserve evidence of stagnant lid tectonics?

    Directory of Open Access Journals (Sweden)

    Derek Wyman

    2018-01-01

    Full Text Available Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ∼3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ∼2.9 Ga and ∼2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ∼2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.

  12. Applicability of dinoflagellate cyst stratigraphy to the analyses of passive and active tectonic settings

    NARCIS (Netherlands)

    Wilpshaar, M.

    1995-01-01

    The notion that fluctuating tectonic stress patterns within or between continental plates directly influence the development of a given sedimentary basin is a well-established concept in geotectonics. In recent years it has become increasingly understood that notably the phase of relative

  13. A Comparison of the Thermodynamic Efficiency of Vacuum Tube and Flat Plate Solar Collector Systems

    Directory of Open Access Journals (Sweden)

    Juozas Bielskus

    2013-12-01

    Full Text Available The article presents simulation based exergy analysis used for comparing solar thermal systems applied for preparing domestic hot water. The simulation of flat and vacuum tube solar collector systems was performed in TRNSYS simulation environment. A period of one year under Lithuanian climate conditions was chosen. Simulation was performed on 6 min time step resolution by calculating energy and exergy flows and creating balance calculation. Assessment results at system and element levels have been presented as monthly variation in efficiency. The conducted analysis has revealed that the systems designed to cover equal heat energy demand operates in different exergetic efficiencies.Article in Lithuanian

  14. Seismotectonic features of the African plate: the possible dislocation of a continent

    Science.gov (United States)

    Meghraoui, Mustapha

    2014-05-01

    , the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).

  15. Digital Archive of UkrVO: first results of MAO NASU Solar System Bodies photographic plate processing

    Science.gov (United States)

    Ivanov, G.; Pakuliak, L.; Shatokhina, S.; Yizhakevych, E.; Kazantseva, L.; Andruk, V.

    The digitizing and processing of photographic plates with the images of the outer planets and their satellites from the archive collections of MAO NASU and AO of Kiev university included into the UkrVO Joint Digital Archive (JDA) have been made. Plates were obtained in the last half of the 20th century. The digitizing of JDA archive plates and inclusion of plate preview images into GPA database has been under way, using two models of flatbed scanners: Microtek ScanMaker 9800XL TMA and Epson Expression 10000XL. The database with metadata of plates is allocated on the computational resources of MAO NASU (http://gua.db.ukr-vo.org). Plates have been scanned at 16-bits grey dynamic range, with a resolution of 1200-1600 dpi, and saved in TIFF format. Linear dimensions of images are up to 13 thousand pixels (for plates 30.30 cm). The astrometric and photometric calibration procedures have been done in the LINUX-MIDASROMAFOT environment and Tycho-2 as reference with the image processing procedure specially developed for digitized images of huge linear dimensions on the basis of the image inherent traits. First results of digitized plate processing give the rms errors of 10 and 20 mas for RA, DEC respectively. (O-C) for plates with Pluto in comparison to JPL PLU021.DE405 has been derived of 140(RA) and 270(DEC) mas.

  16. Experimental and simulation study on the plate absorber for hybrid heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    An, Seung Sun; Jung, Chung Woo; Kang, Yong Tae [Kyung Hee University, Yongin (Korea, Republic of); Kim, Min Sung; Park, Seong Ryong [KIER, Daejeon (Korea, Republic of); Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2013-12-15

    This research conducts an experiment for a hybrid heat pump system, using ammonia-water as a working fluid, to obtain a hot water of about 80 .deg. C. The hybrid heat pump system is the combination of vapor compression cycle and absorption cycle to improve the performance of the heat pump system. The hybrid heat pump system uses a low temperature heat source of about 50 .deg. C from the industrial waste heat. The system consists of absorber, desorber, solution heat exchanger, oil heat exchanger, rectifier, compressor and a solution pump. Parametric analysis is carried out experimentally and numerically for the key parameters such as the capacity of the absorber, the internal pressure change. From the present experimental study, it is found that the maximum hot water temperature is obtained to be 79.33 .deg. C.

  17. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Mid-oceanic ridge system

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    around atop the mobile interior. The tectonic plates are in motion. They are driven by the flowing mantle below and their motions are controlled by a complex puzzle of plate collisions around the globe. There are three types of plate...-plate interactions based upon relative motion: convergent, where plates collide, divergent, where plates separate, and transform motion, where plates simply slide past each other. Seafloor Spreading is the usual process at work at divergent plate boundaries...

  19. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  20. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration.

