WorldWideScience

Sample records for plate tectonic models

  1. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  2. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  3. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  4. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  5. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  6. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  7. The tectonic plates are moving!

    CERN Document Server

    Livermore, Roy

    2018-01-01

    Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1...

  8. History and Evolution of Precambrian plate tectonics

    Science.gov (United States)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by

  9. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    Science.gov (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  10. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  11. Plate tectonics, habitability and life

    Science.gov (United States)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  12. Oil prospection using the tectonic plate model

    Science.gov (United States)

    Pointu, Agnès

    2015-04-01

    Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast

  13. Soft Plate and Impact Tectonics

    Science.gov (United States)

    Tikoff, Basil

    In the field of tectonics, most of our ideas are published in journals. This is not true of other fields, such as history, in which ideas are primarily published in books. Within my own field of structural geology, I can recall only one book, Strain Fades by E. Hansen (Springer-Verlag, 1971), which presents a new idea in book form. However, even this book is more useful for its philosophical approach and particular methodology of determining directions of folding, than for its overarching idea.Enter Soft Plate and Impact Tectonics, a new book with an interesting hypothesis that has been informally discussed in the geoscience community: A fundamental tenet of plate tectonics is incorrect—namely, that the plates are rigid. This assertion is evident when looking at any mountain range, and is perhaps most clearly stated in Molnar [1988].

  14. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    Science.gov (United States)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  15. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  16. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  17. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  18. Barrel organ of plate tectonics - a new tool for outreach and education

    Science.gov (United States)

    Broz, Petr; Machek, Matěj; Šorm, Zdar

    2016-04-01

    Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www

  19. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  20. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  1. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  2. Ore-lead isotopes and Grenville plate tectonics

    International Nuclear Information System (INIS)

    Farquhar, R.M.; Fletcher, I.R.

    1980-01-01

    Recent advances in the 'whole earth' modelling of evolutionary processes of Pb isotopes shed light upon the origin of the metals found in various types of ore deposits. On the bases of these models and several recently published data sets, we believe that the ore deposits formed in various plate tectonic environments may carry 'isotopic fingerprints' which, when used with other characteristics such as mineral assemblages, may identify the depositional environments of many ore bodies. In the present study Pb-isotopic measurements have been made of a number of Precambrain mineralization types and localities throughout the Central Metasedimentary Belt of the Grenville Province. The data for individual deposits are at best ambiguous, but fall into two groups sufficiently distinctive to allow some degree of 'fingerprint' identification. Comparisons with data from other areas suggest that the major periods of sedimentation within the Central Metasedimentary Belt accompanied plate rifting and/or island arc tectonic activity, with most of the mineralized lead being derived from mantle sources. Detailed comparisons between the Grenville and other regions are uncertain, mainly because there are few detailed high-accuracy data sets from younger, tectonically unambiguous mineral occurrences. We suggest that once these data sets are availble, isotopic fingerprinting may become diagnostic for deposits ranging well back into the Precambrain

  3. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  4. Learning Plate Tectonics Using a Pre-Analogy Step

    Science.gov (United States)

    Glesener, G. B.; Sandoval, W. A.

    2011-12-01

    Previous research has shown that children tend to demonstrate lower performance on analogical reasoning tasks at a causal relations level compared to most adults (Gentner & Toupin, 1986). This tendency is an obstacle that geoscience educators must overcome because of the high frequency of analogies used in geoscience pedagogy. In particular, analog models are used to convey complex systems of non-everyday/non-observable events found in nature, such as plate tectonics. Key factors in successful analogical reasoning that have been suggested by researchers include knowledge of the causal relations in the base analog (Brown & Kane, 1988; Gentner, 1988; Gentner & Toupin, 1986), and development of learning strategies and metaconceptual competence(Brown & Kane, 1988). External factors, such as guiding cues and hints have been useful cognitive supports that help students reason through analogical problems (Gick & Holyoak, 1980). Cognitive supports have been seen by researchers to decrease processing demands on retrieval and working memory (Richland, Zur, & Holyoak, 2007). We observed third and fourth graders learning about plate tectonics beginning with a pre-analogy step-a cognitive support activity a student can do before working with an analogy to understand the target. This activity was designed to aid students in developing their understanding of object attributes and relations within an analog model so that more focus can be placed on mapping the corresponding higher-order relations between the base and target. Students learned targeted concepts of plate tectonics, as measured by pre to post gains on items adapted from the Geosciences Concept Inventory. Analyses of classroom interaction showed that students used the object attributes and higher-order relations highlighted in the pre-analogy activity as resources to reason about plate boundaries and plate movement during earthquakes.

  5. A new plate tectonic concept for the eastern-most Mediterranean

    Science.gov (United States)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  6. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  7. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  8. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  9. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  10. Coupling intensity and isostatic competition between subducting slab and overriding plate control trench motions and tectonics of the overriding plate

    Science.gov (United States)

    Wu, G.; Moresi, L. N.

    2017-12-01

    Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the

  11. Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins

    Directory of Open Access Journals (Sweden)

    Maarten de Wit

    2018-05-01

    Full Text Available The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subduction-related processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2–3.6 Ga. Our work provides new constraints for modellers with rates of a ‘basket’ of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic. Keywords: Paleoarchean, Barberton Greenstone Belt, Onverwacht Suite, Geologic bedrock and structural maps, Geochemistry and geophysics, Plate tectonics

  12. Commentary: The Feasibility of Subduction and Implications for Plate Tectonics on Jupiter's Moon Europa

    Science.gov (United States)

    Kattenhorn, Simon A.

    2018-03-01

    A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.

  13. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  14. Petroleum and natural gas geology and plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, B.

    1984-01-01

    Several processes of oil and gas geology are studied in connection with plate-tectonical processes. Thus it becomes clear, that there is a distinct difference between the Paleozoic development of the European plate and the Mesozoic development. One can state, that the Paleozoic development is essentially influenced by the positions of the mobile belts and the cratonized parts of the plates. The development during Meso-Caenozoic is mainly characterized by crustal processes in the result of the disintegration of Pangaea.

  15. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    Science.gov (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  16. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    Science.gov (United States)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  17. Playing jigsaw with Large Igneous Provinces—A plate tectonic reconstruction of Ontong Java Nui, West Pacific

    Science.gov (United States)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele

    2015-11-01

    The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.

  18. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  19. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...

  20. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  1. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics.

    Science.gov (United States)

    Bourguignon, Thomas; Tang, Qian; Ho, Simon Y W; Juna, Frantisek; Wang, Zongqing; Arab, Daej A; Cameron, Stephen L; Walker, James; Rentz, David; Evans, Theodore A; Lo, Nathan

    2017-04-01

    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.

  2. A probabilistic approach towards understanding how planet composition affects plate tectonics - through time and space.

    Science.gov (United States)

    Stamenkovic, V.

    2017-12-01

    We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are

  3. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  4. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  5. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  6. SECULAR CHANGES IN RELATIONSHIPS BETWEEN PLATE-TECTONIC AND MANTLE-PLUME ENGENDERED PROCESSES DURING PRECAMBRIAN TIME

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2016-01-01

    Full Text Available Paradoxically, the lists of “proxies” of both plate- and plume-related settings are devoid of even a mention of the high-grade metamorphic rocks (granulite, amphibolite and high-temperature eclogite facies. However, the granulite-gneiss belts and areas which contain these rocks, have a regional distribution in both the Precambrian and the Phanerozoic records. The origin and evolution of the granulite-gneiss belts correspond to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and pyroclastic flow deposits; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that spreads over the fill of rift depressions also. Granulite-gneiss complexes of the East European Craton form one of the main components of the large oval intracontinental tectonic terranes of regional or continental rank. Inclusion of the granulite-gneiss complexes from Eastern Europe, North and South America, Africa, India, China and Australia in discussion of the problem indicated in the title to this paper, suggests consideration of a significant change in existing views on the relations between the plate- and plume-tectonic processes in geological history, as well as in supercontinent assembly and decay. The East European and North American cratons are fragments of the long-lived supercontinent Lauroscandia. After its appearance at ~2.8 Ga, the crust of this supercontinent evolved under the influence of the sequence of powerful mantle plumes (superplumes up to ~0.85 Ga. During this time Lauroscandia was subjected to rifting, partial breakup and the following reconstruction of the continent. The processes of plate-tectonic type (rifting with the transition to spreading and closing of the short-lived ocean with subduction within Lauroscandia were controlled by the superplumes. Revision of the

  7. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  8. Plate tectonics hiati as the cause of global glaciations: 2. The late Proterozoic 'Snowball Earth'

    Science.gov (United States)

    Osmaston, M. F.

    2003-04-01

    A fundamental reappraisal of the mechanisms that drive plate tectonics has yielded the remarkable conclusion that, for at least the past 130 Ma, the principal agent has not been ridge-push or slab-pull but a CW-directed torque (probably of electromagnetic origin at the CMB) reaching the deep (>600 km, e.g.[1]) tectospheric keel of the Antarctica craton. Major changes in spreading direction marked both ends of the 122--85 Ma Cretaceous Superchron and started by forming the Ontong Java Plateau. Action of MORs as gearlike linkages has driven Africa and India CCW since Gondwana breakup and continues to drive the Pacific plate CCW. In the Arctic there is now no cratonic keel to pick up any corresponding polar torque, so northern hemisphere plate tectonics is far less active. The thesis of this contribution is that in the Neoproterozoic the lack of cratons at high latitudes would have deprived plate tectonics of this motivation, causing MORs to die (see below) and a major fall in sea-level, leading to global glaciation as outlined in Part 1 for the Huronian events. Like that seen during that first hiatus, dyke-swarm volcanism could have arisen from thermal shrinkage of the global lithosphere, providing CO2 and ash-covering that interrrupted glacial episodes. In oceanic settings this volcanism would have lowered pH and supplied Fe2+ for shallow bio-oxygenic action to deposit as BIF. My multifacet studies of the subduction process convince me that the rapid development of "flat-slab" interface profiles involves the physical removal of hanging-wall material in front of the downbend by basal subduction tectonic erosion (STE). Historically this, and its inferred ubiquity in the Archaean as the precursor to PSM (Part 1), suggests that the required subducting-plate buoyancy is thermal. Accordingly, a redesign [2] of the MOR process has incorporated the heat-containing LVZ as an integral part of the plate and luckily provides a lot more ridge-push to ensure the subduction of

  9. Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking

    Science.gov (United States)

    Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott

    2016-01-01

    Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…

  10. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  11. Intra-Arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry

    Science.gov (United States)

    Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola

    2010-05-01

    This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.

  12. Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): Insights from analog models

    OpenAIRE

    Duarte , João ,; Rosas , Filipe ,; Terrinha , Pedro; Gutscher , Marc-André ,; Malavielle , Jacques; Silva , Sonia; Matias , Luis

    2011-01-01

    International audience; In the Gulf of Cadiz key segment of the Africa-Iberia plate boundary (North-East Atlantic ocean), three main different modes of tectonic interference between a recently identified wrench system (SWIM) and the Gulf of Cadiz Accretionary Wedge (GCAW) were tested through analog sand-box modeling: a) An active accretionary wedge on top of a pre-existent inactive basement fault; b) An active strike-slip fault cutting a previously formed, inactive, accretionary wedge; and c)...

  13. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  14. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  15. Subduction Drive of Plate Tectonics

    Science.gov (United States)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under

  16. Tectonics and Non-isostatic Topography of the Mariana Trench and Adjacent Plates

    Science.gov (United States)

    Hongyu, L.; Lin, J.; Zhou, Z.; Zhang, F.

    2017-12-01

    Multi-types of geophysical data including multibeam bathymetry, sediment thickness, gravity anomaly, and crustal magnetic age were analyzed to investigate tectonic processes of the Mariana Trench and the surrounding plates. We calculated non-Airy-isostatic topography by removing from the observed bathymetry the effects of sediment loading, thermal subsidence, and Airy local isostatically-compensated topography. The Mariana Trench was found to be associated with a clearly defined zone of negative non-isostatic topography, which was caused by flexural bending of the subducting Pacific plate and with the maximum depth anomaly and flexural bending near the Challenger Deep. In contrast, the Caroline Ridge and Caroline Islands Chain have much more subdued non-isostatic topography, indicating their higher topography is largely compensated by thicker crust. Along the Mariana Trough, the northern and central segments appear to be associated with relatively low magma supply as indicated by the relatively low topography and thin crust. In contrast, the southern Mariana Trough is associated with relatively high magma supply as indicated by the relatively high and smoother topography, an axial high spreading center, and relatively thick crust. The southern end of the Mariana Trough was also found to be associated with positive non-isostatic topographic anomaly, which might be caused by the complex tectonic deformation of the overriding Mariana and Philippine Sea plates and their interaction with the subducting Pacific plate. Analysis further revealed that the southern Mariana Arc, located between the Mariana Trench and Mariana Trough, is associated with positive non-isostatic topographic anomalies, which may be explained by the late stage magmatic loading on the older and thus stronger lithospheric plate of the Mariana volcanic arc.

  17. Plate tectonic reconstruction of the Carpathian-Pannonian region

    Science.gov (United States)

    Csontos, L.; Vörös, A.

    2003-04-01

    Plate tectonics of the Carpathian area is controlled by microcontinents between the European and African margins and the relative movements of these margins. Beside the generally accepted Apulian (Austroalpine, West Carpathian, Dinaric) microcontinents two others: the Bihor-Getic (Tisza) and Drina-Ivanjica are introduced. The first was attached to the European margin, the second to the Apulian microcontinent. During Permian a major ocean was obliquely subducted south of the Apulian microcontinents. Drina-Ivanjica rifted off the Apulian microcontinent in the Late Permian-Middle Triassic, as a consequence of back-arc rifting. Short-lived oceans subducted by the end of Jurassic, causing Drina-Ivanjica to collide with the internal Dinaric-West Carpathian and Bihor-Getic margins. An external Penninic-Váhic ocean tract began opening in the Early Jurassic, separating the East Alpine-West Carpathian microcontinent (and its fauna) from the European shelf. Further south, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic (and its fauna) from the European shelf did not take place until the Middle-Late Jurassic. Two oroclinal bends: the Alcapa on the Dinaric margin and the Tisza-Dacia on the South Carpathian-Getic margin are essential elements of these reconstructions. Their bending (Aptian and Albian-Maastrichtian, respectively) are suggested by paleomagnetic and tectonic transport data. The two oroclinal bends are finally opposed and pushed into the Carpathian embayment by the Paleogene. In Miocene a back-arc basin develops on older tectonic elements. Differential rotations affect the wealded microcontinents.

  18. Subduction and Plate Edge Tectonics in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust

  19. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2018-01-01

    Full Text Available Many geological and geochemical changes are recorded on Earth between 3 and 2 Ga. Among the more important of these are the following: (1 increasing proportion of basalts with “arc-like” mantle sources; (2 an increasing abundance of basalts derived from enriched (EM and depleted (DM mantle sources; (3 onset of a Great Thermal Divergence in the mantle; (4 a decrease in degree of melting of the mantle; (5 beginning of large lateral plate motions; (6 appearance of eclogite inclusions in diamonds; (7 appearance and rapid increase in frequency of collisional orogens; (8 rapid increase in the production rate of continental crust as recorded by zircon age peaks; (9 appearance of ophiolites in the geologic record, and (10 appearance of global LIP (large igneous province events some of which correlate with global zircon age peaks. All of these changes may be tied directly or indirectly to cooling of Earth's mantle and corresponding changes in convective style and the strength of the lithosphere, and they may record the gradual onset and propagation of plate tectonics around the planet. To further understand the changes that occurred between 3 and 2 Ga, it is necessary to compare rocks, rock associations, tectonics and geochemistry during and between zircon age peaks. Geochemistry of peak and inter-peak basalts and TTGs needs to be evaluated in terms of geodynamic models that predict the existence of an episodic thermal regime between stagnant-lid and plate tectonic regimes in early planetary evolution.

  20. The alternative concept of global tectonics

    Science.gov (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael

    2016-04-01

    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set

  1. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    Science.gov (United States)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  2. Tectonic Storytelling with Open Source and Digital Object Identifiers - a case study about Plate Tectonics and the Geopark Bergstraße-Odenwald

    Science.gov (United States)

    Löwe, Peter; Barmuta, Jan; Klump, Jens; Neumann, Janna; Plank, Margret

    2014-05-01

    The communication of advances in research to the common public for both education and decision making is an important aspect of scientific work. An even more crucial task is to gain recognition within the scientific community, which is judged by impact factor and citation counts. Recently, the latter concepts have been extended from textual publications to include data and software publications. This paper presents a case study for science communication and data citation. For this, tectonic models, Free and Open Source Software (FOSS), best practices for data citation and a multimedia online-portal for scientific content are combined. This approach creates mutual benefits for the stakeholders: Target audiences receive information on the latest research results, while the use of Digital Object Identifiers (DOI) increases the recognition and citation of underlying scientific data. This creates favourable conditions for every researcher as DOI names ensure citeability and long term availability of scientific research. In the developed application, the FOSS tool for tectonic modelling GPlates is used to visualise and manipulate plate-tectonic reconstructions and associated data through geological time. These capabilities are augmented by the Science on a Halfsphere project (SoaH) with a robust and intuitive visualisation hardware environment. The tectonic models used for science communication are provided by the AGH University of Science and Technology. They focus on the Silurian to Early Carboniferous evolution of Central Europe (Bohemian Massif) and were interpreted for the area of the Geopark Bergstraße Odenwald based on the GPlates/SoaH hardware- and software stack. As scientific story-telling is volatile by nature, recordings are a natural means of preservation for further use, reference and analysis. For this, the upcoming portal for audiovisual media of the German National Library of Science and Technology TIB is expected to become a critical service

  3. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  4. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  5. Tectonics of the Philippine Sea plate before and after 52 Ma subduction initiation to form the Izu-Bonin-Mariana arc

    Science.gov (United States)

    Ishizuka, O.; Tani, K.; Harigane, Y.; Umino, S.; Stern, R. J.; Reagan, M. K.; Hickey-Vargas, R.; Yogodzinski, G. M.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    Robust tectonic reconstruction of the evolving Philippine Sea Plate for the period immediately before and after subduction initiation 52 Ma to form the Izu-Bonin-Mariana (IBM) arc is prerequisite to understand cause of subduction initiation (SI) and test competing hypotheses for SI such as spontaneous or induced nucleation. Understanding of nature and origin of overriding and subducting plates is especially important because plate density is a key parameter controlling SI based on numerical modeling (e.g., Leng and Gurnis 2015). There is increasing evidence that multiple geological events related to changing stress fields took place in and around Philippine Sea plate about the time of SI 52 Ma (Ishizuka et al., 2011). For our understanding of the early IBM arc system to increase, it is important to understand the pattern and tempo of these geological events, particularly the duration and extent of seafloor spreading in the proto arc associated with SI, and its temporal relationship with spreading in the West Philippine Basin (WPB). IODP Exp. 351 provided evidence of SI-related seafloor spreading west of the Kyushu-Palau Ridge (Arculus et al., 2015). Planned age determination of the basement crust at Site U1438 will constrain the timing and geometry of SI-related spreading and its relationship to variation in mode of spreading in the WPB including rotation of spreading axis. Some tectonic reconstructions suggest that part of the IBM arc could have formed on "young" WPB crust. Dredging of the northern Mariana forearc crust and mantle in 2014 aimed to test this hypothesis. Preliminary data indicates that early arc crustal section of the N. Mariana forearc is geochemically and temporally similar to that exposed in the Bonin and southern Mariana forearcs. New tectonic reconstructions for the nascent IBM system will be presented based on these observations.

  6. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ?The fit of the continents around the Atlantic?

    OpenAIRE

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160?Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900?m),...

  7. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  8. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  9. Feeling and Understanding Plate Tectonics - How can We attract Museum Visitors Attention?

    Science.gov (United States)

    Simon, Gilla; Apel, Michael

    2017-04-01

    Earthquakes, volcano eruptions and other natural hazards are commonly paid attention to, if news about disastrous events reach us. The mission of an Earth Science or Natural History Museum, however, goes beyond explaining the causes of natural disasters, but should also present science history and cutting edge research. Since dealing with a subject, especially with one, which seems to be in the abstract, is more effective, we realised two new projects where our visitors can feel and understand plate tectonics in a more exciting way. In 2015 we installed an earthquake simulator in our permanent exhibition to allow our visitors the physical experience of an earthquake. Because of static restrictions the simulator is housed in a container outside the building where it can be visited as a booked program upon prior reservation or by joining public tours on Sundays and special occasions. The simulation of six real earthquakes in two spatial directions is accompanied by a movie presenting facts about the earthquake itself (e.g. location, magnitude, damage and victims), but also general information about plate tectonics. This standard program takes about 20 minutes. During an educational program, however, not only the simulator is visited, but also the permanent exhibition, where the guide can focus on different aspects and then might choose specific earthquakes and information blocs in the simulator. In addition workshops with experiments are offered for school classes and other groups. This allows us to offer an individual program fitting to the visitor group. In 2016 we converted an old movie room to a state of the art media room. In cooperation with Media Informatics students we developed a quiz for three different levels and various themes like earthquakes, volcanoes, history and plate tectonics in general. Starting the quiz, a virtual earthquake destroys a building which will be reconstructed if the participants answer multiple choice questions correctly. Though, the

  10. Plate tectonic influences on Earth's baseline climate: a 2 billion-year record

    Science.gov (United States)

    McKenzie, R.; Evans, D. A.; Eglington, B. M.; Planavsky, N.

    2017-12-01

    Plate tectonic processes present strong influences on the long-term carbon cycle, and thus global climate. Here we utilize multiple aspects of the geologic record to assess the role plate tectonics has played in driving major icehouse­-greenhouse transitions for the past 2 billion years. Refined paleogeographic reconstructions allow us to quantitatively assess the area of continents in various latitudinal belts throughout this interval. From these data we are able to test the hypothesis that concentrating continental masses in low-latitudes will drive cooler climates due to increased silicate weathering. We further superimpose records of events that are believed to increase the `weatherability' of the crust, such as large igneous province emplacement, island-arc accretion, and continental collisional belts. Climatic records are then compared with global detrital zircon U-Pb age data as a proxy for continental magmatism. Our results show a consistent relationship between zircon-generating magmatism and icehouse-greenhouse transitions for > 2 billion years, whereas paleogeographic records show no clear consistent relationship between continental configurations and prominent climate transitions. Volcanic outgassing appears to exert a first-order control on major baseline climatic shifts; however, paleogeography likely plays an important role in the magnitude of this change. Notably, climatic extremes, such as the Cryogenian icehouse, occur during a combination of reduce volcanism and end-member concentrations of low-latitudinal continents.

  11. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  12. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    Science.gov (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  13. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    Science.gov (United States)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  14. Gondwana Tales: an inquiry approach to plate tectonics

    Science.gov (United States)

    Domènech Casal, Jordi

    2014-05-01

    Plate tectonics and its effects on the constitution of seas and continents are key models in science education. Fossil evidences are usually taught in demostrative key when Wegener's discoverings about Pangea are introduced. In order to introduce inquiry-based science education (IBSE) approaches to this topic, we propose "Gondwana Tales", an activity where students are asked to use fossil data to reconstruct the geologic history of an imaginary planet. Grouped in independent teams, each team is furnished with stratigraphic columns from several sites containing faunistic successions of real organisms existing in the past in Earth. Students are told to reconstruct a model of the evolution of the continents, by making calculations of relative ages of the fossils, and relating each fossil to a geologic era. The different teams have incomplete and complementary information. After a first step where they have to propose a partial model based on incomplete data, each team receives a "visitor scientist" from another team, this implying an informal scientific communication event. This process is performed several times, engaging a discussion in each team and getting a final consensus model created by the whole class. Correct answer is not given to the students, even at the end of the activity, to keep the activity under the parameters of real scientific experience, where there is not a "correct answer" to compare. Instead of this, and following the IBSE standards, a reflection on the process is proposed to students. The lack of complete information and the need to collaborate are part of classroom dynamics focused to the understanding of the process of creation of the scientific knowledge. This activity is part of the C3 Project on Creation of Scientific Knowledge that is being applied in the school.

  15. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... the back. As the body accelerated, the foot was forced backward. The rotated disc was forced backward along a detachment fault that was bounded by lateral ramps. The interramp segment matches the width of the dinosaur's foot which created an imbricate fan thrust system that extended to the far end...

  16. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  17. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  18. Plate tectonic regulation of global marine animal diversity

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  19. GEODYNAMIC ACTIVITY OF MODERN STRUCTURES AND TECTONIC STRESS FIELDS IN NORTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    L. P. Imaeva

    2017-01-01

    Full Text Available Based on the analysis of changes in the stress-strain state of the crust at the boundary of the Eurasian and North American tectonic plates, we develop a dynamic model of the main seismogenerating structures inNortheast Asia. We have established a regularity in changes of geodynamic regimes within the interplate boundary between the Kolyma-Chukotka crustal plate and the Eurasian, North American and Pacific tectonic plates: spreading in the Gakkel Ridge area; rifting in the Laptev Sea shelf; a mixture of tectonic stress types in the Kharaulakh segment; transpression in the Chersky seismotectonic zone, in the segment from the Komandor to the Aleutian Islands, and in the Koryak segment; and crustal stretching in the Chukotka segment.

  20. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    Science.gov (United States)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  1. Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate

    Science.gov (United States)

    Gianni, G. M.; Echaurren, A.; Folguera, A.; Likerman, J.; Encinas, A.; García, H. P. A.; Dal Molin, C.; Valencia, V. A.

    2017-11-01

    Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44°30‧S-46°S) and the Andes (Meseta de Chalia, 46°S) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and variations in lithospheric strength. The occurrence of Eocene growth-strata ( 44-40 Ma) suggests that contraction in the Andes and the Patagonian broken foreland was linked to the Incaic phase. Detection of synextensional deposits suggests that the broken foreland collapsed partially during Oligocene to early Miocene. During middle Miocene times, the Quechua contractional phase produced folding of Neogene volcanic rocks and olistostrome deposition at 17 Ma. Finally, the presented Te map shows that intraplate contraction related to Andean phases localized preferentially along weak lithospheric zones (Te < 15 km). Hence, the observed strain distribution in the PBF appears to be controlled by lateral variations in the lithospheric strength. Variations in this parameter could be related to thermo-mechanical weakening produced by intraplate rifting in Paleozoic-Mesozoic times.

  2. Tectonic and metallogenic model for northeast Asia

    Science.gov (United States)

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major

  3. Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.; Fujita, K.

    2007-12-01

    The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.

  4. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  5. Convergent plate margin dynamics : New perspectives from structural geology, geophysics and geodynamic modelling

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2010-01-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide.

  6. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model

    Science.gov (United States)

    Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar

    2013-03-01

    models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.

  7. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    Science.gov (United States)

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  8. Spatial distribution of the earthquakes in the Vrancea zone and tectonic correlations

    International Nuclear Information System (INIS)

    Bala, Andrei; Diaconescu, Mihai; Biter, Mircea

    2001-01-01

    The tectonic plate evolution of the whole Carpathian Arc and Pannonian back-arc Basin indicates that at least three tectonic units have been in contact and at the same time in relative motion: the East European Plate, the Moesian plate and the Intra-Alpine plate. There were plotted graphically all the earthquake hypocentres from the period 1982-2000 situated in an area which includes Vrancea zone. Because of the great number of events plotted, they were found to describe well the limits of the tectonic plate (plate fragment?) which is supposed to be subducted in this region down to 200 km depth. The hypothesis of a plate fragment delaminated from an older subduction can not be overruled. These limits were put in direct relations with the known geology and tectonics of the area. Available fault plane solutions for the crustal earthquakes are analyzed in correlation with the main faults of the area. A graphic plot of the sunspot number is correlated with the occurrence of the earthquakes with magnitudes greater than 5. (authors)

  9. Linking plate reconstructions with deforming lithosphere to geodynamic models

    Science.gov (United States)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  10. Teaching And Learning Tectonics With Web-GIS

    Science.gov (United States)

    Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.

    2012-12-01

    Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key

  11. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  12. Tectonic feedback and the earthquake cycle

    Science.gov (United States)

    Lomnitz, Cinna

    1985-09-01

    The occurrence of cyclical instabilities along plate boundaries at regular intervals suggests that the process of earthquake causation differs in some respects from the model of elastic rebound in its simplest forms. The model of tectonic feedback modifies the concept of this original model in that it provides a physical interaction between the loading rate and the state of strain on the fault. Two examples are developed: (a) Central Chile, and (b) Mexico. The predictions of earthquake hazards for both types of models are compared.

  13. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    Science.gov (United States)

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  14. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  15. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  16. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  17. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-01-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flowforce the

  18. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  19. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75

    1985-01-01

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  20. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  1. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  2. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2018-01-01

    Full Text Available To better understand Earth's present tectonic style–plate tectonics–and how it may have evolved from single plate (stagnant lid tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment (plate motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, which we informally call “planetoids” and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m3 or greater from 20 icy planetoids (including the gaseous and icy giant planets with ρ = 2200 kg/m3 or less. We define the “Tectonic Activity Index” (TAI, scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing (inferred from impact crater density. Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate (rocky planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is

  3. Plate Speed-up and Deceleration during Continental Rifting: Insights from Global 2D Mantle Convection Models.

    Science.gov (United States)

    Brune, S.; Ulvrova, M.; Williams, S.

    2017-12-01

    The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America

  4. Do cratons preserve evidence of stagnant lid tectonics?

    Directory of Open Access Journals (Sweden)

    Derek Wyman

    2018-01-01

    Full Text Available Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ∼3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ∼2.9 Ga and ∼2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ∼2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.

  5. Earthquake recurrence and magnitude and seismic deformation of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.

    2011-02-01

    Recorded seismicity from the northwestern Okhotsk plate, northeast Asia, is currently insufficient to account for the predicted slip rates along its boundaries due to plate tectonics. However, the magnitude-frequency relationship for earthquakes from the region suggests that larger earthquakes are possible in the future and that events of ˜Mw 7.5 which should occur every ˜100-350 years would account for almost all the slip of the plate along its boundaries due to Eurasia-North America convergence. We use models for seismic slip distribution along the bounding faults of Okhotsk to conclude that relatively little aseismic strain release is occurring and that larger future earthquakes are likely in the region. Our models broadly support the idea of a single Okhotsk plate, with the large majority of tectonic strain released along its boundaries.

  6. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Briestenský, Miloš; Rowberry, Matthew David; Stemberk, Josef; Stefanov, P.; Vozár, J.; Šebela, S.; Petro, L.; Bella, P.; Gaal, L.; Ormukov, Ch.

    2015-01-01

    Roč. 66, č. 5 (2015), s. 427-438 ISSN 1335-0552 R&D Projects: GA MŠk LM2010008; GA MŠk OC 625.10; GA ČR GA205/05/2770; GA ČR GA205/06/1828; GA ČR GA205/09/2024 Institutional support: RVO:67985891 Keywords : Eurasian Plate * Balkan Peninsula * active tectonics research * aseismic transient deformations * slow-slip phenomena Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2015 http://www.geologicacarpathica.com/browse-journal/volumes/66-5/article-780

  7. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  8. Rheological and structural inheritance : key parameters for intra-plate deformation. A study based on analogue models

    NARCIS (Netherlands)

    Calignano, E.

    2015-01-01

    Mountain ranges are impressive tectonic features that characterize the Earth’s surface. Their formation is often associated with regions where two tectonic plates, making up the Earth surface, collide, as in the case of the Himalaya. While the surface is forced to uplift, the displacement of rocks

  9. Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2001-12-01

    Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also

  10. Fundamental structure model of island arcs and subducted plates in and around Japan

    Science.gov (United States)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (75-150 km), but provide a

  11. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  12. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    Science.gov (United States)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the

  13. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    Science.gov (United States)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing

  14. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  15. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  16. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  17. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  18. Survey explores active tectonics in northeastern Caribbean

    Science.gov (United States)

    Carbó, A.; Córdoba, D.; Muñoz-Martín, A.; Granja, J.L.; Martín-Dávila, J.; Pazos, A.; Catalán, M.; Gómez, M.; ten Brink, Uri S.; von Hillebrandt, Christa; Payero, J.

    2005-01-01

    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al., 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary.Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies.

  19. Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Stemmerik, Lars; Dahl-Jensen, T.

    2010-01-01

    a highly complex, Paleozoic–early Cenozoic pre-opening setting. However, due to extreme ice conditions, very little is known about the offshore areas seawards of – and between – the peninsulas. Consequently, prevailing structural-tectonic models of the margin tend to be significantly oversimplified...... anticipated. In particular, we interpret strong margin segmentation along N/NE-striking fault structures. The structures are likely to have formed by Late Mesozoic–early Cenozoic strike-slip tectonics and have continued to be active during the late Cenozoic. A more than 8 km deep sedimentary basin...

  20. Habitability from Tidally Induced Tectonics

    Science.gov (United States)

    Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary

    2018-04-01

    The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.

  1. A palaeomagnetic perspective of Precambrian tectonic styles

    Science.gov (United States)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  2. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  3. Searching for Hysteresis in Models of Mantle Convection with Grain-Damage

    Science.gov (United States)

    Lamichhane, R.; Foley, B. J.

    2017-12-01

    The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical

  4. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  5. Seismo-tectonic model regarding the genesis and occurrence of Vrancea (Romania) earthquakes

    International Nuclear Information System (INIS)

    Enescu, D.; Enescu, B.D.

    1998-01-01

    The first part of this paper contains a very short description of some previous attempts in seismo-tectonic modeling of Vrancea zone. The seismo-tectonic model developed by the authors of this work is presented in the second part of the paper. This model is based on the spatial distribution of hypo-centers and focal mechanism characteristics. Lithosphere structure and tectonics of the directly implied zones represent very important characteristics of the seismo-tectonic model. Some two-dimensional and three-dimensional sketches of the model, which satisfy all the above mentioned characteristics and give realistic explanations regarding the genesis and occurrence of Vrancea earthquakes are presented. (authors)

  6. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  7. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.

    Science.gov (United States)

    Ikari, Matt J; Kopf, Achim J

    2017-11-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  8. Towards absolute plate motions constrained by lower-mantle slab remnants

    NARCIS (Netherlands)

    Meer, D.G. van der; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.; Torsvik, T.H.

    2010-01-01

    Since the first reconstruction of the supercontinent Pangaea, key advances in plate tectonic reconstructions have been made1. Although the movement of tectonic plates since the start of the mid-Cretaceous period (~100 million years (Myr) ago) is relatively well understood1, 2, the longitudinal

  9. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    Science.gov (United States)

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  10. Application of plate tectonics to the location of new mineral targets in the Appalachians. Progress report no. 3

    International Nuclear Information System (INIS)

    Kutina, J.

    1979-01-01

    This report is concerned with the application of plate tectonics to the location of new mineral targets in the U.S. It reviews analyses presented in previous reports which suggest that the basement of the Central and Eastern U.S. consists of large crustal blocks separated by major zones of tectonic weakness. The curvature of the Appalachian Fold Belt appears to be related to the east-west boundaries caused by subsiding and uplifting at these zones. A plot of epigenetic uranium occurrences reveals that they tend to cluster along the greater curvatures of the Appalachian orogeny. These findings have led to a systematic study of the regularities in the distribution of ore deposits in the Appalachians presented in this report. They include a description of geologic and geographic base maps, preparation of maps showing distribution of individual minerals, and regularities in the distribution of uranium in the Appalachians. Comments on the segmentation of the Appalachian orogeny by transverse lineaments are presented. The report contains seventeen maps of the eastern half of the U.S. showing specific mineral deposits in relation to geologic formations

  11. Simulation of tectonic evolution of the Kanto basin of Japan since 1 Ma due to subduction of the Pacific and Philippine sea plates and collision of the Izu-Bonin arc

    Science.gov (United States)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2015-04-01

    The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  12. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  13. Subsidence of the South Polar Terrain and global tectonic of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2016-04-01

    Introduction: Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ˜200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust (like on Mercury). Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special dynamical process that could explain this paradox. Our hypothesis states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypothesis is presented in [2] and [3]. We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. Methods and results: The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied, that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ˜0.05 mmṡyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ˜0.02 mmṡyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ˜0.02 mmṡyr-1 for the Newtonian rheology. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the

  14. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth

    2014-08-01

    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  15. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  16. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints

    Science.gov (United States)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.

    2014-12-01

    Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below

  17. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  18. Orogenesis of the Oman Mountains - a new geodynamic model based on structural geology, plate reconstructions and thermochronology

    Science.gov (United States)

    Grobe, Arne; Virgo, Simon; von Hagke, Christoph; Ralf, Littke; Urai, Janos L.

    2017-04-01

    Ophiolite obduction is an integral part of mountain building in many orogens. However, because the obduction stage is usually overprinted by later tectonic events, obduction geodynamics and its influence on orogenesis are often elusive. The best-preserved ophiolite on Earth is the Semail Ophiolite, Oman Mountains. 350 km of ophiolite and the entire overthrusted margin sequence are exposed perpendicular to the direction of obduction along the northeastern coast of the Sultanate of Oman. Despite excellent exposure, it has been debated whether early stages of obduction included formation of a micro-plate, or if the Oman Mountains result from collision of two macro-plates (e.g. Breton et al., 2004). Furthermore, different tectonic models for the Oman Mountains exist, and it is unclear how structural and tectonic phases relate to geodynamic context. Here we present a multidisciplinary approach to constrain orogenesis of the Oman Mountains. To this end, we first restore the structural evolution of the carbonate platform in the footwall of the Semail ophiolite. Relative ages of nine structural generations can be distinguished, based on more than 1,500 vein and fault overprintings. Top-to-S overthrusting of the Semail ophiolite is witnessed by three different generations of bedding confined veins in an anticlockwise rotating stress field. Rapid burial induced the formation of overpressure cells, and generation and migration of hydrocarbons (Fink et al., 2015; Grobe et al., 2016). Subsequent tectonic thinning of the ophiolite took place above a top-to-NNE crustal scale, ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers. Ongoing extension formed normal- to oblique-slip faults and horst-graben structures. This was followed by NE-SW oriented ductile shortening, the formation of the Jebel Akhdar anticline, potentially controlled by the positions of the horst-graben structures. Exhumation in the Cenozoic was associated with low angle normal

  19. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    International Nuclear Information System (INIS)

    Ismullah M, Muh. Fawzy; Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin

    2015-01-01

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault

  20. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    Energy Technology Data Exchange (ETDEWEB)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com [Master Program Geophysical Engineering, Faculty of Mining and Petroleum Engineering (FTTM), Bandung Institute of Technology (ITB), Jl. Ganesha no. 10, Bandung, 40116, Jawa Barat (Indonesia); Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin [Geophysics Program Study, Faculty of Mathematics and Natural Sciences, Hasanuddin University (UNHAS), Jl. PerintisKemerdekaan Km. 10, Makassar, 90245, Sulawesi Selatan (Indonesia)

    2015-04-24

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.

  1. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  2. The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions

    Science.gov (United States)

    Holt, W. E.; Wang, X.; Ghosh, A.

    2016-12-01

    Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear

  3. Thrust initiation and its control on tectonic wedge geometry: An insight from physical and numerical models

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Saha, Puspendu; Sarkar, Shamik; Lithgow-Bertelloni, Carolina

    2014-10-01

    We performed a series of sandbox experiments to investigate the initiation of thrust ramping in tectonic wedges on a mechanically continuous basal decollement. The experiments show that the decollement slope (β) is the key factor in controlling the location of thrust initiation with respect to the backstop (i.e. tectonic suture line). For β = 0, the ramping begins right at the backstop, followed by sequential thrusting in the frontal direction, leading to a typical mono-vergent wedge. In contrast, the ramp initiates away from the backstop as β > 0. Under this boundary condition an event of sequential back thrusting takes place prior to the onset of frontal thrust progression. These two-coupled processes eventually give rise to a bi-vergent geometry of the thrust wedge. Using the Drucker-Prager failure criterion in finite element (FE) models, we show the location of stress intensification to render a mechanical basis for the thrust initiation away from the backstop if β > 0. Our physical and FE model results explain why the Main Central Thrust (MCT) is located far away from the Indo-Tibetan plate contact (ITSZ) in the Himalayan fold-and-thrust belts.

  4. Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc

    Science.gov (United States)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2016-06-01

    The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  5. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to

  6. Large plates and small blocks: The Variscan orogeny in the Bohemian Massif

    Science.gov (United States)

    Kroner, Uwe; Romer, Rolf L.

    2017-04-01

    The Bohemian Massif of the Central European Variscides consists of several late Proterozoic / early Paleozoic low-strain crustal units, namely the Bruno-Vistulian continental block of the Laurussian plate that is juxtaposed with the Tepla-Barrandian Unit and the Lausitz block of the Gondwana plate. These pre-Variscan low-strain units are separated by high-strain zones that contain the mid- and lower crustal record of the Variscan orogeny (400-300 Ma), with nappes reflecting successive subduction exhumation events, voluminous migmatites and a wide range of geochemically contrasting granites. Although the principal constraints are undisputed, there is no consensus regarding the general tectonics of this area. Here we present a plate tectonic model explaining the Bohemian Massif as an orogenic wedge with a Gondwana pro-wedge and a Laurussia retro-wedge area. The principal formation steps are as follows. Subduction of the oceanic crust of the Gondwana plate, i.e. the southern part of the Rheic Ocean eventually followed by continental subduction of the distal Peri-Gondwana shelf produced the early Devonian (U)HP complexes now exposed in the uppermost allochthonous units. The arrival of the Tepla-Barrandian Cadomian block initiates a flip of subduction polarity, leading to the complete closure of the Rheic Ocean in the late Devonian coeval with the exhumation of the early Variscan (U)HP units. Caused by the Lausitz block entering the plate boundary zone in the early Carboniferous, this early subduction accretion stage was followed by continent continent collision. The resulting orogenic wedge is characterized by an intra-continental subduction zone in the pro-wedge area superimposed by the crustal stack of early and mid-Variscan accreted units. Due to heating of the subducted slab in the mantle, the isothermal exhumation of this deeply buried continental crust caused HT-LP metamorphism during the final transpressional stage. Lateral extrusion tectonics coeval with the

  7. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    Science.gov (United States)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  8. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  9. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin

    Science.gov (United States)

    Suo, Yanhui; Li, Sanzhong; Yu, Shan; Somerville, Ian D.; Liu, Xin; Zhao, Shujuan; Dai, Liming

    2014-07-01

    Tectonic migration is a common geological process of basin formation and evolution. However, little is known about tectonic migration in the western Pacific margins. This paper focuses on the representative Cenozoic basins of East China and its surrounding seas in the western Pacific domain to discuss the phenomenon of tectonic jumping in Cenozoic basins, based on structural data from the Bohai Bay Basin, the South Yellow Sea Basin, the East China Sea Shelf Basin, and the South China Sea Continental Shelf Basin. The western Pacific active continental margin is the eastern margin of a global convergent system involving the Eurasian Plate, the Pacific Plate, and the Indian Plate. Under the combined effects of the India-Eurasia collision and retrogressive or roll-back subduction of the Pacific Plate, the western Pacific active continental margin had a wide basin-arc-trench system which migrated or ‘jumped’ eastward and further oceanward. This migration and jumping is characterized by progressive eastward younging of faulting, sedimentation, and subsidence within the basins. Owing to the tectonic migration, the geological conditions associated with hydrocarbon and gashydrate accumulation in the Cenozoic basins of East China and its adjacent seas also become progressively younger from west to east, showing eastward younging in the generation time of reservoirs, seals, traps, accumulations and preservation of hydrocarbon and gashydrate. Such a spatio-temporal distribution of Cenozoic hydrocarbon and gashydrate is significant for the oil, gas and gashydrate exploration in the East Asian Continental Margin. Finally, this study discusses the mechanism of Cenozoic intrabasinal and interbasinal tectonic migration in terms of interplate, intraplate and underplating processes. The migration or jumping regimes of three separate or interrelated events: (1) tectonism-magmatism, (2) basin formation, and (3) hydrocarbon-gashydrate accumulation are the combined effects of the

  10. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    probability that oceanic crustal segments could founder in an organized way, producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga. Plate tectonics today is constituted of: (1 a continental drift system that started in the Early Archaean, driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons; (2 a subduction-driven system that started near the end of the Archaean.

  11. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    Science.gov (United States)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  12. Post-Jurassic tectonic evolution of Southeast Asia

    Science.gov (United States)

    Zahirovic, Sabin; Seton, Maria; Dietmar Müller, R.; Flament, Nicolas

    2014-05-01

    The accretionary growth of Asia, linked to long-term convergence between Eurasia, Gondwana-derived blocks and the Pacific, resulted in a mosaic of terranes for which conflicting tectonic interpretations exist. Here, we propose solutions to a number of controversies related to the evolution of Sundaland through a synthesis of published geological data and plate reconstructions that reconcile both geological and geophysical constraints with plate driving forces. We propose that West Sulawesi, East Java and easternmost Borneo rifted from northern Gondwana in the latest Jurassic, collided with an intra-oceanic arc at ~115 Ma and subsequently sutured to Sundaland by 80 Ma. Although recent models argue that the Southwest Borneo core accreted to Sundaland at this time, we use volcanic and biogeographic constraints to show that the core of Borneo was on the Asian margin since at least the mid Jurassic. This northward transfer of Gondwana-derived continental fragments required a convergent plate boundary in the easternmost Tethys that we propose gave rise to the Philippine Archipelago based on the formation of latest Jurassic-Early Cretaceous supra-subduction zone ophiolites on Halmahera, Obi Island and Luzon. The Late Cretaceous marks the shift from Andean-style subduction to back-arc opening on the east Asian margin. Arc volcanism along South China ceased by ~60 Ma due to the rollback of the Izanagi slab, leading to the oceanward migration of the volcanic arc and the opening of the Proto South China Sea (PSCS). We use the Apennines-Tyrrhenian system in the Mediterranean as an analogue to model this back-arc. Continued rollback detaches South Palawan, Mindoro and the Semitau continental blocks from the stable east Asian margin and transfers them onto Sundaland in the Eocene to produce the Sarawak Orogeny. The extrusion of Indochina and subduction polarity reversal along northern Borneo opens the South China Sea and transfers the Dangerous Grounds-Reed Bank southward to

  13. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  14. Deciphering detailed plate kinematics of the Indian Ocean and developing a unified model for East Gondwanaland reconstruction: An Indian-Australian-French initiative

    Digital Repository Service at National Institute of Oceanography (India)

    Yatheesh, V.; Dyment, J.; Bhattacharya, G.C.; Muller, R.D.

    The Indian Ocean formed as a result of the fragmentation and dispersal of Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major tectonic...

  15. From Dearth to El Dorado: Andean Nature, Plate Tectonics, and the Ontologies of Ecuadorian Resource Wealth

    Directory of Open Access Journals (Sweden)

    David Kneas

    2018-03-01

    Full Text Available Since the early 1990s, the Ecuadorian government has pledged to convert the nation into a “mining country” of global standing. Contemporary claims of mineral wealth, however, stand in stark contrast to previous assessments. Indeed, through much of the 20th century, geologists described Ecuador as a country of mineral dearth. Exploring the process through which Ecuador seemingly transitioned from a nation of resource scarcity to one of mineral plenty, I demonstrate how assessments of Ecuador’s resource potential relate to ideas of Andean nature. Promoters of resource abundance have emphasized Andean uniformity and equivalence—the notion that Ecuador’s mineral wealth is inevitable by virtue of the resource richness of its Andean neighbors. Geologists who have questioned Ecuador’s mineral content, on the other hand, have emphasized Andean heterogeneity. In the recent promotion of Ecuador’s resource potential, notions of Andean uniformity have been bolstered by models of subsoil copper that emerged in the in 1970s in the context of plate-tectonic theory. In highlighting the linkage between ideas of Andean nature and appraisals of Ecuadorian resource potential since the late 19th century, I outline the dialectics between nature and natural resources that underpin processes of resource becoming.

  16. Petrogenesis and tectonic association of rift-related basic Panjal dykes from the northern Indian plate, North-Western Pakistan: evidence of high-Ti basalts analogous to dykes from Tibet

    Science.gov (United States)

    Sajid, Muhammad; Andersen, Jens; Arif, Mohammad

    2018-06-01

    Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (evolution of dolerites, which also show depletion in rare earth elements (REEs) and other incompatible elements compared to the amphibolites. The equilibrium partial melting models from primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.

  17. DISCUSSION: When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?

    Science.gov (United States)

    Stern, R. J.; Gerya, T.; Sobolev, S. V.; Tackley, P.

    2015-12-01

    Because all 5 presentations in the Union session "When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?" will have 5 minute discussion periods, the scheduled 15 minute end-of-session discussion period is intended to allow other perspectives to be presented by the scientific community. We invite brief (2 powerpoint slides) comments from the community about any aspect of the topic at hand. We encourage anyone who has something pertinent or interesting to say to submit 2 powerpoint slides directly to any one of the four co-convenors listed on this abstract. The first slide should be a simple title with the name and affiliation of the commenter. The second slide should be the content of the comment. The convenors will compile all of these that are submitted up to the noon on the day before the session occurs, when we will upload the compiled files in the order that they were received (if we have received digital scans of signed waivers by that time, see below). During the discussion, we will call on those who have submitted 2 slides to the podium to make their points in 2 minutes or less (total time from being called to leaving the podium). Because this AGU Union session including the discussion period will be live-streamed and recorded, all Discussion Session commenters will be required to sign an AGU waiver acknowledging this and giving permission to be recorded. These will be sent via e-mail to those who submit 2 slide powerpoints. Commenters that do not sign and return the waiver will be scheduled after all commenters who have returned signed waivers and AGU will terminate live streaming and recording accordingly. If no one submits anything then we will have open discussion from the floor. We will also advertise the Monte Verita conference in Locarno Switzerland 17-22 July 2016. This conference will explore in greater detail the 5 key aspects of Plate Tectonic evolution briefly

  18. Tectonic forward modelling of positive inversion structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2013-08-01

    Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe

  19. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2015-05-01

    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  20. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  1. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate

    Science.gov (United States)

    Yang, Ting; Moresi, Louis; Zhao, Dapeng; Sandiford, Dan; Whittaker, Joanne

    2018-06-01

    Northeast Asia underwent widespread rifting and magmatic events during the Cenozoic. The geodynamic origins of these tectonic events are often linked to Pacific plate subduction beneath Northeast Asia. However, the Japan Sea did not open until the late Oligocene, tens of millions of years after Pacific Plate subduction initiation in the Paleocene. Moreover, it is still not clear why the Baikal Rift Zone extension rate increased significantly after the late Miocene, while the Japan Sea opening ceased at the same time. Geodynamic models suggest these enigmatic events are related to the rapidly-aging Pacific Plate at the trench after Izanagi-Pacific spreading ridge subduction. Subduction of the young Pacific Plate delayed the Japan Sea opening during the Eocene while advection of the old Pacific Plate towards the trench increases seafloor age rapidly, allowing the Japan Sea to open after the early Miocene. The Japan Sea opening promotes fast trench retreat and slab stagnation, with subduction-induced wedge zone convection gradually increasing its extent during this process. The active rifting center associated with wedge zone convection upwelling also shifts inland-ward during slab stagnation, preventing further Japan Sea spreading while promoting the Baikal Rift Zone extension. Our geodynamic model provides a good explanation for the temporal-spatial patterns of the Cenozoic tectonic and magmatic events in Northeast Asia.

  2. Active tectonics and earthquake potential of the Myanmar region

    OpenAIRE

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-01-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subd...

  3. Tectonic reactivation in the Indian Ocean: Evidences from seamount morphology and manganese nodule characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Khadge, N.H.

    The Central Indian Ocean Basin (CIOB) was subjected to tectonic reactivation in geological past which is unusual for a basin occurring on an apparently single tectonic plate. ENE-WSW trending latitude parallel zone of reactivation across the central...

  4. Integrating EarthScope Data to Constrain the Long-Term Effects of Tectonism on Continental Lithosphere

    Science.gov (United States)

    Porter, R. C.; van der Lee, S.

    2017-12-01

    One of the most significant products of the EarthScope experiment has been the development of new seismic tomography models that take advantage of the consistent station design, regular 70-km station spacing, and wide aperture of the EarthScope Transportable Array (TA) network. These models have led to the discovery and interpretation of additional compositional, thermal, and density anomalies throughout the continental US, especially within tectonically stable regions. The goal of this work is use data from the EarthScope experiment to better elucidate the temporal relationship between tectonic activity and seismic velocities. To accomplish this, we compile several upper-mantle seismic velocity models from the Incorporated Research Institute for Seismology (IRIS) Earth Model Collaboration (EMC) and compare these to a tectonic age model we compiled using geochemical ages from the Interdisciplinary Earth Data Alliance: EarthChem Database. Results from this work confirms quantitatively that the time elapsed since the most recent tectonic event is a dominant influence on seismic velocities within the upper mantle across North America. To further understand this relationship, we apply mineral-physics models for peridotite to estimate upper-mantle temperatures for the continental US from tomographically imaged shear velocities. This work shows that the relationship between the estimated temperatures and the time elapsed since the most recent tectonic event is broadly consistent with plate cooling models, yet shows intriguing scatter. Ultimately, this work constrains the long-term thermal evolution of continental mantle lithosphere.

  5. Dynamic computer model for the metallogenesis and tectonics of the Circum-North Pacific

    Science.gov (United States)

    Scotese, Christopher R.; Nokleberg, Warren J.; Monger, James W.H.; Norton, Ian O.; Parfenov, Leonid M.; Khanchuk, Alexander I.; Bundtzen, Thomas K.; Dawson, Kenneth M.; Eremin, Roman A.; Frolov, Yuri F.; Fujita, Kazuya; Goryachev, Nikolai A.; Pozdeev, Anany I.; Ratkin, Vladimir V.; Rodinov, Sergey M.; Rozenblum, Ilya S.; Scholl, David W.; Shpikerman, Vladimir I.; Sidorov, Anatoly A.; Stone, David B.

    2001-01-01

    The digital files on this report consist of a dynamic computer model of the metallogenesis and tectonics of the Circum-North Pacific, and background articles, figures, and maps. The tectonic part of the dynamic computer model is derived from a major analysis of the tectonic evolution of the Circum-North Pacific which is also contained in directory tectevol. The dynamic computer model and associated materials on this CD-ROM are part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project provides critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and Eastern Asia.

  6. GEOMAGNETIC CONJUGACY OF MODERN TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. Ya. Khachikyan

    2013-01-01

    Full Text Available An earthquake is an element of the global electric circuit (GEC –  this new idea suggested in the space age is tested in our study. In the frame of the GEC concept, one may expect that tectonic structures of the northern and southern hemispheres may be magnetically conjugated. It is found that the midocean ridges of the southern hemisphere, located along the boundary of the Antarctic lithosphere plate, are magnetically conjugated with the areas of the junction of continental orogens and platforms in the northern hemisphere. The closest geomagnetic conjugacy exists between the southern boundary of Nazca lithospheric plate and the northern boundaries of Cocos and Caribbean lithospheric plates.

  7. Crustal structure and evolution of the NW Zagros Mountains (Iran): Insights from numerical modeling of the interplay between surface and tectonic processes

    Science.gov (United States)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume

    2014-05-01

    Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system

  8. Geoprospective study of a nuclear waste repository. Prospective tectonics: convergent and divergent episodes, evolution of stress during the next 100,000 years

    International Nuclear Information System (INIS)

    Gros, Y.

    1985-01-01

    Within the frame of a contract with the CEC, dealing with storage and disposal of radioactive wastes in geological formations, the B.R.G.M. has been involved in a research on prospective tectonics. Within the Western European continental plate, since Mesozoic times, one sees the alternation or succession of convergent and divergent tectonic episodes. These tectonic episodes, although representing geologically discontinuous phenomena, still have time periods of between 4 to 40 millions years. These tectonic phenomena are the cause of the formation or reactivation, at all scales in the continental plate, of brittle, fault-like structures. Tectonic analysis and the in situ measures of stress and the earthquake focal phenomena show that, from the lower Quaternary to the present, the Western European continental plate has been subjected to NNW to SSE convergent stress. A study of the arrangement of European and African plates in the Western Mediterranean shows that the entire region, is undergoing a period of continental collision. The change in the process implies a westerly continental drift of the Spanish plate, a movement which would take several million years. On the Western European scale, the most likely hypothesis during the next 100,000 years is the persistance of the present stress trending approximately N-5. On the other hand, on a local scale, reorganisations of this stress are possible, owing to the presence of tectonic or lithological heterogeneities

  9. Analog models of convergence and divergence: perspectives of the tectonics of the Middle East

    Science.gov (United States)

    Mart, Yossi

    2010-05-01

    Three series of analog models of convergence and divergence of tectonic plates illuminate the possible tectonic processes that shaped the lithology of the Middle East since the early Miocene. The Mid-East geographic province extends from the Ionian Sea to the Arabian Sea, and comprises the Hellenic subduction zone, the Aegean back-arc basin, the motion of Anatolia southwestwards, the oblique collision of Arabia and Iran along the Zagros suture, and the continental break-up of the Gulf of Aden and the Red Sea. The tectonic evolution of all these diverse domains started in the Miocene nearly contemporaneously, and modeling suggests that the convergence and divergence, though derived from unrelated processes, their tectonics is intertwined. Centrifuge models of the initiation of subduction show the correlation between early subduction and the opening of its back-arc basin (Mart et al., 2005). The models emphasize the significance of extensive seawards roll-back of the deformation front when friction between the thrust slabs is reduced, and consequently, the pull within the overthrust slab that leads to its structural extension. That extension produced the Aegean domain with its volcanism and the exposure of its core complex, as well as the westwards displacement of Anatolia along the North and East Anatolian Faults. Sand-box models of oblique subduction, namely the gradual shift from subduction to collision along the convergence front, showed orthogonal patterns of extension in distal parts of the underthrust slab (Bellahsen et al., 2002). It is suggested that the extensional domains deflected the propagation of Carlsberg Ridge to swing 1200 and penetrate the Gulf of Aden in the early Miocene. The structural differences between the Gulf of Aden and the Red Sea can be accounted for by the results of sand-box experiments in oblique rifting (Mart and Dauteuil, 2000). The models suggest that oblique rifting, where the deviation from the normal extension was ca. 50, would

  10. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    International Nuclear Information System (INIS)

    Lenardic, A.; Crowley, J. W.

    2012-01-01

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees, for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ( s uper-Earths ) . The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.

  11. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault

    Science.gov (United States)

    Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth

    1989-01-01

    The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.

  12. DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin

    Science.gov (United States)

    Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).

  13. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  14. An Integrated Age Model for the Cocos Plate using IODP CRISP Drilling Data

    Science.gov (United States)

    Baxter, A. T.; Kutterolf, S.; Schindlbeck, J. C.; Sandoval, M. I.; Barckhausen, U.; Li, Y. X.; Petronotis, K. E.

    2017-12-01

    We present an integrated age model for the incoming Cocos Plate sediments offshore Costa Rica. The data, collected over two IODP Expeditions (334 and 344), provides a medium- to high-resolution record from the initial formation of the ocean crust in the Miocene to the present day. This study provides >50 age control points for the CRISP sediments from Sites U1381 and U1414. Although the two sites are just 10 km apart, there are distinct differences in the sediment and tephra record. Most notable is the presence of a hiatus at Site U1381. The hiatus, which is seen at other sites on the Cocos Plate, but not at Site U1414, may be related to erosion due to bottom water currents, mass wasting from Cocos Ridge subduction or may be related to the closure of the Central American Seaway (CAS). Sediment accumulation rates in the Miocene are comparable to modern abyssal plain rates. However, an increase is observed in the Pleistocene, when detritus from the forearc basin appears at Site U1414 2 Ma, shortly after the initiation of Cocos Ridge subduction. A tectonic model is presented that reconstructs the Cocos Plate, from its formation at 23 Ma to the present day. Eastern Equatorial Pacific (EEP) paleoceanographic events, such as the Miocene `carbonate crash' and the Late Miocene-Early Pliocene `biogenic bloom' observed at Site U1414, are also discussed.

  15. The Intersection between the Gloria Transform Fault and the Tore-Madeira Rise in the NE Atlantic: New Tectonic Insights from Analog Modeling Results

    Science.gov (United States)

    Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.

    2014-12-01

    The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with

  16. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  17. Seafloor morphology of the Eurasia-Nubia (Africa) plate boundary between the Tore-Madeira Rise and the Straits of Gibraltar: a case of coexistent Mesozoic through Present day features of tectonic, oceanographic and sedimentary origin

    Science.gov (United States)

    Terrinha, Pedro; Duarte, João.; Valadares, Vasco; Batista, Luis; Zitellini, Nevio; Grácia, Eulalia; Lourenço, Nuno; Rosas, Filipe; Roque, Cristina

    2010-05-01

    active tectonics (Duarte, in press). These features formed after the sealing of the Gulf of Cadiz Accretionary Wedge but the processes of their formation are an indication that at least some thrusts of this wedge are still active. The finding of buried scours in the Pliocene-Quaternary sediments indicates that the bottom currents have been active in the area at least since these times, i.e. after the opening of the Straits of Gibraltar. The internal structure of the submarine canyons inspected in multichannel seismics also allowed for the identification of recurrent use of the S. Vincente canyon axis by paleo-drainage during the Late Miocene, Pliocene and Quaternary. The identification of a 600 km long set of lineaments that may constitute the present day strike-slip plate boundary between Eurasia and Africa (Zitellini et al., 2009; Terrinha et al., 2009) between the northwestern Morocco shelf and the Gorringe-Hirondelle seamounts was made on inspection of multibeam bathymetry and seismic profiles. The thorough inspection of these data and cross interpretation with analogue modeling and mathematical analysis allowed speculation on the age of this tectono-morphic feature and its age. Furthermore, it is a clear demonstration that the identification of plate scale-like active tectonic features can be missed if the appropriated methods are not used. Constrictive and releasing bends on the Gloria Fault and its connection with the Gorringe Bank and SWIM strike-slip Fault also allowed for the formation of penetrative fabrics associated with tectonic reactivations of oceanic rift structures documented in this work.

  18. Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2005-01-01

    Tectonics has been an inherent part of the architectural field since the Greek temples while the digital media is new to the field. This paper is built on the assumption that in the intermediate zone between the two there is a lot to be learned about architecture in general and the digital media...... in particular. A model of the aspects in the term tectonics – epresentation, ontology and culture – will be presented and used to discuss the current digital tools’ ability in tectonics. Furthermore it will be discussed what a digital tectonic tool is and could be and how a connection between the digital...... and tectonic could become a part of the architectural education....

  19. The Rapid Drift of the Indian Tectonic Plate

    Science.gov (United States)

    Kumar, P.; Yuan, X.; Kumar, R.; Kind, R.; Li, X.; Chadha, R.

    2007-12-01

    The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago and consequently the opening of the Indian Ocean was caused by heating of the lithosphere from below by a large plume whose relicts are the Marion, Kerguelen and Reunion plumes. Plate reconstructions based on paleomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm/yr during late Cretaceous) subsequent to its breakup from the Gondwanaland and slowed down to ~5 cm/yr since the continental collision with Asia during the last ~50 Ma. The Australian and African plates moved comparatively lesser distances and at much lesser speed of 2-4 cm/yr. Antarctica remained almost stationary. This super mobility makes India unique compared to the other fragments of Gondwanaland. We propose that when the parts of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere played an important role in determining their speed. We estimated the thickness of the lithospheric plates of the different parts of Gondwanaland around the Indian Ocean using the S-receiver function technique. We found that the part of Gondwanaland with clearly the thinnest lithosphere has travelled with the highest speed - India. The lithospheric root in South Africa, Australia and Antarctica is between 180 and 300 km deep. The Indian lithosphere is in contrast only about 100 km thick. Our interpretation is that the plume that partitioned Gondwanaland has also melted the lower half of the Indian lithosphere thus permitting faster motion due to the ridge push or slab pull.

  20. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  1. Petrology, geochemistry and tectonic settings of the mafic dikes and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    margins of the basin, whereas, others are aligned .... areas of mantle upwelling, igneous intrusions, deep ... to and during the sedimentary accumulation, and ...... The development of continental margins in plate tectonic theory; J. Aust. Petrol.

  2. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Szatmari, P. (Petrobras Research Center, Rio de Janeiro (Brazil))

    1989-08-01

    A somewhat speculative hypothesis of petroleum genesis in the upper lithosphere is proposed, based on Fischer-Tropsch synthesis. This hypothesis is distinct from both the organic (biogenic) model and the inorganic model of hydrocarbon degassing from the Earth's interior. The hypothesis presented in this paper proposes that petroleum liquids form by Fischer-Tropsch synthesis on magnetite and hematite catalysts when carbon dioxide (derived by massive metamorphic or igneous decarbonation of subducted sedimentary carbonates) reacts with hydrogen generated by the serpentinization (in the absence of air) of shallow-mantle lithosphere and ophiolite thrust sheets. Oblique plate movements may favor hydrocarbon formation by creating deep faults that aid fluid flow and serpentinization. The world's richest oil provinces, including those of the Middle East, may be tentatively interpreted to have formed by this mechanism. 8 figs., 1 tab.

  3. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  4. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  5. The rotation and fracture history of Europa from modeling of tidal-tectonic processes

    Science.gov (United States)

    Rhoden, Alyssa Rose

    Europa's surface displays a complex history of tectonic activity, much of which has been linked to tidal stress caused by Europa's eccentric orbit and possibly non-synchronous rotation of the ice shell. Cycloids are arcuate features thought to have formed in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features thus provide constraints on the rotational parameters that govern tidal stress, and can help us develop an understanding of the tidal-tectonic processes operating on ice covered ocean moons. In the first part of this work (Chapter 3), I test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation (NSR), and physical libration by comparing how well each model reproduces observed cycloids. To do this, I have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality to identify the best fits to observed cycloids. I apply statistical techniques to determine the tidal model best supported by the data and constrain the values of Europa's rotational parameters. Cycloids indicate a time-varying obliquity of about 1° and a physical libration in phase with the eccentricity libration, with amplitude >1°. To obtain good fits, cycloids must be translated in longitude, which implies non-synchronous rotation of the icy shell. However, stress from NSR is not well-supported, indicating that the rotation rate is slow enough that these stresses relax. I build upon the results of cycloid modeling in the second section by applying calculations of tidal stress that include obliquity to the formation of strike-slip faults. I predict the slip directions of faults with the standard formation model---tidal walking (Chapter 5)---and with a new mechanical model I have developed, called shell tectonics (Chapter 6). The shell tectonics model incorporates linear elasticity to determine slip and stress

  6. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  7. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  8. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    Science.gov (United States)

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    buttress occurs under the North Cascades region of Washington and under southern Vancouver Island. We find that regional faults zones such as the Devils Mt. and Darrington zones follow the margin of this buttress and the Olympic-Wallowa lineament forms its southern boundary east of the Puget Lowland. Thick, high-velocity, lower-crustal rocks are interpreted to be a mafic/ultramafic wedge occuring just above the subduction thrust. This mafic wedge appears to be jointly deformed with the arch, suggesting strong coupling between the subducting plate and upper plate crust in the Puget Sound region at depths >30 km. Such tectonic coupling is possible if brittle-ductile transition temperatures for mafic/ultramafic rocks on both sides of the thrust are assumed. The deformation models show that dominant north-south compression in the coast ranges of Washington and Oregon is controlled by a highly mafic crust and low heat flow, allowing efficient transmission of margin-parallel shear from Pacific plate interaction with North America. Complex stress patterns which curve around the Puget Sound region require a concentration of northwest-directed shear in the North Cascades of Washington. The preferred model shows that greatest horizontal shortening occurs across the Devils Mt. fault zone and the east end of the Seattle fault.

  9. Petrogenesis of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan: Provenance, tectonic, and climatic implications

    Science.gov (United States)

    Amireh, Belal S.

    2018-04-01

    Detrital framework modes of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan are determined employing the routine polarized light microscope. The lower part of this sequence constitutes a segment of the vast lower Paleozoic siliciclastic sheet flanking the northern Gondwana margin that was deposited over a regional unconformity truncating the outskirts of the East African orogen in the aftermath of the Neoproterozoic amalgamation of Gondwana. The research aims to evaluate the factors governing the detrital light mineral composition of this sandstone. The provenance terranes of the Arabian craton controlled by plate tectonics appear to be the primary factor in most of the formations, which could be either directly inferred employing Dickinson's compositional triangles or implied utilizing the petrographic data achieved and the available tectonic and geological data. The Arabian-Nubian Shield constitutes invariably the craton interior or the transitional provenance terrane within the NE Gondwana continental block that consistently supplied sandy detritus through northward-flowing braided rivers to all the lower Paleozoic formations. On the other hand, the Lower Cretaceous Series received siliciclastic debris, through braided-meandering rivers having same northward dispersal direction, additionally from the lower Paleozoic and lower-middle Mesozoic platform strata in the Arabian Craton. The formations making about 50% of the siliciclastic sequence represent a success for Dickinson's plate tectonics-provenance approach in attributing the detrital framework components primarily to the plate tectonic setting of the provenance terranes. However, even under this success, the varying effects of the other secondary sedimentological and paleoclimatological factors are important and could be crucial. The inapplicability of this approach to infer the appropriate provenance terranes of the remaining formations could be ascribed either to the

  10. Theroretical modelling of the plate-tubes coupling in the hydroelasticity of the perforated plates

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Manoach, E.S.

    1983-01-01

    In the previous investigations on the perforated plate hydroelasticity the problem of the plates-tubes-liquid interaction in the process of the general structural vibration is stated. But the interaction of the vibrating plates with the tubes, passing through them, is taken into account considering the tubes only as absolutely rigid supports. This is one of the possible technical realizations. In the present article the case when the tubes are taking part in the plate motion (vibration) is studied. Two circular perforated plates are supported by the absolutely rigid wall of the modelled roundcircular reactor barrel. The distance between the plates is given. They are connected by tubes, passing through, and clamped into the perforation holes. The plates and the tubes are made by any elastic HOOKIAN material. The volume between the two plates and outwardly to the tubes, but intrinsically of the barrel is filled by ideal, compressible and heavy liquid. Evidently the liquid volume is multiconnected one. The free vibration of the whole system is considered with the purposes: i) to give a theoretical model of the plates-tubes-liquid interaction including governing equations and boundary conditions; ii) to trace the solution of the eigen-value problem for the modelled structure; iii) to underline the engineering sides of the modelling process. (orig./GL)

  11. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    OpenAIRE

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-01-01

    The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...

  12. Evolving dynamical regimes during secular cooling of terrestrial planets : insights and inferences from numerical models

    NARCIS (Netherlands)

    Thienen, Peter van

    2003-01-01

    Although plate tectonics is the present-day mode of geodynamics on Earth, it is not so on Mars and Venus, and probably also not during the early history of the Earth. In this thesis, the conditions under which plate tectonics may operate on terrestrial planets are investigated. Numerical model

  13. Petrogenesis and tectonic association of rift-related basic Panjal dykes from the northern Indian plate, North-Western Pakistan: evidence of high-Ti basalts analogous to dykes from Tibet

    Science.gov (United States)

    Sajid, Muhammad; Andersen, Jens; Arif, Mohammad

    2017-10-01

    Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.

  14. TERRAIN TECTONICS OF THE CENTRAL ASIAN FOLDED BELT

    Directory of Open Access Journals (Sweden)

    M. M. Buslov

    2014-01-01

    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  15. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  16. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes

  17. Earthquakes, Cities, and Lifelines: lessons integrating tectonics, society, and engineering in middle school Earth Science

    Science.gov (United States)

    Toke, N.; Johnson, A.; Nelson, K.

    2010-12-01

    Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions

  18. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  19. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  20. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    Science.gov (United States)

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  1. Probabilistic tectonic heat flow modelling for basin maturation: method and applications

    NARCIS (Netherlands)

    van Wees, J.D.A.M.; van Bergen, F.; David, P.; Nepveu, M.; Beekman, W.W.W.; Cloetingh, S.A.P.L.; Bonte, D.D.P.

    2009-01-01

    Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify

  2. Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles

    Directory of Open Access Journals (Sweden)

    J.D.A. Piper

    2018-01-01

    Full Text Available Although Plate Tectonics cannot be effectively tested by palaeomagnetism in the Precambrian aeon due to the paucity of high precision poles spanning such a long time period, the possibility of Lid Tectonics is eminently testable because it seeks accordance of the wider dataset over prolonged intervals of time; deficiencies and complexities in the data merely contribute to dispersion. Accordance of palaeomagnetic poles across a quasi-integral continental crust for time periods of up to thousands of millions of years, together with recognition of very long intervals characterised by minimal polar motions (∼2.6–2.0, ∼1.5–1.25 and ∼0.75–0.6 Ga has been used to demonstrate that Lid Tectonics dominated this aeon. The new PALEOMAGIA database is used to refine a model for the Precambrian lid incorporating a large quasi-integral crescentric core running from South-Central Africa through Laurentia to Siberia with peripheral cratons subject to reorganisation at ∼2.1, ∼1.6 and ∼1.1 Ga. The model explains low levels of tidal friction, reduced heat balance, unique petrologic and isotopic signatures, and the prolonged crustal stability of Earth's “Middle Age”, whilst density concentrations of the palaeomagnetic poles show that the centre of the continental lid was persistently focussed near Earth's rotation axis from ∼2.8 to 0.6 Ga. The exception was the ∼2.7–2.2 Ga interval defined by ∼90° polar movements which translated the periphery of the lid to the rotation pole for this quasi-static period, a time characterised by glaciation and low levels of magmatic activity; the ∼2.7 Ga shift correlates with key interval of mid-Archaean crustal growth to some 60–70% of the present volume and REE signatures whilst the ∼2.2 Ga shift correlates with the Lomagundi δ13 C and Great Oxygenation events. The palaeomagnetic signature of breakup of the lid at ∼0.6 Ga is recorded by the world-wide Ediacaran development of passive

  3. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    Science.gov (United States)

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  4. River history and tectonics.

    Science.gov (United States)

    Vita-Finzi, C

    2012-05-13

    The analysis of crustal deformation by tectonic processes has gained much from the clues offered by drainage geometry and river behaviour, while the interpretation of channel patterns and sequences benefits from information on Earth movements before or during their development. The interplay between the two strands operates at many scales: themes which have already benefited from it include the possible role of mantle plumes in the breakup of Gondwana, the Cenozoic development of drainage systems in Africa and Australia, Himalayan uplift in response to erosion, alternating episodes of uplift and subsidence in the Mississippi delta, buckling of the Indian lithospheric plate, and changes in stream pattern and sinuosity along individual alluvial channels subject to localized deformation. Developments in remote sensing, isotopic dating and numerical modelling are starting to yield quantitative analyses of such effects, to the benefit of geodymamics as well as fluvial hydrology. This journal is © 2012 The Royal Society

  5. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  6. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  7. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes

    Science.gov (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.

    2009-04-01

    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  8. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    Science.gov (United States)

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and

  9. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    Science.gov (United States)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  10. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  11. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  12. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    Science.gov (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  13. Application of a Brittle Damage Model to Normal Plate-on-Plate Impact

    National Research Council Canada - National Science Library

    Raftenberg, Martin N

    2005-01-01

    A brittle damage model presented by Grinfeld and Wright of the U.S. Army Research Laboratory was implemented in the LS-DYNA finite element code and applied to the simulation of normal plate-on-plate impact...

  14. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  15. Thermal and mechanical modelling of convergent plate margins

    NARCIS (Netherlands)

    van den Beukel, P.J.

    1990-01-01

    In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate

  16. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  17. Modeling RERTR experimental fuel plates using the PLATE code

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Snelgrove, J.L.; Brazener, R.A.

    2003-01-01

    Modeling results using the PLATE dispersion fuel performance code are presented for the U-Mo/Al experimental fuel plates from the RERTR-1, -2, -3 and -5 irradiation tests. Agreement of the calculations with experimental data obtained in post-irradiation examinations of these fuels, where available, is shown to be good. Use of the code to perform a series of parametric evaluations highlights the sensitivity of U-Mo dispersion fuel performance to fabrication variables, especially fuel particle shape and size distributions. (author)

  18. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  19. Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications

    NARCIS (Netherlands)

    Wees, J.D. van; Bergen, F. van; David, P.; Nepveu, M.; Beekman, F.; Cloetingh, S.; Bonté, D.

    2009-01-01

    Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify

  20. Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro

    2016-04-01

    The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.

  1. Interdisciplinary approach to exploit the tectonic memory in the continental crust of collisional belts.

    Science.gov (United States)

    Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.

    2015-12-01

    Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a

  2. Is There Really A North American Plate?

    Science.gov (United States)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks

  3. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  4. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  5. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  6. The bright spot in the West Carpathian upper mantle: a trace of the Tertiary plate collision-and a caveat for a seismologist

    Science.gov (United States)

    Środa, Piotr

    2010-07-01

    The 2-D full waveform modelling of the mantle arrivals from the CELEBRATION 2000 profiles crossing the Carpathian orogen suggests two possible tectonic models for the collision of ALCAPA (Alpine-Carpathian-Pannonian) and the European Plate in the West Carpathians in southern Poland and Slovakia. Due to an oblique (NE-SW) convergence of plates, the character of the collision may change along the zone of contact of the plates: in the western part of the area an earlier collision might have caused substantial crustal shortening and formation of a crocodile-type structure, with the delaminated lower crust of ~100km length acting as a north-dipping reflecting discontinuity in the uppermost mantle. In the eastern part, a less advanced collision only involved the verticalization of the subducted slab remnant after a slab break-off. The lower crustal remnant of ~10km size in the uppermost mantle acts as a pseudo-diffractor generating observable mantle arrivals. Due to the similarity of synthetic data generated by both models, the question of the non-uniqueness of seismic data interpretation, that may lead to disparate tectonic inferences, is also discussed.

  7. Consequences of Chixculub Impact for the Tectonic and Geodynamic Evolution of the Gulf of Mexico North Carribean Region

    Science.gov (United States)

    Rangin, C.; Crespy, A.; Martinez-Reyes, J.

    2013-05-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  8. New tectonic data constrain the mechanisms of breakup along the Gulf of California

    Science.gov (United States)

    Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David

    2014-05-01

    The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San

  9. Tectonic, Climatic and Anthropogenic Vertical Land Movements in Western Europe by Repeated Absolute Gravity Measurements

    Science.gov (United States)

    van Camp, M. J.; de Viron, O.; Lecocq, T.; Hinzen, K. G.; Quinif, Y.; Williams, S. D.; Camelbeeck, T.

    2010-12-01

    In continental plate interiors, tectonic deformations are small and the associated ground surface movements remain close to or below the accuracy of current geodetic techniques, and at the limit of the noise level. An absolute gravimeter is an appropriate tool to quantify slow vertical movements, as this instrument, based on length and time standards, is drift free and does not depend on any terrestrial reference frame. Repeated absolute gravity (AG) measurements have been performed in Oostende (Belgian coastline) and at 8 stations along a southwest-northeast profile across the Belgian Ardennes and the Roer Valley Graben (Germany), in order to estimate the tectonic deformations in the area. After 7-13 years (depending on the station), we find evidence that the movements are no larger than a few millimeter per year and result from a combination of anthropogenic, climatic, tectonic, and Glacial Isostatic Adjustment (GIA) effects. This demonstrates the importance of precisely modeling the GIA effects in order to investigate intraplate tectonic deformations at the sub-millimeter level. This study also shows that AG measurements, repeated once or twice a year, can resolve vertical velocities at the 1.0 mm/yr level after 10 years, even in difficult conditions, provided that the gravimeter is carefully maintained.

  10. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics

    Directory of Open Access Journals (Sweden)

    N. Wright

    2013-03-01

    Full Text Available A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.

  11. APPLICABILITY OF SIMILARITY CONDITIONS TO ANALOGUE MODELLING OF TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2010-01-01

    Full Text Available The publication is aimed at comparing concepts of V.V. Belousov and M.V. Gzovsky, outstanding researchers who established fundamentals of tectonophysics in Russia, specifically similarity conditions in application to tectonophysical modeling. Quotations from their publications illustrate differences in their views. In this respect, we can reckon V.V. Belousov as a «realist» as he supported «the liberal point of view» [Methods of modelling…, 1988, p. 21–22], whereas M.V. Gzovsky can be regarded as an «idealist» as he believed that similarity conditions should be mandatorily applied to ensure correctness of physical modeling of tectonic deformations and structures [Gzovsky, 1975, pp. 88 and 94].Objectives of the present publication are (1 to be another reminder about desirability of compliance with similarity conditions in experimental tectonics; (2 to point out difficulties in ensuring such compliance; (3 to give examples which bring out the fact that similarity conditions are often met per se, i.e. automatically observed; (4 to show that modeling can be simplified in some cases without compromising quantitative estimations of parameters of structure formation.(1 Physical modelling of tectonic deformations and structures should be conducted, if possible, in compliance with conditions of geometric and physical similarity between experimental models and corresponding natural objects. In any case, a researcher should have a clear vision of conditions applicable to each particular experiment.(2 Application of similarity conditions is often challenging due to unavoidable difficulties caused by the following: a Imperfection of experimental equipment and technologies (Fig. 1 to 3; b uncertainties in estimating parameters of formation of natural structures, including main ones: structure size (Fig. 4, time of formation (Fig. 5, deformation properties of the medium wherein such structures are formed, including, first of all, viscosity (Fig. 6

  12. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  13. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate

    DEFF Research Database (Denmark)

    Jones, David T; Davies, D. R.; Campbell, I. H.

    2017-01-01

    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub......-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion...... of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent...

  14. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    Science.gov (United States)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  15. Reorganization of convergent plate boundaries. Geologica Ultraiectina (340)

    NARCIS (Netherlands)

    Baes, M.

    2011-01-01

    It is still unclear where a subduction is initiated and what are the responsible mechanisms involved in subduction initiation process. Understanding of subduction initiation will advance our knowledge of how and when plate tectonics started on Earth. Another issue concerning the subduction process

  16. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    Science.gov (United States)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  17. Modeling the hydrodynamics of phloem sieve plates

    Directory of Open Access Journals (Sweden)

    Kaare Hartvig Jensen

    2012-07-01

    Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  18. Regional P-wave Tomography in the Caribbean Region for Plate Reconstruction

    Science.gov (United States)

    Li, X.; Bedle, H.; Suppe, J.

    2017-12-01

    The complex plate-tectonic interactions around the Caribbean Sea have been studied and interpreted by many researchers, but questions still remain regarding the formation and subduction history of the region. Here we report current progress towards creating a new regional tomographic model, with better lateral and spatial coverage and higher resolution than has been presented previously. This new model will provide improved constraints on the plate-tectonic evolution around the Caribbean Plate. Our three-dimensional velocity model is created using taut spline parameterization. The inversion is computed by the code of VanDecar (1991), which is based on the ray theory method. The seismic data used in this inversion are absolute P wave arrival times from over 700 global earthquakes that were recorded by over 400 near Caribbean stations. There are over 25000 arrival times that were picked and quality checked within frequency band of 0.01 - 0.6 Hz by using a MATLAB GUI-based software named Crazyseismic. The picked seismic delay time data are analyzed and compared with other studies ahead of doing the inversion model, in order to examine the quality of our dataset. From our initial observations of the delay time data, the more equalized the ray azimuth coverage, the smaller the deviation of the observed travel times from the theoretical travel time. Networks around the NE and SE side of the Caribbean Sea generally have better ray coverage, and smaller delay times. Specifically, seismic rays reaching SE Caribbean networks, such as XT network, generally pass through slabs under South American, Central American, Lesser Antilles, Southwest Caribbean, and the North Caribbean transform boundary, which leads to slightly positive average delay times. In contrast, the Puerto Rico network records seismic rays passing through regions that may lack slabs in the upper mantle and show slightly negative or near zero average delay times. These results agree with previous tomographic

  19. The Role of Long-Term Tectonic Deformation on the Distribution of Present-Day Seismic Activity in the Caribbean and Central America

    Science.gov (United States)

    Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.

    2017-12-01

    The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.

  20. Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies

    Science.gov (United States)

    Guo, L.; Meng, X.; Shi, L.; Yao, C.

    2011-12-01

    The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We

  1. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  2. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  3. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    Science.gov (United States)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  4. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    Science.gov (United States)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  5. A Review of Tectonic Models and Analytical Data from Almora-Dadeldhura Klippe, Northwest India and Far Western Nepal.

    Science.gov (United States)

    Bosu, S.; Robinson, D.; Saha, A.

    2017-12-01

    Tectonic models developed from the Himalayan thrust belt constitute three models- critical taper, channel flow and wedge extrusion. Their differences are manifested in predicted minimum shortening, deformation propagation style and tectonic architecture across the thrust belt. Recent studies from isolated synformal klippen composed of Greater and Tethyan Himalayan rock within the Himalayan thrust belt disagree over the tectonic history, especially in the Almora-Dadeldhura klippe, which is the largest klippe in the thrust belt. These recent studies are limited to one transect each, and two or fewer types of analytical data to justify their models. Due to the limited spatial coverage, these studies often reflect a narrow perspective in their tectonic models; thus, combining the data from these studies provides a holistic view of the regional tectonic history. This study compiled the available data across the 350 km wide Almora-Dadeldhura klippe, using petrology, stratigraphy, metamorphic history, microstructure, U-Pb ages of intrusive granite, monazite and muscovite ages of the shear zones, and exhumation ages from apatite fission track, along with original field observations, microstructure and microtexture data from 5 different transects in northwest India and far western Nepal. The review of the compiled data suggests that the Himalayan thrust belt in northwest India and far western Nepal is a forward propagating thrust system, and that the analytical data support the critical taper model.

  6. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play...... understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly...

  7. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria

    Directory of Open Access Journals (Sweden)

    Briestenský Miloš

    2015-10-01

    Full Text Available The EU-TecNet monitoring network uses customized three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and following extension, across the monitored fault. The data from Bacho Kiro, recorded across a NE–SW striking fault, show sinistral strike-slip along the fault and subsidence of the north-western block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites show evidence of simultaneous displacement anomalies and this observation is interpreted as a reflection of the plate-wide propagation of a tectonic pressure pulse towards the end of 2012.

  8. Applicability of dinoflagellate cyst stratigraphy to the analyses of passive and active tectonic settings

    NARCIS (Netherlands)

    Wilpshaar, M.

    1995-01-01

    The notion that fluctuating tectonic stress patterns within or between continental plates directly influence the development of a given sedimentary basin is a well-established concept in geotectonics. In recent years it has become increasingly understood that notably the phase of relative

  9. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  10. Modelling the impact of regional uplift and local tectonics on fluvial terrace preservation.

    NARCIS (Netherlands)

    Viveen, W.; Schoorl, J.M.; Veldkamp, A.; Balen, van R.T.

    2014-01-01

    A terrace formation model (TERRACE) combined with a longitudinal river profile model (FLUVER) was used to simulate fluvial terrace formation and preservation in the northwest Iberian lower Miño River basin under the influence of three tectonic conditions; namely regional vertical uplift, local basin

  11. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  12. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  13. Tectonic heat flow modelling for basin maturation - Implications for frontier areas in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bonte, D.; Nelskamp, S.

    2009-01-01

    Basement heat flow is one of the most influential parameters on basin maturity. Although rapid progress has been made in the development of tectonic models capable of modelling the thermal consequences of basin formation, these models are hardly used in basin modelling. To better predict heat flows

  14. Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation

    NARCIS (Netherlands)

    Sissingh, W.

    Sequence stratigraphic correlations indicate that intermittent changes of the kinematic far-field stress-field regimes, and the associated geodynamic re-organisations at the plate-tectonic contacts of the African, Apulian, Iberian and European plates, affected the Tertiary palaeogeographic evolution

  15. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  16. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    Science.gov (United States)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero

  17. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  18. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  19. Tectonic modeling of Konya-Beysehir Region (Turkey using cellular neural networks

    Directory of Open Access Journals (Sweden)

    D. Aydogan

    2007-06-01

    Full Text Available In this paper, to separate regional-residual anomaly maps and to detect borders of buried geological bodies, we applied the Cellular Neural Network (CNN approach to gravity and magnetic anomaly maps. CNN is a stochastic image processing technique, based optimization of templates, which imply relationships of neighborhood pixels in 2-Dimensional (2D potential anomalies. Here, CNN performance in geophysics, tested by various synthetic examples and the results are compared to classical methods such as boundary analysis and second vertical derivatives. After we obtained satisfactory results in synthetic models, we applied CNN to Bouguer anomaly map of Konya-Beysehir Region, which has complex tectonic structure with various fault combinations. We evaluated CNN outputs and 2D/3D models, which are constructed using forward and inversion methods. Then we presented a new tectonic structure of Konya-Beysehir Region. We have denoted (F1, F2, …, F7 and (Konya1, Konya2 faults according to our evaluations of CNN outputs. Thus, we have concluded that CNN is a compromising stochastic image processing technique in geophysics.

  20. Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features

    International Nuclear Information System (INIS)

    Hall, J.L.; Solomon, S.C.; Head, J.W.

    1986-01-01

    The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region

  1. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    Science.gov (United States)

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2018-05-01

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  2. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    Science.gov (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  3. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  4. Impacts and tectonism in Earth and moon history of the past 3800 million years

    Science.gov (United States)

    Stothers, Richard B.

    1992-01-01

    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  5. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  6. Dynamic Modeling of Natural Convection Solar Energy Flat Plate ...

    African Journals Online (AJOL)

    The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to evening for ...

  7. Planetary Interior Modeling and Tectonic Implications

    Science.gov (United States)

    Phillips, R. J.

    1985-01-01

    A technique is described for estimating spectral admittance functions using Pioneer Venus gravity and topography data. These admittance functions provide a convenient means to carry out systematic geophysical studies over much of the surface of Venus with a variety of interior density models. The admittance functions are calculated in the observation space of line-of-sight (LOS) gravity. Both closed and open system petrological models are considered for the Tharsis region of Mars. An analytic theory for isostatic compensation on one-plate planet is applied, including membrane stresses in the lithosphere, self gravitation, and rotational ellipticity. Crucial to this stress modeling and also to the petrological modeling is the observation that the earliest fracturing seen in the Tharsis region is associated with isostatic stresses. The radial fractures that extend far from Tharsis are associated with an additional and/or a completely different mechanism.

  8. The role of elasticity in simulating long-term tectonic extension

    Science.gov (United States)

    Olive, Jean-Arthur; Behn, Mark D.; Mittelstaedt, Eric; Ito, Garrett; Klein, Benjamin Z.

    2016-05-01

    While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall

  9. Preface of special issue on ;tectonics, volcanism and geo-energy in East Asia;

    Science.gov (United States)

    Song, Sheng-Rong; Chen, Cheng-Hong; Ryu, Byong-Jae; Lin, Saulwood

    2017-11-01

    The East Asia, from north to south, including Russia, China, Korea, Japan, Taiwan, Philippines and Indonesia etc., is one of the most active tectonic and natural hazardous regions in the world. The subduction and collision zones, such as the Pacific Plate subducting into the Japan Arc and the Philippine Sea, and the Philippine Sea Plate subducting into the Eurasia Plate, and the collision zones of the Philippine Sea Plate with the Asian continental margin in the Taiwan mountain belt, and the India Plate with the Eurasia Plate in Himalaya mountain belts, distribute widely in this region. It is also the most densely populated areas in the world. More than two billion people (one/third populations of the world) live in East Asia. Most of disastrous natural hazards, such as volcanic eruptions, earthquakes and debris flows induced by floods occur frequently and cause many building collapses and causalities in this area. Geoscientists, therefore, must seriously consider and endeavor for mitigations of the natural hazards and reduction of the properties lose and human death.

  10. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    Science.gov (United States)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006

  11. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    Science.gov (United States)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the

  12. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  13. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  14. Satellite Gravity Transforms Unmask Tectonic Pattern of Arabian-African Region

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2017-04-01

    tectonic structures: (1) stable zones of continental and oceanic crust, and (2) mobile geotectonic belts. First type is characterized by homogeneous character of gravity field pattern (for instance, East Arabian Craton), whereas second type is characterized by mosaic and variable behavior of gravity field (especially, active rift zones). It should be noted that 'youngest' mobile structure (Alpine-Himalayan orogenic belt and active rift systems of the Red Sea - East Africa) significantly differs in the gravity field pattern from the Mesozoic terrane belt and Neoproterozoic belt. In this investigation six satellite gravity transforms (SGT) are described: multidimensional statistical analysis (MSA) by the use of sliding window, low-pass filtering, informational approach, gradient operator, entropy processing by sliding window of adaptive form, and 3D inverse methods. Application of the MSA enabled not only to delineate geodynamical parameters of the studied region (collision zone at the boundary between the Arabian and Eurasian Plates, and active rift zones between the Arabian, Nubian and Somalian Plates, etc.), but also to estimate generalized properties of the Earth's crust. Results of MSA employment clearly show zone of development of the oceanic crust of the Easternmost Mediterranean and zone of oceanic crust of the Gulf of Aden and eastern (oceanic) part of the Somalian Plate. Besides this, in this map the Arabian and East African active rift zones and collision zone between the Arabian and Eurasian Plates are visibly traced. Applied low-pass gravity field filtering enabled to recognize the most contrast crust-mantle structures. For example, the Afar triangle zone is clearly detected. Zones of the Neotethys closing Eastern Mediterranean, Persian Gulf, Zagros Fault Zone and South Caspian Basin can be easily identified. Subduction zones associated with the plate boundaries are reflected by elongated gradient pattern. These nonstable zones are conjugated with large mobile

  15. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    Science.gov (United States)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated

  16. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    Science.gov (United States)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western

  17. Gneiss Macuira: tectonic evolution of Paleozoic metamorphic rocks of the Alta Guajira, Colombia

    International Nuclear Information System (INIS)

    Lopez I; A Julian; Zuluaga C; A, Carlos

    2012-01-01

    The Macuira Gneiss is a Paleozoic metamorphic unit that outcrops in the Simarua, Jarara and Macuira ranges, Alta Guajira. It is composed by a lithologies metamorphosed under amphibolite facies P-T conditions and consist of amphibolitic and quartz feldspathic gneisses, amphibolites, schists, pegmatites, calc-silicated rocks and marbles, with migmatization evidences in gneisses and amphibolites. Five foliations (S1-5) and three folding events (F1-3) were identified and interpreted as product of two metamorphic events, developed in a progressive barrovian metamorphic gradient of intermediate pressure with intermediate P-T ratio, interpreted as product of continental collision tectonics. This unit is important in understanding of the tectonic evolution of the Alta Guajira and Caribbean because it records different deformational phases pre-, syn- and post-migmatitic, that could be related with different tectonic episodes: the first associated with the collision between Laurasia and Gondwana (Alleghanian Orogeny - Late Paleozoic), and the second related with the Caribbean Plate evolution (Andean Orogeny - Meso-Cenozoic).

  18. Remote sensing revealed drainage anomalies and related tectonics of South India

    Science.gov (United States)

    Ramasamy, SM.; Kumanan, C. J.; Selvakumar, R.; Saravanavel, J.

    2011-03-01

    Drainages have characteristic pattern and life histories with youthful stage in hilly areas, mature stage in plains and old stage in the coastal zones. The deviations from their normal life histories, especially aberrations in their flow pattern in the form of various drainage anomalies have been inferred to be the indications of dominantly the Eustatic and Isostatic changes. This, especially after the advent of Earth Observing Satellites, has attracted the geoscientists from all over the world, for studying such drainage anomalies. In this connection, a study has been undertaken in parts of South India falling south of 14° south latitude to comprehensively map some drainage anomalies like deflected drainages, eyed drainages and compressed meanders and to evolve the tectonic scenario therefrom. The mapping of such mega drainage anomalies and the related lineaments/faults from the satellite digital data and the integration of such lineaments/faults with the overall lineament map of South India showed that the study area is marked by active N-S block faults and NE-SW sinistral and NW-SE dextral strike slip faults. Such an architecture of active tectonic grains indicates that the northerly directed compressive force which has originally drifted the Indian plate towards northerly is still active and deforming the Indian plate.

  19. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  20. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  1. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  2. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  3. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  4. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  5. Beginning the Modern Regime of Subduction Tectonics in Neoproterozoic time: Inferences from Ophiolites of the Arabian-Nubian Shield

    Science.gov (United States)

    Stern, R.

    2003-04-01

    It is now clear that the motive force for plate tectonics is provided by the sinking of dense lithosphere in subduction zones. Correspondingly, the modern tectonic regime is more aptly called ``subduction tectonics" than plate tectonics, which only describes the way Earth's thermal boundary layer adjusts to subduction. The absence of subduction tectonics on Mars and Venus implies that special circumstances are required for subduction to occur on a silicate planet. This begs the question: When did Earth's oceanic lithosphere cool sufficiently for subduction to began? This must be inferred from indirect lines of evidence; the focus here is on the temporal distribution of ophiolites. Well-preserved ophiolites with ``supra-subduction zone" (SSZ) affinities are increasingly regarded as forming when subduction initiates as a result of lithospheric collapse (± a nudge to get it started), and the formation of ophiolitic lithosphere in evolving forearcs favors their emplacement and preservation. The question now is what percentage of ophiolites with ``supra-subduction zone" (SSZ) chemical signatures formed in forearcs during subduction initiation events? Most of the large, well-preserved ophiolites (e.g., Oman, Cyprus, California, Newfoundland) may have this origin. If so, the distribution in space and time of such ophiolites can be used to identify ``subduction initiation" events, which are important events in the evolution of plate tectonics. Such events first occurred at the end of the Archean (˜2.5Ga) and again in the Paleoproterozoic (˜1.8 Ga), but ophiolites become uncommon after this. Well-preserved ophiolites become abundant in Neoproterozoic time, at about 800±50 Ma. Ophiolites of this age are common and well-preserved in the Arabian-Nubian Shield (ANS) of Egypt, Sudan, Ethiopia, Eritrea, and Saudi Arabia. ANS ophiolites mostly contain spinels with high Cr#, indicating SSZ affinities. Limited trace element data on pillowed lavas supports this interpretation

  6. Devonian through early Carboniferous (Mississippian) metallogenesis and tectonics of northeast Asia, Chapter 6 in Metallogenesis and tectonics of northeast Asia

    Science.gov (United States)

    Badarch, Gombosuren; Dejidmaa, Gunchin; Gerel, Ochir; Obolenskiy, Alexander A.; Prokopiev, Andrei V.; Timofeev, Vladimir F.; Nokleberg, Warren J.

    2010-01-01

    The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and

  7. Advanced Modelling of Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter; Nielsen, Jacob

    Most of the finite element programs for design of timber trusses with punched metal fasteners are based on models using beam and fictitious elements. Different models have been used for different types of joints. Common problems for all the models are how to calculate the forces in the nail groups...... and the plates and furthermore, how big 'the deformations in the joints are. By developing an advanced model that includes all parts of the joint, i.e. plate, nail groups and contact it is possible to give a better description of the joint. An advanced model with these properties is presented. The advanced model...

  8. A new tectonic model for southern Alaska

    Science.gov (United States)

    Reeder, J. W.

    2013-12-01

    S Alaska consists of a complex tectonic boundary that is gradational from subduction of Pacific Plate (PAC) beneath N American Plate (NA) in the W to a transform fault between these two plates in the SE. Adding complexity, the Yakutat Plate (YAK) is in between. The YAK is exposed in NE Gulf of Alaska and has been well mapped (Plafker, 1987). It is bound by the NA to the E at the Fairweather fault and by the PAC to the S. Relative to NA, YAK is moving 47 mm/yr N30°W and PAC is moving 51 mm/yr N20°W (Fletcher & Freymueller, 2003). The YAK and deeper PAC extend NW beneath the NA as flat slabs (Brocher et al., 1994). They subduct to the W and NW in Cook Inlet region (Ratchkovsky et al., 1997), resulting in the Cook Inlet volcanic arc. They also subduct farther NNW toward the Denali volcanic gap and fault. The subducted part of the YAK is split by a transform fault exposed at Montana Creek (MC) at 62°06'N to 62°10'N at 150°W. It extends S60°W toward the most N Cook Inlet volcano, Hayes, and extends N60°E beyond Talkeetna Mts. Right-lateral WSW motion and thick fault gauge have been documented by McGee (1978) on MC and a S60°W fault scarp cutting Quaternary deposits has been mapped (Reed & Nelson, 1980). Fuis et al. (2008) seismically recognized 110 km of missing YAP NW of Talkeetna Mts, which he thought was due to a 'tear' in the YAK to the far S. Nikoli Greenstone has been found in the Talkeetna Mts just S of this transform (Schmidt, 2003) that is 70 km SW of any other mapped Nikoli. This fault offset is also shown by 7.8 km/sec Vp depth contours, which represent the YAK (Eberhart-Phillips et al., 2006), as 110 km at N60°W. Based on magnetic data (Csejtey & Griscom, 1978; Saltus et al., 2007), the fault is regionally recognized as a 10× km zone on the WSW margin of the large S Alaska magnetic high. The fault zone has narrow WSW magnetic highs and depressions. This fault is also recognized on digital relief (Riehle et al., 1996); but, another pronounced N60

  9. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    Science.gov (United States)

    von Huene, Roland E.; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  10. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  11. Approximate self-similarity in models of geological folding

    NARCIS (Netherlands)

    Budd, C.J.; Peletier, M.A.

    2000-01-01

    We propose a model for the folding of rock under the compression of tectonic plates. This models an elastic rock layer imbedded in a viscous foundation by a fourth-order parabolic equation with a nonlinear constraint. The large-time behavior of solutions of this problem is examined and found to be

  12. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous

  13. Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2009-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.

  14. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    Science.gov (United States)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  15. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    Science.gov (United States)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  16. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    Science.gov (United States)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  17. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.

  18. Favorable Structural–Tectonic Settings and Characteristics of Globally Productive Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Hinz, Nick [UNR; Coolbaugh, Mark [ATLAS Geosciences Inc; Shevenell, Lisa [ATLAS Geosciences Inc; Stelling, Pete [WWU; Melosh, Glenn [GEODE; Cumming, William [Cumming Geoscience

    2016-02-19

    There are currently 74 productive geothermal systems associated with volcanic centers (VCs) in arcs globally, including actively producing systems, past producing systems, and systems with successful flow tests. The total installed or tested capacity of these 74 geothermal systems is 7,605 MWe, ranging from 0.7 MWe each at Copahue, Chile and Barkhatnaya Sopka, Kamchatka to 795 MWe, Larderello, Italy, and averaging 90.5 MWe per system. These 74 productive VCs constitute 10% of 732 VCs distributed across more than a dozen major arcs around the world. The intra-arc (within-arc) tectonic setting is highly variable globally, ranging from extension to transtension, transpression, or compression. Furthermore, the shear strain associated with oblique plate convergence can be accommodated by either intra-arc or arc-marginal deformation. The structural-tectonic settings of these 74 productive VCs were characterized to add to a global catalog of parameters to help guide future exploration, development, and regional resource potential.

  19. Stress and displacement analysis of a core plate, i.e. grid-perforated plate compound, modelled as an equivalent beam system

    International Nuclear Information System (INIS)

    Frank, R.; Engel, R.

    1979-01-01

    The core support plate is a very important component of the reactor pressure vessel internals. Therefore, an exact stress analysis is desired. This analysis will cause high computer costs with a detailed FEM-model because of the complexity of this compound system. In this paper, a method is suggested to solve the problem with a much cheaper beam element model. The main problem is to establish an equivalent beam system with nearly the same stiffness property as the perforated circular plate stiffened by a grid. Furthermore, the system must allow to determine the maximum stresses with sufficient accuracy. The calculation of the equivalent beam stiffness is based on the analysis of perforated plates by T. SLOT and W.J. O'DONNELL. This analysis method utilizes the concept of the equivalent solid plate. In this method, the perforated plate is replaced by a solid one which is geometrically similar to the perforated plate but has modified values of the elastic constants. The simple equivalent beam system of one half of the core support plate (symmetry) was loaded with a pressure difference and stresses and displacements were analysed. After that, these results were compared with the stress and displacement analysis of a part of the real structure. This substructure was discretized by three-dimensional 20-node brick-elements. The comparison of the results of the two models shows that the stresses and displacements, calculated with the simple beam model, are in good agreement with those of the real structure. (orig.)

  20. Tectonic Geomorphology.

    Science.gov (United States)

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  1. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  2. Modeling of laser welding of steel and titanium plates with a composite insert

    Science.gov (United States)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  3. Numerical modeling of tectonic stress field and fault activity in North China

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-02-01

    Full Text Available On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are; 1 Maximum principal tensile stress is about 3–9 kPaa−1 and its azimuth lie in NNW-SSE. 2 Maximum principal compressive stress is about 1–6 kPaa−1 and its azimuth lie in NEE-SWW. 3 Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4 Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the highest (6 kPaa−1, Anshan-Liaodongwan segment is the second (5 kPaa−1, and others are relatively lower (3–4 kPaa−1.

  4. Mantle structure and tectonic history of SE Asia

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  5. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  6. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    Science.gov (United States)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  7. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  8. A model of breakdown in parallel-plate detectors

    International Nuclear Information System (INIS)

    Fonte, P.

    1996-01-01

    Parallel-plate avalanche chambers (PPAC's) have many desirable properties, such as a fast, large area particle detector. However, the maximum gain is limited by a form of violent breakdown that limits the usefulness of this detector, despite its other evident qualities. The exact nature of this phenomenon is not yet sufficiently clear to sustain possible improvements. A previous experimental study is complemented in the present work by a quantitative model of the breakdown phenomenon in PPAC's, based on the streamer theory. The model reproduces well the peculiar behavior of the external current observed in PPAC's and resistive-plate chambers. Other breakdown properties measured in PPAC's are also well reproduced

  9. The analysis of the Tectonics - SSS - Seismicity System in the 3D-model of the Rasvumchorr Mine - Central Open Pit Natural and Technical System (Khibiny)

    Science.gov (United States)

    Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim

    2017-04-01

    Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural

  10. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  11. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  12. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges

    Science.gov (United States)

    Yogodzinski, G. M.; Lees, J. M.; Churikova, T. G.; Dorendorf, F.; Wöerner, G.; Volynets, O. N.

    2001-01-01

    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed `adakites', are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  13. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Govers, R.; Wortel, R.

    2014-01-01

    The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the “Bahamas Collision”) is generally invoked as a cause of this fragmentation. We propose that a second

  14. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    Science.gov (United States)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions

  15. Paleomagnetism and tectonic evolution of the Pan-African Damara Belt, southern Africa

    Science.gov (United States)

    McWilliams, M. O.; KröNer, A.

    1981-06-01

    at depth, intruded by synorogenic and postorogenic granites and finally uplifted and eroded to its present level of exposure. The model is compatible with plate tectonics in that the development of the Damara belt can be broadly compared with modern marginal seas, with the exception that stretching of the lithosphere was not induced by secondary convection above a downgoing slab. Possible causes for stretching are rising mantle plumes or intracontinental distortion within the pre-Damara African plate.

  16. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    Science.gov (United States)

    Zhou, Zhiyuan; Lin, Jian

    2018-06-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.

  17. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  18. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.

    2013-09-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  19. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.; Zielke, Olaf; Arrowsmith, J. R.; Ballato, P.; Strecker, M. R.; Schildgen, T. F.; Friedrich, A. M.; Tabatabaei, S. H.

    2013-01-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  20. Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation

    Directory of Open Access Journals (Sweden)

    S. Ochman

    2011-01-01

    Full Text Available Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (=40 were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III and bicortically (group II, IV and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (=0.01 for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (=0.9. Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals.

  1. The dynamic nature of relative sea level in Southeast Asia: tectonic effects and human impacts (Invited)

    Science.gov (United States)

    Hill, E.; Qiu, Q.; Feng, L.; Lubis, A.; Meltzner, A. J.; Tsang, L. L.; Daly, P.; McCaughey, J.; Banerjee, P.; Rubin, C. M.; Sieh, K.

    2013-12-01

    Tectonic changes can have significant effects on crustal deformation, the geoid, and relative sea level (RSL). Indeed, the tectonic impacts on RSL in some regions can be greater than those predicted as a result of climate change. In the case of earthquakes, these changes can occur suddenly, as coastlines uplift or subside by up to many meters. The changes can also occur over many decades as a result of interseismic or postseismic processes, or periodically in the form of transient slow-slip events. Although these effects are (mostly) recovered elastically over the course of the earthquake cycle, they are occurring in the context of ever-increasing populations living along affected coastlines, particularly the case in areas such as SE Asia. The societal effects of these tectonic-induced sea-level changes are therefore becoming increasingly significant, and important to consider in future projections for sea-level change. Additionally, tide-gauge and gravity measurements made in tectonically active areas cannot be interpreted without consideration and modeling of the tectonic setting. These facts highlight the need for accurate geodetic measurements of land-height change. Along the Sumatra subduction zone, a series of great earthquakes have occurred over the last decade, along with numerous moderate and smaller earthquakes. These, and their ensuing postseismic deformation, have reshaped regional coastlines. We will show visualization of land height changes using a decade of Sumatra GPS Array (SuGAr) data, and related tectonic models, that demonstrate dramatically the ups and downs of land elevation close to the earthquake sources. Vertical coseismic displacements as large as ~2.9 m have been recorded by the SuGAr (an uplift at Nias, during the 2005 Mw 8.6 earthquake), and vertical postseismic rates on the order of tens of mm/yr or greater (e.g., in northern Aceh, one station has been uplifting at a rate of ~34 mm/yr since the 2004 Mw 9.2 earthquake, while in southern

  2. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    Science.gov (United States)

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  3. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  4. Computational Model for Impact-Resisting Critical Thickness of High-Speed Machine Outer Protective Plate

    Science.gov (United States)

    Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei

    2018-05-01

    The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.

  5. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  6. Tectonic resemblance of the Indian Platform, Pakistan with the Moesian Platform, Romania and strategy for exploration of hydrocarbons

    International Nuclear Information System (INIS)

    Memon, A.D.

    1994-01-01

    There is a remarkable tectonic resemblance between the indian Platform (Pakistan) and the Moesian Platform (Romania). As viewed in global tectonic perspective Moeslan and Indian Plates have played important role in Alpine Himalayan Orogeny; Moesian and Indian Platforms are extension of these respective plates. Characteristics features of both the platforms are block faulting which has effected not only the general tectonic framework but has also played important role in oil accumulation. Main producing rocks in the Moesian platform are Jurassic sandstones and cretaceous limestones while in the indian platform cretaceous sandstones are important reservoirs. The average geothermal gradient in the indian platform is 2.45 C/100m with the higher gradients in the central gas producing region. Geothermal gradients in the Moesian platform have an average value of 3 C/100m with higher gradients in the northern in the northern part. Some of the producing structures in both the platforms are remarkably similar, traps associated with normal faults are very important. Extensive exploration carried in the Moesian Platform makes it very important oil producing region of Romania. After the discovery of oil lower Sindh, serious exploration is being carried in the Indian platform. The paper deals with the similarities between these two important platforms. In the light of the studies of the Moesian platform, strategies or exploration of oil and gas in the Indian Platform are suggested. (author)

  7. Assessing the role of slab rheology in coupled plate-mantle convection models

    Science.gov (United States)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John

    2015-11-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.

  8. Biomechanical comparison of double-row locking plates versus single- and double-row non-locking plates in a comminuted metacarpal fracture model.

    Science.gov (United States)

    Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B

    2009-12-01

    Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.

  9. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  10. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    Science.gov (United States)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un

  11. Modelling of plate-out under gas-cooled reactor (GCR) accident conditions

    International Nuclear Information System (INIS)

    Taig, A.R.

    1981-01-01

    The importance of plate-out in mitigating consequences of gas-cooled reactor accidents, and its place in assessing these consequences, are discussed. The data requirements of a plate-out modelling program are discussed, and a brief description is given of parallel work programs on thermal/hydraulic reactor behaviour and fuel modelling, both of which will provide inputs to the plate-out program under development. The representation of a GCR system used in SRD studies is presented, and the equations governing iodine adsorption, desorption and transport round the circuit are derived. The status of SRD's plate-out program is described, and the type of sensitivity studies to be undertaken with the partially-developed computer program in order to identify the most useful lines for future research is discussed. (author)

  12. A Paleogeographic and Depositional Model for the Neogene Fluvial Succession, Pishin Belt, Northwest Pakistan: Effect of Post Collisional Tectonics on Sedimentation in a Peripheral Foreland Setting

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Umar, Muhammad

    2018-01-01

    . During the Early Miocene, subaerial sedimentation started after the final closure of the Katawaz Remnant Ocean. Based on detailed field data, twelve facies were recognized in Neogene successions exposed in the Pishin Belt. These facies were further organized into four facies associations i.e. channels......‐story sandstone and/or conglomerate channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to the oblique collision of the Indian Plate with the Afghan Block of the Eurasian Plate along......, crevasse splay, natural levee and floodplain facies associations. Facies associations and variations provided ample evidence to recognize a number of fluvial architectural components in the succession e.g., low‐sinuosity sandy braided river, mixed‐load meandering, high‐sinuosity meandering channels, single...

  13. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    Science.gov (United States)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  14. Thermal History of Planetary Objects: From Asteroids to super-Earths, from plate-tectonics to life (Runcorn-Florensky Medal Lecture)

    Science.gov (United States)

    Spohn, Tilman

    2013-04-01

    planets - like the Earth - the volatile budget matters for the interior evolution. With plate tectonics, large-scale volatile cycles are invoked. On the Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. A model is presented that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The biosphere enters the model through its effect on continental erosion and through a reduction of the activation barrier to metamorphic reactions (e.g., Kim et al., 2004) in sediment layers. An abiotic world is found to have a much drier mantle than the present Earth but may have a similar surface coverage by continents. The reduced rate of continental crust production on the abiotic world would be balanced by a reduced rate of continent erosion. Through the effect of water on the mantle rheology, the biotic world would tend to be tectonically more active and have a more rapid long-term carbon-silicate cycle. J. Kim, H. Dong, J. Seabaugh, S. W. Newell, D. D. Eberl, Science 303, 830-832, 2004 N. H. Sleep, D. K. Bird, E. Pope, Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 M. T. Rosing, D. K. Bird, N. H. Sleep, W. Glassley, F. Albarede, Paleo3 232, 90-113, 2006

  15. Peculiarity of the Relationship between the Seismicity and Tectonic Structure of the Pyrenees

    Science.gov (United States)

    Lukk, A. A.; Shevchenko, V. I.

    2018-05-01

    The geotectonic position of the Pyrenees mountain massif in the Alpine-Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth's crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.

  16. An Alternative view of Earth's Tectonics : The Moon's explosive origin out of SE Asia.

    Science.gov (United States)

    Coleman, P. F.

    2017-12-01

    insufficient time has elapsed, to break up the scar, by "plate" movement, or erosion. The present tectonic/ volcanic activity, (eg earthquakes/eruptions along the Pacific Ring of Fire) is further evidence of this "smoking gun". Coleman P.F., 2015, Alternative Models of the Moon, Physics Today, 68,4,8.

  17. Sandbox Tectonics As A Teaching Tool

    Science.gov (United States)

    Delaughter, J.

    2005-12-01

    Students are typically introduced to the relative motions of plates and its effects either through text-based descriptions, paper models, or both. However, though students may learn to repeat the description of the effects, many students still do not show a deeper understanding of the process, as shown by examinations of students before and after an introductory geology course (DeLaughter et al, 1998). This is because students are rarely affected by the information on a visceral level; because their preconceptions are never challenged, they never internalize the information as part of their model of how the world works. However, when concepts such as plate motions and their effects are presented to students as part of a tangible, physical experiment, the ideas can have a much greater impact (Carey et al, 1989). The students use the new information to build more complete mental models while learning that such models can and must change in response to new information (Herbert, 2003). When such experiments are performed in a geology class, they afford the students a direct and visceral experience that may enhance the learning process. In this exercise for middle school students, the effects of relative plate motions on overlying sediments are modeled through a simple and inexpensive set of experiments using sand and newspaper. These experiments provide qualitatively the same results as those performed by geologists researching various aspects of faulting and folding (e.g., Horsfield, 1977, Domingez et al., 2000). A secondary benefit of these experiments is that when the students do not pull the papers perfectly the combination of effects can mimic real terrains (e.g., transpressional) very closely. This intrusion of methodological errors can also lead to a lively discussion of how science is done and what the results of an experiment imply, thereby providing a pedagogical benefit as well. Thus students can be shown the effects of relative plate motions in a direct and

  18. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe.......During Late Cretaceous and Cenozoic times many Paleozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion. The main phases occurred during the Late Cretaceous and Middle Paleocene, and have been explained by pulses...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...

  19. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  20. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  1. Modeling of parallel-plate regenerators with non-uniform plate distributions

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    plate spacing distributions are presented in order to understand the impact of spacing non-uniformity. Simulations of more realistic distributions where the plate spacings follow normal distributions are then discussed in order to describe the deviation of the performance of a regenerator relative...

  2. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  3. Tectonic evolution of the Sicilian Maghrebian Chain inferred from stratigraphic and petrographic evidences of Lower Cretaceous and Oligocene flysch

    Directory of Open Access Journals (Sweden)

    Puglisi Diego

    2014-08-01

    Full Text Available The occurrence of a Lower Cretaceous flysch group, cropping out from the Gibraltar Arc to the Balkans with a very similar structural setting and sedimentary provenance always linked to the dismantling of internal areas, suggests the existence of only one sedimentary basin (Alpine Tethys s.s., subdivided into many other minor oceanic areas. The Maghrebian Basin, mainly developed on thinned continental crust, was probably located in the westernmost sector of the Alpine Tethys. Cretaceous re-organization of the plates triggered one (or more tectonic phases, well recorded in almost all the sectors of the Alpine Tethys. However, the Maghrebian Basin seems to have been deformed by Late- or post-Cretaceous tectonics, connected with a “meso-Alpine” phase (pre-Oligocene, already hypothesized since the beginning of the nineties. Field geological evidence and recent biostratigraphic data also support this important meso- Alpine tectonic phase in the Sicilian segment of the Maghrebian Chain, indicated by the deformations of a Lower Cretaceous flysch sealed by Lower Oligocene turbidite deposits. This tectonic development is emphasized here because it was probably connected with the onset of rifting in the southern paleomargin of the European plate, the detaching of the so-called AlKaPeCa block (Auct.; i.e. Alboran + Kabylian + Calabria and Peloritani terranes and its fragmentation into several microplates. The subsequent early Oligocene drifting of these microplates led to the progressive closure of the Maghrebian Basin and the opening of new back-arc oceanic basins, strongly controlled by extensional processes, in the western Mediterranean (i.e. Gulf of Lion, Valencia Trough, Provençal Basin and Alboran Sea.

  4. Biomechanical study: resistance comparison of posterior antiglide plate and lateral plate on synthetic bone models simulating Danis-Weber B malleolar fractures

    Directory of Open Access Journals (Sweden)

    Bruna Buscharino

    2013-06-01

    Full Text Available OBJECTIVE : The purpose of this study was to compare different positions of plates in lateral malleolar Danis-Weber B fractures on synthetic bone: a lateral plate and a posterior antiglide plate. METHODS : Short oblique fractures of distal fibula at the level of the syndesmosys were simulated with a fibular osteotomy in sixteen synthetic fibula bones (Synbone®. Eight fractures were fixed with lateral plating associated with an independent lag screw, and the other eight were fixed with posterior antiglide plating with a lag screw through the plate. A strain gage was installed at the center of each plate at the osteotomy site. Supination and external rotation forces were applied to each of the two groups at the bend. RESULTS : The lateral position plate group suffered more deformity in response to supination forces compared to the group with the posterior antiglide plate, but this result was not statistically significant. In the tests with external rotation forces, the posterior antiglide plating group had significantly higher resistance (p < 0.05. CONCLUSION : When subjected to external rotation forces, osteosynthesis with posterior antiglide plate models simulating type B fractures of the lateral malleolus of the ankle is more resistant than that of the neutralization plate.

  5. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data

    Science.gov (United States)

    Bedrosian, Paul A.; Feucht, Daniel W.

    2014-01-01

    The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.

  6. Teaching Tectonics to Undergraduates with Web GIS

    Science.gov (United States)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  7. A novel approach to modeling plate deformations in fluid–structure interactions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.K., E-mail: howartre@onid.oregonstate.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Jones, W.F. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2015-11-15

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  8. A novel approach to modeling plate deformations in fluid–structure interactions

    International Nuclear Information System (INIS)

    Howard, T.K.; Marcum, W.R.; Jones, W.F.

    2015-01-01

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  9. Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus

    Science.gov (United States)

    Kroenke, L. W.; Wessel, P.

    2006-12-01

    The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).

  10. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    OpenAIRE

    Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.

    2015-01-01

    Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...

  11. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    Science.gov (United States)

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-09-01

    The Eurasia (EU) - North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on the EU-OK-NA triple junction and is thus caught and compressed between converging EU and NA. We suggest that this leads to a coherent and understandable large scale deformation pattern of mostly northwest-southeast trending strike-slip faults which split Northwest OK into several extruding slivers. When the fault geometry is analysed together with space geodetic and focal mechanism data it suggests a central block which is extruding faster bordered east and west by progressively slower extruding blocks until the OK plate boundary faults are encountered. Taking into account elastic loading from both the intra-OK faults and the OK-Pacific (PA) boundary reconciles geodetic motions with geologic slip rates on at least the OK-NA boundary which corresponds to the Ulakhan fault.

  12. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling

    Science.gov (United States)

    Cogné, Nathan; Gallagher, Kerry; Cobbold, Peter R.; Riccomini, Claudio; Gautheron, Cecile

    2012-11-01

    The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 ± 1.9 Ma to 129.3 ± 4.3 Ma, mean track lengths from 11.41 ± 0.23 μm to 14.31 ± 0.24 μm and a subset of the (U-Th)/He ages range from 45.1 ± 1.5 to 122.4 ± 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubaté Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.

  13. Tectonic History and Deep Structure of the Demerara Plateau from Combined Wide-Angle and Reflection Seismic Data and Plate Kinematic Reconstructions

    Science.gov (United States)

    Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.

    2017-12-01

    Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern

  14. Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows™

    Science.gov (United States)

    Ortner, Hugo; Reiter, Franz; Acs, Peter

    2002-12-01

    TectonicVB for Macintosh and TectonicsFP for Windows TM operating systems are two menu-driven computer programs which allow the shared use of data on these environments. The programs can produce stereographic plots of orientation data (great circles, poles, lineations). Frequently used statistical procedures like calculation of eigenvalues and eigenvectors, calculation of mean vector with concentration parameters and confidence cone can be easily performed. Fault data can be plotted in stereographic projection (Angelier and Hoeppener plots). Sorting of datasets into homogeneous subsets and rotation of tectonic data can be performed in interactive two-diagram windows. The paleostress tensor can be calculated from fault data sets using graphical (calculation of kinematic axes and right dihedra method) or mathematical methods (direct inversion or numerical dynamical analysis). The calculations can be checked in dimensionless Mohr diagrams and fluctuation histograms.

  15. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  16. Spatial and temporal variation of tectonic uplift in the southeastern Ethiopian Plateau from morphotectonic analysis

    Science.gov (United States)

    Xue, Liang; Alemu, Tadesse; Gani, Nahid D.; Abdelsalam, Mohamed G.

    2018-05-01

    We use morphotectonic analysis to study the tectonic uplift history of the southeastern Ethiopian Plateau (SEEP). Based on studies conducted on the Northwestern Ethiopian Plateau, steady-state and pulsed tectonic uplift models were proposed to explain the growth of the plateau since 30 Ma. We test these two models for the largely unknown SEEP. We present the first quantitative morphotectonic study of the SEEP. First, in order to infer the spatial distribution of the tectonic uplift rates, we extract geomorphic proxies including normalized steepness index ksn, hypsometric integral HI, and chi integral χ from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Second, we compare these rates with the thickness of flood basalt that we estimated from geological maps. Third, to constrain the timing of regional tectonic uplift, we develop a knickpoint celerity model. Fourth, we compare our results to those from the Northwestern Ethiopian Plateau to suggest a possible mechanism to explain regional tectonic uplift of the entire Ethiopian Plateau. We find an increase in tectonic uplift rates from the southeastern escarpments of the Afar Depression in the northeast to that of the Main Ethiopian Rift to the southwest. We identify three regional tectonic uplift events at 11.7, 6.5, and 4.5 Ma recorded by the development of regionally distributed knickpoints. This is in good agreement with ages of tectonic uplift events reported from the Northwestern Ethiopian Plateau.

  17. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    Science.gov (United States)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  18. Meso-Cenozoic tectonic evolution and uranium potential evaluations of basins in Beishan-Gansu corridor region

    International Nuclear Information System (INIS)

    Guo Qingyin; Chen Zuyi; Liu Hongxu; Yu Jinshui

    2006-01-01

    Beishan-Gansu Corridor region is located at the intersection of the plates of Tarim, North China, Kazakhstan, Siberia and Qaidam. During the Meso-Cenozoic, the region experienced movements of Indo-sinian, Yanshanian, Sichuanian, North China, Himalayan and Neotectonic, and over 20 medium-small size superimposed continental basins were formed. On the basis of analyzing the tectonic stress field, sediment-filling and structure-deformation; the general trending of tectonic evolution in the Meso-Cenozoic is summarized as three-time compressional uplifting and two-time extensional down-faulting. The different evolution of basins under the above mentioned setting can be divided into six stages according to characteristics of filled sediment. The sand bodies developed in down-faulted basins are favorable for uranium ore-formation as they are formed under humid paleoclimates, and rich in reducing matter. Therefore, the Lower-Middle Jurassic is selected as the main target horizon for sandstone-hosted uranium deposit, and the Lower Cretaceous as the minor one. Although the tectonic reactivation of the target horizon after its deposition was generally strong, the slopes formed in some basins could be favorable for the infiltration of uranium-and oxygen-bearing groundwater into sand bodies and form uranium deposits. According to the favorable sand bodies and tectonic reactivation, the northern parts of Chaoshui and Bayingobi basins are regarded as potential regions which are worthy of further exploration. (authors)

  19. Gravity and magnetic anomalies of the Cyprus arc and tectonic implications

    Science.gov (United States)

    Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.

    2003-04-01

    In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland

  20. Reissner-Mindlin plate model with uncertain input data

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Chleboun, J.

    2014-01-01

    Roč. 17, Jun (2014), s. 71-88 ISSN 1468-1218 Institutional support: RVO:67985840 Keywords : Reissner-Mindlin model * orthotropic plate Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121813001077

  1. SCDAP/RELAP5 lower core plate model

    International Nuclear Information System (INIS)

    Coryell, E.W.; Griffin, F.P.

    1999-01-01

    The SCDAP/RELAP5 computer code is a best-estimate analysis tool for performing nuclear reactor severe accident simulations. This report describes the justification, theory, implementation, and testing of a new modeling capability which will refine the analysis of the movement of molten material from the core region to the vessel lower head. As molten material moves from the core region through the core support structures it may encounter conditions which will cause it to freeze in the region of the lower core plate, delaying its arrival to the vessel head. The timing of this arrival is significant to reactor safety, because during the time span for material relocation to the lower head, the core may be experiencing steam-limited oxidation. The time at which hot material arrives in a coolant-filled lower vessel head, thereby significantly increasing the steam flow rate through the core region, becomes significant to the progression and timing of a severe accident. This report is a revision of a report INEEL/EXT-00707, entitled ''Preliminary Design Report for SCDAP/RELAP5 Lower Core Plate Model''

  2. Earthquakes and Tectonics Expert Judgment Elicitation Project

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R.

    1993-02-01

    This report summarizes the results of the Earthquakes and Tectonics Expert Judgement Excitation Project sponsored by the Electric Power Research Institute (EPRI). The objectives of this study were two-fold: (1) to demonstrate methods for the excitation of expert judgement, and (2) to quantify the uncertainties associated with earthquake and tectonics issues for use in the EPRI-HLW performance assessment. Specifically, the technical issue considered is the probability of differential fault displacement through the proposed repository at Yucca Mountain, Nevada. For this study, a strategy for quantifying uncertainties was developed that relies on the judgements of multiple experts. A panel of seven geologists and seismologists was assembled to quantify the uncertainties associated with earthquake and tectonics issues for the performance assessment model. A series of technical workshops focusing on these issues were conducted. Finally, each expert was individually interviewed in order to elicit his judgement regarding the technical issues and to provide the technical basis for his assessment. This report summarizes the methodologies used to elicit the judgements of the earthquakes and tectonics experts (termed ''specialists''), and summarizes the technical assessments made by the expert panel

  3. Pre-Cenozoic basement rocks of the Proto-Philippine Sea Plate: Constraints for the birthplace of the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Horie, K.; Barth, A. P.; Harigane, Y.; Ueda, H.

    2016-12-01

    The Izu-Bonin-Mariana Arc is widely regarded to be a typical intra-oceanic arc, with the oceanic Pacific Plate subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. However, little is known about the origin of the proto-Philippine Sea Plate, which existed along with the Pacific Plate at the time of subduction initiation in the Eocene. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible and dredge surveys in the Daito Ridges and the Kyushu-Palau Ridge. The Daito Ridges comprise the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that the Daito Ridges expose deep crustal sections of gabbroic, granitic, metamorphic, and ultra-mafic rocks, along with volcanic rocks ranging from basalt to andesite. Mesozoic magmatic zircon U-Pb ages have been obtained from the plutonic rocks, and whole-rock geochemistry of the igneous rocks indicates arc origins. Furthermore, mafic schist collected from the Daito Ridge has experienced amphibolite facies metamorphism, with phase assemblages suggesting that the crust was thicker than 20 km at the time. Similar amphibolite-facies metamorphic rocks with Proterozoic zircons have been recovered in the southern Kyushu-Palau Ridge, indicating that such distinctively older basement rocks exist as isolated tectonic blocks within the present Philippine Sea Plate. These finds show that the parts of the Daito Ridges and Kyushu-Palau Ridge represent developed crustal sections of the Pre-Cenozoic arc that comprises part of the proto-Philippine Sea Plate, and, together with the tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR), they suggest that subduction of the Izu-Bonin-Mariana Arc initiated at the continental margin of the Southeast Asia.

  4. A proterozoic tectonic model for northern Australia and its economic implications

    International Nuclear Information System (INIS)

    Rossiter, A.G.; Ferguson, J.

    1980-01-01

    It is argued that at the end of Archaean time the Australian continent was confined to the area now occupied by the Yilgarn, Pilbara, Gawler, and Musgrave Blocks, and the southern part of the Arunta Block. During the Early Proterozoic, sedimentary and volcanic rocks were laid down in an extensive depositional zone trending roughly east-west along the northern margin of the Archaean continent. Copper and gold mineralization, commonly showing stratigraphic control, is widespread in this belt. Following deformation and metamorphism of the Early Proterozoic rocks, felsic and mafic igneous activity, and accumulation of platform sediments on the newly stabilized crust, a predominantly north-south depositional zone developed along the eastern margin of the continent during the Middle Proterozoic. Lead and zinc assume much more importance in the mineral deposits of this belt. It is postulated that the present positions of rocks of the Pine Creek and Georgetown regions are due to horizontal displacements of several hundred kilometres along major fault zones. Apparent rifting of these blocks away from palaeo-continental margins may be related to the occurrence of uraniferous granitic rocks and uranium mineralization within them via a mantle plume mechanism. Although current data are limited, tectonic environments suggested for Proterozoic mafic igneous rocks of northern Australia by their geochemistry are compatible with the geological settings of these rocks and with the tectonic model put forward. (author)

  5. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  6. Geomorphology, tectonics, and exploration

    Science.gov (United States)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  7. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.

    1987-10-01

    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  8. Tectonics in the Northwestern West Philippine Basin

    Institute of Scientific and Technical Information of China (English)

    Ni Xianglong; Wu Shiguo; Shinjo Ryuichi

    2008-01-01

    The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagnma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

  9. Study of the metamorphic belts and tectonics; Henseitai kenkyu to tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Hokkaido University, Sapporo (Japan)

    1997-10-25

    Study of metamorphic belts and tectonics is introduced. Minerals supposedly originating in the transitional zone and the lower mantle, that is, inclusions in diamond in kimberlite, are deemed to carry information about the depth level of 670km and lower. The place of origin of peridotite, Alpe Arami of Switzerland, is again estimated at a level of 300km or deeper. In the tectonic cross section in this region, the oceanic crust is bent and folded, and such a structure enables the supposition that fragments off the transitional zone may be carried upward to the ground surface. This region is now being limelighted, with plume tectonics enjoying popularity. The split of Pangaea is related with the ascent of plume. In the eastern part of Australia, there are alkali rocks attributable to the plume that was supposedly active at the end of the Proterozoic. Zircon U-Pb dating by SHRIMP offers a new approach to the tectonics of metamorphic rocks, and is reinforcing the position of metamorphic petrology relative to the study of collision and split of continents. 64 refs., 10 figs.

  10. The Modeling of Viscoelastic Circular Plates for Use as Waveguide Absorbers

    Science.gov (United States)

    1988-09-01

    oncituoe Security Ciasstircation) X THE MODELING OF VISCOELASTIC CIRCULAR PLATES FOR USE AS WAVEGUIDE ABSORBERS C 12 PERSONAL AUTmO ?S) -Hettema...33mvU3dT’U Figure 67. Experimental Jmainiey Part ot the Driving Point Jmpedancs of a 6 in Radius Elastic Plate, With and Without aaker and Mount Conecon, In

  11. Water in geodynamical models of mantle convection and plate tectonics

    Science.gov (United States)

    Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.

    2017-12-01

    The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.

  12. Gravitational and tectonic forces controlling the post-collisional deformation and present-day stress of the Alps. Insights from numerical modelling.

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Negredo, A.; Platt, J.

    2005-01-01

    We perform numerical modeling to investigate the mechanisms leading to the postcollisional tectonic evolution of the Alps. We model the lithospheric deformation as a viscous thin sheet with vertically averaged rheology and coupled with surface mass transport. The applied kinematic boundary

  13. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  14. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    Science.gov (United States)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the

  15. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    Science.gov (United States)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  16. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  17. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  18. Modeling and simulation of thermally actuated bilayer plates

    Science.gov (United States)

    Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.

    2018-02-01

    We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.

  19. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    Science.gov (United States)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely

  20. Homogenised constitutive model dedicated to reinforced concrete plates subjected to seismic solicitations

    International Nuclear Information System (INIS)

    Combescure, Christelle

    2013-01-01

    Safety reassessments are periodically performed on the EDF nuclear power plants and the recent seismic reassessments leaded to the necessity of taking into account the non-linear behaviour of materials when modeling and simulating industrial structures of these power plants under seismic solicitations. A large proportion of these infrastructures is composed of reinforced concrete buildings, including reinforced concrete slabs and walls, and literature seems to be poor on plate modeling dedicated to seismic applications for this material. As for the few existing models dedicated to these specific applications, they present either a lack of dissipation energy in the material behaviour, or no micromechanical approach that justifies the parameters needed to properly describe the model. In order to provide a constitutive model which better represents the reinforced concrete plate behaviour under seismic loadings and whose parameters are easier to identify for the civil engineer, a constitutive model dedicated to reinforced concrete plates under seismic solicitations is proposed: the DHRC (Dissipative Homogenised Reinforced Concrete) model. Justified by a periodic homogenisation approach, this model includes two dissipative phenomena: damage of concrete matrix and internal sliding at the interface between steel rebar and surrounding concrete. An original coupling term between damage and sliding, resulting from the homogenisation process, induces a better representation of energy dissipation during the material degradation. The model parameters are identified from the geometric characteristics of the plate and a restricted number of material characteristics, allowing a very simple use of the model. Numerical validations of the DHRC model are presented, showing good agreement with experimental behaviour. A one dimensional simplification of the DHRC model is proposed, allowing the representation of reinforced concrete bars and simplified models of rods and wire mesh

  1. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  2. Burnthrough Modeling of Marine Grade Aluminum Alloy Structural Plates Exposed to Fire

    OpenAIRE

    Rippe, Christian M

    2015-01-01

    Current fire induced burnthrough models of aluminum typically rely solely on temperature thresholds and cannot accurately capture either the occurrence or the time to burnthrough. This research experimentally explores the fire induced burnthrough phenomenon of AA6061-T651 plates under multiple sized exposures and introduces a new burnthrough model based on the near melting creep rupture properties of the material. Fire experiments to induce burnthrough on aluminum plates were conducted us...

  3. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2018-01-01

    Full Text Available Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX plays a vital role in grain refinement during hot deformation. Finite element models (FEM coupled with microstructure evolution models and cellular automata models (CA are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.

  4. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling

    Science.gov (United States)

    Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin

    2018-01-01

    Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation. PMID:29342080

  5. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation

    Science.gov (United States)

    Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.

    2018-01-01

    The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.

  6. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    Science.gov (United States)

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  7. Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity

    International Nuclear Information System (INIS)

    Janle, P.; Jannsen, D.

    1984-01-01

    Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands. The authors present a scenario compatible with the interpretation of the gravity anomalies and morphological features. The existence of global plate tectonics on Venus like on Earth is not necessarily implied, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism. (Auth.)

  8. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard

    2015-01-01

    through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  9. Limestone and chert in tectonic blocks from the Esk Head subterrane, South Island, New Zealand

    Science.gov (United States)

    Silberling, Norman J.; Nichols, K.M.; Bradshaw, J.D.; Blome, C.D.

    1988-01-01

    The Esk Head subterrane is a continuous belt, generally 10-20 km wide, of tectonic melange and broken formation on the South Island of New Zealand. This subterrane separates older and younger parts of the Torlesse terrane which is an extensive accretionary prism composed mostly of quartzo-feldspathic, submarine-fan deposits ranging from Permian to Early Cretaceous in age. The Esk Head subterrane of the Torlesse is especially informative because it includes within it conspicuous tectonic blocks of submarine basalt and a variety of basalt-associated seamount and sea-floor limestones and cherty rocks thought to be representative of the subducted plate. Paleogeographic inferences drawn from megafossils, bioclasts, and radiolarians, as well as from carbonate cements, indicate deposition of the oceanic sedimentary rocks at paleolatitudes somewhat lower than that of the New Zealand part of the Gondwana margin, but higher than paleoequatorial latitudes. -Authors

  10. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  11. Self-potential anomalies preceding tectonic and volcanic crises

    International Nuclear Information System (INIS)

    Patella, D.

    1993-01-01

    In this paper I consider a possible physical mechanism capable of explaining self-potential anomalies, which are currently observed on the ground surface prior to tectonic and volcanic activities. A rock cracking-fluid diffusion-charge polarization model is described. The electrical charge polarization is assumed to be the electrokinetic effect due to invasion of fluid into new fissures, which open inside a stressed rock material because of dilatancy, in the case of tectonic activity, and of the rising of a magma intrusion in the case of volcanic activity. (author). 10 refs, 2 figs

  12. New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models

    Science.gov (United States)

    Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.

    2007-05-01

    The Gorgona Island, located 50 km to the west of the Colombian Pacific coast, is the only known site with Phanerozoic komatiites in the world besides a key element in several reconstruction of the interaction between the Caribbean and the South America Plate. The Gorgona komatiites are part of an igneous complex that also includes picritic basalts and breccias, gabbros and peridotites (dunites and wherlites), and is covered by deformed mid-Eocene and younger underformed marine sediments. Datings of the igneous rocks were only performed on basalts and include an 86 Ma K-Ar age, an 88.9 ± 1.2 Ma weighted mean of four Ar-Ar ages and an 89.2 ± 5.2 Ma Re-Os isochron age from basalts. Gorgona rocks are affected by reverse faulting with a general eastward vergence. The island is the only subaerially exposed part of a NE elongated sliver accreted in a dextral transpressional regime to the South America continental margin between the Late Eocene and the Early Miocene. Petrologic studies found large spread in radiogenic isotopes and incompatible trace element ratios in Gorgona ultramafic rocks, which have been interpreted as requiring at least two different sources of: 1) a depleted mantle responsible for the generation of the komatiites and most basalts, and 2) an enriched mantle responsible for some rarer enriched basalts and picrites. Despite the large compositional and isotopic heterogeneity the most common interpretation is that the Gorgona ultramafic rocks are the product of a single mantle plume, although it has recently proposed that this would be a separate plume from that generating the bulk of the Caribbean plateau at ~90 Ma. Our new study focused on the geochronology of the Gorgona igneous suite as we consider that this tectonically and petrologically complex island is unlike to have such a narrow age range. We attempted to date eight samples of komatiites, basalts and gabbros by Ar-Ar laser step heating. For four of these samples we successfully obtain

  13. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  14. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  15. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    Science.gov (United States)

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  16. LWD lithostratigraphy, physical properties and correlations across tectonic domains at the NanTroSEIZE drilling transect, Nankai Trough subduction zone, Japan

    Science.gov (United States)

    Tudge, J.; Webb, S. I.; Tobin, H. J.

    2013-12-01

    Since 2007 the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has drilled a total of 15 sites across the Nankai Trough subduction zone, including two sites on the incoming sediments of the Philippine Sea plate (PSP). Logging-while-drilling (LWD) data was acquired at 11 of these sites encompassing the forearc Kumano Basin, upper accretionary prism, toe region and input sites. Each of these tectonic domains is investigated for changes in physical properties and LWD characteristics, and this work fully integrates a large data set acquired over multiple years and IODP expeditions, most recently Expedition 338. Using the available logging-while-drilling data, primarily consisting of gamma ray, resistivity and sonic velocity, a log-based lithostratigraphy is developed at each site and integrated with the core, across the entire NanTroSEIZE transect. In addition to simple LWD characterization, the use of Iterative Non-hierarchical Cluster Analysis (INCA) on the sites with the full suite of LWD data clearly differentiates the unaltered forearc and slope basin sediments from the deformed sediments of the accretionary prism, suggesting the LWD is susceptible to the subtle changes in the physical properties between the tectonic domains. This differentiation is used to guide the development of tectonic-domain specific physical properties relationships. One of the most important physical property relationships between is the p-wave velocity and porosity. To fully characterize the character and properties of each tectonic domain we develop new velocity-porosity relationships for each domain found across the NanTroSEIZE transect. This allows the porosity of each domain to be characterized on the seismic scale and the resulting implications for porosity and pore pressure estimates across the plate interface fault zone.

  17. Presentation of new tectonic map (and accompanying sections) of Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1984-04-01

    The Geologic Map of Trinidad, compiled by H.G. Kugler and published in 1961, is currently out of print. While it is the most widely available geologic map, it is confined to onshore Trinidad. This map remains an important reference source, but there have been significant increases in our knowledge of Trindad and Tobago geology since its publication. In particular, there has been: (1) considerable geophysical work, on land and offshore, including 20,000 km (12,400 mi) of seismic lines; (2) approximately 1000 exploration and development wells drilled, including wells in the previously unexplored north and east coast of Trinidad; and (3) significant advances in our understanding of the tectonic evolution of the area, which has resulted largely from the development of the plate tectonic theory. The following items, which take into account many of these new data and concepts, have been compiled. (1) A geologic tectonic map of the entire territory of Trinidad and Tobago, at a scale of 1:200,000. Apart from the surface geology of the land areas, this map shows the major faults and their displacements and locations, total depths and status of exploration wells, and the positions of major petroleum fields. (2) Five accompanying geologic sections at the same scale. (3) A new stratigraphic correlation chart. These new compilations attempt to fill the gap in the published literature on the petroleum geology of Trinidad and Tobago.

  18. Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes?

    Science.gov (United States)

    Meyzen, Christine; Massironi, Matteo; Pozzobon, Riccardo; Dal Zilio, Luca

    2014-05-01

    The near "one-plate" planet evolution of Mars has led to the edification of long-lasting giant shied volcanoes. Unlike the Earth, Mars would have been a transient convecting planet, where plate tectonic would have possibly acted only during the first hundreds of million years of its history. On Earth, where plate tectonic is active, most of them are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth's deeper convective system. In these environments, volcanoes do not show any linear age progression at least for the last 30 Ma, but constitute the sites of persistent, focused long-term magmatic activity, rather than a chain of volcanoes as observed in fast-moving plate plume environments. Here, the near stationary absolute plate motion probably exerts a primary control on volcanic processes, and more specifically, on the melting ones. The residual depleted mantle, that is left behind by the melting processes, cannot be swept away from the melting locus. Over time, the thickening of this near-stationary depleted layer progressively forces the termination of melting to higher depths, reducing the melt production rate. Such a process gradually leads both to decreasing efficient melt extraction and increasing mantle lithospheric-melt interactions. The accumulation of this refractory material also causes long-term fluctuations of the volcanic activity, in generating long periods of quiescence. The presence of this residual mantle keel induces over time a lateral flow deflection, which translates into a shift of future melting sites around it. This process gives rise to the horseshoe-like shape of some volcanic islands on slow-moving plates (e.g. Cape Verde, Crozet). Finally, the pronounced topographic swells/bulges observed in this environments may also be supported both by large scale mantle upwelling and their residual

  19. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  20. Geotectonic aspects of the proterozoic triple junction in the center-south part of Goias state

    International Nuclear Information System (INIS)

    Valente, C.R.

    1986-01-01

    The scope of this paper is to made up, in a regional synthesis the tectonical framework of intracontinental proterozoic rifts, from the point of view of an evolutive model through plate tectonic mechanism. based upon lithoenvironment and geotectonics. In this context, this analysis take into account the tectonical interpretation and typification of Canastra, Cuiaba, Estrondo and Tocantins Groups. Structurally these geological entities are found to be settled in rifts of triple junction, in the center-south part of Goias State, individualized among the Oriental Plate (Sao Francisco Craton and Goias Central Massif) Occidental Plate (Amazonic Craton) and Meridional Plate (Paramirim Craton and Parana Block). (author)

  1. Fingerprint Matching by Thin-plate Spline Modelling of Elastic Deformations

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  2. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    Science.gov (United States)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide

  3. Tectonic evolution of the North Patagonian Andes (41°-44° S) through recognition of syntectonic strata

    Science.gov (United States)

    Echaurren, A.; Folguera, A.; Gianni, G.; Orts, D.; Tassara, A.; Encinas, A.; Giménez, M.; Valencia, V.

    2016-05-01

    The North Patagonian fold-thrust belt (41°-44° S) is characterized by a low topography, reduced crustal thickness and a broad lateral development determined by a broken foreland system in the retroarc zone. This particular structural system has not been fully addressed in terms of the age and mechanisms that built this orogenic segment. Here, new field and seismic evidence of syntectonic strata constrain the timing of the main deformational stages, evaluating the prevailing crustal regime for the different mountain domains through time. Growth strata and progressive unconformities, controlled by extensional or compressive structures, were recognized in volcanic and sedimentary rocks from the cordilleran to the extra-Andean domain. These data were used to construct a balanced cross section, whose deep structure was investigated through a thermomechanical model that characterizes the upper plate rheology. Our results indicate two main compressive stages, interrupted by an extensional relaxation period. The first contractional stage in the mid-Cretaceous inverted Jurassic-Lower Cretaceous half graben systems, reactivating the western Cañadón Asfalto rift border ~ 500 km away from the trench, at a time of arc foreland expansion. For this stage, available thermochronological data reveal forearc cooling episodes, and global tectonic reconstructions indicate mid-ocean ridge collisions against the western edge of an upper plate with rapid trenchward displacement. Widespread synextensional volcanism is recognized throughout the Paleogene during plate reorganization; retroarc Paleocene--Eocene flare up activity is interpreted as product of a slab rollback, and fore-to-retroarc Oligocene slab/asthenospheric derived products as an expression of enhanced extension. The second stage of mountain growth occurred in Miocene time associated with Nazca Plate subduction, reaching nearly the same amplitude than the first compressive stage. Extensional weakening of the upper plate

  4. A tectonically uplifted marine shoreline deposit, Knights Point, Westland, New Zealand

    International Nuclear Information System (INIS)

    Cooper, A.F.; Kostro, F.

    2006-01-01

    An 11 m thick subhorizontal beach deposit rests on steeply dipping Cretaceous bedrock. Sediments, ranging from a basal boulder bed to upper sands, are poorly sorted and negatively skewed, indicating pronounced winnowing of fine material. Impact features on quartz grain surfaces attest to high-energy turbulent environments, and are similar to those found on clasts from modern nearby beaches. The Haast River was source to some of the sand and gravel. Heavy minerals from the Dun Mountain Ophiolite Belt were transported 85 km by fluvial/glacial and longshore drift processes, necessitating caution when using apparent lateral separation of source material for estimating strike-slip displacement rates on the Alpine Fault. An optical luminescence age estimate of 123 ± 7 ka for Knights Point beach sands dates to the last interglacial (MIS 5e). A shore-platform altitude of 113 m a.s.l. requires tectonic uplift of the Australian plate of 0.86 mm/yr, an order of magnitude less than the nearby Pacific plate. (author). 66 refs., 6 figs., 3 tabs

  5. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  6. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  7. Accessory mineral records of tectonic environments? (Invited)

    Science.gov (United States)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  8. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  9. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    Science.gov (United States)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  10. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  11. Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    Science.gov (United States)

    McCormack, Kimberly A.; Hesse, Marc A.

    2018-04-01

    We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.

  12. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    Science.gov (United States)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  13. Crustal structure and tectonic deformation of the southern Ecuadorian margin

    Science.gov (United States)

    Calahorrano, Alcinoe; Collot, Jean-Yves; Sage, Françoise; Ranero, César R.

    2010-05-01

    Multichannel seismic lines acquired during the SISTEUR cruise (2000) provide new constraints on the structure and deformation of the subduction zone at the southern Ecuadorian margin, from the deformation front to the continental shelf of the Gulf of Guayaquil. The pre-stack depth migrated images allows to characterise the main structures of the downgoing and overriding plates and to map the margin stratigraphy in order to propose a chronology of the deformation, by means of integrating commercial well data and industry seismic lines located in the gulf area. The 100-km-long seismic lines show the oceanic Nazca plate underthrusting the South American plate, as well as the subduction channel and inter-plate contact from the deformation front to about 90 km landward and ~20 km depth. Based on seismic structure we identify four upper-plate units, consisting of basement and overlaying sedimentary sequences A, B and C. The sedimentary cover varies along the margin, being few hundreds of meters thick in the lower and middle slope, and ~2-3 km thick in the upper slope. Exceptionally, a ~10-km -thick basin, here named Banco Peru basin, is located on the upper slope at the southernmost part of the gulf. This basin seems to be the first evidence of the Gulf of Guayaquil opening resulting from the NE escaping of the North Andean Block. Below the continental shelf, thick sedimentary basins of ~6 to 8 km occupy most of the gulf area. Tectonic deformation across most of the upper-plate is dominated by extensional regime, locally disturbed by diapirism. Compression evidences are restricted to the deformation front and surrounding areas. Well data calibrating the seismic profiles indicate that an important portion of the total thickness of the sedimentary coverage of the overriding plate are Miocene or older. The data indicate the extensional deformation resulting from the NE motion of the North Andean Block and the opening of the Gulf of Guayaquil, evolves progressively in age

  14. Space geodesy validation of the global lithospheric flow

    Science.gov (United States)

    Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.

    2007-02-01

    Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.

  15. Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska

    Science.gov (United States)

    Haynie, K. L.; Jadamec, M. A.

    2017-07-01

    Intracontinental shear zones can play a key role in understanding how plate convergence is manifested in the upper plate in regions of oblique subduction. However, the relative role of the driving forces from the subducting plate and the resisting force from within intracontinental shear zones is not well understood. Results from high-resolution, geographically referenced, instantaneous 3-D geodynamic models of flat slab subduction at the oblique convergent margin of Alaska are presented. These models investigate how viscosity and length of the Denali fault intracontinental shear zone as well as coupling along the plate boundary interface modulate motion of the Wrangell block fore-arc sliver and slip across the Denali fault. Models with a weak Denali fault (1017 Pa s) and strong plate coupling (1021 Pa s) were found to produce the fastest motions of the Wrangell block (˜10 mm/yr). The 3-D models predict along-strike variation in motion along the Denali fault, changing from dextral strike-slip motion in the eastern segment to oblique convergence toward the fault apex. Models further show that the flat slab drives oblique motion of the Wrangell block and contributes to 20% (models with a short fault) and 28% (models with a long fault) of the observed Quaternary slip rates along the Denali fault. The 3-D models provide insight into the general processes of fore-arc sliver mechanics and also offer a 3-D framework for interpreting hazards in regions of flat slab subduction.

  16. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    International Nuclear Information System (INIS)

    Henk, A.; Fischer, K.

    2014-09-01

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km 2 was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  17. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Henk, A.; Fischer, K. [TU Darmstadt (Germany). Inst. fuer Angewandte Geowissenschaften

    2014-09-15

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km{sup 2} was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  18. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  19. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  20. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  1. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    This paper is related to previous research by the authors that examine the phenomenon of tectonics as architectural design theory and method. These studies have shown that the notion of tectonics at large is associated with exclusive architecture, and that, as a profession architects have...... to develop methods for applying tectonic knowledge extracted from significant existing examples for developing future practical methods (Frampton 2002: 81). The specific intention of this paper is to push the understanding of tectonics further, into the scale of the urban context and thereby to discuss...... using Hansen’s work as a case study. (Beim & Madsen (ed.) 2014) Methodologically this has been done by applying the notion of ‘urban tectonics’ inspired by the work of Eduard F. Sekler, as a critical lens. (Sekler 1964, Sekler 1965) Through this lens we study how Hansen was able to treat culture...

  2. Model to Analyze Micro Circular Plate Subjected to Electrostatic Force

    Directory of Open Access Journals (Sweden)

    Cao Tian-Jie

    2013-06-01

    Full Text Available In this paper a distributed model with three possible static modes was presented to investigate the behavior of the plate subjected to electrostatic force and uniform hydrostatic pressure both before pull in and beyond pull in. The differential governing equation of the micro circular plate specifically used for numerical solution of the three modes, in which the singularity at the center of the micro plate did not occur, was presented based on the classical thin plate theory, Taylor's series expansion and Saint-Venant's principle. The numerical solution to the differential governing equation for the different mode was mainly attributed to solve for one unknown boundary condition and the applied voltage, which could be obtained by using a two-fold method of bisection based on the shooting method. The voltage ranges over which the three modes could exist and the points where transitions occurred between the modes were computed. Incorporating the above numerical solution to the applied voltage at the normal mode with some constrained optimization method, pull-in voltage and the corresponding pull-in position can automatically be obtained. In examples, the entire mechanical behavior of the circular plate over the operational voltage ranges was investigated and the effects of different parameters on pull-in voltage were studied. The obtained results were compared with the existing results and good agreement has been achieved.

  3. Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland

    Science.gov (United States)

    Gehring, Andreas U.; Keller, Peter; Heller, Friedrich

    1991-02-01

    Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.

  4. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    Science.gov (United States)

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  5. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  6. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  7. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)

    2012-10-15

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.

  9. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    International Nuclear Information System (INIS)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian

    2012-01-01

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics

  10. Using fuzzy rule-based knowledge model for optimum plating conditions search

    Science.gov (United States)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  11. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    Science.gov (United States)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar

    2014-05-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  12. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.

    1989-01-01

    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  13. Neotectonic deformation in Tunisia (North of the African plate)

    Science.gov (United States)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Kadri, Ali; Delvaux, Damien; Khayati Ammar, Hayet; Braham, Ahmed

    2017-04-01

    In Tunisia, at the extreme North of the African plate, the neotectonic context is largely influenced by the Eurasia-Africa convergence. The aim of this work is to characterize the neotectonic regime that affected this region during Quaternary. Field work investigations integrated with published data allowed to evidence a spatial-temporal variation of the tectonic stress regime during this period. The spatial repartition of the different types of Quaternary to historical deformation shows a North-South neotectonic zoning in Tunisia. After lower Pleistocene, the Tellian domain (Maghrebides) in the North and its Atlassic foreland in central Tunisia are affected by NNW-SSE compression. It generated E-W to NE-SW folds and reverse faults, well developed in the Plio-Quaternary molassic basins of Kechabta and Jendouba (Northern Tunisia). In the Atlas, the major E-W and N-S pre-existing faults have been reactivated with dextral and sinistral strike-slip kinematic respectively, associated to en-echelon folds (Kasserine, N-S Axis, Northern Chott belt...). After the Tyrrhenian, a submeridian compressional regime affected Northern Tunisia (e.g., Bizerte region) and was responsible for the E-W folding of marine strata. More to the South, in the Tunisian Sahel, transtensional tectonics with a NW-SE horizontal maximal compression (SHmax) deformed the Tyrrhenian marine series (Khénis, Skanès, Monastir…). During the Holocene and up to present-day times, N-S compressional tectonics reactivated the E-W pre-existing faults with a reverse movement in Northern Tunisia (Bulla Regia, Utica …), generating historical earthquakes. In Central Tunisia, the Aqueduct of Cherichira (built around AD 850) is displaced by a N-S normal fault. Similarly, a mosaic of a roman house is shifted by 10 cm, along a N-S sinistral normal fault. These deformations evidence a transtensional tectonic regime. During the Quaternary, all the NW-SE oriented grabens are subsiding (e.g., Bizerte Lake, Grombalia

  14. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2010-04-01

    The origin of the Quaternary silicic rocks in Iceland is thought to be linked to the thermal state of the crust, which in turn depends on the regional tectonic settings. This simple model is tested here on rocks from the Miocene to present, both to suggest an internally consistent model for silicic magma formation in Iceland and to constrain the link between tectonic settings and silicic magma petrogenesis. New major and trace-element compositions together with O-, Sr- and Nd-isotope ratios have been obtained on silicic rocks from 19 volcanic systems ranging in age from 13 Ma to present. This allows us to trace the spatial and temporal evolution of both magma generation and the corresponding sources. Low δ18O (geothermal gradient. But later than 5.5 Ma they were produced in a flank zone environment by fractional crystallisation alone, probably due to decreasing geothermal gradient, of basalts derived from a mantle source with lower 143Nd/ 144Nd. This is in agreement with an eastwards rift-jump, from Snæfellsnes towards the present Reykjanes Rift Zone, between 7 and 5.5 Ma. In the South Iceland Volcanic Zone (SIVZ), the intermediate Nd-signature observed in silicic rocks from the Torfajökull central volcano reflects the transitional character of the basalts erupted at this propagating rift segment. Therefore, the abundant evolved rocks at this major silicic complex result from partial melting of the transitional alkaline basaltic crust (Iceland can, therefore, be used for deciphering past geodynamic settings characterized by rift- and off-rift zones resulting from interaction of a mantle plume and divergent plate boundaries.

  15. Where does subduction initiate and die? Insights from global convection models with continental drift

    Science.gov (United States)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  16. Erosion Modeling of the High Contraction Chromium Plated Crusader Gun System

    National Research Council Canada - National Science Library

    Sopok, S

    2003-01-01

    Thermal-chemical- mechanical erosion modeling predictions are given for the high contraction chromium plated Crusader gun system based on extensive cannon firing, inspection, characterization, and experimental data...

  17. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity

    Science.gov (United States)

    Bethune, K. M.

    2015-12-01

    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  18. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  19. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    International Nuclear Information System (INIS)

    Jha, D.K.; Kant, Tarun; Srinivas, K.; Singh, R.K.

    2013-01-01

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature

  20. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  1. Thermo-mechanical modeling of the obduction process based on the Oman ophiolite case

    OpenAIRE

    Duretz , Thibault; Agard , Philippe; Yamato , Philippe; Ducassou , Céline; Burov , Evgenii ,; Gerya , T. V.

    2016-01-01

    International audience; Obduction emplaces regional-scale fragments of oceanic lithosphere (ophiolites) over continental lithosphere margins of much lower density. For this reason, the mechanisms responsible for obduction remain enigmatic in the framework of plate tectonics. We present two-dimensional (2D) thermo-mechanical models of obduction and investigate possible dynamics and physical controls of this process. Model geometry and boundary conditions are based on available geological and g...

  2. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    Science.gov (United States)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  3. TecDEM: A MATLAB Based Toolbox for understanding Tectonics from Digital Elevation Models

    Science.gov (United States)

    Shahzad, F.; Mahmood, S. A.; Gloaguen, R.

    2009-04-01

    TecDEM is a MATLAB based tool box for understanding the tectonics from digital elevation models (DEMs) of any area. These DEMs can be derived from data of any spatial resolution (Low, medium and High). In the first step we extract drainage network from the DEMs using flow grid approach. Drainage network is a group of streams having elevation and catchment area information as a function of spatial locations. We implement an array of stream structure to study this drainage network. Knickpoints can be identified on each stream of the drainage network by a graphical user interface and are helpful for understanding stream morphology. Stream profile analysis in steady state condition is applied on all streams to calculate geomorphic parameters and regional uplift rates. Hack index is calculated for all the profiles at a certain interval and over the change of knickpoints. Reports menu of this tool box generates detailed statistics report, complete tabulated report, graphical output of each analyzed stream profile and Hack index profile. All the calculated values are part of stream structure and is saved as .mat file for later use with this tool box. The spatial distribution of geomorphic parameters, uplift rates and knickpoints are exported as a shape files for visualization in professional GIS software. We test this tool box on DEMs from different tectonic settings worldwide and received verifiable results with other studies.

  4. Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction

    Science.gov (United States)

    Robinson, S. E.; Porter, R. C.; Hoisch, T. D.

    2017-12-01

    Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount

  5. Experimental observations and modelling of thermal history within a steel plate during water jet impingement

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.; Lockhart, G.T.

    2002-01-01

    In order to investigate heat transfer of steel plates under a water jet impingement and to further simulate runout table operation in a hot strip mill, a full-scale pilot runout table facility was designed and constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement by one circular water jet from an industrial header. Recorded visual observations at the impinging surface were obtained. The effects of cooling water temperature and impingement velocity on the heat transfer from a steel plate were studied. A two-dimensional finite element method-based transient inverse heat conduction model was developed. With the help of the model, heat fluxes and heat transfer coefficients along the impinging surface under various cooling conditions were calculated. The microstructural evolution of the steel plate was also investigated for the varying cooling conditions. Samples were obtained from each plate, polished, etched and then photographed. (author)

  6. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  7. Two-Dimensional Numerical Modeling of Intracontinental Extension: A Case Study Of the Baikal Rift Formation

    DEFF Research Database (Denmark)

    Yang, H.; Chemia, Zurab; Artemieva, Irina

    The Baikal Rift zone (BRZ) is a narrow ( 10 km) active intra-continental basin, located at the boundary between the Amurian and Eurasian Plates. Although the BRZ is one of the major tectonically active rift zones in the world andit has been a subject of numerous geological...... on topography,basin depth, the structure of the crust, lithosphere thickness, and the location of major tectonic faults. Our goal is to determine the physical models that reproduce reasonably well the ob-served deformation patterns of the BRZ.We perform a systematic analysis of the pa-rameter space in order...

  8. Theory of denudation tectonics and practice in prospecting. Pt.1

    International Nuclear Information System (INIS)

    Tong Hangshou

    1994-01-01

    The theory of denudation tectonics--earth science frontiers--upsurged in the 1980's of the century and a great mass fervor of its research has spread to the uranium geology. For the studying and applying the theory of denudation tectonics and on the invitation of the Editorial Department of 'Uranium Geology', this paper has been written and will be published in several issues with the following contents accordingly: (1) New progress in the research on denudation tectonics in China; (2) The evolution of denudation tectonics' concept and layer zoning of the Earth; (3) The fundamental implication of the denudation tectonics and relevant tectonic terminology; (4) Discussion on dynamics of the formation of denudation tectonics; (5) Definition and discrimination of denudation tectonics; (6) Research method of denudation tectonics; (7) Ore control theory of denudation tectonics and prospecting; (8) Outlook on the research of denudation tectonics

  9. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  10. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  11. Tectonic vocabulary and materialization: Discourse on the future of tectonic architectural research in the Nordic countries

    DEFF Research Database (Denmark)

    Beim, Anne; Bundgaard, Charlotte; Hvejsel, Marie Frier

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday....... On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative...... to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...

  12. Formwork tectonics

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: Based on the concept of techné and framed in architectural studies of tectonics and an experimental practice of making, this paper investigates the multiple technological roles of textiles in fabric formwork for concrete in four analytical studies of experimental data of the author......’s doctoral dissertation Fabric Formwork for Concrete – Investigations into Formwork Tectonics and Stereogeneity in Architectural Constructions. In the paper only textile roles are discussed but it is suggested that a study of multiple technological roles of key formwork elements will emphasize...... their potential as ‘common denominators’ between architects, engineers and builders. Findings include textile used for the ‘textilization’ of concrete and the ‘concretization’ of textiles as two opposite starting points in fabric-forming. Recent research into thin-shell construction using fabric formwork is shown...

  13. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  14. MODEL OF TECTONIC EARTHQUAKE PREPARATION AND OCCURRENCE AND ITS PRECURSORS IN CONDITIONS OF CRUSTAL STRETCHING

    Directory of Open Access Journals (Sweden)

    R. M. Semenov

    2018-01-01

    Full Text Available In connection with changes in the stress-strain state of the Earth's crust, various physical and mechanical processes, including destruction, take place in the rocks and are accompanied by tectonic earthquakes. Different models have been proposed to describe earthquake preparation and occurrence, depending on the mechanisms and the rates of geodynamic processes. One of the models considers crustal stretching that is characteristic of formation of rift structures. The model uses the data on rock samples that are stretched until destruction in a special laboratory installation. Based on the laboratory modeling, it is established that the samples are destroyed in stages that are interpreted as stages of preparation and occurrence of an earthquake source. The preparation stage of underground tremors is generally manifested by a variety of temporal (long-, medium- and short-term precursors. The main shortcoming of micro-modeling is that, considering small sizes of the investigated samples, it is impossible to reveal a link between the plastic extension of rocks (taking place in the earthquake hypocenter and the rock rupture. Plasticity is the ability of certain rocks to change shape and size irreversibly, while the rock continuity is maintained, in response to applied external forces. In order to take into account the effect of plastic deformation of rocks on earthquake preparation and occurrence, we propose not to refer to the diagrams showing stretching of the rock samples, but use a typical diagram of metal stretching, which can be obtained when testing a metal rod for breakage (Fig. 1. The diagram of metal stretching as a function of the relative elongation (to some degree of approximation and taking into account the coefficient of plasticity can be considered as a model of preparation and occurrence of an earthquake source in case of rifting. The energy released in the period immediately preceding the earthquake contributes to the emergence of

  15. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    Science.gov (United States)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that

  16. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    Science.gov (United States)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  17. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  18. Towards a Tectonic Sustainable Building Practice

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    and environmental problems? The objective of the project is to analyse and develop the tectonic practice based on case studies, in relation to: • Cultural anchoring and identity creation • Building culture and creative processes • Sustainability, lifecycle and resource management The research project is divided...... into a main project and various subprojects, respectively, two levels that mutually feed each other.The main project, which constitutes the general level, seeks to identify a coherent strategy towards a new tectonically sustainable building culture.The subprojects look at partial issues and go into specific......Can a tectonic building practice be strengthened through new creation processes, where resources are used more purposefully, deliberately and systematically? Which new measures are necessary if we are to develop a strong tectonic building practice with due consideration for increasing climate...

  19. Mathematical modeling and control of plate fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Taler, Dawid

    2015-01-01

    Highlights: • A method for numerical modeling of plate fin and tube heat exchangers was proposed. • A numerical model of an automobile radiator was developed. • Numerical models of the radiator were compared with an exact analytical model. • A model-based control system of water outlet temperature was built and tested. • A digital proportional–integral–derivative controller of heat exchanger was tested. - Abstract: The aim of the study is to develop a new method for numerical modeling of tubular cross-flow heat exchangers. Using the method proposed in the paper, a numerical model of a car radiator was developed and implemented in a digital control system of the radiator. To evaluate the accuracy of the numerical method proposed in the paper, the numerical model of the car radiator was compared with an analytic model. The proposed method based on a finite volume method and integral averaging of gas temperature across a tube row is appropriate for modeling of plate fin and tube heat exchangers, especially for exchangers in which substantial gas temperature differences in one tube row occur. The target of control is to regulate the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a set value. Two control techniques were developed. The first is based on the numerical model of the heat exchanger developed in the paper while the second is a digital proportional–integral–derivative control. The first control method is very stable. The digital proportional–integral–derivative controller becomes unstable when the water volume flow rate varies considerably. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments show that the proportional–integral–derivative controller

  20. Quaternary tectonics of recent basins in northwestern Armenia

    Science.gov (United States)

    Trifonov, V. G.; Shalaeva, E. A.; Saakyan, L. Kh.; Bachmanov, D. M.; Lebedev, V. A.; Trikhunkov, Ya. I.; Simakova, A. N.; Avagyan, A. V.; Tesakov, A. S.; Frolov, P. D.; Lyubin, V. P.; Belyaeva, E. V.; Latyshev, A. V.; Ozherelyev, D. V.; Kolesnichenko, A. A.

    2017-09-01

    New data on the stratigraphy, faults, and formation history of lower to middle Pleistocene rocks in Late Cenozoic basins of northwestern Armenia are presented. It has been established that the low-mountain topography created by tectonic movements and volcanic activity existed in the region by the onset of the Pleistocene. The manifestations of two geodynamic structure-forming factors became clear in Pleistocene: (i) collisional interaction of plates due to near-meridional compression and (ii) deep tectogenesis and magma formation expressed in the distribution of vertical movements and volcanism. The general uplift of the territory, which was also related to deep processes, reached 350-500 m in basins and 600-800 m in mountain ranges over the last 0.5 Ma. The early Pleistocene ( 1.8 Ma) low- and medium-mountain topography has been reconstructed by subtraction of the latest deformations and uplift of the territory. Ancient human ancestry appeared at that time.

  1. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc

    Science.gov (United States)

    DeMets, Charles

    Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.

  2. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    International Nuclear Information System (INIS)

    Norman, M.D.; Leeman, W.P.

    1989-01-01

    Magmatism in the western United States spanned a change in tectonic setting from Mesozoic and early Tertiary plate convergence to middle and late Tertiary crustal extension. This paper presents new major element, trace element, and isotopic (Sr, Nd, Pb) data on a diverse suite of Cretaceous to Neogene igneous rocks from the Owyhee area of southwestern Idaho to evaluate possible relationships between the evolving tectonic regime and temporal changes in igneous activity. The oldest studied rocks are Cretaceous granitic intrusives that probably formed by large-scale mixing of Precambrian crust with subduction-related magmas. Silicic Eocene tuffs are also rich in crustal components, but have isotopic compositions unlike the Cretaceous intrusives. These data require at least two crustal sources that may correspond to domains of significantly different age (Archean vs. Proterozoic). The oldest mafic lavas in the study area are Oligocene andesites and basalts compositionally similar to subduction-related magmas derived from asthenospheric mantle and erupted through thick continental crust. Direct crustal involvement during oligocene time was limited to minor interaction with the mafic magmas. Miocene activity produced bimodal basalt-rhyolite suites and minor volumes of hybrid lavas. Compositions of Miocene basalts demonstrate the decline of subduction-related processes, and increased involvement of subcontinental lithospheric mantle as a magma source. Crustally-derived Miocene rhyolites have isotopic compositions similar to those of the Cretaceous granitic rocks but trace element abundances more typical of within-plate magmas. (orig./WB)

  3. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  4. A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

    Science.gov (United States)

    2016-04-12

    A REDUCED-ORDER MODEL FOR EVALUATING THE DYNAMIC RESPONSE OF MULTILAYER PLATES TO IMPULSIVE LOADS Weiran Jiang, Alyssa Bennett, Nickolas...innovative multilayer materials or structures to optimize the dynamic performance as a mechanism to absorb and spread energy from an impulsive load...models. • Optimizing the structural weight and levels of protection of the multilayer plates with a good combination of materials. Technical Approach 2016

  5. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  6. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    Science.gov (United States)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the

  7. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  8. Mesozoic tectonics of the Otway Basin region: The legacy of Gondwana and the active Pacific margin: a review and ongoing research

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K.A. [Monash Univ., Clayton, VIC (Australia). Department of Earth Sciences; Finlayson, D.M. [Australian Geological Survey Organisation, Canberra, ACT (Australia); Hill, K.C. [La Trobe Univ., Bundoora, VIC (Australia). School of Earth Sciences; Cooper, G.T. [Monash Univ., Clayton, VIC (Australia). Department of Earth Sciences

    1995-12-31

    Recent plate tectonic models for SE Australia and the formerly contiguous parts of Gondwana are reviewed in this paper in order to assess the Mesozoic evolution of the Otway Basin. Research around the Otway Basin is summarised to demonstrate how the application of new technology can address some of the outstanding questions regarding the Basin`s evolution on local to lithospheric scales. The geometry and geology of Australia`s southern margin are compared with Atlantic rift-drift margins to provide analogues for tectonics and hydrocarbon exploration in the Otway Basin. At least two stages of rifting were found to be evident in the Cretaceous and in the deep structure of the Otway basin. These are Early Cretaceous rifting which is manifested in numerous half-graben and accommodation zones, and Late Cretaceous rifting in the deep seismic data seaward of the Tartwaup, Timboon and Sorell fault zones. Major offsets of the spreading axis during break up, at the Tasman and Spencer Fracture Zones were probably controlled by the location of Paleozoic terrace boundaries. The Tasman Fracture System was reactivated during break-up, with considerable uplift and denudation of the Bass failed rift to the east, which controlled Otway Basin facies distribution. Paleozoic structures also had a significant effect in determining the half graben orientations within a general N-S extensional regime during early Cretaceous rifting. The late Cretaceous second stage of rifting, seaward of the Tartwaup, Timboon and Sorell fault zones, left stable failed rift margin to the north, but the attenuated lithosphere of the Otway-Sorell microplate to the south records repeated extension that led to continental separation and may be part of an Antarctic upper plate. 1 table. 16 figs., 4 photos., refs.

  9. Geophysical Data (Gravity and Magnetic) from the Area Between Adana, Kahramanmaras and Hatay in the Eastern Mediterranean Region: Tectonic Implications

    Science.gov (United States)

    Over, Semir; Akin, Ugur; Sen, Rahime

    2018-01-01

    The gravity and magnetic maps of the area between Adana-Kahramanmaras-Hatay provinces were produced from a compilation of data gathered during the period between 1973 and 1989. Reduced to the pole (RTP) and pseudo-gravity transformation (PGT) methods were applied to the magnetic data, while derivative ratio (DR) processing was applied to both gravity and magnetic data, respectively. Bouguer, RTP and PGT maps show the image of a buried structure corresponding to ophiolites under undifferentiated Quaternary deposits in the Adana depression and Iskenderun Gulf. DR maps show two important faults which reflect the tectonic framework in the study area: (1) the Karatas-Osmaniye Fault extending from Osmaniye to Karatas in the south between Adana and Iskenderun depressions and (2) Amanos Fault (southern part of East Anatolian Fault) in the Hatay region running southward from Turkoglu to Amik Basin along Amanos Mountain forming the actual plate boundary between the Anatolian block (part of Eurasian plate) and Arabian plate.

  10. Tabletop Tectonics: Diverse Mountain Ranges Using Flour and Graphite

    Science.gov (United States)

    Davis, D. M.

    2006-12-01

    It has been recognized for some time that the frontal deformation zones where plates converge (foreland fold- and-thrust belts on continents and accretionary wedges at subduction zones) involve shortening over a decoupling layer, or decollement. A simple but successful way of explaining many aspects of their behavior is called the critical Coulomb wedge model, which regards these contractional wedges as analogous to the wedge-shaped mass of soil accreted in front of a bulldozer, or the wedge of snow that piles up in front of a snow plow. The shape and deformation history of the accreted wedge of soil or snow will depend upon the frictional strength of the material being plowed up and the surface over which it is being plowed. The same is true of `bulldozer' wedges consisting of many km thick piles of sediment at convergent plate margins. Using flour (or powdered milk), sandpaper, graphite, transparency sheets, and athletic field marker chalk, manipulated with sieves, brushes, pastry bags and blocks and sheets of wood, it is possible to demonstrate a wide variety of processes and tectonic styles observed at convergent plate boundaries. Model fold-and-thrust belts that behave like natural examples with a decollement that is strong (e.g., in rock without high pore fluid pressure) or weak (e.g., in a salt horizon or with elevated pore fluid pressure) can be generated simply by placing wither sandpaper or graphite beneath the flour that is pushed across the tabletop using a block of wood (the strong basement and hiterland rocks behind the fold-thrust belt). Depending upon the strength of the decollement, the cross-sectional taper of the deforming wedge will be thin or broad, the internal deformation mild or intense, and the structures either close to symmetric or strongly forward-vergent, just as at the analogous natural fold-thrust belts. Including a horizontal sheet of wood or Plexiglas in front of the pushing block allows generation of an accretionary wedge, outer

  11. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    Science.gov (United States)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  12. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din; Hassanein, Ahmed

    2009-01-01

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m 2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  13. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu

    2009-12-15

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  14. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    李乃胜

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan,China, Germany, France, the U. S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes,rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic sur-vey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P. , the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  15. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  16. Dynamic Analysis of Thick Plates Including Deep Beams on Elastic Foundations Using Modified Vlasov Model

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2013-01-01

    Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.

  17. Isostatic anomaly characteristics and dynamic environment of New Britain Ocean trenches and neighboring Area in Papua New Guinea

    Science.gov (United States)

    Yang, G.; Shen, C.; Wang, J.

    2017-12-01

    we calculated the Bouguer gravity anomaly and the Airy-Heiskanen isostatic anomaly in the New Britain ocean trenches and its surrounding areas of Papua New Guinea using the topography model and the gravity anomaly model from Scripps Institute of Oceanography, and analyzed the characteristics of isostatic anomaly and the earthquake dynamic environment of this region. The results show that there are obviously differences in the isostatic state between each block in the region, and the crustal tectonic movement is very intense in the regions with high positive or negative isostatic gravity anomalies; A number of sub-plates in this area is driven by the external tectonic action such as plate subduction and thrust of the Pacific plate, the Indian - Australian plate and the Eurasian plate. From the distribution of isostatic gravity anomaly, the tectonic action of anti-isostatic movement in this region is the main source of power; from the isostatic gravity and the spatial distribution of the earthquake, with the further contraction of the Indian-Australian plate, the southwestern part of the Solomon Haiya plate will become part of the Owen Stanley fold belt, the northern part will enter the lower part of the Bismarck plate, eastern part will enter the front of the Pacific plate, the huge earthquake will migrate to the north and east of the Solomon Haiya plate.

  18. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  19. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions

    Science.gov (United States)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.

    2016-12-01

    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  20. The revised tectonic history of Tharsis

    Science.gov (United States)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  1. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau: New insights from analogue experiments

    Science.gov (United States)

    Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang

    2018-06-01

    Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.

  2. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  3. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  4. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  5. Everyday Tectonics?

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    Frascari and Kenneth Frampton (Harris & Berke 1997, Read 2000, Frascari 1984, Frampton 1995kilder). Whereas the focus upon everyday architecture seems to have lost its momentum too quickly, tectonic theory in architecture has been steadily growing as a field of research in architecture, especially related...

  6. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  7. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  8. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  9. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  10. Modeling tectonic heat flow and source rock maturity in the Rub' Al-Khali Basin (Saudi Arabia), with the help of GOCE satellite gravity data

    NARCIS (Netherlands)

    Abdul Fattah, R.; Meekes, S.; Bouman, J.; Ebbing, J.; Haagmans, R.

    2014-01-01

    A 3D basin modeling study was carried out to reconstruct the regional heat flow and source rock maturity in the Rub'al-Khali basin. Gravity gradient data from the GOCE satellite were used to model deep structures, such as the Moho interface. Tectonic heat flow was modeled using the GOCE-based Moho

  11. Geomorphic Response to Spatial and Temporal Tectonic uplift on the Kenya Rift of East African Rift System

    Science.gov (United States)

    Xue, L.; Abdelsalam, M. G.

    2017-12-01

    Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.

  12. The Tectonic Boundary Between Eastern Subbaisin and South-West Subbasin of the South China Sea Revealed from the Normalized Magnetic Source Strength

    Science.gov (United States)

    Guo, L.; Meng, X.

    2014-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, is one of the largest marginal seas in the Western Pacific. It was formed by the interaction of the three plates and the seafloor spreading during Late Oligocene time to Early Miocene time. The boundary between Eastern Subbaisin and South-west Subbasin of the SCS has long been debated in the literature. Refining the boundary is one of the crucial tasks for correctly understanding the seafloor spreading model of the SCS. Due to few drills on the deep ocean basin of the SCS, magnetic data become important information for refining the boundary. However, the interpretation of magnetic data in the SCS suffers from the remanent magnetization of ocean crust as well as igneous rock and seamounts. The conventional reduction-to-pole anomalies at low latitudes usually neglect the remanent magnetization, making the interpretation incorrect. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then did a special transformation of the TMI anomalies with a varying magnetic inclinations algorithm to obtain the normalized source strength (NSS). The NSS has advantage of insensitivity to remanent magnetization, benefitting correct interpretation. The NSS presents discriminative features from east to west in the ocean basin. The boundary of the discriminative features is clear and just ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank. These imply that magnetic structure and tectonic features in the crust are discriminative between both sides of this boundary. It can be deduced that this boundary is the tectonic boundary between Eastern Subbaisin and South-west Subbasin. We acknowledge the financial support of the National Natural Science Foundation of China (41374093) and the SinoProbe-01-05 project.

  13. Composite faults in the Swiss Alps formed by the interplay of tectonics, gravitation and postglacial rebound: an integrated field and modelling study

    International Nuclear Information System (INIS)

    Ustaszewski, M. E.; Pfiffner, A.; Hampel, A.; Ustaszewski, M. E.

    2008-01-01

    Along the flanks of several valleys in the Swiss Alps, well-preserved fault scarps occur between 1900 and 2400 m altitude, which reveal uplift of the valley-side block relative to the mountain-side block. The height of these uphill-facing scarps varies between 0.5 m and more than 10 m along strike of the fault traces, which usually trend parallel to the valley axes. The formation of the scarps is generally attributed either to tectonic movements or gravitational slope instabilities. Here we combine field data and numerical experiments to show that the scarps may be of composite origin, i.e. that tectonic and gravitational processes as well as postglacial differential uplift may have contributed to their formation. Tectonic displacement may occur as the fault scarps run parallel to older tectonic faults. The tectonic component seems, however, to be minor as the studied valleys lack seismic activity. A large gravitational component, which is feasible owing to the steep dip of the schistosity and lithologic boundaries in the studied valleys, is indicated by the uneven morphology of the scarps, which is typical of slope movements. Postglacial differential uplift of the valley floor with respect to the summits provides a third feasible mechanism for scarp formation, as the scarps are postglacial in age and occur on the flanks of valleys that were filled with ice during the last glacial maximum. Finite-element experiments show that postglacial unloading and rebound can initiate slip on steeply dipping pre-existing weak zones and explain part of the observed scarp height. From our field and modelling results we conclude that the formation of uphill-facing scarps is primarily promoted by a steeply dipping schistosity striking parallel to the valley axes and, in addition, by mechanically weaker rocks in the valley with respect to the summits. Our findings imply that the identification of surface expressions related to active faults can be hindered by similar morphologic

  14. The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI (United States); Cody, Dianna D. [Department of Imaging Physics, University of Texas, M.D. Anderson Hospital, Houston, TX (United States)

    2004-06-01

    To explore how the size of the growth plate changes with age using three-dimensional (3D) models of the distal femoral and proximal tibial growth plates in pediatric patients. We retrospectively created 3D models of the normal unaffected distal femoral (n=20) and proximal tibial (n=10) growth plates in 14 patients (9 males, 5 females) age range 3.8-15.6 years who were referred for evaluation of premature partial closure of the growth plate or hyaline cartilage abnormality. All patients had one or more 3D fat-suppressed spoiled GRASS sequence from which models were made of normal growth plates. Total projected area was estimated from standardized maximum intensity projection (MIP) views, and volume was computed from the entire model. We also included the total projected area of the distal femur (n=7) or proximal tibia (n=8) in 11 patients (8 males, 3 females, 5-13 years) who had previously been evaluated for bone bridging. The 3D femoral and tibial growth plate anatomy was displayed. Femoral growth plate area varied from 804 mm{sup 2} to 3,463 mm{sup 2}. Femoral physeal cartilage volume varied from 2.1 cm{sup 3} to 12.6 cm{sup 3}. Tibial growth plate area varied from 736 mm{sup 2} to 3,026 mm{sup 2}. Tibial physeal cartilage volume varied from 1.9 cm{sup 3} to 13.2 cm{sup 3}. The growth plate area values appear to increase linearly with increasing age. (orig.)

  15. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    Science.gov (United States)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex

  16. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  17. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the

  18. From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean

    Science.gov (United States)

    Martínez-García, Pedro; Comas, Menchu; Lonergan, Lidia; Watts, Anthony B.

    2017-12-01

    2D seismic reflection data tied to biostratigraphical and log information from wells in the central and southeastern Alboran Sea have allowed us to constrain the spatial and temporal distribution of rifting and inversion. Normal faults, tilted basement blocks, and growth wedges reveal a thinned continental crust that formed in response to NW-SE extension. To the east, a secondary SW-NE trend of extension affects the transitional crust adjacent to the oceanic Algerian Basin. The maximum thickness of syn-rift sediments is 3.5 km, and the oldest recorded deposits are Serravallian. The WNW-ESE Yusuf fault formed a buttress separating and accommodating variable extension between two different tectonic domains: the thinned continental crust of Alboran and the oceanic spreading of the Algerian Basin. Late Tortonian to present-day NW-SE Africa/Eurasia plate convergence drove shortening and reactivation of some of the earlier extensional structures as reverse and strike-slip faults, forming complex, compartmentalised subbasins. Tectonic inversion coexisted with the formation of new faults and folds. Inversion was partial along the Habibas Basin and Al-Idrisi fault, but complete along the Alboran Ridge, where some SW-NE trending faults were perpendicular to the recent NW-SE plate convergence and were reactivated as thrusts. The WNW-ESE Yusuf fault is oblique to the convergence vector, and therefore, reactivation is mainly expressed as transpressional deformation. Volcanic rocks intruded along the Alboran Ridge and Yusuf faults during the latest stages of extension formed rheological anisotropies that localised the later inversion.

  19. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    Science.gov (United States)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western

  20. Modeling and Simulation of Nonlinear Micro-electromechanical Circular Plate

    Directory of Open Access Journals (Sweden)

    Chin-Chia Liu

    2013-09-01

    Full Text Available In the present study, the hybrid differential transformation and finite difference method is applied to analyze the dynamic behavior of the nonlinear micro-electromechanical circular plate actuated by combined DC / AC loading schemes. The analysis takes account of the axial residual stress and hydrostatic pressure acting on micro circular plate upper surface. The dynamic response of the plate as a function of the magnitude of the AC driving voltage is explored. Moreover, the effect of the initial gap height on the pull-in voltage of the plate is systematically explored.