    Science.gov (United States)

    Jones, David; Cundell, Tony

    2018-01-01

    The Growth Direct™ System that automates the incubation and reading of membrane filtration microbial counts on soybean-casein digest, Sabouraud dextrose, and R2A agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. LAY ABSTRACT: The Growth Direct™ System that automates the incubation and reading of microbial counts on membranes on solid agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation time. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. © PDA, Inc. 2018.

  1. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  3. Portal verification using the KODAK ACR 2000 RT storage phosphor plate system and EC films. A semiquantitative comparison.

    Science.gov (United States)

    Geyer, Peter; Blank, Hilbert; Alheit, Horst

    2006-03-01

    The suitability of the storage phosphor plate system ACR 2000 RT (Eastman Kodak Corp., Rochester, MN, USA), that is destined for portal verification as well as for portal simulation imaging in radiotherapy, had to be proven by the comparison with a highly sensitive verification film. The comparison included portal verification images of different regions (head and neck, thorax, abdomen, and pelvis) irradiated with 6- and 15-MV photons and electrons. Each portal verification image was done at the storage screen and the EC film as well, using the EC-L cassettes (both: Eastman Kodak Corp., Rochester, MN, USA) for both systems. The soft-tissue and bony contrast and the brightness were evaluated and compared in a ranking of the two compared images. Different phantoms were irradiated to investigate the high- and low-contrast resolution. To account for quality assurance application, the short-time exposure of the unpacked and irradiated storage screen by green and red room lasers was also investigated. In general, the quality of the processed ACR images was slightly higher than that of the films, mostly due to cases of an insufficient exposure to the film. The storage screen was able to verify electron portals even for low electron energies with only minor photon contamination. The laser lines were sharply and clearly visible on the ACR images. The ACR system may replace the film without any noticeable decrease in image quality thereby reducing processing time and saving the costs of films and avoiding incorrect exposures.

  4. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  5. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  6. Sound transmission through pipe systems and into plate structures in buildings. A simplified sea model

    NARCIS (Netherlands)

    Bron-van der Jagt, G.S.

    2007-01-01

    In the study presented, it has been investigated whether Statistical Energy Analysis (SEA) could be applied in a simplified way as a framework for a prediction model regarding noise due to service equipment, specifically sound transmission within (plastic wastewater) pipe systems and between these

  7. Approximate analysis of rigid plate loading on elastic multi-layered systems

    CSIR Research Space (South Africa)

    Maina, JW

    2008-07-01

    Full Text Available , this distribution was approximated using uniformly distributed multiple loads and analysis performed using Games. Results have shown good agreement with the theory for the case of a semi-infinite medium. Furthermore, extension of this method to multilayered system...

  8. Tectonic evolution of the North Patagonian Andes (41°-44° S) through recognition of syntectonic strata

    Science.gov (United States)

    Echaurren, A.; Folguera, A.; Gianni, G.; Orts, D.; Tassara, A.; Encinas, A.; Giménez, M.; Valencia, V.

    2016-05-01

    The North Patagonian fold-thrust belt (41°-44° S) is characterized by a low topography, reduced crustal thickness and a broad lateral development determined by a broken foreland system in the retroarc zone. This particular structural system has not been fully addressed in terms of the age and mechanisms that built this orogenic segment. Here, new field and seismic evidence of syntectonic strata constrain the timing of the main deformational stages, evaluating the prevailing crustal regime for the different mountain domains through time. Growth strata and progressive unconformities, controlled by extensional or compressive structures, were recognized in volcanic and sedimentary rocks from the cordilleran to the extra-Andean domain. These data were used to construct a balanced cross section, whose deep structure was investigated through a thermomechanical model that characterizes the upper plate rheology. Our results indicate two main compressive stages, interrupted by an extensional relaxation period. The first contractional stage in the mid-Cretaceous inverted Jurassic-Lower Cretaceous half graben systems, reactivating the western Cañadón Asfalto rift border ~ 500 km away from the trench, at a time of arc foreland expansion. For this stage, available thermochronological data reveal forearc cooling episodes, and global tectonic reconstructions indicate mid-ocean ridge collisions against the western edge of an upper plate with rapid trenchward displacement. Widespread synextensional volcanism is recognized throughout the Paleogene during plate reorganization; retroarc Paleocene--Eocene flare up activity is interpreted as product of a slab rollback, and fore-to-retroarc Oligocene slab/asthenospheric derived products as an expression of enhanced extension. The second stage of mountain growth occurred in Miocene time associated with Nazca Plate subduction, reaching nearly the same amplitude than the first compressive stage. Extensional weakening of the upper plate

  9. A COMPARISON OF GROUND REACTION FORCES DETERMINED BY PORTABLE FORCE-PLATE AND PRESSURE-INSOLE SYSTEMS IN ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Kosuke Nakazato

    2011-12-01

    Full Text Available For the determination of ground reaction forces in alpine skiing, pressure insole (PI systems and portable force plate (FP systems are well known and widely used in previous studies. The purposes of this study were 1 to provide reference data for the vertical component of the ground reaction forces (vGRF during alpine skiing measured by the PI and FP systems, and 2 to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier's level, skiing mode and pitch. Ten expert and ten intermediate level skiers performed 10 double turns with the skiing technique "Carving in Short Radii" as High Dynamic Skiing mode and "Parallel Ski Steering in Long Radii" as Low Dynamic Skiing mode on both the steep (23 ° and the flat (15 ° slope twice. All subjects skied with both the PI and the FP system simultaneously. During the outside phase, the mean vGRF and the maximum vGRF determined by the FP are greater than the PI (p < 0.01. Additionally during the inside phase, the mean vGRF determined by the FP were greater than the PI (p < 0.01. During the edge changing phases, the mean vGRF determined by the FP were greater than the PI (p < 0.01. However, the minimum vGRF during the edge changing phases determined by the FP were smaller than the PI (p < 0.01 in the High-Steep skiing modes of Experts and Intermediates (p < 0.001. We have found that generally, the PI system underestimates the total vGRF compared to the FP system. However, this difference depends not only the phase in the turn (inside, outside, edge changing, but also is affected by the skier's level, the skiing mode performed and pitch.

  10. Printing and Curing of Conductive Ink Track on Fabric using Syringe Deposition System with DLP Projector and Hot Plate

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2017-01-01

    Full Text Available Printing is a technique to transfer ink onto substrates to create pattern and syringe deposition system has shown some great potential in printing due to its ability to produce filamentary bead tracks which is important concerning conductivity and easily adopted on conformal surfaces which could not be realized by conventional technique. Fabrics with integrated electrical features able to create intelligent articles and may potentially open up new perspective areas of application in textile printing. However, the applicability of this technique on fabrics remains unknown which the ink used has to meet certain requirements including high electrical conductivity, resistance to oxidation, dry out without clogging, good adhesion with suitable viscosity and surface tension. Thus, there is a need to do this study which is to determine the feasibility of syringe deposition system to print a conductive ink tracks using silver epoxy-based conductive ink on fabric substrate via lycra material. This study is also aim to investigate the feasibility of using DLP projector with hot plate as another source of heat to be used in curing the ink tracks on fabric. The effect of printing and curing parameters to the characteristics and conductivity of the ink track is investigated. Several mechanical and electrical tests were also administered to determine the cure, hardness, adhesion and resistance level of the ink tracks. The results obtained were as expected which higher printing speed and lower deposition height used, a narrower and thinner ink tracks were produced. Sample with 4 mm/s of printing speed and deposition height of 1 mm resulted in dimension closer to the targeted dimension. The longer curing time and higher temperature used, a lower resistance is produced. The lowest resistance achieved is 0.9 Ω cured at 150°C for 60 minutes. The conductivity of the ink track was affected by curing process and cross-sectional area of the ink track. It is proven

  11. Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.; Fujita, K.

    2007-12-01

    The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.

  12. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  13. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  14. Visualization study of interaction with 2-D film flow on the vertical plate and lateral air velocity for DVI system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sol; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong Jin; Kim, Jong Rok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness. In this study, the average flow information of the downcomer was analyzed through the information about the thickness, speed, droplet size and speed of highly precise liquid film flow in the structure that occurs in a 2-dimensional liquid film flow, rather than film flow, onset of entrainment, droplet velocity, and size which have been studied in 1-dimension of the existing annular flow. The multi-dimensional flow characteristic information of downcomer can be utilized as the basic data for nuclear safety analysis in the future.

  15. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics

    International Nuclear Information System (INIS)

    Abdallah, Salah

    2004-01-01

    An experimental study was performed to investigate the effect of using different types of sun tracking systems on the voltage-current characteristics and electrical power generation at the output of flat plate photovoltaics (FPPV). Four electromechanical sun tracking systems, two axes, one axis vertical, one axis east-west and one axis north-south, were designed and constructed for the purpose of investigating the effect of tracking on the electrical values, current, voltage and power, according to the different loads (variable resistance). The above mentioned variables were measured at the output of the FPPV and compared with those on a fixed surface. The results indicated that the volt-ampere characteristics on the tracking surfaces were significantly greater than that on a fixed surface. There were increases of electrical power gain up to 43.87%, 37.53%, 34.43% and 15.69% for the two axes, east-west, vertical and north-south tracking, respectively, as compared with the fixed surface inclined 32 deg. to the south in Amman, Jordan

  16. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS