WorldWideScience

Sample records for plate pv systems

  1. Autonomous cascaded PV system

    OpenAIRE

    2011-01-01

    This paper proposes multi-level PV system; three PV generators each coupled to a buck cell. Each PV-generator-buckconverter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal/abnormal conditions is investigated by thoroughly mathematical and simulation work. Peer Reviewed

  2. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switc...

  3. PV system testing and standards

    Science.gov (United States)

    DeBlasio, Richard

    1999-03-01

    The U.S. Department of Energy (DOE) PV Program System Performance and Engineering Project is being conducted by The National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), Southwest Technology Development Institute (SWTDI), and Florida Solar Energy Center (FSEC). It provides PV system, subsystem, and component-level technology-performance characterization testing; test-method development and validation; national and international consensus standards and codes development, test-facility product certification, and laboratory-accreditation program implementation; and information exchange and technical assistance to the PV community. Emphasis is placed on reducing technical and infrastructural barriers to system acceptance, reducing life-cycle cost of systems, providing systems-engineering best practices and guidelines, and leading the national effort in performance and reliability testing, and consensus standards, codes, and certification program development and implementation—thereby ensuring that PV systems meet customers' needs and expectations. A summary of project activities, accomplishments, and future plans is provided and highlighted by an overview of PV system test-procedure and standards development.

  4. Lightning protection of PV systems

    OpenAIRE

    Pons, Enrico; Tommasini, Riccardo

    2013-01-01

    Lightning strikes can affect photovoltaic (PV) generators and their installations, involving also the inverter's electronics. It is therefore necessary to evaluate the risk connected to lightning strikes in order to adopt the correct protective measures for the system. The Standard IEC (EN) 62305-2 reports the procedures for the risk calculation and for the choice of proper lightning protection systems. Usually the technical guidelines suggest protecting with SPDs (surge protective devices) b...

  5. PV large systems project

    Science.gov (United States)

    Leonard, S. L.

    1982-01-01

    Near term photovoltaic central-station markets are analyzed. Cost effectiveness of photovoltaic plants is determined in terms of reduction of oil consumption. The breakeven photovoltaic system cost vs oil-steam power generation is given. The value of photovoltaic power plants in Southern California and in Los Angelos is given in terms of fuel savings and capacity value. The potential value of third party financing, facilitated by Federal and state tax incentives is analyzed.

  6. Analysis of PV/T flat plate water collectors connected in series

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2009-09-15

    Photovoltaic-thermal (PV/T) technology refers to the integration of a PV and a conventional solar thermal collector in a single piece of equipment. In this paper we evaluate the performance of partially covered flat plate water collectors connected in series using theoretical modeling. PV is used to run the DC motor, which circulates the water in a forced mode. Analytical expressions for N collectors connected in series are derived by using basic energy balance equations and computer based thermal models. This paper shows the detailed analysis of thermal energy, exergy and electrical energy yield by varying the number of collectors by considering four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. Annual thermal and electrical energy yield is also evaluated for four different series and parallel combination of collectors for comparison purpose considering New Delhi conditions. This paper also gives the total carbon credit earned by the hybrid PV/T water heater investigated as per norms of Kyoto Protocol for New Delhi climatic conditions. Cost analysis has also been carried out. It is observed that the collectors partially covered by PV module combines the production of hot water and electricity generation and it is beneficial for the users whose primary requirement is hot water production and collectors fully covered by PV is beneficial for the users whose primary requirement is electricity generation. We have also found that if this type of system is installed only in 10% of the total residential houses in Delhi then the total carbon credit earned by PV/T water heaters in terms of thermal energy is USD $144.5 millions per annum and in terms of exergy is USD $14.3 millions per annum, respectively. (author)

  7. 46 CFR 153.355 - PV venting systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false PV venting systems. 153.355 Section 153.355 Shipping... Systems § 153.355 PV venting systems. When Table 1 requires a PV venting system, the cargo tank must have a PV valve in its vent line. The PV valve must be located between the tank and any connection...

  8. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    electric energy demand of the HP to hours where excess PV power is present. The self-consumption of the PV energy affects the overall net present value (NPV). In this paper, a method which maximizes the NPV by finding the cost-optimal combination of PV, HP and BT sizes, is proposed. Results show...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data....... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  9. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  10. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  11. PV system field experience and reliability

    Science.gov (United States)

    Durand, Steven; Rosenthal, Andrew; Thomas, Mike

    1997-02-01

    Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.

  12. PV-powered microirrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, R. W.

    1979-01-01

    Tens of millions of farmers currently subsist on small farms below two hectares in size. The increasing cost of animal irrigation coupled with decreasing farm size and the lack of a utility grid or acceptable alternate power sources is causing interest in the use of solar photovoltaic for these very small (subkilowatt) water pumping systems. The attractive combinations of system components (array, pump, motor, storage, and controls) have been identified and their interactions characterized in order to optimize overall system efficiency. Computer simulations as well as component tests were made of systems utilizing flat plate and low concentration arrays, direct-coupled and electronic impedance matching controls, fixed and incremental (once or twice a day) tracking, dc and ac motors, and positive displacement, centrifugal and verticle turbine pumps. The results of these analyses and tests are presented for Orissa, India and Cairo, Egypt, and include water volume pumped as a function of time of day and year. Finally, a description and operational data is given for the prototype unit that was developed as a result of the previous analyses and tests.

  13. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key parame...

  14. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  15. Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems

    OpenAIRE

    2009-01-01

    This paper applies a dynamical electrical array reconfiguration (EAR) strategy on the photovoltaic (PV) generator of a grid-connected PV system based on a plant-oriented configuration, in order to improve its energy production when the operating conditions of the solar panels are different. The EAR strategy is carried out by inserting a controllable switching matrix between the PV generator and the central inverter, which allows the electrical reconnection of the available PV modules. A...

  16. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  17. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  18. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  19. Updating Interconnection Screens for PV System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  20. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  1. Determination of Parameters of PV Concentrating System With Heliostat

    Science.gov (United States)

    Vardanyan, R.; Norsoyan, A.; Dallakyan, V.

    2010-10-01

    The structure of PV concentrating system with heliostat is analyzed. The mathematical model of system consisting of PV concentrating module and heliostat is developed. With the use of developed mathematical model the optimal parameters of the system are determined. The results of this work can be used during the design of PV concentrating systems with heliostats.

  2. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2008-07-15

    In this paper, an integrated combined system of a photovoltaic (glass-glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February-April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers. (author)

  3. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  4. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  5. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  6. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  7. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  8. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  9. Testing to Support Improvements to PV Components and Systems

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

    2000-07-15

    The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

  10. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  11. Energy requirements and CO2 mitigation potential of PV systems

    NARCIS (Netherlands)

    Alsema, E.A.

    2006-01-01

    In this paper we investigate the energy requirements of PV modules and systems and calculate the Energy Pay-Back Time for two major PV applications. Based on a review of past energy analysis studies we explain the main sources of differences and establish a "best estimate" for key system components.

  12. Solar PV Energy Conversion System and its Configurations

    OpenAIRE

    Ahteshamul Haque

    2016-01-01

    Solar PV based energy conversion system is now used in commercial and residential buildings. Advancements in Power electronics leads the researchers to enhance the use of solar application in various configurations. These configurations may be used to utilize the energy optimally. The main objective of this paper is to present an overview of the various configurations of solar PV energy conversion system

  13. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, A.H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and inc

  14. Codes, standards, and PV power systems. A 1996 status report

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J

    1996-06-01

    As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

  15. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system

    OpenAIRE

    2015-01-01

    Photovoltaic (PV) semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T) panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the...

  16. Analysis of Long-Term Performance of PV Systems

    NARCIS (Netherlands)

    Nordmann, T.; Clavadetscher, L.; van Sark, Wilfried; Green, M.

    2015-01-01

    This report describes the activities, conclusions and continued efforts undertaken in Subtask 1 by the participating countries in IEA-PVPS Task 13. Subtask 1 examines the PV power plant as a system. It collects and studies the data supplied from installed operating PV plants from different countries

  17. Fire hazard and other safety concerns of PV systems

    Science.gov (United States)

    Dhere, Neelkanth G.

    2011-09-01

    Photovoltaic modules are usually considered safe and reliable. But in case of grid-connected PV systems that are becoming very popular, the issue of fire safety of PV modules is becoming increasingly important due to the employed high voltages of 600 V to 1000 V. The two main factors i.e. open circuiting of the bypass diode and ground fault that are responsible for the fire in the PV systems have been discussed in detail along with numerous real life examples. Recommendations are provided for preventing the fire hazards such as having at least class C fire rated PV modules, proper bypass and blocking diodes and interestingly, having an ungrounded PV system.

  18. Three junction holographic micro-scale PV system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.

    2016-09-01

    In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.

  19. PV shading device integrated system in a University Building in Italy

    OpenAIRE

    2004-01-01

    PV Enlargement project PV Enlargement" boldly demonstrates Europe’s commitment for improved energy efficiency and cost-effectiveness of PV systems, enhancing the development of large European PV markets. The project can be subdivided into three major fields of activities: Demonstration (1,218 kWp) of highly cost-effective or very innovative PV technologies in 10 European countries for increasing public awareness about and visibility of PV solar electricity Transfer of PV Technol...

  20. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  1. Solar PV Energy Conversion System and its Configurations

    Directory of Open Access Journals (Sweden)

    Ahteshamul Haque

    2016-02-01

    Full Text Available Solar PV based energy conversion system is now used in commercial and residential buildings. Advancements in Power electronics leads the researchers to enhance the use of solar application in various configurations. These configurations may be used to utilize the energy optimally. The main objective of this paper is to present an overview of the various configurations of solar PV energy conversion system

  2. Monitoring and Analysis of Two Grid Connected PV Systems

    OpenAIRE

    2013-01-01

    International audience; In this paper, two grid connected photovoltaic systems are studied and monitored for fault detection ad predictive reliability. The first PV grid, is at CNRS-PROMES laboratory in Perpignan, built in 2001 with 3 PV arrays named "Shed","Brise soleil","Mur rideau") connected to the grid thanks to many inverter of different power (3 of 4KWC and 2 of 2.5KWC). The second one is at CNRS-LAAS in Toulouse with a power of 100kWc. It is composed of a facade of 36kWc PV array and ...

  3. Performance and Degradation Analysis of Operating PV Systems

    Science.gov (United States)

    Da Silva Freire, Felipe

    The environmental concerns together with the decrease in technology cost lead the solar market to growth rapidly along the last decade. The photovoltaic (PV) systems are one of the solar energy alternatives and the silicon solar cells are currently the most widespread technology. Photovoltaic (PV) modules are considered the most reliable component of a photovoltaic system. The reliability and lifetime depends on the modules energy conversion performance and degradation modes. The analysis of monitoring data give insights about the PV system performance along its service time. The comparison between this data and mathematical models configure a way to predict the futures and new PV installations performance. The goal of this study is to understand the PV systems performance and degradation along its lifetime. A mathematical model was employed to predict the power output of a real, relatively new operating PV system with respect to environmental parameters temperature, irradiance and cloud coverage. The model used is based on one diode ideality factor and takes into account the parasitic series resistance. The results have been compared with the actual PV output data collected for the year 2014 and show good correlation. As the model predicts the system power output assuming the system in new conditions, the deviation in performance of the real data in comparison to the modeling results need to be further investigated for systems in service for longer time. For this propose, the study presents a condensed review of various causes of degradation in silicon PV modules and techniques to observe and investigate these degradation mechanisms. Major effects on output performance exhibit increase in observed ideality factor n2 and recombination current J02 primarily caused by decrease in minority carrier lifetime, shunts and increase in series resistance. The study further, investigates the governing degradation modes on a ten years old PV crystalline silicon module

  4. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  5. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  6. Control Strategies for the DAB Based PV Interface System.

    Science.gov (United States)

    El-Helw, Hadi M; Al-Hasheem, Mohamed; Marei, Mostafa I

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system.

  7. Control Strategies for the DAB Based PV Interface System

    Science.gov (United States)

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  8. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  9. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    Science.gov (United States)

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).

  10. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T. [Cascade Engineering, Grand Rapids, MI (United States)

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  11. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  12. Performance of a 34 kWp grid-connected PV system in Indonesia - A comparison of tropical and European PV systems

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, A.H.M.E.

    2014-01-01

    We analysed a monitored grid-connected PV system of 34 kWp in Indonesia to investigate the performance of PV systems in tropical climates. The PV system has been installed in Jayapura, the capital of the Province of Papua, Indonesia, by the beginning of 2012. Due to the aged gensets and frequent lac

  13. Sizing aspects of a small scale grid connected PV system

    Energy Technology Data Exchange (ETDEWEB)

    Bartha, S.; Teodoreanu, D.I.; Teodoreanu, M.; Negreanu, C. [I.C.P.E.-New Energy Sources Laboratory (NESL), Bucharest (Romania); Farkas, I.; Seres, I. [Szent Istvan University, Goedoelloe (Hungary). Department of Physics and Process Control

    2008-07-01

    Photovoltaics can be used in grid connected mode in two ways: as array installed at the end use site, such as on rooftops, or as utility-scale generating stations. The present paper describes a small-scale grid connected Photovoltaic system. The paper starts with the structure and characterization of the system. The principal technical parameter data are also presented. The used monitoring parameters indicate the principal meteorological data, air temperature and solar radiation data for the location sited at Agigea, at the Black Sea and the produced energy by the PV modules. The present application is made by 1 subsystem with 1200 Wp power and with the panel inclination possibility, using different type of PV modules. The paper presents a simulation model for this system realized with commercial software packages and with a one self made Matlab model that evaluates the energy balance of the PV system. All the simulation and measurements data are presented. (orig.)

  14. Development of white LED based PV lighting systems

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, O.S.; Pant, P.C.; Prasad, G.; Kumar, Rajesh; Bandyopadhyay, Bibek [Solar Energy Centre, Ministry of New and Renewable Energy, Block 14, CGO Complex, Lodhi Road, New Delhi 110003 (India); Kamala Devi, V. [Agency for Non-Conventional Energy and Rural Technology, P.B. No. 1094, Pattom, P.O. Kasavadasapuram, Trivandrum, Kerala 695 004 (India)

    2010-09-15

    A high performance white light emitting diode (WLED) based PV lighting system has been developed under a joint project of SEC and ANERT. The system has been analyzed using the test set-ups developed as a part of advanced lighting laboratory (ALL). The results show that the performance is one of the best among the systems developed in the capacity range. (author)

  15. PV Reconfiguration Systems: a Technical and Economic Study

    Directory of Open Access Journals (Sweden)

    Caruso M.

    2017-03-01

    Full Text Available Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution.

  16. Z - Source Multi Level Inverter Based PV Generation System

    Directory of Open Access Journals (Sweden)

    T. Lakhmi kanth

    2014-09-01

    Full Text Available In this paper a novel technique of Z-Source multilevel Inverter based PV Generation system is implemented and simulated using MATLAB-Simulink simulation software. The Photovoltaic cells are healthier option for converting solar energy into electricity. Due to high capital cost and low efficiency PV cells have not yet been a fully smart choice for electricity users. To enhance the performance of the system, Z-Source multi level inverter can be used in place of conventional Voltage Source Inverter (VSI in Solar Power Generation System. The PV cell model is developed using circuit mathematical equations. The Z-Source multilevel inverter is modeled to realize boosted DC to AC conversion (inversion with low THD. Outcome shows that the energy conversion efficiency of ZSMLI is a lot improved as compared to conventional voltage Source Inverter (VSI. By doing FFT analysis we can know the total THD.

  17. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    Science.gov (United States)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  18. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    OpenAIRE

    Tamer Khatib; Azah Mohamed; K. Sopian

    2012-01-01

    This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV) systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN), optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based mo...

  19. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  20. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    OpenAIRE

    2011-01-01

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system networks/ feeders can be interconnected. The inverter modules in a PV power plant are configured such that the system is represented as a back to back inverter connected multi-line system, called as Interline-PV (I-PV) system. The proposed I-PV system then can be controlled a...

  1. Experimental Study of Enhancing The Performance of PV Panel Integrated with Solar Thermal System

    Directory of Open Access Journals (Sweden)

    K.Jaiganesh

    2013-08-01

    Full Text Available The maximum electricity conversion efficiency of the Solar Photovoltaic panel is 8-18% under the Standard Test Condition (STC temperature of 25°C. The atmospheric temperature of Indian climatic condition is mostly above 30°C - 45°C, it incites 30°C-80°C heat over the panel since black body of the PV panel observe more heat, and this temperature majorly affect the electrical efficiency of thepanel. The newly designed Glass to Glass Photovoltaic Thermal System (G2G-PVTS is a combined Photovoltaic (PV and Flat Plate Solar Water Heating System (FPSWHS. In this technology, the water act as a coolant inside the Copper fins and it absorb the heat of the PV panel and stored in the insulated storage tank by way of natural flow of water. The test result shows that the G2G-PVT electrical efficiencywas 0.7% higher than conventional G2T- PV panel, and in addition that 44.37% of thermal efficiency was also stored. The simultaneous conversion of electrical and thermal energy was obtained by this system with effective space utilization. The overall efficiency of the G2G-PVTS panel was improved.

  2. Recent advances in PV systems technology development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, M.; Grottke, M.; Weiss, I. [WIP Renewable Energies Division, Munich (Germany)

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  3. PV Systems Installed in Marine Vessels: Technologies and Specifications

    Directory of Open Access Journals (Sweden)

    Ioannis Kobougias

    2013-01-01

    Full Text Available Considerations are held about the specificationin whichthe PV plants have to fulfill so that they can be installed on marine vessels. Initially, a brief description of the typical electrical grid of ships is presented, distinguishing the main parts, reporting the typical electrical magnitudes, and choosing the most preferable installation areas. The technical specifications,in whichthe PV plants have to be compatible with, are fully described. They are determined by the special marine environmental conditions, taking into consideration parameters like wind, humidity, shading, corrosion, and limited installation area. The work is carried out with the presentation of the most popular trends in the field of solar cell types and PV system technologies and their ability to keep up with the aforementioned specifications.

  4. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  5. Grid Integration of Large PV Power Systems Using HVDC Link

    Directory of Open Access Journals (Sweden)

    Gamal Sowilam

    2016-09-01

    Full Text Available This paper explores the interconnection of large scale Photo-Voltaic (PV systems to the grid though a High Voltage Direct Current (HVDC link. HVDC link is recently utilized for transmission lines longer than 50 km. It is usually utilized to interconnect two asynchronous grids with the same or different frequencies while avoiding stability disturbances greatly. A suitable Maximum Power Point Tracking (MPPT techniques is employed to control the performance of the integrated PV system. The system of the HVDC link has two 12-pulse converter using thyristor-bridges. The delay and the extinction angles at the rectifier and the inverter units control the flow and the quantity of the transmitted power from the PV system into the grid. Fixed capacitors and filters are used to provide the AC side with the required reactive power and reduce the harmonic contents. For evaluation purposes, different simulation investigations are carried out with a detailed modeling using the MATLAB. These tests corroborate the efficacy of HVDC link for integrating large PV systems to electrical grids.

  6. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  7. System engineering and design of LSC-PV for outdoor lighting applications

    NARCIS (Netherlands)

    Viswanathan, B.; Reinders, A.H.M.E.; De Boer, D.K.G.; Ras, A.; Zahn, H.; Desmet, L.

    2012-01-01

    Solar photovoltaic outdoor lighting applications usually comprise flat plate PV modules mounted on top of a light pole. In our paper instead, it is thought of to design the light pole as a luminescent solar concentrator photovoltaic (LSC-PV) module with solar cell strips and hence reduce costs of

  8. System engineering and design of LSC-PV for outdoor lighting applications

    NARCIS (Netherlands)

    Viswanathan, B.; Reinders, A.H.M.E.; De Boer, D.K.G.; Ras, A.; Zahn, H.; Desmet, L.

    2012-01-01

    Solar photovoltaic outdoor lighting applications usually comprise flat plate PV modules mounted on top of a light pole. In our paper instead, it is thought of to design the light pole as a luminescent solar concentrator photovoltaic (LSC-PV) module with solar cell strips and hence reduce costs of si

  9. Photovoltaic Module Simulink Model for a Stand-alone PV System

    Science.gov (United States)

    Qi, Chen; Ming, Zhu

    Photovoltaic(PV) Module is indispensable of a stand-alone PV system. In this paper, a one-diode equivalent circuit-based versatile simulation model in the form of masked block PV module is proposed. By the model, it is allowed to estimate behavior of PV module with respect changes on irradiance intensity, ambient temperature and parameters of the PV module. In addition, the model is capable of function of Maximum Power Point Tracking (MPPT) which can be used in the dynamic simulation of stand-alone PV systems.

  10. A 2-dimensional heat transfer analysis of a sheet-and-tube flat plate PV/thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, J.; Harrison, S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab

    2008-08-15

    Temperature gradients in photovoltaic/thermal (PV/T) systems can have a significant impact on the reliability and life-span of system components. However, many simple PV/T models do not consider temperature gradients. In this study, a detailed heat transfer model was used to quantify temperature gradients within a PV/T panel in order to predict thermal and electrical performance as a function of fluid and atmospheric temperatures. The PV/T system consisted of a PV laminate bonded to a thermal collector. A glass cover was used as a secondary glazing system. The effect of increasing the thermal resistance between the various layers in the construction was evaluated in order to measure the temperature gradient through the absorber thickness. A 2-D finite difference model of heat flow in the collector was conducted in order to study the magnitude of the temperature gradient. Steady-state heat flow was calculated along the width of the system as well as between the layers. Heat flux was calculated to the centre of each element. Total absorptivity in each layer was determined by adding the absorption of each portion of the spectrum. Heat losses through the top of the collector were estimated using a 1-D analysis. The study showed that current methods of calculating fin efficiency are not valid when temperature gradients are not considered. Future studies will examine the effect of thermal expansion and shear stresses. 9 refs., 8 figs.

  11. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  12. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  13. Modeling and Simulation for Hybrid of PV-Wind system

    Directory of Open Access Journals (Sweden)

    Maged N. F. Nashed

    2015-04-01

    Full Text Available The rising consumption rate of fossil fuels causes a significant pollution impact on the atmosphere, unwanted greenhouse gases has drawn worldwide attention towards renewable energy sources. Moreover, in recent year’s generation of electricity using the different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. This paper focuses on the modeling and analysis of a Standalone Photovoltaic (PV- wind energy hybrid generation system under different conditions using MATLAB. The proposed system consists of two renewable sources i.e. wind and solar energy. Modeling of PV array and wind turbine is explained. The wind subsystem is equipped of an induction generator. In photovoltaic system, the variable DC output voltage is controlled using buck-boost converter for the MPPT. These two systems are combined to operate in parallel and the common bus collects the total energy from the wind and PV systems are uses it to the load and with change the load

  14. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... for PV and battery stand-alone system....

  15. High power/large area PV systems

    Science.gov (United States)

    Wise, Joseph; Baraona, Cosmo

    1987-01-01

    The major photovoltaic power system technology drivers for a wide variety of mission types were ranked. Each technology driver was ranked on a scale of high, medium, or low in terms of importance to each particular mission type. The rankings were then compiled to determine the overall importance of each driver over the entire range of space missions. In each case cost was ranked the highest.

  16. How PV system ownership can impact the market value of residential homes

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jamie L. [Energy Sense Finance, LLC, Punta Gorda, FL (United States)

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  17. Models for a stand-alone PV system

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Hansen, L.H.;

    2001-01-01

    Energy Centre Denmark. The study is carried out at Risø National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PVsystem, namely solar cells, battery, controller, inverter and load. The models for PV module and battery...... that provides a graphical interface for building models as modular block diagrams. Thenon-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements....... The performance of the best linear Blackbox model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risø....

  18. Quantifying system-wide financial costs and benefits of PV in South Africa

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-09-01

    Full Text Available 000 MW from PV) was commissioned and fed energy into the grid. In this study, the electricity-system-wide direct financial costs and benefits in South Africa from the first 1 000 MW of PV that came online in 2014 are quantified. The two effects of PV...

  19. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  20. Rooftop PV system. Final technical progress report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  1. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN, optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based model for metrological prediction uses four meteorological variables, namely, sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods are used for determining the optimal sizing of three types of PV systems, which are standalone PV system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability (LLP technique is used for optimization in which the energy sources capacities are the variables to be optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter size.

  2. Results from measurements on the PV-VENT systems at Lundebjerg[DENMARK

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.

    2001-05-01

    The objective of the PV-VENT project was research, development, and tests in the following areas: 1. Develop and illustrate different ways of architectural integration of solar energy systems with combined PV power production and pre-heating of ventilation air in buildings, 2. Investigate the potential in pre-heating fresh air to the building by cooling the PV-panels with the fresh air and further to determine how much this cooling will increase the electrical performance of the PV-panels, 3. Develop and test air to air heat exchangers with an efficiency of 80% or above, 4. Develop and test fans and ventilation systems with an overall fan power demand of about 35 W, 5. Develop and test a direct coupling of the PV-panels to the fans in order to avoid the losses in an inverter, 6. Develop and test different ventilation systems utilizing the abovementioned features. Three different ways of integrating PV-panels with pre-heating of fresh air to the building have been demonstrated in Lundebjerg: a large PV-gable with amorphous PV-panels, a PV-facade with polycrystalline (c-Si) PV-panels and solar ventilation chimneys with polycrystalline (c-Si) PV-panels. Especially the latter feature, the solar ventilation chimney is a new and interesting concept as it allows for increased PV areas although the orientation of the building is not optimal for utilization of solar energy, as was the case in Lundebjerg. It is believed that the PV-VENT project has added important information and experience to the field of combining PV and ventilation systems. Information and experience that future systems of this type may benefit from. Several of the components from the project are believed to be able to contribute to set the standards for future PV and ventilation systems. Several of the components from the project is today commercial available and are used in ordinary building projects. (BA)

  3. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  4. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  5. Assuring long-term reliability of concentrator PV systems

    Science.gov (United States)

    McConnell, R.; Garboushian, V.; Brown, J.; Crawford, C.; Darban, K.; Dutra, D.; Geer, S.; Ghassemian, V.; Gordon, R.; Kinsey, G.; Stone, K.; Turner, G.

    2009-08-01

    Concentrator PV (CPV) systems have attracted significant interest because these systems incorporate the world's highest efficiency solar cells and they are targeting the lowest cost production of solar electricity for the world's utility markets. Because these systems are just entering solar markets, manufacturers and customers need to assure their reliability for many years of operation. There are three general approaches for assuring CPV reliability: 1) field testing and development over many years leading to improved product designs, 2) testing to internationally accepted qualification standards (especially for new products) and 3) extended reliability tests to identify critical weaknesses in a new component or design. Amonix has been a pioneer in all three of these approaches. Amonix has an internal library of field failure data spanning over 15 years that serves as the basis for its seven generations of CPV systems. An Amonix product served as the test CPV module for the development of the world's first qualification standard completed in March 2001. Amonix staff has served on international standards development committees, such as the International Electrotechnical Commission (IEC), in support of developing CPV standards needed in today's rapidly expanding solar markets. Recently Amonix employed extended reliability test procedures to assure reliability of multijunction solar cell operation in its seventh generation high concentration PV system. This paper will discuss how these three approaches have all contributed to assuring reliability of the Amonix systems.

  6. Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

    2011-02-01

    The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

  7. Weather modeling and forecasting of PV systems operation

    CERN Document Server

    Paulescu, Marius; Gravila, Paul; Badescu, Viorel

    2012-01-01

    In the past decade, there has been a substantial increase of grid-feeding photovoltaic applications, thus raising the importance of solar electricity in the energy mix. This trend is expected to continue and may even increase. Apart from the high initial investment cost, the fluctuating nature of the solar resource raises particular insertion problems in electrical networks. Proper grid managing demands short- and long-time forecasting of solar power plant output. Weather modeling and forecasting of PV systems operation is focused on this issue. Models for predicting the state of the sky, nowc

  8. Optimal Planning Strategy for Large PV/Battery System Based on Long-Term Insolation Forecasting

    Science.gov (United States)

    Yona, Atsushi; Uchida, Kosuke; Senjyu, Tomonobu; Funabashi, Toshihisa

    Photovoltaic (PV) systems are rapidly gaining acceptance as some of the best alternative energy sources. Usually the power output of PV system fluctuates depending on weather conditions. In order to control the fluctuating power output for PV system, it requires control method of energy storage system. This paper proposes an optimization approach to determine the operational planning of power output for PV system with battery energy storage system (BESS). This approach aims to obtain more benefit for electrical power selling and to smooth the fluctuating power output for PV system. The optimization method applies genetic algorithm (GA) considering PV power output forecast error. The forecast error is based on our previous works with the insolation forecasting at one day ahead by using weather reported data, fuzzy theory and neural network(NN). The validity of the proposed method is confirmed by the computer simulations.

  9. Technical monitoring of PV systems in Apeldoorn, Netherlands. September 1997 - September 1999; Technische monitoring van PV-systemen te Apeldoorn. Periode september 1997 - september 1999

    Energy Technology Data Exchange (ETDEWEB)

    Van der Borg, N.J.C.M.; Jansen, M.J. [ECN Zon en Wind, Petten (Netherlands)

    2000-01-01

    Under contract from a Dutch energy distribution company (NUON), ECN is carrying out a monitoring program for a number of PV systems that are installed on houses in the urban area 'Het Woudhuis' in Apeldoorn, Netherlands. It concerns four groups of houses with PV systems which differ from each other in type of PV system or the orientation of the roofs. This document is a report of the technical monitoring concerning one group, comprising of 14 PV systems, during the period from 5 September 1997 to 4 September 1999. The average yield of the PV systems, standardized for a climatological average year for the Netherlands, is 706 kWh/kW{sub p}. An expanded monitoring program was carried out for one of the systems, which has led to detailed information about the incoming radiation, the behaviour of the PV panels and the inverter. 4 refs.

  10. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  11. Regulatory islanding parameters in battery based solar PV for electricity system resiliency

    OpenAIRE

    Alsayyed, Nidal; Zhu, Weihang

    2016-01-01

    Distributed battery based solar power photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can significantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with regulatory parameters in mind and combined with other technologies, such as smart energy storage and auxiliary generation. S...

  12. Life cycle assessment study of solar PV systems: An example of a 2.7kW{sub p} distributed solar PV system in Singapore

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, R.; Leong, K.C.; Osman, R.; Ho, H.K. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2006-05-15

    In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7kW{sub p} grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented. (author)

  13. Economic evaluation of a photovoltaic (PV) power generation system with battery; Battery wo heiyoshita taiyoko hatsuden system no keizaiseihyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tomikura, S.; Kaya, Y. [Keio University, Tokyo (Japan)

    1997-01-30

    To improve the correlation characteristics between unstable output of PV system and demand, and to improve its economical value, use of battery was investigated. In this study, at first, solution of constrained optimization problem was derived in the case when the demand and PV output were defined by the continuous function, to obtain the break-even cost of PV system. To investigate the charge from PV in daytime or the charge from base power source at night, peak, middle and base power sources were considered. Finally, break-even cost of the PV system with battery was calculated as a trial using a multiple time zone model having PV and usual three power sources. As a result, the difference ranging from 25000 to 29000 yen in the break-even costs between PV and PV with battery was provided, which was considered to be a pure increase of the value using battery. 10 refs., 7 figs., 1 tab.

  14. Economic evaluation of a photovoltaic (PV) power generation system with battery; Battery wo heiyoshita taiyoko hatsuden system no keizaiseihyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tomikura, S.; Kaya, Y. [Keio University, Tokyo (Japan)

    1997-01-30

    To improve the correlation characteristics between unstable output of PV system and demand, and to improve its economical value, use of battery was investigated. In this study, at first, solution of constrained optimization problem was derived in the case when the demand and PV output were defined by the continuous function, to obtain the break-even cost of PV system. To investigate the charge from PV in daytime or the charge from base power source at night, peak, middle and base power sources were considered. Finally, break-even cost of the PV system with battery was calculated as a trial using a multiple time zone model having PV and usual three power sources. As a result, the difference ranging from 25000 to 29000 yen in the break-even costs between PV and PV with battery was provided, which was considered to be a pure increase of the value using battery. 10 refs., 7 figs., 1 tab.

  15. Firefighter safety for PV systems: Overview of future requirements and protection systems

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Blaabjerg, Frede;

    2013-01-01

    An important and highly discussed safety issue for photovoltaic systems is that, as long as they are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters, independent of the state of the inverter's dc disconnection switch, which poses a risk...... shutdown procedures. This paper gives an overview on the most recent fire - and firefighter safety requirements for PV systems, with focus on system and module shutdown systems. Several solutions are presented, analyzed and compared by considering a number of essential characteristics, including...... for operators during maintenance or fire-fighting. One of the solutions is individual module shutdown by short-circuiting or disconnecting each PV module from the PV string. However, currently no standards have been adopted either for implementing or testing these methods, or doing an evaluation of the module...

  16. Islanding Issues of Grid-connected PV Systems

    Directory of Open Access Journals (Sweden)

    S.Narendiran

    2013-04-01

    Full Text Available ‘Islanding’ is a term, which refers to the situation when the Distributed generator (DG continues to power the consumer-end even when the electrical power from the electric utility is no longerpresent. Islanding phenomenon occurs after the certain part of the utility grid gets disconnected from a large number of inter-connected PVs. It leads to troubles in voltage and frequency control and powerquality issues. Therefore there is a need for appropriate anti-islanding measures for grid-connected PV systems. There are two ways to defeat the islanding phenomenon, by reactor insertion method on utility side and capacitor insertion method on PV side. Some of the Islanding detection methods (IDMs are broadly classifies as Active, Passive and Utility based. Active mode of detection includes impedance measurement, slip mode frequency shift and frequency bias. Passive methods contain over/under voltage and frequency and harmonics detection. Utility-based methods consist of manual disconnection, SCADA, impedance insertion.

  17. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  18. Field analysis of solar PV-based collective systems for rural electrification.

    OpenAIRE

    Díaz, P.; Peña, R.; Muñoz Cano, Javier; Arias, C. A.; Sandoval, D

    2011-01-01

    This article analyses the long-term performance of collective off-grid photovoltaic (PV) systems in rural areas. The use of collective PV systems for the electrification of small medium-size villages in developing countries has increased in the recent years. They are basically set up as stand-alone installations (diesel hybrid or pure PV) with no connection with other electrical grids. Their particular conditions (isolated) and usual installation places (far from commercial/industrial centers...

  19. Upgrade of PV Lab and Implementation of Automatic Measurement System : Photovoltaic Monitoring System

    OpenAIRE

    Qureshi, Yasir Karim

    2012-01-01

    The report is focused on the implementation of a data acquisition system that will be used for measuring different parameters which are needed in solar panel behavior analysis. To accomplish the DAQ system a DAQ board has been designed and implemented. This DAQ board acquires measured climatic parameters that affect the PV module behavior and voltage and current of a PV module. The DAQ board may take measurements of multiple analog and digital signals that come from various sensors including ...

  20. Modeling of PV Systems Based on Inflection Points Technique Considering Reverse Mode

    Directory of Open Access Journals (Sweden)

    Bonie J. Restrepo-Cuestas

    2013-11-01

    Full Text Available This paper proposes a methodology for photovoltaic (PV systems modeling, considering their behavior in both direct and reverse operating mode and considering mismatching conditions. The proposed methodology is based on the inflection points technique with a linear approximation to model the bypass diode and a simplified PV model. The proposed mathematical model allows to evaluate the energetic performance of a PV system, exhibiting short simulation times in large PV systems. In addition, this methodology allows to estimate the condition of the modules affected by the partial shading since it is possible to know the power dissipated due to its operation at the second quadrant.

  1. Development and implementation of a PV performance monitoring system based on inverter measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Gavriluta, Anamaria Florina; Sera, Dezso

    2016-01-01

    applications the cost of the performance monitoring hardware and implementation is still high. Therefore, we present the practical development and implementation of a low-cost PV performance monitoring system for residential and commercial PV applications, based on the inverter’s own monitoring......Performance monitoring and fault detection systems are becoming more common in large photovoltaic (PV) plants as they can contribute to decreasing operation and maintenance costs, as well as for maximizing plant yield and lifetime. However, in case of residential and smaller commercial PV system...

  2. Methods and Strategies for Overvoltage Prevention in Low Voltage Distribution Systems with PV

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    , the overvoltage caused by high PV penetration is described, solutions to facilitate higher PV penetration are classified, and their effectiveness, advantages, and disadvantages are illustrated. The investigated solutions include the grid reinforcement, electrical energy storage application, reactive power......The rapid development of photovoltaic (PV) systems in electrical grids brings new challenges in the control and operation of power systems. A considerable share of already installed PV units are small-scale units, usually connected to low voltage (LV) distribution systems that were not designed...... to handle a high share of PV power. This paper provides an in-depth review of methods and strategies proposed to prevent overvoltage in LV grids with PV, and discusses the effectiveness, advantages, and disadvantages of them in detail. Based on the mathematical framework presented in the paper...

  3. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System

    DEFF Research Database (Denmark)

    Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N.

    2015-01-01

    PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP...

  4. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo;

    2015-01-01

    Integration in the power system has become a limiting factor to the further development of photovoltaics. Proper quantification is needed to evaluate both issues and solutions; the share of annual electricity demand is widely used but we found that some of the metrics which are related to power...... rather than energy better reflect the impact on networks. Barriers to wider deployment of PV into power grids can be split between local technical issues (voltage levels, harmonics distortion, reverse power flows and transformer loading) and system-wide issues (intermittency, reduction of system...... networks. Forecasting, storage, and combination with other renewable sources are interdependent solutions to solve the intermittency issue. Finally, we found that PV is also an opportunity to reduce some investment required to upgrade existing power networks. Through integration with micro-grids and hybrid...

  5. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo;

    2015-01-01

    rather than energy better reflect the impact on networks. Barriers to wider deployment of PV into power grids can be split between local technical issues (voltage levels, harmonics distortion, reverse power flows and transformer loading) and system-wide issues (intermittency, reduction of system......Integration in the power system has become a limiting factor to the further development of photovoltaics. Proper quantification is needed to evaluate both issues and solutions; the share of annual electricity demand is widely used but we found that some of the metrics which are related to power...... networks. Forecasting, storage, and combination with other renewable sources are interdependent solutions to solve the intermittency issue. Finally, we found that PV is also an opportunity to reduce some investment required to upgrade existing power networks. Through integration with micro-grids and hybrid...

  6. Sensor System for Long-term Recording of Photovoltaic (PV) IV-curves

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    The purpose of this paper is to present a recording system for long-term investigation of PV panel dynamics under partial shading conditions. The system is intended to be a low-cost system deployable for stand-alone field use and long-term data recording at PV-plants. Passing clouds will affect...

  7. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  8. Performance monitoring of different module technologies and design configurations of PV system in South Africa

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2016-06-01

    Full Text Available Performance monitoring of different module technologies and system configurations of Photovoltaic (PV) systems in South Africa is rare, resulting in-few reports based on field results of PV systems installed and operated in South Africa. The goal...

  9. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  10. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  11. Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC Buck and Boost Converter

    OpenAIRE

    2014-01-01

    The two basic topologies of switch mode DC-DC converters (Buck and Boost) are analyzed with a view of their use in PV (photovoltaic) systems, as the photovoltaic generator exhibits non-linear characteristics due to the change in environmental condition and load variation. As the efficiency of PV panels is low it becomes mandatory to extract maximum power from the PV panel at a given period of time. Several MPPT algorithms with different types of converters are being proposed f...

  12. A control system for improved battery utilization in a PV-powered peak-shaving system

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  13. Modified Multilevel Inverter Topology for Grid Connected Pv Systems

    Directory of Open Access Journals (Sweden)

    Dhivya Balakrishnan

    2013-10-01

    Full Text Available Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity, requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven- level inverter for grid connected PV systems, with a novel pulse width-modulated (PWM control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the Asymmetric Cascade configuration.

  14. Solution to avoid unwanted trips for PV systems connected to LV network facing voltage sags

    Energy Technology Data Exchange (ETDEWEB)

    Le Thi Minh, Chau; Tran-Quoc, Tuan; Kieny, Christophe [IDEA, Saint-Martin-d' Heres (France); Bacha, Seddik [Grenoble Electric Engineering Laboratory, Saint-Martin-d' Heres (France); Cabanac, Philippe; Grenard, Sebastien [Electricite de France, Clamart (France). Direction des Etudes et Recherches; Goulielmakis, David [Schneider Electric, Grenoble (France). Projects and Engineering Center

    2011-07-01

    Most of photovoltaic (PV) systems connected to low voltage (LV) distribution networks have a single-phase connection. The analysis of the behavior of these single-phase connection. The analysis of the behavior of these single-phase PV inverters facing voltage sags caused by short circuits is of major concern. These behaviors depend on fault types, fault location, types of grid architecture, grid protection systems (with or without auto-recloser system) and PV protection types. Therefore, the first investigation of this work is to study comprehensively the behaviors of PV systems connected to real LV networks facing voltage sags in different scenarios by taking into account the real network protection. Furthermore, future power systems with a large share of PV systems connected could be severely affected if several of the PV systems are tripping at the same instant. From these results of simulation, unwanted trip cases, due to the disconnection protection of PV systems are identified. Finally, a simple efficient solution by using the voltage-time characteristic for PV system is proposed. The validation by simulations shows the efficiency of the proposed solution. (orig.)

  15. Fire risk related to the use of PV systems in building facades

    Directory of Open Access Journals (Sweden)

    Mazziotti Lamberto

    2016-01-01

    Full Text Available Nowadays the use of photovoltaic (PV systems in buildings is not only related to the solar energy conversion into electrical one, but these PV modules or panels could also be used with aesthetic features or, even more, as thermal protection systems in building facades. Thanks to the technical development of the photovoltaic industry, PV system can easily be architectonically integrated into building construction elements such as roofs, vertical façade components, both with opaque or transparent surfaces. Furthermore, PV construction facades elements could also be provided by openings like doors or windows. Accident analysis show that the use of PV systems as construction elements could increase the risk of fire in buildings. In fact, international and National data report a growing number of fire caused by PV system applied or integrated in buildings. The Italian National Fire Service, that is the Authority having jurisdiction for fire safety in buildings (in Italy, in 2012 has released a Guideline in order to asses and mitigate the risk of fire when a PV system is put in place on a building as a façade or as a roof. The Guideline addresses not only the reduction of the PV fire ignitions causes and the aspects related to the fire spread due to the combustible parts that constitute PV modules or panels, but also take into account the safety of both the maintenance personnel and the rescue teams. This paper focuses on the fire safety aspects related to the use of fire PV panels and systems in building facades, showing some interesting experimental data related to the fire behaviour of these components and underlining the factors that promote the spread of fire, like the high operating temperature of the PV system itself.

  16. Solar Eclipse: The rise and "dusk" of the Dutch PV Innovation System

    NARCIS (Netherlands)

    Negro, S.O.; Vasseur, V.; Sark, W.G.J.H.M. van; Hekkert, M.P.

    2012-01-01

    In this paper, we take the theoretical perspective of innovation system dynamics and apply this to Photovoltaic (PV) solar energy technology in the Netherlands. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build-up

  17. Distributed measurement system for long term monitoring of clouding effects on large PV plants

    DEFF Research Database (Denmark)

    Paasch, K. M.; Nymand, M.; Haase, F.

    2013-01-01

    A recording system for the generation of current-voltage characteristics of solar panels is presented. The system is intended for large area PV power plants. The recorded curves are used to optimize the energy output of PV power plants, which are likely to be influenced by passing clouds...

  18. Design and Operation Studies of A Stand-Alone PV Generation System

    DEFF Research Database (Denmark)

    Hu, Yanting; Chen, Zhe; Zhang, Donglai

    2013-01-01

    This paper discusses the modeling, design and operation of a PV powered stand-alone system, which includes a PV array, a battery bank, power electronic converters and the associated control system. The design considerations are analyzed and a design platform is presented. Furthermore the operatio...

  19. Distributed measurement system for long term monitoring of clouding effects on large PV plants

    DEFF Research Database (Denmark)

    Paasch, K. M.; Nymand, M.; Haase, F.

    2013-01-01

    A recording system for the generation of current-voltage characteristics of solar panels is presented. The system is intended for large area PV power plants. The recorded curves are used to optimize the energy output of PV power plants, which are likely to be influenced by passing clouds...

  20. Physical Effects of Distributed PV Generation on California's Distribution System

    CERN Document Server

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  1. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  2. Optimal Sizing and Design of Stand-Alone PV System Supplying Gas Well in Delta Egypt

    Directory of Open Access Journals (Sweden)

    Emad Ahmed Sweelem

    2015-01-01

    Full Text Available This paper presents a design for a standalone photovoltaic (PV system to provide the required electricity for a gas well located in Delta Egypt. The complete design steps for the proposed gas well loads are carried out. Site radiation data and the electrical load data of a typical gas well in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability. Simulations results showed that a value of loss of load probability LLP = 0 can be met by several combinations of PV array and battery storage. This paper describes the design steps in stand alone photovoltaic system that include sizing of PV modules, battery storages and charge controller.

  3. Establishment of key grid-connected performance index system for integrated PV-ES system

    Science.gov (United States)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  4. An Optimized Combination of a Large Grid Connected PV System along with Battery Cells and a Diesel Generator

    OpenAIRE

    2016-01-01

    Environmental, economical and technical benefits of photovoltaic (PV) systems make them to be used in many countries. The main characteristic of PV systems is the fluctuations of their output power. Hence, high penetration of PV systems into electric network could be detrimental to overall system performance. Furthermore, the fluctuations in the output power of PV systems make it difficult to predict their output, and to consider them in generation planning of the units. The main objective of...

  5. Power Electronic System for Multi-MW PV sites

    DEFF Research Database (Denmark)

    Paasch, Kasper

    The work presented in this thesis addresses the optimization potential of large PV power plants with respect to energy production during periods of moving clouds. Presently the number and size of utility scale Photo Voltaic (PV) power plants in the megawatt range is increasing and the market...... of energy is in the range ... for field use, is battery operated and has been applied for the characterization of a solar panel over a period of 6 months at the ESTER Outdoor PV monitoring station in Rome, Italy....

  6. Design of a Solar Tracker System for PV Power Plants

    Directory of Open Access Journals (Sweden)

    Tiberiu Tudorache

    2010-04-01

    Full Text Available This paper deals with the design and execution of a solar tracker systemdedicated to the PV conversion panels. The proposed single axis solar tracker deviceensures the optimization of the conversion of solar energy into electricity by properlyorienting the PV panel in accordance with the real position of the sun. The operation of theexperimental model of the device is based on a DC motor intelligently controlled by adedicated drive unit that moves a mini PV panel according to the signals received from twosimple but efficient light sensors. The performance and characteristics of the solar trackerare experimentally analyzed.

  7. Design of Energy Storage Control Strategy to Improve the PV System Power Quality

    DEFF Research Database (Denmark)

    Lei, Mingyu; Yang, Zilong; Wang, Yibo

    2016-01-01

    Random fluctuation of PV power is becoming a more and more serious problem affecting the power quality and stability of grid as the PV penetration keeps increasing recent years. Aiming at this problem, this paper proposed a control strategy of energy storage system based on Model Predictive Control...

  8. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  9. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    CERN Document Server

    Bjørk, R

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  10. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Ocampo, B. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Ruiz-Vasquez, E.; Canseco-Sanchez, H. [Instituto Tecnologico de Oaxaca, Oaxaca 68030, Oaxaca (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Cornejo-Meza, R.C. [Instituto Tecnologico de Tepic, av. Tecnologico 2595, Tepic 63175, Nayarit (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Trapaga-Martinez, G.; Vorobiev, Y.V. [CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Garcia-Rodriguez, F.J. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chihuahua (Mexico)

    2007-12-14

    Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%. (author)

  11. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.......The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...

  12. Practical automatic Arabic license plate recognition system

    Science.gov (United States)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  13. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  14. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... to achieve the power reserve. In this method, the solar irradiance and temperature measurements that have been used in conventional power reserve control schemes to estimate the available PV power are not required, and thereby being a sensorless approach with reduced cost. Experimental tests have been...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...

  15. Validation of PV-RPM Code in the System Advisor Model.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whether the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.

  16. Advanced Analysis of Grid-connected PV System's Performance and Effect of Battery

    Science.gov (United States)

    Ueda, Yuzuru; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Akanuma, Katsumi; Yokota, Masaharu; Sugihara, Hiroyuki; Morimoto, Atsushi

    An advanced analysis method for grid connected PV systems is developed in this research. To investigate the issues which may happen in the clustered PV systems, “Demonstrative research on clustered PV systems" is being conducted from December, 2002, in Oota, Japan. More than 500 residential PV systems will be installed in the demonstrative research area, battery integrated PV systems are developed to avoid the restriction of output power due to the raising of grid voltage. Annual performance of commercial PV systems without battery is analyzed and resulted in around 80% of performance ratio on the average. Over voltage of power distribution line and snow are two major factors of very low performance ratio on daily basis. Effects of batteries are also analyzed, the results indicate that there will be some improvement for the energy loss due to the grid voltage but PCS's efficiency will be around 8% worse than that of the commercial PV systems. It is also found that the non-optimized operation of battery sometimes results in the fully-charged situation during the noontime and maximum reverse power flow may not be minimized in this situation.

  17. Experimental Performance Investigation of Photovoltaic/Thermal (PV-T) System

    Science.gov (United States)

    Ozgoren, M.; Aksoy, M. H.; Bakir, C.; Dogan, S.

    2013-04-01

    Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV-Thermal) collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  18. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  19. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  20. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  1. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all...... for a cost/benefit analysis since the forecasting error can be linked to the prices charged for energy imbalance...

  2. Modeling and Testing of a PV/T hybrid system with Water based Optical Filter

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    2015-12-01

    Full Text Available A theoretical model has been developed for the Non-imaging V-trough hybrid PV/T concentrator systems along with optical filter and validated with the designed and fabricated system to assess over all thermal efficiency of the PV/T system. A V-trough concentrator system has been developed for two axes tracking. Commercially available solar modules were evaluated for their usability under 2-sun concentration. V-trough concentrator with geometric concentration ratio of 2 (2-sun, we are getting an average overall efficiency of the PV/T system increased by 23.54 % extra overall thermal efficiency of the PV/T system as compared to the solar module efficiency at standard test conditions.

  3. Investigation into the causes of browning in EVA encapsulated flat plate PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Holley, W.H. Jr.; Agro, S.C.; Galica, J.P.; Thoma, L.A.; Yorgensen, R.S. [Springborn Labs., Inc., Enfield, CT (United States); Ezrin, M.; Klemchuk, P.; Lavigne, G. [Univ. of Connecticut, Storrs, CT (United States). Inst of Materials Science; Thomas, H. [National Renewable Energy Lab., Golden, CO (United States)

    1994-12-31

    The problem of browning in a number of EVA encapsulated flat plate photovoltaic modules has led to the questioning of EVA as a suitable material for such applications. By isolating the variables that could possibly lead to EVA browning, such as module construction, types of glass superstrates, additives, and processing conditions, the authors have been able to determine those significant specific variables that seem to have the most influence on discoloration.When standard-cure EVA-based laminates were exposed to accelerated UV aging, measurable yellowing of those laminates was evident after only one to two weeks exposure, and visual discoloration was observed after four to six weeks. Some samples yellowed quickly and some not at all, and there were significant differences in the rates of discoloration between standard-cure and fast-cure EVA. This paper looks at the results of these studies, especially focusing on the effect of additives in the EVA on the rate of yellowing, and discusses how preliminary results can be used to reformulate EVA encapsulants.

  4. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  5. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  6. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  7. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Science.gov (United States)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  8. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform –...... for a cost/benefit analysis since the forecasting error can be linked to the prices charged for energy imbalance......Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all...

  9. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2012-12-01

    Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  10. Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency

    Directory of Open Access Journals (Sweden)

    B. Pakkiraiah

    2016-01-01

    Full Text Available Nowadays in order to meet the increase in power demands and to reduce the global warming, renewable energy sources based system is used. Out of the various renewable energy sources, solar energy is the main alternative. But, compared to other sources, the solar panel system converts only 30–40% of solar irradiation into electrical energy. In order to get maximum output from a PV panel system, an extensive research has been underway for long time so as to access the performance of PV system and to investigate the various issues related to the use of solar PV system effectively. This paper therefore presents different types of PV panel systems, maximum power point tracking control algorithms, power electronic converters usage with control aspects, various controllers, filters to reduce harmonic content, and usage of battery system for PV system. Attempts have been made to highlight the current and future issues involved in the development of PV system with improved performance. A list of 185 research publications on this is appended for reference.

  11. Development and implementation of a PV performance monitoring system based on inverter measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Gavriluta, Anamaria Florina; Maaløe, Lars

    2016-01-01

    currently the cost of the performance monitoring hardware and implementation is high. Therefore, we present the practical development and implementation of a PV performance monitoring system for residential and commercial PV applications, where the cost of the monitoring hardware is lowered, by using......Performance monitoring and fault detection systems have become necessary for decreasing operation and maintenance cost in large photovoltaic (PV) plants, as well for maximizing plan yield and lifetime. We expect a similar development for residential and commercial PV system applications, where...... the inverter’s own monitoring and communication capabilities. We also aim to lower the implementation cost, by using a simple, but accurate performance monitoring approach, and show the practical issues that can arise when implementing such a system....

  12. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    Energy Technology Data Exchange (ETDEWEB)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2009-03-15

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  13. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  14. Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, D.

    2008-04-01

    Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

  15. Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis

    OpenAIRE

    Xiaodan Guo; Dongxiao Niu; Bowen Xiao

    2016-01-01

    Recently, China has brought out several air-pollution control policies, which indicate the prominent position that PV power hold in improving atmosphere environment. Under this policy environment, the development of China’s PV power will be greatly affected. Firstly, after analyzing the influencing path of air-pollution control policies on PV power, this paper built a system dynamics model, which can be used as a platform for predicting China’s PV power development in every policy scenario du...

  16. Research Status and Solution for Photovoltaic/thermal (PV/T) Solar System%光伏/热(PV/T)太阳能系统的研究现状及解决方案

    Institute of Scientific and Technical Information of China (English)

    何永泰; 肖丽仙; 刘晋豪; 李雷

    2014-01-01

    The research status of the photovoltaic/thermal ( PV/T) solar system is introduced in the paper. The cause of poor practicability for the PV/T solar system is analyzed. In order to improver the practicability of the PV/T solar system, the solutions ( integrated condenser in PV/T solar system, opti-mized the structure of PV/T collector, balance of the conversion efficiency and the operation temperature, perfection evaluation method) are proposed based on the structure and theory of the PV/T collector.%本文介绍了PV/T太阳能系统的研究现状,分析了导致PV/T太阳能系统实用性差的原因。根据PV/T太阳能系统的结构特点及其相关理论,提出聚光技术与PV/T太阳能系统集成、 PV/T集热器结构优化、 PV/T太阳能系统转换效率与工作温度之间的平衡及完善PV/T太阳能特性评价体系的解决方案。实验证明方案有利于提高PV/T太阳能系统的实用性。

  17. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Directory of Open Access Journals (Sweden)

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  18. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  19. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    Science.gov (United States)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  20. Highlight of Grid-connected PV systems in administrative buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available Solar energy applications are becoming increasingly common in Egypt. The abundant sunshine in Egypt, as well as the increasing competitiveness of solar energy systems including- but not limited to photovoltaic (PV, – predicts that these technologies could be weighed to be raised in Egypt.PV systems are installed on roof tiles or other parts of building structures to supplement grid utility, reduce electric bills, and provide emergency back–up energy. Moreover, they simultaneously reduce significant amounts of CO2 emissions. It is foreseen, a number of residential and public buildings in Egypt are using solar power to cut electric utility bills significantly. The approximately payback period to recover the investment costs for PV systems is up to about 5 years.  In addition, it is more economical to use PV system than grid utility systems. The two components that determine the total initial price of a grid- connected PV system are the modules and the balance of systems (BOS. The BOS includes different components such as mounting frames, inverters and site- specific installation hardware.The Government of Egypt (GOE has endorsed the deployment of PV systems through three approaches. It started with a prime minister decree to install PV projects on one-thousand of the governmental buildings. This was followed by as an initiative called "Shamsk ya Masr", and finally the Feed-in Tariff (FiT projects.Following the prime minster decree the Egyptian Electricity Holding Company (EEHC and its affiliated companies took the lead to install PV systems at the top roof of their administrative buildings and interconnect these systems to the electricity network where the suitable locations have been selected for mounting them. About 90 PV systems have been already mounted with about a capacity of 9 MW. On the other hand, "Shamsk ya Masr" has considered energy efficiency (EE so as to complement the PV systems, which will be installed on administrative

  1. Identification and molecular characterization of twin-arginine translocation system (Tat) in Xanthomonas oryzae pv. oryzae strain PXO99.

    Science.gov (United States)

    Chen, Lei; Hu, Baishi; Qian, Guoliang; Wang, Chen; Yang, Wanfeng; Han, Zhicheng; Liu, Fengquan

    2009-02-01

    Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen's virulence.

  2. A Modular PV System Using Chain-Link-Type Multilevel Converter

    Science.gov (United States)

    Hatano, Nobuhiko; Ise, Toshifumi

    This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.

  3. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  4. Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; He, Ran; Jian, Jiamin

    2016-01-01

    Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanis...... the different modulation methods are implemented and tested on the TMS320F28335 DSP +XC3S400 FPGA digital control platform. The experimental results verify the effectiveness of the proposed solution....

  5. Comparative Study of on and off Grid Tied Integrated Diesel/Solar (PV) Battery Generation System

    OpenAIRE

    Okedu, Kenneth; Uhunmwangho, Roland; Bassey, Ngang

    2015-01-01

    This paper presents a proposed hybrid system based on diesel generator and solar photovoltaic (PV) as an effective option to power a small remote community. The cost of running diesel generator speedily due to erratic power supply in a small remote community that is not grid connected is highly expensive and not environmentally friendly. A solar PV was used to reduce or augment the continuous diesel generator sets, resulting in reduced cost of operation and maintenance. A proper solar radiati...

  6. Grid-Connected Pv-Fc Hybrid System Power Control Using Mppt And Boost Converter

    Directory of Open Access Journals (Sweden)

    P.HARIKA

    2014-09-01

    Full Text Available This paper proposes a method for operating a grid connected hybrid system. This system composed of a Photovoltaic (PV array and a Proton exchange membrane fuel cell (PEMFC is considered. As the variations occur in temperature and irradiation during power delivery to load, Photo voltaic (PV system becomes uncontrollable. In coordination with PEMFC, the hybrid system output power becomes controllable. Two operation modes are the unit-power control (UPC mode and the feeder-flow control (FFC mode, can be applied to the hybrid system. All MPPT methods follow the same goal that is maximizing the PV system output power by tracking the maximum power on every operating condition. Maximum power point tracking technique (Incremental conductance for photovoltaic systems was introduced to maximize the produced energy. The coordination of two control modes, coordination of the PV array and the PEMFC in the hybrid system, and determination of reference parameters are presented. The proposed operating strategy systems with a flexible operation mode change always operate the PV array at maximum output power and the PEMFC in its high efficiency performance band. Also thus improving the performance of system operation, enhancing system stability, and reducing the number of operating mode changes.

  7. The Gwaii Haanas PV hybrid system : analysis of system operation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [GPCo Inc., Varennes, PQ (Canada); Turcotte, D.; Sheriff, F. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2003-05-01

    The operation of the photovoltaic/battery/genset hybrid power system at the Gwaii Haanas National Park Reserve warden station in British Columbia has been monitored since July 2001 as part of the Canada Centre for Mineral and Energy Technology (CANMET) Energy Technology Centre-Varennes Photovoltaic Hybrid Power Systems Program. The data collected has been used to validate hybrid system simulation tools being developed under the sponsorship of the Program. The analyzed data, along with the simulation tools, provided insight into the operation of the Gwaii Haanas power system. It also assisted in identifying the strengths and weaknesses of the system. Data indicates that the system functions well and is appropriately dimensioned and configured. The modules are arranged in two sub-arrays, with modules connected in parallel, showing remarkable tolerance to shading of part of the array. Almost complete discharge of the batteries occurs during the winter, when the Park residence is unoccupied. During the summer, users should keep track of the battery state-of-charge. Some recommendations were made to prolong the battery life. 1 ref., 1 tab., 16 figs.

  8. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  9. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    Energy Technology Data Exchange (ETDEWEB)

    da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained

  10. Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC Buck and Boost Converter

    Directory of Open Access Journals (Sweden)

    Dhananjay Choudhary

    2014-08-01

    Full Text Available The two basic topologies of switch mode DC-DC converters (Buck and Boost are analyzed with a view of their use in PV (photovoltaic systems, as the photovoltaic generator exhibits non-linear characteristics due to the change in environmental condition and load variation. As the efficiency of PV panels is low it becomes mandatory to extract maximum power from the PV panel at a given period of time. Several MPPT algorithms with different types of converters are being proposed for extracting maximum power from the PV panel. It is found that the nature of load plays an important role in the choice of topology. This paper investigates the implementation issues of Incremental Conductance method with Buck and Boost Converters. Mathematical analysis and desirable steady-state operating point of the converters are derived to give satisfactory maximum power point tracking operation.

  11. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Drews, A.; Lorenz, E.; Betcke, J.; Heinemann, D. [Oldenburg University, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); de Keizer, A.C.; van Sark, W.G.J.H.M. [University of Utrecht, Copernicus Institute, Department of Science, Technology, and Society, Heidelberglaan 2, 3584 CH Utrecht (Netherlands); Beyer, H.G. [University of Applied Sciences Magdeburg-Stendal (FH), Institute of Electrical Engineering, Breitscheidstr. 2, 39114 Magdeburg (Germany); Heydenreich, W.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Stettler, S.; Toggweiler, P. [Enecolo AG, Lindhofstr. 52, 8617 Moenchaltorf (Switzerland); Bofinger, S.; Schneider, M.; Heilscher, G. [Meteocontrol GmbH, Spicherer Strasse 48, 86157 Augsburg (Germany)

    2007-04-15

    Small grid-connected photovoltaic systems up to 5 kW{sub p} are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be difficult to detect by PV laymen due to the fluctuating energy yields. Within the EU project PVSAT-2, a fully automated performance check has been developed to assure maximum energy yields and to optimize system maintenance for small grid-connected PV systems. The aim is the early detection of system malfunctions and changing operating conditions to prevent energy and subsequent financial losses for the operator. The developed procedure is based on satellite-derived solar irradiance information that replaces on-site measurements. In conjunction with a simulation model the expected energy yield of a PV system is calculated. In case of the occurrence of a defined difference between the simulated and actual energy yield, an automated failure detection routine searches for the most probable failure sources and notifies the operator. This paper describes the individual components of the developed procedure - the satellite-derived irradiance, the used PV simulation model, and the principles of the automated failure detection routine. Moreover, it presents results of an 8-months test phase with 100 PV systems in three European countries. (author)

  12. EXPERIMENTAL STUDY ON A CPC CONCENTRATING SOLAR PV/T SYSTEM%复合抛物面聚光太阳能PV/T系统的实验研究

    Institute of Scientific and Technical Information of China (English)

    孙健; 王艳香; 施明恒

    2012-01-01

    A concentration solar PV/T experimental system was designed and set up, it' s electric-thermal perform-ance was measured at different conditions. Experimental results showed that the temperature of the various compo-nents of the system increase with the increasing of the solar radiation intensity, and decrease with the increasing of the air inlet velocity of the back channel. The power output of concentrating system is higher than the non-concen-trating system. The maximum power output for the concentrating PV/T system is 60W, is 20W higher compared to a similar non-concentrating photovoltaic panel with the same cell area. The electrical efficiency of the concentrating PV/T system increase with increasing the solar radiation intensity. The maximum electrical efficiency for the con-centrating system is 11% ,and the highest thermal efficiency is 70% ,and the maximum exergy efficiency is 16%. The maximum exergy efficiency for the concentrating system is 5% higher than non-concentrating system. Thus the thermal and electrical performance of the concentrating PV/T air system is better than the performance of the plate system. The experimental study obtained valuable information regarding the design and operation of such types of concentrating PV/T system.%设计并搭建了CPC低倍聚光太阳能PV/T单通道空气系统实验台,对不同工作环境下聚光PV/T系统的热电性能进行了实验研究.实验研究结果显示:在聚光条件下,系统的各表面温度随光照强度的增加而升高,随下部通道入口空气流速的增加而降低.聚光PV/T系统的最大输出功率可达到60W,比对应相同电池面积平板系统最大输出功率高20W.聚光PV/T系统的各效率随光照强度增加而增大,系统的最大电效率为11%,最大热效率为70%,最大炯效率为16%,比单纯发电时最大(火用)效率提高约5%.实验获得了一批新的有价值的实验数据,为聚光太阳能光伏光热系统的进一步研究提供了依据.

  13. Automatic Supervision And Fault Detection In PV System By Wireless Sensors With Interfacing By Labview Program

    Directory of Open Access Journals (Sweden)

    Yousra M Abbas

    2015-08-01

    Full Text Available In this work a wireless monitoring system are designed for automatic detection localization fault in photovoltaic system. In order to avoid the use of modeling and simulation of the PV system we detected the fault by monitoring the output of each individual photovoltaic panel connected in the system by Arduino and transmit this data wirelessly to laptop then interface it by LabVIEW program which made comparison between this data and the measured data taking from reference module at the same condition. The proposed method is very simple but effective detecting and diagnosing the main faults of a PV system and was experimentally validated and has demonstrated its effectiveness in the detection and diagnosing of main faults present in the DC side of PV system.

  14. Performance Analysis of Hybrid PV/Diesel Energy System in Western Region of Saudi Arabia

    OpenAIRE

    Makbul A. M. Ramli; Ayong Hiendro; H. R. E. H. Bouchekara

    2014-01-01

    The potential implementation of hybrid photovoltaic (PV)/diesel energy system in western region of Saudi Arabia is analyzed in this paper. The solar radiation intensity considered in this study is in the range of 4.15–7.17 kWh/m2/day. The HOMER software is used to perform the technical and economical analysis of the system. Three different system configurations, namely, stand-alone diesel system, and hybrid PV/diesel system with and without battery storage element, will be evaluated and discu...

  15. Performance Analysis of Hybrid PV/Diesel Energy System in Western Region of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Makbul A. M. Ramli

    2014-01-01

    Full Text Available The potential implementation of hybrid photovoltaic (PV/diesel energy system in western region of Saudi Arabia is analyzed in this paper. The solar radiation intensity considered in this study is in the range of 4.15–7.17 kWh/m2/day. The HOMER software is used to perform the technical and economical analysis of the system. Three different system configurations, namely, stand-alone diesel system, and hybrid PV/diesel system with and without battery storage element, will be evaluated and discussed. The analysis will be addressed to the impact of PV penetration and battery storage on energy production, cost of energy, number of operational hours of diesel generators, fuel savings, and reduction of carbon emission for the given configurations. The simulation results indicate that the energy cost of the hybrid PV/diesel/battery system with 15% PV penetration, battery storage of 186.96 MWh, and energy demand of 32,962 MWh/day is $0.117/kWh.

  16. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

    Directory of Open Access Journals (Sweden)

    Malik Sameeullah

    2016-08-01

    Full Text Available The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2, 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-94 

  17. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  18. Power Electronic System for Multi-MW PV sites

    DEFF Research Database (Denmark)

    Paasch, Kasper

    for solar inverters is under a severe pressure regarding cost reduction. The main topic of this thesis is the investigation of the potential advantage of applying string inverters with multiple Maximum-Power-Point-trackers (MPPT) in large PV plants compared to the use of one large central inverter with one.......4%. A portable IV-scanning instrument for the fast long term characterization of solar panels was developed as part of the project. Each second a sweep of the IV-characteristics of a solar panel is performed and the result stored for later analysis. The instrument is based on an active load, is optimized...

  19. Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency

    OpenAIRE

    B. Pakkiraiah; G. Durga Sukumar

    2016-01-01

    Nowadays in order to meet the increase in power demands and to reduce the global warming, renewable energy sources based system is used. Out of the various renewable energy sources, solar energy is the main alternative. But, compared to other sources, the solar panel system converts only 30–40% of solar irradiation into electrical energy. In order to get maximum output from a PV panel system, an extensive research has been underway for long time so as to access the performance of PV system an...

  20. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    predictive control (MPC)-based algorithm for battery management in a hybrid wind/PV/battery system to suppress the short-term power fluctuation on the ‘minute’ scale. A case study with data collected from a practical hybrid system setup is used to demonstrate the effectiveness of the proposed algorithm......A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...... together with a Monte Carlo simulation-based sensitivity analysis. In addition to illustrating the complementarity between the fluctuations of wind power and PV power, the results prove the proposed MPC algorithm is effective in fluctuation suppression but sensitive to factors such as forecast accuracy...

  1. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    Science.gov (United States)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  2. Capacity Value of PV and Wind Generation in the NV Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  3. PV led engine characterization lab for standalone light to light systems

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Lindén, Johannes

    2014-01-01

    PV-powered lighting systems, light-to-light systems (L2L), offer outdoor lighting where it is else where cumbersome to enable lighting. Application of these systems at high latitudes, where the difference in day length between summer and winter is large and the solar energy is low requires smart...

  4. Solar eclipse. The rise and 'dusk' of the Dutch PV innovation system

    Energy Technology Data Exchange (ETDEWEB)

    Negro, S.O.; Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Vasseur, V. [International Centre for Integrated Assessment and Sustainable Development, University Maastricht, P.O. Box 616, 6200 MD Maastricht (Netherlands); Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2012-07-01

    In this paper, we take the theoretical perspective of innovation system dynamics and apply this to Photovoltaic (PV) solar energy technology in the Netherlands. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build-up of innovation systems. We show that large fluctuations are present in the processes related to guidance of the search and market formation. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the implications for policy making.

  5. Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellison, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-01

    This report supplements the document, "Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems," issued in a revised version in April 2016 (see [4]), which will include the photovoltaic (PV) smoothing application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a PV smoothing application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol. ACKNOWLEDGEMENTS The authors gratefully acknowledge the support of Dr. Imre Gyuk, program manager for the DOE Energy Storage Systems Program. The authors would also like to express their appreciation to all the stakeholders who participated as members of the PV Smoothing Subgroup. Without their thoughtful input and recommendations, the definitions, metrics, and duty cycle provided in this report would not have been possible. A complete listing of members of the PV Smoothing Subgroup appears in the first chapter of this report. Special recognition should go to the staffs at Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL) in collaborating on this effort. In particular, Mr. David Conover and Dr. Vish Viswanathan of PNNL and Dr. Summer Ferreira of SNL were especially helpful in their suggestions for the determination of a duty cycle for the PV Smoothing application.

  6. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  7. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  8. Comparison of four MPPT techniques for PV systems

    Science.gov (United States)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  9. Comparison of four MPPT techniques for PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T. [University of science and technology of Oran, USTO, LDDE, Oran (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); Petit, P.; Sawicki, J. P.; Aillerie, M., E-mail: aillerie@metz.supelec.fr [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Bachir, G. [University of science and technology of Oran, USTO, LDDE, Oran (Algeria)

    2016-07-25

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  10. Application ofBoost Inverter to Multi Input PV system

    Directory of Open Access Journals (Sweden)

    G.SHINYVIKRAM

    2014-11-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step- up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. The conventional boost converters increase the harmonics rate and add an extra stage of power conversion. This paper proposes a boost dc-ac inverter that can invert and boost the output voltage in a single stage. In this paper the proposed boost dc-ac inverter is applied to the solar power panels and is simulated using Simulink. The output results of the boost inverter are worthy promising.

  11. Characteristics of low-priced solar PV systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F.; O’Shaughnessy, Eric; Wiser, Ryan; Darghouth, Naïm; Barbose, Galen; Gillingham, Ken; Rai, Varun

    2017-02-01

    Despite impressive declines in average prices, there is wide dispersion in the prices of U.S. solar photovoltaic (PV) systems; prices span more than a factor of four. What are the characteristics of the systems with low-prices? Using detailed characteristics of 42,611 small-scale (<15 kW) PV systems installed in 15 U.S. states during 2013, we identify the most important factors that make a system likely to be low-priced (LP). Comparing LP and non-LP systems, we find statistically significant differences in nearly all characteristics for which we have data. Logit and probit model results robustly indicate that LP systems are associated with: markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some states, such as Arizona, New Jersey, and New Mexico, and less likely in others, such as California. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California.

  12. OVERVIEW OF THE ORIENTATION OF SOLAR GENERATOR SURFACES FOR PHOTOVOLTAIC (PV SYSTEMS

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2014-10-01

    Full Text Available One of the most readily, espacialy for households as well as for higher installed power, renewable energy techniques to generate electrical power, are the solar photovoltaic (PV systems. In the designing process of solar photovoltaic systems, a certain number of factors have to be considered in order to be able to capture maximum of solar radiant energy, for a given location, as ambient conditions, PV cells and the entire necessary equipment. Considering these factors, it allows to gain the maximum power with the existing equipment for the given radiation.

  13. Analysis of PV system's values beyond energy - by country and stakeholder

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme and PV-Up-Scale analyses, identifies, evaluates and quantifies the major values and benefits of urban scale photovoltaics (PV) based on country and stakeholder specifics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The values evaluated and quantified in this report are categorised under the following groups: Avoiding fossil fuels, environmental benefits, benefits for electric utilities, industry development and employment benefits and the customer's individual benefits. The relevance of PV to meeting peak demand is discussed, as are the benefits for architects and building developers.

  14. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, Barbara C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buhrmann, Jan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  15. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available is required for optimising the sizing and operational strategy of the PV-diesel-battery hybrid system than is required for single-source systems. Various models are available on the market and in research groups but the challenge is to customise these to suit...

  16. Analysis of the influences of grid-connected PV power system on distribution grids

    Directory of Open Access Journals (Sweden)

    Dumitru Popandron

    2013-12-01

    Full Text Available This paper presents the analysis of producing an electric power of 2.8 MW using a solar photovoltaic plant. The PV will be grid connected to the distribution network. The study is focused on the influences of connecting to the grid of a photovoltaic system, using modern software for analysis, modeling and simulation in power systems.

  17. What Factors Affect the Prices of Low-Priced U.S. Solar PV Systems?

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F.; O' Shaughnessy, Eric; Wiser, Ryan; Darghouth, Naïm R.; Barbose, Galen; Gillingham, Ken; Rai, Varun

    2017-09-06

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors leading some systems to be so much lower priced than others. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for low-priced (LP) systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers–a variable that accounts for subsidies, electric rates, and PV generation levels–is associated with lower prices for LP systems but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger cost-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. These results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.

  18. What Factors Affect the Prices of Low-Priced U.S. Solar PV Systems?

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nemet, Greg [University of Wisconsin-Madison; Wiser, Ryan [Lawrence Berkeley National Laboratory; Darghouth, Naim [Lawrence Berkeley National Laboratory; Barbose, Galen [Lawrence Berkeley National Laboratory; Gillingham, Ken [Lawrence Berkeley National Laboratory; Rai, Varun [Lawrence Berkeley National Laboratory

    2017-08-09

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors that determine prices in these low-priced (LP) systems. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for LP systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers-a variable that accounts for subsidies, electric rates, and PV generation levels-is associated with lower prices for LP systems but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger price-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. These results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.

  19. Energy transfer in double plate system dynamics

    Institute of Scientific and Technical Information of China (English)

    Katica (Stevanovic) Hedrih

    2008-01-01

    The study of energy transfer between coupled subsystems in a hybrid system is very important for applications. This paper presents an analytical analysis of energy transfer between plates of a visco-elastically connected double-plate system in free transversal vibrations. The analytical analysis shows that the visco-elastic connection between plates is responsible for the appearance of two-frequency regime in the time function, which corresponds to one eigen amplitude function of one mode, and also that time functions of different vibration modes are uncoupled, but energy transfer between plates in one eigen mode appears. It was shown for each shape of vibrations. Series of the two Lyapunov exponents corresponding to the one eigen amplitude mode are expressed by using the energy of the corresponding eigen amplitude time component.

  20. Analysis of PV-FC Hybrid System Operation Considering Sale Electricity

    Directory of Open Access Journals (Sweden)

    Amirali Shahkoomahalli

    2013-06-01

    Full Text Available This paper presents a hybrid power generation system modeling and simulation with the objective of electricity sale to distribution network (DN which consists of photovoltaic (PV module, proton exchange membrane (PEM fuel cell (FC, hydrogen storage tank (HST and electrolyzer (EL.Since last researches in optimal FC and PV application aimed in power electronic approach, In this paper the application between FC and PV is considered with the aim of maximizing profit gained due to electricity sale revenue to DN. The revenue from electricity sale to DN considering electricity price in low load, shoulder load and peak load hours is considered as the system profit. Also in a sensitivity analysis the impact of technical parameters of hybrid system components is investigated on system profit. The results showed that the system saves the electricity by hydrogen storage in HST in low load hours and sale it with more prices in shoulder load hours to DN. Also the obtained results show that several technical parameters of PV and PEM FC have considerable impact on system operation and profit.

  1. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    Directory of Open Access Journals (Sweden)

    T. Ajith Bosco Raj

    2014-01-01

    Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.

  2. REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System

    Energy Technology Data Exchange (ETDEWEB)

    Olis, Daniel R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Geet, Otto D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.

  3. A highly efficient PV system using a series connection of DC-DC converter output with a photovoltaic panel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-sung [Department of Electrical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jong-Hyun; Min, Byung-Duk; Yoo, Dong-Wook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Hee-Je [Department of Electrical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2009-11-15

    A photovoltaic (PV) power conditioning system (PCS) must have high conversion efficiency and low cost. Generally, a PV PCS uses either a single string converter or a multilevel module integrated converter (MIC). Each of these approaches has both advantages and disadvantages. For a high conversion efficiency and low cost PV module, a series connection of a module integrated DC-DC converter output with a photovoltaic panel was proposed. The output voltage of the PV panel is connected to the output capacitor of the fly-back converter. Thus, the converter output voltage is added to the output voltage of the PV panel. The isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces the power level of the DC-DC converter and enhances energy conversion efficiency compared with a conventional DC-DC converter. (author)

  4. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    Science.gov (United States)

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  5. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    G. Rohini

    2016-01-01

    Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  6. Investigation of power values of PV rooftop systems based on heat gain reduction

    Science.gov (United States)

    Chenvidhya, Tanokkorn; Seapan, Manit; Parinya, Panom; Wiengmoon, Buntoon; Chenvidhya, Dhirayut; Songprakorp, Roongrojana; Limsakul, Chamnan; Sangpongsanont, Yaowanee; Tannil, Nittaya

    2015-09-01

    PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton's law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.

  7. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR

    Directory of Open Access Journals (Sweden)

    Mesude Bayrakci Boz

    2015-08-01

    Full Text Available As photovoltaic (PV systems have become less expensive, building rooftops have come to be attractive for local power production. Identifying rooftops suitable for solar energy systems over large geographic areas is needed for cities to obtain more accurate assessments of production potential and likely patterns of development. This paper presents a new method for extracting roof segments and locating suitable areas for PV systems using Light Detection and Ranging (LIDAR data and building footprints. Rooftop segments are created using seven slope (tilt, ve aspect (azimuth classes and 6 different building types. Moreover, direct beam shading caused by nearby objects and the surrounding terrain is taken into account on a monthly basis. Finally, the method is implemented as an ArcGIS model in ModelBuilder and a tool is created. In order to show its validity, the method is applied to city of Philadelphia, PA, USA with the criteria of slope, aspect, shading and area used to locate suitable areas for PV system installation. The results show that 33.7% of the buildings footprints areas and 48.6% of the rooftop segments identi ed is suitable for PV systems. Overall, this study provides a replicable model using commercial software that is capable of extracting individual roof segments with more detailed criteria across an urban area.

  8. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    Science.gov (United States)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  9. Potential and cost-effectiveness of off-grid PV systems in Indonesia - An evaluation on a provincial level

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, A.H.M.E.

    2014-01-01

    In this study we estimate the potential of off-grid PV systems in Indonesia at a provincial level as a follow-up of a study on the potential of grid-connected PV systems in Indonesia which we executed in 2012 [1]. For this study we use an adapted methodology leading to cumulative numbers for the nom

  10. Proposed Methods to Increase the Output Efficiency of a Photovoltaic (PV System

    Directory of Open Access Journals (Sweden)

    Abdelhamid Midoun

    2010-07-01

    Full Text Available Lately, the use of solar energy has seen considerable development.Transformation in electric energy is one of its applications which attracts considerableinterest, owing to the fact that it makes it possible to solve a major problem in isolatedcities that lack electrical supply networks. For solar energy use, the current drawbackremains its high cost. This problem can be resolved through different improvements interms of power production. For that, different axis of research can be explored [1-3].Over the past few years, solar cells arrays (SCA have been connected to various loads in adirect coupled method. A PV module can produce the power at a point, called an operatingpoint, anywhere on the current- voltage (I-V curve. The coordinates of the Operating pointare the operating voltage and current. There is a unique point near the knee of the I-Vcurve, called a maximum power point (MPP, at which the module operates with themaximum efficiency and produces the maximum output power. The point of maximumpower is the desired operating point for a PV array to obtain maximum efficiency. A PVarray is usually oversized to compensate for a low power yield during winter months. Thismismatching between a PV module and a load requires further over-sizing of the PV arrayand thus increases the overall system cost [3-5]. To mitigate this problem, differentmethods have been developed [6-12]. A maximum power point tracker (MPPT can be usedto maintain the PV module’s operating point at the MPP. The system in a direct coupledmethod cannot always operate at maximum power point (MPP of the solar array when theload, irradiance or temperature changes. A PV-load coupling system should be able tomaximize the energy output of the PV generator, which should operate always at itsmaximum power point (MPP in order to achieve maximum global efficiency. Some authorshave supported the direct coupling between the PV generator and the load [2-3]. Severalmethods and algorithms to

  11. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    Energy Technology Data Exchange (ETDEWEB)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  12. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  13. Comparison of cooling units (Peltier, absorber, compressor) combined with a PV system; Gegenueberstellung von verschiedenen Kuehlgeraeten (Peltier, Absorber, Kompressor) im Betrieb an einer PV-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, R.; Zimmermann, A. [Phocos AG, Illerkirchberg (Germany)

    2004-07-01

    We have compared the costs caused by different cooling systems for use in fridges in Off-Grid-PV-Systems. Three types of cooling systems: (a) Peltier-System; (b) Compressor-System; (c) Absorber-System. You can see in Picture 2 that the total cost of the system will go up if the difference between ambient temperature and temperature in the fridge is rising. For temperature difference up to 19 C the Peltier-Cooling-System causes the lowest system-cost. For higher difference the Compressor-System will cause lower costs than the Peltier-System. The Absorption-System causes for all temperatures higher costs. (orig.)

  14. Design of A Pv/Diesel Stand Alone Hybrid System For A Remote Community in Palestine

    OpenAIRE

    Ismail, M.S.; Moghavvemi, M.; T.M.I. Mahlia

    2012-01-01

    Hybrid system based on photovoltaic is considered an effective option to electrify remote and isolated areas far from grid. This is true for areas that receive high averages of solar radiation annually. Using diesel generator as a standby source will make utilization of hybrid systems more attractive. An economic feasibility study and a complete design of a hybrid system consisting of photovoltaic (PV) panels, a diesel generator as a backup power source and a battery system supplying a small ...

  15. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  16. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  17. Control and Modulation Techniques for a Centralized PV Generation System Grid Connected via an Interleaved Inverter

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-09-01

    Full Text Available In the context of grid connected photovoitaic (PV generation systems, there are two paramount aspects regarding the Maximum Power Point Tracking (MPPT of the photovoltaic units and the continuity of the service. The most diffused MPPT algorithms are based on either perturb and observe, or on an incremental conductance approach and need both PV current and voltage measurements. Several topology reconfigurable converters are also associated with the PV plants, guaranteeing fault-tolerant features. The generation continuity can also be assured by interleaved inverters, which keep the system operating at reduced maximum power in case of failure. In this paper, an evolution of a hysteresis based MPPT algorithm is presented, based on the measurement of only one voltage, together with a novel space vector modulation suitable for a two-channel three-phase grid connected interleaved inverter. The proposed MMPT algorithm and modulation technique are tested by means of several numerical analyses on a PV generation system of about 200 kW maximum power. The results testify the validity of the proposed strategies, showing good performance, even during a fault occurrence and in the presence of deep shading conditions.

  18. Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms

    Directory of Open Access Journals (Sweden)

    Filippo Sgroi

    2014-06-01

    Full Text Available The production of energy from renewable sources is a form of energy production that has less impact on the environment than the traditional one. For the farmer this new form of production represents an opportunity, especially for the economic benefits that can produce, both in terms of the incentives provided by the public operator and for higher revenues, deriving from the sale of energy back to the grid and/or the savings generated by self-consumed energy, that help to increase the farmer’s income. In this paper, we analyzed a case study of a farm that has realized a grid-connected photovoltaic (PV system on a greenhouse. In particular, firstly the farm profitability has been estimated and subsequently, in order to assess the efficiency of the energy policy adopted by the Second Conto Energia in Italy, the minimum incentive tariff at which the entrepreneur has an economic advantage to realize a PV system has been determined. Results show that PV system relegates to a marginal role the cultivation of agricultural products compared to energy production and that government PV remuneration policies far outweigh the minimum threshold that makes the investment advantageous.

  19. Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number

    Directory of Open Access Journals (Sweden)

    Aida Baghbany Oskouei

    2016-06-01

    Full Text Available This paper suggests quinary asymmetric inverter with coupled inductors and transformer, and uses it in hybrid system including photovoltaic (PV and wind. This inverter produces twenty-five-level voltage in addition to merits of multilevel inverter, has only one DC source. Then, it is adequate for hybrid systems, which prevents increasing DC-link and makes control of system easy. Proposed structure also provides isolation in the system and the switch numbers are reduced in this topology compared with other multilevel structures. In this system, battery is used as backup, where PV and wind have complementary nature. The performance of proposed inverter and hybrid system is validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system.

  20. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    Science.gov (United States)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  1. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  2. Single-Phase Single-Stage PV-Grid System Using VSI Based on Simple Control Circuit

    Directory of Open Access Journals (Sweden)

    Slamet Riyadi

    2012-12-01

    Full Text Available Integrating electric energy generated by PV with utilities has been developed. Some of these using two-stage converters and the others using single stage converters. For systems with two-stage converters, the first stage converter acts as a MPPT to maximize power generated by PV and the second stage is used as an interface to the utilities. In the single-stage system, an inverter is used for both function. In this paper, PV-Grid System using a single-stage Voltage Source Inverter is proposed. The simple control circuit to make PV generate maximum power and keeping power equilibrium between PV and inverter output power is used. To verify the analysis, simulations are done.

  3. Performance analysis of ‘Perturb and Observe’ and ‘Incremental Conductance’ MPPT algorithms for PV system

    Science.gov (United States)

    Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda

    2017-07-01

    Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.

  4. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    Science.gov (United States)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  5. Simulation of stand alone PV system; Dokuritsugata taiyoko hatsuden system no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, H.; Ogawa, H.; Sekii, Y. [Chiba Institute of Technology, Chiba (Japan); Tsuda, I.; Nozaki, K. [Electrotechnical Laboratory, Tsukuba (Japan); Kurokawa, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    In order to evaluate the simulation results of a photovoltaic power generation system, an operation simulation was carried out using the actual measured data of a stand alone PV system in Miyakojima, Okinawa Prefecture, so as to make a comparison with the actual operation data. The electric power was supplied to 250 houses and primary/junior high schools in the surrounding villages, which had an average demand load of approximately 90kw and the maximum of approximately 200kw. The power was supplied through the PV power generation in the duration of the sunshine, with an excess power charged in storage batteries and then supplied from the batteries at night. The array capacity was made 750kWp, the output current and storage batteries being characteristic type with an actual efficiency curve used for the inverter. The weather data used were the actual inclined insolation quantity and the outside air temperature data for a period of one month of November. The power charged in excess of 100% in the batteries was termed as an overflow power. With the charging condition 30% or less, a diesel generator was run for a rated operation for one hour, the power of which was termed as a backup power. As a result, the simulation was found nearly in agreement with the actual measurements. 5 refs., 7 figs., 2 tabs.

  6. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  7. PV system reliability: lessons learned from a fleet of 333 systems

    Science.gov (United States)

    Kaushik, A.; Golnas, A.

    2011-09-01

    The levelized cost of energy (LCOE) from PV systems can be reduced by maximizing the energy production of existing/future PV plants through increased availability. This can be achieved by detailed study of root cause and failure analysis of component failures leading to a systematic progress towards improving the reliability of various sub-systems. SunEdison owns/operates ~500 sites across the world and systematically collects field failure data in addition to power output and weather data. Analysis of this information allows following-up on corrective actions to eliminate/minimize the re-occurrence of failures and leads to continuous improvements. This paper will analyze some of the key findings from the system failures as follows: - Inverter failures not only cause most of the system outages, but also result in substantial energy losses. Component failures in PCBs and inverter software/firmware bugs are the most common root cause of system outages - From a systemic root cause perspective, lack of robust quality systems at multiple levels of the supply chain is quite evident, which points toward the need for collectively inculcating the quality culture at every stage of the supply chain - This paper will try to establish the need for "Continuous Improvement Process" (CIP) where systemic issues are confronted and solutions are internalized in the operating procedures as the only path to improving component reliability - For a given level of reliability, cost associated with servicing the plant becomes critical. This paper highlights the importance of using "cost of ownership" metrics for making procurement decisions

  8. Optimization of Hybrid PV/Wind Energy System Using Genetic Algorithm (GA

    Directory of Open Access Journals (Sweden)

    Satish Kumar Ramoji

    2014-01-01

    Full Text Available In this paper, a new approach of optimum design for a Hybrid PV/Wind energy system is presented in order to assist the designers to take into consideration both the economic and ecological aspects. When the stand alone energy system having photovoltaic panels only or wind turbine only are compared with the hybrid PV/wind energy systems, the hybrid systems are more economical and reliable according to climate changes. This paper presents an optimization technique to design the hybrid PV/wind system. The hybrid system consists of photovoltaic panels, wind turbines and storage batteries. Genetic Algorithm (GA optimization technique is utilized to minimize the formulated objective function, i.e. total cost which includes initial costs, yearly replacement cost, yearly operating costs and maintenance costs and salvage value of the proposed hybrid system. A computer program is designed, using MATLAB code to formulate the optimization problem by computing the coefficients of the objective function. The method mentioned in this article is proved to be effective using an example of hybrid energy system. Finally, the optimal solution is achieved by Genetic Algorithm (GA optimization method.

  9. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors

    Directory of Open Access Journals (Sweden)

    Annamaria Buonomano

    2016-06-01

    Full Text Available This paper presents numerical and experimental analyses aimed at evaluating the technical and economic feasibility of photovoltaic/thermal (PVT collectors. An experimental setup was purposely designed and constructed in order to compare the electrical performance of a PVT solar field with the one achieved by an identical solar field consisting of conventional photovoltaic (PV panels. The experimental analysis also aims at evaluating the potential advantages of PVT vs. PV in terms of enhancement of electrical efficiency and thermal energy production. The installed experimental set-up includes four flat polycrystalline silicon PV panels and four flat unglazed polycrystalline silicon PVT collectors. The total electrical power and area of the solar field are 2 kWe and 13 m2, respectively. The experimental set-up is currently installed at the company AV Project Ltd., located in Avellino (Italy. This study also analyzes the system from a numerical point of view, including a thermo-economic dynamic simulation model for the design and the assessment of energy performance and economic profitability of the solar systems consisting of glazed PVT and PV collectors. The experimental setup was modelled and partly simulated in TRNSYS environment. The simulation model was useful to analyze efficiencies and temperatures reached by such solar technologies, by taking into account the reference technology of PVTs (consisting of glazed collectors as well as to compare the numerical data obtained by dynamic simulations with the gathered experimental results for the PV technology. The numerical analysis shows that the PVT global efficiency is about 26%. Conversely, from the experimental point of view, the average thermal efficiency of PVT collectors is around 13% and the electrical efficiencies of both technologies are almost coincident and equal to 15%.

  10. A Simple MPPT Algorithm for Novel PV Power Generation System by High Output Voltage DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick

    2015-01-01

    This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... of DC-DC converters for PV integration. Hence, to overcome these difficulties this paper investigates a DC-DC boost converter together with the additional parasitic component within the circuit to provide high output voltages for maximizing the PV power generation. The proposed power system circuit...... substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software...

  11. Performance of a grid connected PV system used as active filter

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, H. [Cenidet, Morelos (Mexico). Electronics Dept.; Jimenez, H. [IIE, Morelos (Mexico). Conventional Energy Sources Dept.

    2004-09-01

    In this paper, the performance of a grid connected photovoltaic (PV) system used as an active filter is presented. its main feature is the capability to compensate the reactive and harmonic currents drawn by nonlinear loads while simultaneously injecting into the grid the maximum power available from the cells. The system can also operate as a stand alone active filter. The system was connected to a 1 kW PV array and tested with the loads typically found in households: small motors, personal computers and electronic ballasts. The results show that the system can correct the power factor to values close to unity for all the cases tested, thereby improving the efficiency of the electric energy supply. (author)

  12. Implementation of a PV lighting system based on DC-DC converter with intelligent controlled approach

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.-C.; Chuang, D.-J. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Dept. of Electrical Engineering; Chuang, C.-W. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Graduate School of Engineering Science and Technology

    2007-07-01

    Photovoltaic (PV) lighting systems for municipalities represent one of the largest cost effective markets for PVs. The installation cost of just one or two utility power poles can justify the initial cost of a PV lighting system. However, many previous PV lighting systems have experienced a number of component failures including premature charge controller, battery, and ballast illumination failures. This paper presented the design and implementation of a digital high performance photovoltaic lighting system based on a microcontroller. A high brightness light-emitting diode (HBLED), was used as it can work at very high efficiency with a specially designed lighting power module. The proposed system consisted of a photovoltaic module, a light emitting diode (LED) lighting module, a bi-directional buck-boost converter and a battery. The paper analysed battery charging methods and proposed a control strategy and hardware implementation. The dimming control methods for LED were also discussed and compared. The experimental results were also provided to verify the theoretical analysis and design procedure of a digital controlled photovoltaic lighting system. It was concluded that the experimental results verified the performance of the proposed photovoltaic lighting system. 8 refs., 1 tab., 18 figs.

  13. Marketing residential grid-connected PV systems using a balanced scorecard as a marketing tool

    Energy Technology Data Exchange (ETDEWEB)

    Bach, N. [University of Giessen (Germany). Dept. of Organisation and Management; Calais, P. [Murdoch University, Perth (Australia). School of Environmental Science; Calais, M. [Curtin University, Perth (Australia). Centre for Renewable Systems Technology

    2001-03-01

    A strategic analysis of the electricity market in Western Australia yields a market potential for renewable energy in Western Australia. However, from a purely financial viewpoint the installation of grid-connected pv-systems still is not economically viable. In this paper a balanced scorecard (BSC) is developed to capture and visualize other than financial benefits. Therefore, the BSC can be used as a marketing tool to communicate the benefits of a privately owned GCPV system to potential customers. (author)

  14. Lenses Based Concentrated PV system in a Greenhouse

    NARCIS (Netherlands)

    Sonneveld, Piet; Swinkels, Gert-Jan; Tuijl, B.A.J. van; Janssen, H.J.J.; Fresnel, A.

    2011-01-01

    The scope of this investigation is the development and testing of a new type of greenhouse with an integrated linear Fresnel lens, receiver module and an innovative system for tracking to exploiting all direct radiation in a solar energy system.

  15. Grid-connected PV systems - How and where they fit

    Science.gov (United States)

    Thomas, M. G.; Jones, G. J.

    The use of grid-connected photovoltaic systems requires substantial improvements in system economics. By integrating anticipated improvements in economics with consumer needs and perceptions, the various potential applications have been order-ranked. Third-party ownership of large systems appears to have the largest potential, residential has a modest potential, and the intermediate dedicated-load application potential appears to be small.

  16. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  17. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  18. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    Directory of Open Access Journals (Sweden)

    Mya Su Kyi

    2015-08-01

    Full Text Available The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area falls 21-58-30 N Latitude and 96-5-0 E Longitude of Mandalay. The PV system sizing was made in such a way that it was capable of irrigation one acre of Asparagus plot with a daily water requirement of 25mday.

  19. ENVI-PV: An Interactive Web Client for Multi-Criteria Life Cycle Assessment of Photovoltaic Systems Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, Paula; Gschwind, Benoit; Blanc, Philippe; Frischknecht, Rolf; Stolz, Philippe; Durand, Yvonnick; Heath, Garvin; Menard, Lionel; Blanc, Isabelle

    2016-11-23

    Solar photovoltaics (PV) is the second largest source of new capacity among renewable energies. The worldwide capacity encompassed 135 GW in 2013 and is estimated to increase to 1721 GW in 2030 and 4674 GW in 2050, according to a prospective high-renewable scenario. To achieve this production level while minimizing environmental impacts, decision makers must have access to environmental performance data that reflect their high spatial variability accurately. We propose ENVI-PV (http://viewer.webservice-energy.org/project_iea), a new interactive tool that provides maps and screening level data, based on weighted average supply chains, for the environmental performance of common PV technologies. Environmental impacts of PV systems are evaluated according to a life cycle assessment approach. ENVI-PV was developed using a state-of-the-art interoperable and open standard Web Service framework from the Open Geospatial Consortium (OGC). It combines the latest life cycle inventories, published in 2015 by the International Energy Agency (IEA) under the Photovoltaic Power Systems Program (PVPS) Task 12, and some inventories previously published from Ecoinvent v2.2 database with solar irradiation estimates computed from the worldwide NASA SSE database. ENVI-PV is the first tool to propose a worldwide coverage of environmental performance of PV systems using a multi-criteria assessment. The user can compare the PV environmental performance to the environmental footprint of country electricity mixes. ENVI-PV is designed as an environmental interactive tool to generate PV technological options and evaluate their performance in different spatial and techno-economic contexts. Its potential applications are illustrated in this paper with several examples.

  20. A methodology to quantify and optimize time complementarity between hydropower and solar PV systems

    Science.gov (United States)

    Kougias, Ioannis; Szabó, Sándor; Monforti-Ferrario, Fabio; Huld, Thomas; Bódis, Katalin

    2016-04-01

    Hydropower and solar energy are expected to play a major role in achieving renewable energy sources' (RES) penetration targets. However, the integration of RES in the energy mix needs to overcome the technical challenges that are related to grid's operation. Therefore, there is an increasing need to explore approaches where different RES will operate under a synergetic approach. Ideally, hydropower and solar PV systems can be jointly developed in such systems where their electricity output profiles complement each other as much as possible and minimize the need for reserve capacities and storage costs. A straightforward way to achieve that is by optimizing the complementarity among RES systems both over time and spatially. The present research developed a methodology that quantifies the degree of time complementarity between small-scale hydropower stations and solar PV systems and examines ways to increase it. The methodology analyses high-resolution spatial and temporal data for solar radiation obtained from the existing PVGIS model (available online at: http://re.jrc.ec.europa.eu/pvgis/) and associates it with hydrological information of water inflows to a hydropower station. It builds on an exhaustive optimization algorithm that tests possible alterations of the PV system installation (azimuth, tilt) aiming to increase the complementarity, with minor compromises in the total solar energy output. The methodology has been tested in several case studies and the results indicated variations among regions and different hydraulic regimes. In some cases a small compromise in the solar energy output showed significant increases of the complementarity, while in other cases the effect is not that strong. Our contribution aims to present these findings in detail and initiate a discussion on the role and gains of increased complementarity between solar and hydropower energies. Reference: Kougias I, Szabó S, Monforti-Ferrario F, Huld T, Bódis K (2016). A methodology for

  1. A Control Strategy for Photovoltaic-Solid Polymer Electrolysis System Based on Surface Temperature of PV Panel

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2008-01-01

    Full Text Available Processes to produce hydrogen from solar photovoltaic powered water electrolysis using solid polymer electrolysis are reported. An alternative control of maximum power point tracking method based on analysis of PV panel’s surface Temperature for the PV-SPE system was designed and implemented. From this analysis an optimal voltage of PV can be obtained and was realized as a reference voltage of Dc-DC converter. By maintenance the output voltage of PV using the reference voltage control, the output PV can be optimized at its MPP operation. The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment.

  2. Technical monitoring of 80 photovoltaic systems in Apeldoorn, Netherlands; Technische monitoring van 80 PV-systemen te Apeldoorn

    Energy Technology Data Exchange (ETDEWEB)

    Van der Borg, N.J.C.M.; Jansen, M.J. [ECN Zon, Petten (Netherlands)

    2001-02-01

    The title monitoring programme concerns 94 photovoltaic (PV) systems which are installed on houses in the urban area 'Het Woudhuis' in Apeldoorn, Netherlands. The houses are subdivided into four groups which differ in the design of the PV-systems or orientation of the roofs. In this report the results of the technical monitoring of 80 PV-systems of the groups 2, 3 and 4 are presented. The results of group 1 are published in a previous report 5 refs.

  3. A New Energy Management Technique for PV/Wind/Grid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Onur Ozdal Mengi

    2015-01-01

    Full Text Available An intelligent energy management system (IEMS for maintaining the energy sustainability in renewable energy systems (RES is introduced here. It consists of wind and photovoltaic (PV solar panels are established and used to test the proposed IEMS. Since the wind and solar sources are not reliable in terms of sustainability and power quality, a management system is required for supplying the load power demand. The power generated by RES is collected on a common DC bus as a renewable green power pool to be used for supplying power to loads. The renewable DC power bus is operated in a way that there is always a base power available for permanent loads. Then the additional power requirement is supplied from either wind or PV or both depending upon the availability of these power sources. The decision about operating these systems is given by an IEMS with fuzzy logic decision maker proposed in this study. Using the generated and required power information from the wind/PV and load sides, the fuzzy reasoning based IEMS determines the amount of power to be supplied from each or both sources. Besides, the IEMS tracks the maximum power operating point of the wind energy system.

  4. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  5. Use of Super-Capacitor to Enhance Charging Performance of Stand-Alone Solar PV System

    KAUST Repository

    Huang, B. J.

    2011-01-01

    Introduction: The battery charging performance in a stand-alone solar PV system affects the PV system efficiency and the load operating time. The New Energy Center of National Taiwan University has been devoted to the development of a PWM charging technique to continue charging the lead-acid battery after the overcharge point to increase the battery storage capacity by more than 10%. The present study intends to use the super-capacitor to further increase the charge capacity before the overcharge point of the battery. The super-capacitor is connected in parallel to the lead-acid battery. This will reduce the overall charging impedance during the charge and increase the charging current, especially in sunny weather. A system dynamics model of the lead-acid battery and super-capacitor was derived and the control system simulation was carried out to predict the charging performance for various weathers. It shows that the overall battery impedance decreases and charging power increases with increasing solar radiation. An outdoor comparative test for two identical PV systems with and without supercapacitor was carried out. The use of super-capacitor is shown to be able to increase the lead-acid charging capacity by more than 25% at sunny weather and 10% in cloudy weather. © Springer-Verlag Berlin Heidelberg 2011.

  6. ENERGY MANAGEMENT OF WIND/PV AND BATTERY HYBRID SYSTEM

    OpenAIRE

    M. F. Almi; M. Arrouf; H.Belmili; S. Boulouma; Bendib, B

    2014-01-01

    This paper deals with power control of a wind and solar hybrid generation system for interconnection operation with electric distribution system. Power control strategy is to extract the maximum energy available from varying condition of wind speed and solar irradiance while maintaining power quality at a satisfactory level. In order to capture the maximum power, variable speed control is employed for wind turbine and maximum power point tracking is applied for photovoltaic system. The grid i...

  7. Sizing and Simulation of PV-Wind Hybrid Power System

    OpenAIRE

    Mustafa Engin

    2013-01-01

    A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...

  8. PV-hybrid village power systems in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L.; Taylor, R.W. [National Renewable Energy Lab., Golden, CO (United States); Ribeiro, C.M. [Centro de Pesquisas de Energie Eletrica (CEPEL), Rio de Janeiro (Brazil)] [and others

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  9. Performance of the PV-system at Houttuinen Zuid 41 in Apeldoorn, Netherlands; Gedrag van het PV-systeem op Houttuinen Zuid 41 te Apeldoorn

    Energy Technology Data Exchange (ETDEWEB)

    Baltus, C.W.A.; Wiggelinkhuizen, E.J.

    1998-01-01

    In this first progress report of the analytical monitoring of the title system the results of the measurements in the period 5 September 1997 - 1 December 1997 are presented. During the measuring period the photovoltaic (PV) system did not break down. The nominal capacity of the 44 PV-modules is 2090 Wp. The inverter capacity is 1500 W, which is underdimensioned. In case of high solar radiation the generated capacities do not correlate with the intensity of the solar radiation because of the limited inverter capacity. The annual energy yield is 2.1% lower compared to a non-underdimensioned inverter. The performance ratio is circa 0.81. The average efficiency of the inverter is 89%, the low radiation losses are 5.1%. The problem of the measurement of the inverter efficiency in case of high solar radiation has not yet been solved. 1 ref.

  10. A Fresnel lenses based concentrated PV system in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Gieling, T.H.

    2011-01-01

    The scope of this investigation is the development and testing of a new type of greenhouse with an integrated linear Fresnel lens, receiver module and an innovative system for tracking to exploit all direct radiation in a solar energy system. The basic idea of this horticultural application is to de

  11. PV-Wind System with Fuel Cell & Electrolyzer

    Directory of Open Access Journals (Sweden)

    Deepa Sharma

    2015-12-01

    Full Text Available In this paper, a detailed modeling and simulation of solar cell/ wind turbine/ fuel cell hybrid power system is developed using a novel topology to complement each other and to alleviate the effects of environmental variations. Comparing with the other sources , the renewable energy is inexhaustible and has non-pollution characteristics. The solar energy, wind power, hydraulic power and tidal energy are natural resources of the interest to generate electrical power. As the wind turbine output power varies with the wind speed and the solar cell output power varies with both the ambient temperature and radiation, a fuel cell with ultra capacitor bank can be integrated to ensure that the system performs under all conditions. Excess wind and solar energies when available are converted to hydrogen using electrolysis for later use in the fuel cell. In this paper dynamic modeling of various components of this isolated system system is presented. Transient responses of the system to step change in the load, ambient temperature, radiation, and wind speed in a number of possible situations are studied. Modeling and simulations are conducted using MATLAB/Simulink software packages to verify the effectiveness of the proposed system. The results show that the proposed hybrid power system can tolerate the rapid change in natural conditions and suppress the effects of these fluctuations on the voltage within the acceptable range.The proposed system can be used for off grid power generation in non interconnected areas or remote isolated communities of nation.

  12. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  13. A Virtual PV Systems Lab for Engineering Undergraduate Curriculum

    Directory of Open Access Journals (Sweden)

    Emre Ozkop

    2014-01-01

    Full Text Available Design and utilization of a Virtual Photovoltaic Systems Laboratory for undergraduate curriculum are introduced in this paper. The laboratory introduced in this study is developed to teach students the basics and design steps of photovoltaic solar energy systems in a virtual environment before entering the field. The users of the proposed virtual lab will be able to determine the sizing by selecting related parameters of the photovoltaic system to meet DC and AC loading conditions. Besides, the user will be able to analyze the effect of changing solar irradiation and temperature levels on the operating characteristics of the photovoltaic systems. Common DC bus concept and AC loading conditions are also included in the system by utilizing a permanent magnet DC motor and an RLC load as DC and AC loading examples, respectively. The proposed Virtual Photovoltaic Systems Laboratory is developed in Matlab/Simulink GUI environment. The proposed virtual lab has been used in Power Systems Lab in the Department of Electrical and Electronics Engineering at Karadeniz Technical University as a part of undergraduate curriculum. A survey on the students who took the lab has been carried out and responses are included in this paper.

  14. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  15. PV-Li-ion-micropump membrane systems for portable personal desalination

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-03-01

    Full Text Available This research presents a technical simulation of theoretically portable desalination systems utilising low-energy and lightweight components that are either commercially available or currently in development. The commercially available components are small-scale flexible and portable photovoltaic (PV modules, Li-ion battery-converter units, and high pressure low voltage brushless DC motor-powered micropumps. The theoretical and conventional small-scale desalination membranes are compared against each other: low-pressure reverse osmosis (RO, nanofilters, graphene, graphene oxide, and graphyne technology. The systems were designed with the identical PV-Li-ion specifications and simulation data to quantify the energy available to power the theoretical energy demand for desalinating a saline water at 30,000–40,000 ppm total dissolved solid (TDS to reliably supply the minimum target of 3.5 L d−1 of freshwater for one theoretical year. The results demonstrate that modern portable commercially available PV-battery systems and new generations of energy-efficient membranes under development have the potential to enable users to sustainably procure daily drinking water needs from saline/contaminated water resources, with the system exhibiting a net reduction in weight than carrying water itself.

  16. OPTIMIZATION AND SIZING OF A GRID-CONNECTED HYBRID PV-WIND ENERGY SYSTEM

    Directory of Open Access Journals (Sweden)

    C.S. SUPRIYA,

    2011-05-01

    Full Text Available Renewable energy resources such as solar and wind energies are highly advantageous compared to the conventional sources of power in many ways that they clean and available infinitely. But the onlydrawback is that their outputs depend upon the climatic conditions. Wind-Photovoltaic Hybrid System (WPHS utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and Photo-Voltaic (PV panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. The aim of this project is to determine the optimal design of a hybrid wind-solar power system for either autonomous or grid-linked applications. The proposed analysis employs quadratic programming techniques to minimize the cost while meeting the load requirements in a reliable manner. Using this procedure, optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. Results show that the hybrid systems have considerable reductions in carbon emission and cost of the system.

  17. Transversal vibrations of double-plate systems

    Institute of Scientific and Technical Information of China (English)

    Katica(Stevanovi(c)) Hedrih

    2006-01-01

    This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equations, which describe corresponding dynamical free and forced processes, are obtained using Bernoulli's particular integral and Lagrange's method of variation constants. It is shown that one-mode vibrations correspond to two-frequency regime for free vibrations induced by initial conditions and to three-frequency regime for forced vibrations induced by one-frequency external excitation and corresponding initial conditions. The analytical solutions show that the elastic connection between plates leads to the appearance of twofrequency regime of time function, which corresponds to one eigenamplitude function of one mode, and also that the time functions of different vibration modes are uncoupled, for each shape of vibrations. It has been proven that for both elastically connected plates, for every pair of m and n. two possibilities for appearance of the resonance dynamical states, as well as for appearance of the dynamical absorption, are present. Using the MathCad program, the corresponding visualizations of the characteristic forms of the plate middle surfaces through time are presented.

  18. PV LED ENGINE characterization lab for stand alone light-to-light systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2015-01-01

    PV-powered lighting systems, light-to-light systems (L2L), offer outdoor lighting where it is elsewhere cumbersome to enable lighting. Application of these systems at high latitudes, where the difference in day length between summer and winter is large and the solar energy is low requires smart d...... are presented. Furthermore, a laboratory has been build to characterize these systems up to 200 Wp from “nose to tail” in great details to support improvement of the systems and to make accurate field performance predictions by the dimensioning tool....

  19. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    Science.gov (United States)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  20. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  1. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter....... With the appearance of SiC 1200V MOSFETs, it becomes possible to return to more simple two-level (2L) structure with comparable efficiency but high potential to reduce the overall cost. This paper deals with a comparison study between a Si-based 3L-Diode Neutral Point Clamped (DNPC) and a SiC-based 2L-Full Bridge (FB...

  2. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  3. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  4. McClellan PV system installation provides key lessons

    Science.gov (United States)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  5. PV grid connected system with fuzzy intelligent control

    Directory of Open Access Journals (Sweden)

    Florin DRAGOMIR

    2009-05-01

    Full Text Available This paper proposes an engineering solution for stability control of the low voltage electrical networks with distributed power generation from renewable energy resources. First there are presentedgenerally, the existing problems in this type of systems, capable to be solved with automation intelligent control. In the second part, the paper focuses over fuzzy controller design based on experimentalmonitored data and experts know how. The results of proposed software realized with LabView will be pointed out from the main objective point of view.

  6. 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy’s Forrestal Building

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-11

    The Forrestal PV system will provide a clean, domestic, renewable source of energy for the U.S. Department of Energy (DOE), and provide leadership in meeting Federal goals for increasing the use of renewable energy technologies.

  7. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P.

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  8. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  9. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

    1998-10-06

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

  10. Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae.

    Science.gov (United States)

    Chalupowicz, Laura; Manulis-Sasson, Shulamit; Itkin, Maxim; Sacher, Ayelet; Sessa, Guido; Barash, Isaac

    2008-08-01

    The quorum-sensing (QS) regulatory system of the gall-forming Pantoea agglomerans pv. gypsophilae was identified. Mass spectral analysis, together with signal-specific biosensors, demonstrated that P. agglomerans pv. gypsophilae produced N-butanoyl-l-homoserine lactone (C4-HSL) as a major and N-hexanoyl-l-homoserine lactone (C6-HSL) as a minor QS signal. Homologs of luxI and luxR regulatory genes, pagI and pagR, were characterized in strain P. agglomerans pv. gypsophilae Pag824-1 and shown to be convergently transcribed and separated by 14 bp. The deduced PagI (23.8 kDa) and PagR (26.9 kDa) show high similarity with SmaI (41% identity) and SmaR (43% identity), respectively, of Serratia sp. American Type Culture Collection 39006. PagR possesses characteristic autoinducer binding and a helix-turn-helix DNA-binding domain. Gall formation by P. agglomerans pv. gypsophilae depends on a plasmid-borne hrp/hrc gene cluster, type III effectors, and phytohormones. Disruption of pagI, pagR, or both genes simultaneously in Pag824-1 reduced gall size in gypsophila cuttings by 50 to 55% when plants were inoculated with 10(6) CFU/ml. Higher reductions in gall size (70 to 90%) were achieved by overexpression of pagI or addition of exogenous C4-HSL. Expression of the hrp/hrc regulatory gene hrpL and the type III effector pthG in the pagI mutant, as measured with quantitative reverse-transcriptase polymerase chain reaction, was reduced by 5.8 and 6.6, respectively, compared with the wild type, suggesting an effect of the QS system on the Hrp regulon.

  11. Dynamic Modeling, Control and Simulation of a Wind and PV Hybrid System for Grid Connected Application Using MATLAB

    OpenAIRE

    2014-01-01

    This paper proposes a dynamic modeling and control strategy for a grid connected hybrid wind and photovoltaic (PV) energy system inter-connected to electrical grid through power electronic interface. A gearless permanent magnet synchronous generator (PMSG) is used to capture the maximum wind energy. The PV and wind systems are connected dc-side of the voltage source inverter through a boost converter individually and maintain a fixed dc output at dc link. A proper control sche...

  12. Achromatic Fresnel Lens with Improved Efficiency for PV Systems

    Directory of Open Access Journals (Sweden)

    Mario González Montes

    2014-01-01

    Full Text Available This work is aimed to design and evaluate different achromatic Fresnel lens solutions capable of operating as concentrators aimed at photovoltaic cells systems. Throughout this study, the theoretical parametric design of the achromatic lens will be shown together with a series of simulations to verify the performance of each lens topology. The results will be compared with a standard Fresnel lens to ascertain the validity and effectiveness of the obtained design. Finally, a novel kind of hybrid lens is proposed, which combines the advantages of each type of lens (standard and Fresnel according to the optimal operating region of each design. Efficiency and concentration ratios of each particular lens are shown, regarding lens dimension, light’s incidence angle, or wavelength. Through this innovative achromatic design concentration ratios above 1000 suns, which hardly reach standard Fresnel lenses. Furthermore chromatic dispersion is minimized and the efficiency rate is over 85% of efficiency for a wide spectral range (from 350 nm to 1100 nm.

  13. SYMPLECTIC SOLUTION SYSTEM FOR REISSNER PLATE BENDING

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 隋永枫

    2004-01-01

    Based on the Hellinger-Reissner variatonal principle for Reissner plate bending and introducing dual variables, Hamiltonian dual equations for Reissner plate bending were presented. Therefore Hamiltonian solution system can also be applied to Reissner plate bending problem, and the transformation from Euclidian space to symplectic space and from Lagrangian system to Hamiltonian system was realized. So in the symplectic space which consists of the original variables and their dual variables, the problem can be solved via effective mathematical physics methods such as the method of separation of variables and eigenfunction-vector expansion. All the eigensolutions and Jordan canonical form eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail,and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the all eigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and they form a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzero eigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is not the same as the classical semi- inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.

  14. Pseudomonas syringae pv. phaseolicola Mutants Compromised for type III secretion system gene induction.

    Science.gov (United States)

    Deng, Xin; Xiao, Yanmei; Lan, Lefu; Zhou, Jian-Min; Tang, Xiaoyan

    2009-08-01

    Pseudomonas syringae bacteria utilize the type III secretion system (T3SS) to deliver effector proteins into host cells. The T3SS and T3 effector genes (together called the T3 genes hereafter) are repressed in nutrient-rich medium but rapidly induced after the bacteria are transferred into minimal medium or infiltrated into plants. The induction of the T3 genes is mediated by HrpL, an alternative sigma factor that recognizes the conserved hrp box motif in the T3 gene promoters. The induction of hrpL is mediated by HrpR and HrpS, two homologous proteins that bind the hrpL promoter. To identify additional genes involved in regulation of the T3 genes, we screened for the P. syringae pv. phaseolicola NPS3121 transposon-tagged mutants with reduced induction of avrPto-luc and hrpL-luc, reporter genes for promoters of effector gene avrPto and hrpL, respectively. Determination of the transposon-insertion sites revealed genes with putative functions in signal transduction and transcriptional regulation, protein synthesis, and basic metabolism. A transcriptional regulator (AefR(NPS3121)) was identified in our screen that is homologous to AefR of P. syringae pv. syringae strain B728a, a regulator of the quorum-sensing signal and epiphytic traits, but was not known to regulate the T3 genes. AefR(NPS3121) in P. syringae pv. phaseolicola NPS3121 and AefR in P. syringae pv. syringae B728a behave similarly in regulating the quorum-sensing signal in liquid medium but differ in regulating the epiphytic traits, including swarming motility, leaf entry, and epiphytic survival.

  15. Real-time POD-CFD Wind-Load Calculator for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Huayamave, Victor [Centecorp; Divo, Eduardo [Centecorp; Ceballos, Andres [Centecorp; Barriento, Carolina [Centecorp; Stephen, Barkaszi [FSEC; Hubert, Seigneur [FSEC

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals

  16. Power Quality Improvement of an Off-Grid Versatile PV System

    Directory of Open Access Journals (Sweden)

    D. Bini Sherlin

    2014-03-01

    Full Text Available Photovoltaic systems are trusted to be the future wave of alternate source of energy. This paper presents a versatile PV generation system that enables to supply both AC as well as DC loads in addition to providing back-up supply for the AC load. The back-up supply is provided by charging a battery. The inverter is controlled using hysteresis current control method that contains the current ripple within the two hysteresis bands. Thereby the harmonic content in the inverter output is lowered and also provides quality power. The performance of the proposed system is verified through simulation.

  17. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    CERN Document Server

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  18. Study on an optimum ratio of PV output energy to WG output energy in PV/WG hybrid system; Taiyoko/furyoku hybrid hatsuden system no saiteki yoryohi ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Kandenko Co. Ltd., Tokyo (Japan)

    1996-10-27

    A photovoltaic power (PV) and wind generated power (WG) are an unlimited clean energy source, yet their output is unstable depending on the fluctuation of weather conditions such as solar radiation and wind velocity. Consequently, a large-scale power storage equipment is necessitated leading to a high cost especially in an independent system. As a solution, a method is available in which PV and WG are combined so that the effect may be utilized for stabilizing the output of a system as a whole, at a site where a fluctuation pattern is different between photovoltaic energy and wind energy. In building a hybrid system by PV and WG, sites with such supplementary effect existing were selected from the viewpoint of stabilizing the fluctuation of the power generation in the long run; and then, an examination was made on the optimum PV capacity ratio (%Ppo) in each site. As a result, it revealed that the %Ppo had great bearing on a ratio of PV energy fluctuation to WG, which was converted to a numerical formula. A comparatively simple examination by means of meteorological data also indicated that the share ratio was possibly optimized between the quantities of PV and WG energy. 4 refs., 2 figs., 2 tabs.

  19. Dual-Axis Solar Tracking System for Maximum Power Production in PV Systems

    Directory of Open Access Journals (Sweden)

    Muhd.Ikram Mohd. Rashid

    2015-12-01

    Full Text Available The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses generated from the data acquisition (DAQ card fed into four relays. This approach was so chosen to effectively avoid the error that usually arises in sensor-based methods. The programming of the mathematical models of the solar elevation and azimuth angles was done using Borland C++ Builder. The performance and accuracy of the developed system was evaluated with a PV panel at latitude 3.53o N and longitude 103.5o W in Malaysia. The results obtained reflect the effectiveness of the developed tracking system in terms of the energy yield when compared with that generated from a fixed panel. Overall, 20%, 23% and 21% additional energy were produced for the months of March, April and May respectively using the tracker developed in this study.

  20. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Thomas Hoff [Clean Power Research, L.L.C., Napa, CA (United States); Kankiewicz, Adam [Clean Power Research, L.L.C., Napa, CA (United States)

    2016-02-26

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP) forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest

  1. A GRID CONNECTED PV SYSTEM INTEGRATED THROUGH MULTILEVEL MODULAR CASCADED H-BRIDGE INVERTER BY USING FUZZY LOGIC CONTROLLER

    OpenAIRE

    2016-01-01

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. The main abstruse is the harmonization of the DG to the utility grid. Generally current regulated PWM voltage-source inverters (VSI) are used for synchronizing the utility grid with DG source in order to meet the following objectives: 1) To ensure grid stability...

  2. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  3. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    OpenAIRE

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-01-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal) . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid en...

  4. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    OpenAIRE

    Station Md. Ibrahim; Mohammad Tayyab

    2015-01-01

    This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid ...

  5. Estimating the efficiency of P/V systems under a changing climate - the case study of Greece.

    Science.gov (United States)

    Grillakis, Manolis; Panagea, Ioanna; Koutroulis, Aristeidis; Tsanis, Ioannis

    2014-05-01

    The effect of climate change on P/V output is studied for the region of Greece. Solar radiation and temperature data from 9 RCMs of ENSEMBLES EU FP6 project are used to estimate the effect of these two parameters on the future P/V systems output over Greece. Examining the relative contributions of temperature and irradiance, a significant reduction due to the temperature increase is projected which is however outweighed by the irradiance increase, resulting an overall output increase in photovoltaic systems. Nonetheless, in some cases the temperature increase is too large to be compensated by the increase irradiance resulting reduction of PV output up to 3. This is projected after 2050s for the eastern parts of the Greek mainland, Aegean islands and some areas in Crete. Results show that the PV output is projected to have an increasing trend in all regions of Greece until 2050, and a steeper increase trend further until 2100. Moreover, high resolution topographic information was combined to the PV output results, producing high resolution of favorability for future PV systems installation.

  6. Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Al-Karaghouli, A.; Kazmerski, L. L.

    2010-10-01

    The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

  7. Statistical analysis of the performance and simulation of a two-axis tracking PV system

    Energy Technology Data Exchange (ETDEWEB)

    Perpinan, O. [Grupo de Sistemas Fotovoltaicos, IES-UPM, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-11-15

    The energy produced by a photovoltaic system over a given period can be estimated from the incident radiation at the site where the Grid Connected PV System (GCPVS) is located, assuming knowledge of certain basic features of the system under study. Due to the inherently stochastic nature of solar radiation, the question ''How much energy will a GCPVS produce at this location over the next few years?'' involves an exercise of prediction inevitably subjected to a degree of uncertainty. Moreover, during the life cycle of the GCPVS, another question arises: ''Is the system working correctly?''. This paper proposes and examines several methods to cope with these questions. The daily performance of a PV system is simulated. This simulation and the interannual variability of both radiation and productivity are statistically analyzed. From the results several regression adjustments are obtained. This analysis is shown to be useful both for productivity prediction and performance checking exercises. Finally, a statistical analysis of the performance of a GCPVS is carried out as a detection method of malfunctioning parts of the system. (author)

  8. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Georgia Inst. of Technology, Atlanta, GA (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  9. Analysis on Design of Grid-connected PV System%并网光伏系统设计简析

    Institute of Scientific and Technical Information of China (English)

    罗刚; 俞晟

    2014-01-01

    简要介绍常见并网光伏系统设计依据、常用软件、组成部分及其原理,以及光设计中需要把握的原则、注意事项和一些经验教训,包括光伏支架、光伏方阵与场地的设计考虑,并网逆变器的选择、并网形式的选择、防雷接地等。%The paper provides a brief introduction of the design basis, common software, components and principles of common grid-connected PV system, as well as principles, considerations and some experiences in PV design, including the design considerations of PV stent, PV array and venue, selection of grid-connected inverter and form and grounding for protection against lightning.

  10. Comprehensive Benefit Evaluation of the Wind-PV-ES and Transmission Hybrid Power System Consideration of System Functionality and Proportionality

    Directory of Open Access Journals (Sweden)

    Huizheng Ji

    2017-01-01

    Full Text Available In the background of decreasing fossil fuels and increasing environmental pollution, the wind-photovoltaic energy storage and transmission hybrid power system (or called the wind-PV-ES and transmission hybrid system has become a strategic choice to achieve energy sustainability. However, the comprehensive benefit evaluation of such a combined power system is in a relatively blank state in China, which will hinder the reasonable and orderly development of this station. Four parts, the technical performance, economic benefit, ecological impact and social benefit, are considered in this paper, and a multi-angle evaluation index system of the wind-PV-ES and transmission system is designed. The projection pursuit model is used to evaluated system functionality conventionally; relative entropy theory is used to evaluate the system functionality simultaneously; and a comprehensive benefit evaluation model of the technique for order preference by similar to ideal solution (TOPSIS considering both system functionality and proportionality is constructed. Finally, the national demonstration station of the wind-PV-ES-transmission system is taken as an example to testify to the practicability and validity of the evaluation index system and model.

  11. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  12. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  13. Transient Analysis of Large Scale PV Systems with Floating DC Section

    Directory of Open Access Journals (Sweden)

    George C. Lazaroiu

    2012-09-01

    Full Text Available The increasing penetration of renewable sources with power-electronic interfaces in power systems is raising technical problems and the overall efficiency of photovoltaic systems can decrease dramatically. In this context, the optimal layout for the photovoltaic system is required. The most adequate strategy to connect the renewable system to the electrical power grid or to supply the end users must be adopted. The present paper proposes a design layout of a PV plant using a DC bus system to improve the overall energy conversion efficiency. An analysis of steady-state system stability, voltage drop and DC cable conduction losses is conducted. The leakage currents to the ground are investigated through simulations. Experimental results are shown focused on the analysis of optimal layout of photovoltaic systems under particular operating conditions.

  14. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  15. Space Shuttle production verification motor 1 (PV-1) field joint protection system, volume 7

    Science.gov (United States)

    Wilkinson, J. P.

    1990-01-01

    The performance of the field joint protection system (FJPS) of the Space Shuttle Production Verification Motor 1 (PV-1), as evaluated by postfire hardware inspection. Compliance with the specifications is shown for the FJPS assembly and components. The simplified FJPS and field joint heaters performed nominally, maintaining all joint seal temperatures within the required range. One anomally was noted on the igniter-to-case joint heater during postfire inspection. The heater buckled off the surface in two areas, resulting in two hot spots on the heater and darkened heater insulation. The condition did not affect heater performance during ignition countdown and all igniter seals were maintained within required temperature limits.

  16. PV power forecast using a nonparametric PV model

    OpenAIRE

    Almeida, Marcelo Pinho; Perpiñan Lamigueiro, Oscar; Narvarte Fernández, Luis

    2015-01-01

    Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quant...

  17. An Automatic Number Plate Recognition System under Image Processing

    OpenAIRE

    Sarbjit Kaur

    2016-01-01

    Automatic Number Plate Recognition system is an application of computer vision and image processing technology that takes photograph of vehicles as input image and by extracting their number plate from whole vehicle image , it display the number plate information into text. Mainly the ANPR system consists of 4 phases: - Acquisition of Vehicle Image and Pre-Processing, Extraction of Number Plate Area, Character Segmentation and Character Recognition. The overall accuracy and efficiency of whol...

  18. Synthetically Control of a Hybrid PV/FC/SC Power System for Stand-Alone Applications

    Directory of Open Access Journals (Sweden)

    Dakang Zhu

    2013-02-01

    Full Text Available In this study, a simple and practical control scheme for power assignment and load-following of a Hybrid Power System (HPS is proposed. The system consists of Photovoltaic (PV, Fuel Cell (FC, Super-Capacitor (SC, dc load, ac load and different kinds of converters. PV is chosen as a prior source, which normally operates in Maximum Power Point Tracking (MPPT mode. In order to achieve 24 h power supply under various natural conditions, FC is used as a backup source to provide the power deficit between solar generation and load demand. Taking the slow FC system dynamics into account, FC power slope has been limited to protect FC from fuel starvation, whereas SC is chosen to satisfy the requirement of the sudden load and solar radiation changes. Besides, a V/f controller is designed to meet ac load demand, while keeping the voltage and frequency within an acceptable range. All the details of this study, including system structure, control diagrams and MATLAB simulation results, are presented.

  19. DESIGN & IMPLEMENTATION OF AN INTELLIGENT SOLAR HYBRID INVERTER IN GRID ORIENTED SYSTEM FOR UTILIZING PV ENERGY

    Directory of Open Access Journals (Sweden)

    MASUDUL HAIDER IMTIAZ

    2010-12-01

    Full Text Available This paper demonstrates the implementation of a prototype of IPS (instant power supply system to ensure continuous output current to load in residential application utilizing both Photovoltaic (PV energy and AC Grid. Utility interfacing PWM inverter designed here to operate by both solar energy and storage batteries that highly satisfies the necessity in rural areas where National Grids are hardly available and power cut problem reduces the effectiveness of IPS. Solar energy gets priority here to charge storage battery rather than AC source that may save hundreds of mega watts power every day. To extend the battery lifetime and keep system components hazard-free, it includes exact battery-level sensing, charging- urrent controlling by microcontroller unit (MCU and a cumulative DC/AC MPPT (Maximum Power Point Tracking charging to congregatemaximum PV energy from AC Solar Modules. Investigation on improvement of power-interfacing control and optimization of overall system operation assent to intend usage recommendation in this exposition. Computer simulations and experiment results show the validity of this proposed system to have high power conversion efficiency and low harmonic distortions.

  20. Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk

    Directory of Open Access Journals (Sweden)

    M.C. Falvo

    2015-05-01

    Full Text Available Photovoltaic systems have played a key role over the last decade in the evolution of the electricity sector. In terms of safety design, it’s important to consider that a PV plant constitutes a special system of generation, where the Direct Current (DC presence results in changes to the technical rules. Moreover, if certain electrical faults occur, the plant is a possible source of fire. Choices regarding the grounding of the generator and its protection devices are fundamental for a design that evaluates fire risk. The subject of the article is the analysis of the relation between electrical phenomena in PV systems and the fire risk related to ensuring appropriate fault detection by the electrical protection system. A description of a grid-connected PV system is followed firstly by a comparison of the design solutions provided by International Standards, and secondly by an analysis of electrical phenomena which may trigger a fire. A study of two existing PV systems, where electrical faults have resulted in fires, is then presented. The study highlights the importance of checking all possible failure modes in a PV system design phase, to assess fire risk in advance. Some guidelines for the mitigation of electrical faults that may result in a fire are finally provided.

  1. Simulation Study on Solar PV/T System Performance of Building in Chongqing%重庆地区建筑太阳能PV/T系统性能模拟研究

    Institute of Scientific and Technical Information of China (English)

    宋石海; 庄春龙; 张洪宇

    2013-01-01

    The two application forms of solar PV/T in roof sand walls in Chongqing are studied through simulation with TRNSYS for a year and photo-electric and photo-thermal features are analyzed. The results show that the power production and photo-thermal transfer amount of R-PV/T system are higher than those of W-PV/T, but W-PV/T laying is out of the limit of building, so it can be applied by building walls and it's feasible. It offers some ref-erences for the application of PV/T in parts of low solar radiation in Chongqing.%  利用TRNSYS软件对太阳能光电/热综合利用系统(PV/T)在重庆地区的屋顶及墙面两种应用形式进行了全年模拟研究,对其光电、光热特性进行了分析。得出R-PV/T系统的发电总量与系统的光热转换总量高于W-PV/T系统,而W-PV/T系统的敷设可以不受屋面场地的限制,使建筑墙体表面获得利用,因此仍然具有较大可行性。论文的研究为PV/T在重庆等太阳辐射强度较弱地区的应用提供了参考。

  2. Reliable Designing of Stand-alone PV/FC Hybrid System

    Directory of Open Access Journals (Sweden)

    Saber Arabi Nowdeh

    2013-06-01

    Full Text Available Application of renewable energy sources has shown a perfect potential as a form of contribution to conventional power generation systems. This paper presents a hybrid system based on photovoltaic (PV module and PEM (proton exchange membrane fuel cell (FC with the aim of selling electricity to distribution network (DN and improving its reliability. In this paper, moreover supplying the load electricity of system, the proposed hybrid system is capable to sale electricity to DN and by electricity injection causes DN reliability improvement. The revenue from selling electricity to DN is considered as the system profit (SP. An optimization is applied to maximize the SP using GAMS environment. This study claims that moreover load electricity provision, electricity can also be sold to DN by proposed hybrid system and reliability of DN in load supplement can be increased by injecting the electricity to it.

  3. Robust design and optimization for autonomous PV-wind hybrid power systems

    Institute of Scientific and Technical Information of China (English)

    Jun-hai SHI; Zhi-dan ZHONG; Xin-jian ZHU; Guang-yi CAO

    2008-01-01

    This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-Ⅱ. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.

  4. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  5. Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Xiaodan Guo

    2016-05-01

    Full Text Available Recently, China has brought out several air-pollution control policies, which indicate the prominent position that PV power hold in improving atmosphere environment. Under this policy environment, the development of China’s PV power will be greatly affected. Firstly, after analyzing the influencing path of air-pollution control policies on PV power, this paper built a system dynamics model, which can be used as a platform for predicting China’s PV power development in every policy scenario during 2015–2025. Secondly, different model parameters are put into the SD model to simulate three scenarios of air-pollution control policies. Comparisons between the simulated results of different policy scenarios measure the air-pollution control policy’s impact on China’s PV power in the aspect of generation, installed capacity, power curtailment and so on. This paper points out the long-term development pattern of China’s PV power under latest incentive policies, and provides reference for the policymakers to increase the effect and efficiency of air-pollution control policies.

  6. Experimental study of a novel photovoltaic solar-assisted heat pump/loop heat-pipe (PV-SAHP/LHP) system

    Science.gov (United States)

    Zhang, Tao; Pei, Gang; Zhu, Qunzhi; Ji, Jie

    2017-01-01

    A prototype of a photovoltaic solar-assisted heat-pump/loop heat-pipe system (PV-SAHP/LHP) was constructed in this paper. The system was a combination of photovoltaic solar-assisted heat pump system (PV-SAHP) and loop heat pipe photovoltaic/thermal (LHP-PV/T) system. The combined system can carry out with two modes but using the same working fluid, and the two modes can switch operation freely. R600a was employed as the working fluid, and system performance under different working mode was presented in this paper. The results show that the day average photothermal efficiency & photovoltaic efficiency can reach to 43.6% & 11.3% under LHP-PV/T working mode compared with that of 57.5% & 12.1% under PV-SAHP working mode: Besides that, a day average COP of 3.66 was obtained under PV-SAHP working mode.

  7. Forecasting the Cell Temperature of PV Modules with an Adaptive System

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2013-01-01

    Full Text Available The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to know the operating temperature of the photovoltaic modules. The determination of the operating temperature is a key parameter for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that evaluate the referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative method, based on the employment of artificial neural networks (ANNs, was proposed to predict the operating temperature of a PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored data and with some of the most cited empirical correlations proposed by different authors.

  8. On the Performance of Hybrid PV/Unitized Regenerative Fuel Cell System in the Tropics

    Directory of Open Access Journals (Sweden)

    Salwan Dihrab

    2012-01-01

    Full Text Available Solar hydrogen system is a unique power system that can meet the power requirements for future energy demands. Such a system uses the hydrogen as the energy carrier, which produces energy through the electrolyzer with assistance of the power from the PV during the sunny hours, and then uses stored hydrogen to produce energy through the fuel cell after sunset or on cloudy days. The current study has used premanufactured unitized regenerative fuel cells in which the electrolyzer and the fuel cell function within one cell at different modes. The system components were modeled and the one-day real operational and simulated data has been presented and compared. The measured results showed the ability of the system to meet the proposed load, and the total efficiency was about 4.5%.

  9. Efficient Utilization and Development Situation of Water-Cooling PV/T System%水冷型PV/T系统的高效利用与发展现状

    Institute of Scientific and Technical Information of China (English)

    马双; 吴家正; 阮应君

    2015-01-01

    在光伏光热系统(PV/T)中为提高其电效率并高效利用低品位热能,近年来对于冷却工质及其工作方式的研究越来越多。其中,水冷式以其方便直接使用、无需二次换热、良好的光学特性和高热容量等优点,受到了广泛的理论研究和实验测试。通过以效率的视角探究光伏覆盖率、背管分布形式等影响流体冷却能力的因素,并结合相变PV/T、PV/T矩阵等PV/T未来发展新趋势,为今后水冷型PV/T系统进一步高效实验提供了研究方向。%In order to improve the efficiency of photovoltaic power and make the low-grade thermal energy useful in the photovoltaic/thermal hybrid system, there were more and more researches on cooling media and the ways of working in recent years, among which the water-cooling type PV/T system has been widely theoretical researched and experimental tested for its convenient using, without secondary heat exchange, optical properties and high thermal capacity. From the perspective of efficiency, this paper explores better flow distribution, coverage rate, PCM-PV/T, PV/T arrays and other factors which influence water cooling capacity severely, providing a research direction to the future high efficient experimental methods of the water-cooling type PV/T system.

  10. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    Energy Technology Data Exchange (ETDEWEB)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  11. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  12. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.

    2010-06-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system using pulse width modulation (PWM) technique was developed for battery charging control which can increase the charging capacity by 78%. For high-efficiency lighting, the LED is directly driven by battery using a PWM discharge control to eliminate a DC/DC converter. Two solar-powered LED lighting systems (50W and 100W LED) were built. The long-term outdoor tests have shown that the loss of load probability for full-night lighting requirement is zero for 50W LED and 3.6% for 100W LED. © 2010 IEEE.

  13. Remote monitoring of solar PV system for rural areas using GSM, V-F & F-V converters

    Science.gov (United States)

    Tejwani, R.; Kumar, G.; Solanki, C. S.

    2016-05-01

    The Small capacity photovoltaic (PV) systems like solar lantern and home lighting systems installed in remote rural area often fail without any prior warning due to lack of monitoring and maintenance. This paper describes implementation of remote monitoring for small capacity solar PV system that uses GSM voice channel for communication. Through GSM analog signal of sine wave with frequency range 300-3500 Hz and amplitude range 2.5-4 V is transmitted. Receiver is designed to work in the same frequency range. The voltage from solar PV system in range of 2 to 7.5 V can be converted to frequency directly at the transmitting end. The frequency range from 300-6000 Hz can be sensed and directly converted to voltage signal at receiving end. Testing of transmission and reception of analog signal through GSM voice channel is done for voltage to frequency (V-F) and frequency to voltage (F-V) conversions.

  14. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  15. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  16. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    A modified perturb and observe (P&O) algorithm is presented to improve maximum power point tracking (MPPT) performance of photovoltaic (PV) systems. This modified algorithm is applied to a single-phase PV system based on deadbeat control in order to test the tracking accuracy and its impact...... on the reliability of the whole system. Both simulations and experimental results show that the proposed algorithm offers a fast response as well as smaller steady-state oscillations even under low irradiance condition compared with classical methods....

  17. License Plate Recognition for Parking Control System by Mathematical Morphology

    Institute of Scientific and Technical Information of China (English)

    Javier Ortiz; Alberto Gómez

    2014-01-01

    Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system.

  18. Comparison of Different MPPT Algorithms with a Proposed One Using a Power Estimator for Grid Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Manel Hlaili

    2016-01-01

    Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.

  19. The Integration and Control of Multifunctional Stationary PV-Battery Systems in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Mulder, Grietus; Van Mierlo, Joeri

    2013-01-01

    . The objective of this paper is to develop and detail the method of optimum sizing energy storage for grid connected distribution systems using newly devised BESS control protocol and investigate its sensitivity to factors which are known to influence energy system performance and hence storage requirements......The paper investigates the potential of using lumped stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order to defer upgrades needed in case of large penetration of electric vehicle (EV), electrified heat pump (HP) in presence of photovoltaic (PV......) panel on the view of techno economic optimal sizing taking the consideration of season-based diurnal dynamics. The BESS is primarily dimensioned for the peak shaving operation targeted for the counterbalance of overloading of transformer; BESS also participates in arbitrage (buy low, sell high...

  20. Improved Synthesis of Global Irradiance with One-Minute Resolution for PV System Simulations

    Directory of Open Access Journals (Sweden)

    Martin Hofmann

    2014-01-01

    Full Text Available High resolution global irradiance time series are needed for accurate simulations of photovoltaic (PV systems, since the typical volatile PV power output induced by fast irradiance changes cannot be simulated properly with commonly available hourly averages of global irradiance. We present a two-step algorithm that is capable of synthesizing one-minute global irradiance time series based on hourly averaged datasets. The algorithm is initialized by deriving characteristic transition probability matrices (TPM for different weather conditions (cloudless, broken clouds and overcast from a large number of high resolution measurements. Once initialized, the algorithm is location-independent and capable of synthesizing one-minute values based on hourly averaged global irradiance of any desired location. The one-minute time series are derived by discrete-time Markov chains based on a TPM that matches the weather condition of the input dataset. One-minute time series generated with the presented algorithm are compared with measured high resolution data and show a better agreement compared to two existing synthesizing algorithms in terms of temporal variability and characteristic frequency distributions of global irradiance and clearness index values. A comparison based on measurements performed in Lindenberg, Germany, and Carpentras, France, shows a reduction of the frequency distribution root mean square errors of more than 60% compared to the two existing synthesizing algorithms.

  1. Three-Phase PV CHB Inverter for a Distributed Power Generation System

    Directory of Open Access Journals (Sweden)

    Pierluigi Guerriero

    2016-10-01

    Full Text Available This work deals with the design of a three-phase grid-tied photovoltaic (PV cascade H-bridge inverter for distributed power conversion. The power balancing among the phases must be properly addressed. In fact, an intra-phase power imbalance—arising from uneven irradiance and temperature conditions—generates a per-phase power imbalance. This latter can be compensated by the injection of a proper zero-sequence voltage, while the intra-phase balance is ensured by means of a hybrid modulation method which is able to guarantee the handling of unequal DC (Direct Current sources, stable circuit operation, and maximization of PV power production. The digital controller is developed and tested in Matlab/Simulink environment integrated with XSG (Xilinx System Generator, thus allowing an easy transfer on a field-programmable gate array (FPGA platform and accurately describing the behavior of a real hardware implementation. Thus, numerical results have been considered to prove the effectiveness of the proposed approach.

  2. Store solar power and demand-based consumption. A small market survey of PV battery storage systems; Solarstrom speichern und bedarfsgerecht verbrauchen. Eine kleine Marktuebersicht ueber PV-Batteriespeichersysteme

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2013-10-15

    Rising electricity prices and falling tariff rates for PV systems make the use of energy storage more interesting. Currently on the market more than 50 companies offer different solution variants. The trend is the use of PV systems with battery storage of cheaper lead batteries to the more expensive lithium-ion batteries with capacities from 2 to 50 kWh. [German] Die steigenden Strompreise und fallenden Verguetungssaetze fuer PV-Anlagen machen den Einsatz von Stromspeichern zunehmend interessanter. Derzeit positionieren sich auf dem Markt ueber 50 Firmen mit unterschiedlichen Loesungsvarianten. Der Trend geht zum Einsatz von PV-Batteriespeichersystemen mit preisguenstigeren Blei-Batterien zu den kostenintensiveren Lithium-Ionen-Akkumulatoren mit Speicherkapazitaeten von 2 bis 50 kWh.

  3. Experimental Study on the Electric and Thermal Performance of PV/T System%PV/T系统电热性能的实验研究

    Institute of Scientific and Technical Information of China (English)

    鲁丹; 吕建

    2012-01-01

    介绍了PV/T系统组成的原理,针对PV/T系统的电热性能进行了实验研究,并对实验数据进行了处理.计算出了不同参数下该PV/T系统的热效率和电效率,分析了这些参数对系统热效率的影响,以及PV/T模块表面温度对系统电效率的影响.

  4. Experimental study of water-cooled panel type PV/T system in winter%水为工质的面板式PV/T系统冬季实验研究

    Institute of Scientific and Technical Information of China (English)

    朱群志; 唐李清; 李金斗; 李超; 陈慧

    2014-01-01

    研究一种以水为工质的面板式 PV/T(photovoltaic/thermal)系统在冬季的性能。搭建 PV/T 实验和测试系统,测试户外条件下系统冬季运行时的各项参数,对实验数据进行处理、分析,获得光伏电池的电效率和系统的热效率。结果表明:面板式 PV/T 系统运行时电池板温度较低,电池转换效率较高;工质通过循环加热可上升30℃左右,综合效率接近普通PV板的两倍。%Presents an experimental study on a water-cooling panel type PV/T system in winter.The experimental system was built up and various factors were investigated under the outdoor condition in winter.The electric efficiency and thermal efficiency of the system were obtained through the analysis of the experiment data.The results show that the PV/T system can effectively reduce the temperature of the PV panels in winter,and accordingly improve the conversion efficiency.The temperature of working fluid could increase by 30℃ in the circulate mode.The overall efficiency of PV/T can reach twice as that of the PV.

  5. Harmonic Injection-Based Power Fluctuation Control of Three-Phase PV Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Nian-Cheng Zhou

    2015-02-01

    Full Text Available Unbalanced voltage will inevitably cause power and DC voltage fluctuations in a three-phase PV system. The deterioration of power quality will do great harm to the PV panels and the loads, so it is necessary to suppress the power fluctuations. This paper further explores the coefficients control strategy of PV converters under unbalanced voltage conditions, aiming to suppress power fluctuations by controlling the injection of some specific orders of current harmonics into the grid. In order to achieve this, the current reference of the PV inverter has been changed by bringing in two control coefficients, and the expression of each order of the current harmonics has been deduced. Based on the standards of PV systems, the regions from which the coefficients can be selected are determined. Then, by tuning these coefficients in the feasible regions, the output parameters (power fluctuation, current THD and odd harmonics can be controlled precisely. The model of this method is built and simulated in PSCAD/EMTDC, and as a result, it is shown that the power fluctuations can be restricted according to different power quality requirements.

  6. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    Science.gov (United States)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  7. PV System 'Availability' as a Reliability Metric -- Improving Standards, Contract Language and Performance Models

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey T.; Hill, Roger; Walker, Andy; Dobos, Aron; Freeman, Janine

    2016-11-21

    The use of the term 'availability' to describe a photovoltaic (PV) system and power plant has been fraught with confusion for many years. A term that is meant to describe equipment operational status is often omitted, misapplied or inaccurately combined with PV performance metrics due to attempts to measure performance and reliability through the lens of traditional power plant language. This paper discusses three areas where current research in standards, contract language and performance modeling is improving the way availability is used with regards to photovoltaic systems and power plants.

  8. Web-Based Application for the Sizing of a Photovolatic (PV Solar Power System

    Directory of Open Access Journals (Sweden)

    F.K. Ariyo

    2016-07-01

    Full Text Available The harnessing of solar energy, especially for provision of energy for residential consumption, has been on the rise in developing countries, especially Nigeria, in recent times. Due to this reason, there is the need for a tool which makes the design of the system needed to harness this abundant energy more accurate and efficient by considering several factors including specific climate conditions of the country. This paper presents the design and development of a web-based application that helps to estimate the ratings and quantities of the components of the Solar Photovoltaic (PV System (which converts the solar energy to electrical energy required based on several factors including the specific climatic conditions of major cities in Nigeria.

  9. Comparison of specific production performances by two crystalline silicon PV systems

    Directory of Open Access Journals (Sweden)

    Martin Fajman

    2013-01-01

    Full Text Available A comparison of two independent photovoltaic (PV systems located close to each other on the south of the Czech Moravian Highland was accomplished. Due to differences in installation parameters; reference quantities were used to calculate transformed data sets for specific production performances comparison. Differences in monthly and annually daily production were performed by t-test.According to obtained results, it was concluded that annually mean daily productions per 1 kWp of installed capacity and per 1 m2 of active area of the panels are significantly better by single crystal silicon installation in tracking system than by stable installation of a different technology of single crystal silicon. However, comparing this performance per 1 m2 of occupied land by studied power-plants the stable installation performed higher production rates on daily mean basis in majority of months of the year 2010 as well as by annually mean daily production.

  10. Static Equivalent of Distribution Grids With High Penetration of PV Systems

    DEFF Research Database (Denmark)

    Samadi, Afshin; Söder, Lennart; Shayesteh, Ebrahim;

    2015-01-01

    High penetrations of photovoltaic (PV) systems within load pockets in distribution grids have changed pure consumers to prosumers. This can cause technical challenges in distribution and transmission grids, such as overvoltage and reverse power flow. Embedding voltage support schemes into PVs......, such as standard cos phi(P) characteristic proposed by the German grid codes, may cause more changes in the steady-state behavior of distribution grids and, in turn, the transmission side. Accordingly, it is important to properly model active distribution grids to analyze the system impacts of these changes...... to plan and operate future smart power grids. However, due to the high dimension of distribution grids, considering a detailed distribution grid to study the transmission side or a fraction of the distribution grid is either cumbersome or impractical. Therefore, it is required to develop a reasonable...

  11. Distribution System Augmented by DC Links for Increasing the Hosting Capacity of PV Generation

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Demirok, Erhan; Teodorescu, Remus

    2012-01-01

    This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further, they are cha......This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further...

  12. Single Phase PV Grid-Connected in Smart Household Energy System with Anticipation on Fault Conditions

    Directory of Open Access Journals (Sweden)

    Feri Yusivar

    2014-02-01

    Full Text Available This paper proposes an algorithm of Smart household energy systems to anticipate fault conditions in power system grid. Single phase PV grid-connected in smart household energy system is a smart system that determines electrical supply conditions to the load in residential electrical system. The smart system is consisted of two voltage source, conventional electricity system from national electricity provider as preferred source and photovoltaic as the alternative source. In smart system, fault conditions can be anticipated by selecting the appropriate voltage sources to supply the load. The condition of smart system can be described in power flow regulation to the load by detection and identification of amplitude, phase angle, and frequency of the voltage source compared to the system reference. The system mechanism is based on detection of voltage source using static transfer switch (STS with phase locked loop (PLL as voltage detection algorithm which output is used to determine decision logic algorithm for switching conditions. The results show that conditions of smart power system flow can be obtained based on voltage source selection in decision logic when fault condition occurs.

  13. Hamiltonian system for orthotropic plate bending based on analogy theory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.

  14. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  15. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  16. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  17. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shafiqur; Al-Hadhrami, Luai M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 767, Dhahran-31261 (Saudi Arabia)

    2010-12-15

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  18. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  19. Orion Boiler Plate Airdrop Test System

    Science.gov (United States)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  20. A techno-economic comparison of rural electrification based on solar home systems and PV microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A. [TERI, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003 (India); Kandpal, T.C. [Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India)

    2010-06-15

    Solar home systems are typically used for providing basic electricity services to rural households that are not connected to electric grid. Off-grid PV power plants with their own distribution network (micro/minigrids) are also being considered for rural electrification. A techno-economic comparison of the two options to facilitate a choice between them is presented in this study on the basis of annualised life cycle costs (ALCC) for same type of loads and load patterns for varying number of households and varying length and costs of distribution network. The results highlight that microgrid is generally a more economic option for a village having a flat geographic terrain and more than 500 densely located households using 3-4 low power appliances (e.g. 9 W CFLs) for an average of 4 h daily. The study analyses the viability of the two options from the perspectives of the user, an energy service company and the society. (author)

  1. Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks with High PV Penetration

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmaeil Hamedani; Guerrero, Josep M.

    2017-01-01

    issues of distribution networks. In this paper, the battery energy storage (BES) systems are used in order to solve the voltage rise during the peak PV generation as well as the voltage drop while meeting the peak load. A coordinated control strategy is proposed to regulate the charge/discharge of BESs...... using a combination of the local droop based control method and a distributed control scheme which ensures the voltages of feeder remain within allowed limits. Therefore, two different consensus algorithms are used: The first algorithm determines the BESs participation in voltage regulation in terms......The voltage rise problem in low voltage (LV) distribution networks with high penetration of photovoltaic (PV) resources is one of the most important challenges in the development of these renewable resources since it may prevent the maximum PV penetration considering the reliability and security...

  2. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    Science.gov (United States)

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems.

  3. How China became a leader in solar PV : An innovation system analysis

    NARCIS (Netherlands)

    Huang, Ping; Negro, Simona O.; Hekkert, Marko P.; Bi, Kexin

    2016-01-01

    In this paper we focus on understanding the rapid rise of the Chinese PV industry and its profound impact on the global PV industry. We investigate how it is possible that a nation that is still focusing on catching up in terms of industry, innovation and technology has been able to bring manufactur

  4. Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Mather, Barry; Ainsworth, Nathan; Gotseff, Peter; Baker, Kyri

    2016-05-05

    A 15% PV penetration threshold is commonly used by utilities to define photovoltaic (PV) screening methods where PV penetration is defined as the ratio of total solar PV capacity on a line section to peak load. However, this method doesn't take into account PV locational impact or feeder characteristics that could strongly change the feeder's capability to host PVs. This paper investigates the impact of PV location and phase connection type on PV hosting capacity, and then proposes a fast-track PV screening approach that leverages various PV hosting capacity metric responding to different PV locations and types. The proposed study could help utilities to evaluate PV interconnection requests and also help increase the PV hosting capacity of distribution feeders without adverse impacts on system voltages.

  5. 新型平板太阳能PV/T空气集热器传热特性的数值研究%Numerical Simulation of Thermal Performance of a New Type of Flat-Plate Solar PV/T Air Collector

    Institute of Scientific and Technical Information of China (English)

    孙健; 徐银文; 黄章峰; 李杰

    2015-01-01

    文中设计了一款新型PV/T一体化空气集热器,建立了新型PV/T空气系统内部传热过程的一维非稳态数学模型,并利用差分法对模型进行了数值计算。根据计算结果对一体化系统的性能及影响因素进行了分析。结果表明:在一定的光照强度下,随着空气质量流量增加,电池板温度Tp逐渐下降,空气温升逐渐降低;而热效率、光电转化效率、联合效率随空气流量的增加有所升高。模型的建立为高性能太阳能PV/T一体化空气集热器的优化设计提供较好理论依据。%In this paper, a new type of integrated solar PV/T air collector is designed. A one-dimensional unsteady mathematical model is developed, the internal heat transfer process is calculated by ifnite difference approach. The performance of PV/T solar air collector is predicted under different parameters and conditions. Results indicate that the temperature of solar cell and outlet air decrease with the increase of air mass lfow rate under the same incident solar intensity. Then, the thermal efifciency, electrical efifciency and total efifciency of PV/T system increase with the rising of the inlet air mass lfow rate. The models provide valuable theoretical basis for the optimal design of high-performance solar PV/T integrated air system.

  6. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY ana...

  7. Approaches for developing a sizing method for stand-alone PV systems with variable demand

    Energy Technology Data Exchange (ETDEWEB)

    Posadillo, R. [Grupo de Investigacion en Energias y Recursos Renovables, Dpto. de Fisica Aplicada, E.P.S., Universidad de Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba (Spain); Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada. Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)

    2008-05-15

    Accurate sizing is one of the most important aspects to take into consideration when designing a stand-alone photovoltaic system (SAPV). Various methods, which differ in terms of their simplicity or reliability, have been developed for this purpose. Analytical methods, which seek functional relationships between variables of interest to the sizing problem, are one of these approaches. A series of rational considerations are presented in this paper with the aim of shedding light upon the basic principles and results of various sizing methods proposed by different authors. These considerations set the basis for a new analytical method that has been designed for systems with variable monthly energy demands. Following previous approaches, the method proposed is based on the concept of loss of load probability (LLP) - a parameter that is used to characterize system design. The method includes information on the standard deviation of loss of load probability ({sigma}{sub LLP}) and on two new parameters: annual number of system failures (f) and standard deviation of annual number of failures ({sigma}{sub f}). The method proves useful for sizing a PV system in a reliable manner and serves to explain the discrepancies found in the research on systems with LLP<10{sup -2}. We demonstrate that reliability depends not only on the sizing variables and on the distribution function of solar radiation, but on the minimum value as well, which in a given location and with a monthly average clearness index, achieves total solar radiation on the receiver surface. (author)

  8. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    Directory of Open Access Journals (Sweden)

    Station Md. Ibrahim

    2015-05-01

    Full Text Available This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai. For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. The presented system reduce approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the proposed developed and installed system will provide very good opportunities for telecom sector in near future.

  9. New PV facade system for panels with amorphous cells; Fotovoltaik Fassade. Neues PV Fassadensystem fuer Module mit amorphen Zellen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durot, R. [Zagsolar, Kriens (Switzerland); Wyss, T. [Wyss Aluhit AG, Littau (Switzerland)

    2008-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews work done at the University of Applied Sciences in Lucerne, Switzerland, on the use of thin-film photovoltaic modules in facades. Several issues concerning mechanical stability were investigated by installing standard thin-film-modules using the Aluhit-P-mounting-system and judging them according to the relevant norms. In the town of Goldau, Switzerland, a 3.1 kWp pilot installation was realised on the south and east-facing facades of a transformer station. The results of data acquisition show a higher energy production from the south-facing side compared to calculations, while the energy production from the east facade was lower than calculated. The pilot installation demonstrated the excellent possibilities offered by the use of thin-film-modules in facade-mounted applications.

  10. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  11. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Directory of Open Access Journals (Sweden)

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-03-01

    Full Text Available This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  12. Advanced polymer PV system: PVMaT 4A1 annual report, September 1995--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J; Chleboski, R; Farber, M; Fava, J; Kane, P; Martz, J [Evergreen Solar, Inc., Waltham, MA (United States)

    1997-06-01

    Purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The Innovative Mounting System (IMS) was developed and testing begun during the first year of this contract. IMS reduces the cost of installed PV systems by reducing labor and materials costs both in the factory and in field installation. It incorporates several advances in polymers, processing methods and product design. An advanced backskin material permits elimination of the conventional Al perimeter frame by protecting and sealing the edge and by direct bonding of multifunctional mounting bars. Electrical interconnection is easier and more reliable with a new junction box. Feasibility of a non-vacuum, high-throughput lamination method was also demonstrated, involving a novel transparent encapsulant with UV stabilization package that can be laminated in air and which should lead to longer field life than conventional designs. The first-year program culminated in the fielding of prototype products with the new encapsulant, backskin, junction box, frameless edge seal, and IMS. Feedback and marketing information from potential customers were solicited. Result promises a $0.50/watt manufacturing and system cost reductions as well as increased system lifetime. The second year will complete refinement and test of the encapsulant and backskin, complete the new lamination method, and refine product designs.

  13. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Energy Technology Data Exchange (ETDEWEB)

    Nema, Pragya; Rangnekar, Saroj [Energy Engineering Department, Maulana Azad National Institute of Technology , Bhopal-462007 M.P. (India); Nema, R.K. [Electrical Engineering Department, Maulana Azad National Institute of Technology, Bhopal-462007 M.P. (India)

    2010-07-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77 deg.23'and Latitude 23 deg.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  14. Analytical evaluation of the operation data from selected PV-demonstration systems in the MuD-programme. Final report; Analytische Auswertung der Messergebnisse von ausgewaehlten PV-Demonstrationsanlagen im MuD-Programm. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, H. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Heinemann, D. [Oldenburg Univ. (Germany). Fachbereich 8 - Physik; Wiemken, E. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1996-02-01

    From several PV-demonstration programmes, real performance data and the range in utilizing the systems are obtained. Nevertheless, for a particular system, no precise assessment and interpretation of the real system behaviour can be given: The quantification and the separation of the avoidable and of the unavoidable energy losses in the system is not to perform from the monitored data alone. Aim of this project was the interpretation of real operation data of PV-systems, the calculation of all steps of energy conversion and hence the determination of the energy losses in particular PV-systems as well as the presentation of a measure for energy production and system performance. This task includes a brief survey of the optimization potential of the energetic performance. The method choosen was an energy flow analysis, carried out on selected demonstration plants of the MuD-programme. For this reason, detailed simulation models were used. The results of the simulation calculations gives the measure to interprete the monitored system performance. In the course of the project, the analytical evaluation has shown a large ability in the assessment and interpretation of real system perforamances. Since the concept of the evaluation is transferable to many PV-systems, it represents a base for further applications in this field and in the field of the online-system control of PV-plants. (orig.) [Deutsch] In verschiedenen Demonstrationsprogrammen werden aus Langzeitmessungen Groessenordnung und Spannbreite der Nutzungsgrade photovoltaischer Anlagen ermittelt. Fuer eine spezifische Anlage ist damit jedoch keine praezise Einschaetzung bzw. Interpretation des Systemverhaltens moeglich, da die Quantifizierung der unvermeidbaren und der vermeidbaren Energieverluste im System nicht aus den Messdaten allein erfolgen kann. Ziel dieses Projektes war die Interpretation des reellen Betriebs von PV-Anlagen, die Berechnung der Zusammensetzung und der Bandbreite der Energieverluste im

  15. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Cho, Hyosun; Kang, Hyojeung

    2012-02-01

    An ATP-binding cassette (ABC) transporter, called the PseEF efflux system, was identified at the left border of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. The PseEF efflux system was located within a 3.3-kb operon that encodes a periplasmic membrane fusion protein (PseE), and an ABC-type cytoplasmic membrane protein (PseF). The PseEF efflux system exhibited amino acid homology to a putative ABC efflux system (MacAB) of E. coli W3104 with identities of 47.2% (i.e., PseE to MacA) and 57.6% (i.e., PseF to MacB). A nonpolar mutation within the pseF gene was generated by nptII insertional mutagenesis. The resultant mutant strain showed significant reduction in secretion of syringomycin (74%) and syringopeptin (71%), as compared to parental strain B301D. Quantitative real-time RT-PCR was used to determine transcript levels of the syringomycin (syrB1) and syringopeptin (sypA) synthetase genes in strain B301D-HK7 (a pseF mutant). Expression of the sypA gene by mutant strain B301D-HK7 was approximately 6.9% as compared to that of parental strain B301D, while the syrB1 gene expression by mutant strain B301D-HK7 was nearly 14.6%. In addition, mutant strain B301D-HK7 was less virulent by approximately 67% than parental strain B301D in immature cherry fruits. Mutant strain B301D-HK7 was not reduced in resistance to any antibiotics used in this study as compared to parental strain B301D. Expression (transcript levels) of the pseF gene was induced approximately six times by strain B301D grown on syringomycin minimum medium (SRM) supplemented with the plant signal molecules arbutin and D-fructose (SRMAF), as compared to that of strain B301D grown on SRM (in the absence of plant signal molecules). In addition, during infection of bean plants by P. syringae pv. syringae strain B728a, expression of the pseF gene increased at 3 days after inoculation (dai). More than 180-fold induction was observed in transcript levels of the pseF gene by parental

  16. Simulation Model developed for a Small-Scale PV-System in a Distribution Network

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Mihet-Popa, Lucian; Isleifsson, Fridrik Rafn

    2012-01-01

    This paper presents a PV panel simulation model using the single-diode four-parameter model based on data sheet values. The model was implemented first in MATLAB/Simulink, and the results have been compared with the data sheet values and characteristics of the PV panels in standard test conditions....... Moreover to point out the strong dependency on ambient conditions and its influence on array operation and to validate simulation results with measured data a complex model has also been developed. A PV inverter model, using the same equations and parameters as in MATLAB/Simulink has also been developed...

  17. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery.

  18. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    Science.gov (United States)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  19. Optimization of PV/WIND/DIESEL Hybrid Power System in HOMER for Rural Electrification

    Science.gov (United States)

    Hassan, Q.; Jaszczur, M.; Abdulateef, J.

    2016-09-01

    A large proportion of the world's population lives in remote rural areas that are geographically isolated and sparsely populated. The present study is based on modeling, computer simulation and optimization of hybrid power generation system in the rural area in Muqdadiyah district of Diyala state, Iraq. Two renewable resources, namely, solar photovoltaic (PV) and wind turbine (WT) are considered. The HOMER software is used to study and design the proposed hybrid energy system model. Based on simulation results, it has been found that renewable energy sources perhaps replace the conventional energy sources and would be a feasible solution for the generation of electric power at remote locations with a reasonable investment. The hybrid power system solution to electrify the selected area resulted in a least-cost combination of the hybrid power system that can meet the demand in a dependable manner at a cost about (0.321/kWh). If the wind resources in the study area at the lower stage, it's not economically viable for a wind turbine to generate the electricity.

  20. The new IEA research programme on PV systems in buildings; Das neue Forschungsprogramm der internationalen Energieagentur zu Photovoltaik an Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Laukamp, H.; Erge, T. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. fuer Photovoltaische Systeme und Messtechnik

    1998-02-01

    The International Energy Agency coordinates and supports the cooperation of OECD countries in energy politics and energy technologies by technology-oriented scientific programmes (`implementing agreements`). Under these agreements subject-oriented scientific projects (`tasks`) are carried out. Within the `Photovoltaic Power Systems Programme` the Task VII (Photovoltaics in the Built Environment) has just begun. The Fraunhofer ISE was contracted to coordinate the German contribution to Task VII and to organize information transfer to interested German institutions. So far Task VII focussed on a selection of architecturally outstanding PV buildings, on developing criteria to assess their quality and on a critical review of planned PV buildings. (orig.) [Deutsch] Die Internationale Energieagentur foerdert die Zusammenarbeit der OECD Laender in der Energiepolitik und bei den Energietechnologien, durch gemeinsam vereinbarte technologiespezifische Programme (`Implementing Agreements`). Die Programme werden durch Projekte (`Tasks`) konkretisiert. Im Programm `Photovoltaic Power Systems` wird derzeit Task VII `Photovoltaics in the Built Environment` begonnen. Das Fraunhofer ISE wurde gebeten, die deutsche Beteiligung hieran zu koordinieren und den Informationstransfer zu interessierten deutschen Firmen und Instituten zu organisieren. Schwerpunkte bisheriger Arbeiten lagen bei der Auswahl architektonisch herausragender PV-Gebaeude, bei der Erarbeitung von Kriterien zu ihrer Beurteilung und bei der kritischen Diskussion geplanter PV-Gebaeude. (orig.)

  1. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  2. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  3. Management of Power Consumption in Hybrid PV-Battery System in Rapid Variation of Temperature and Irradiance

    Directory of Open Access Journals (Sweden)

    Hadi Nabizadeh

    2013-11-01

    Full Text Available In this paper, load voltage stabilization system in PV system is presented. Considering that the solar array output power varies with temperature and radiation; so to stabilizing the voltage, feeding load and battery simultaneously, aboost converter is used to transfer extra power into the battery. Thus in the maximum power point tracking system, both power consumption and saving by the load and battery are done.

  4. Simulation models developed for voltage control in a distribution network using energy storage systems for PV penetration

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Bindner, Henrik W.

    2013-01-01

    This paper presents the development of simulation models for DER components in a distribution network, with focus on voltage controllers using energy storage systems for PV penetration. The Vanadium Redox Battery (VRB) system model, used as an energy storage system, was implemented in MATLAB....../Simulink and DIgSILENT PowerFactory, based on the efficiency of different components-such as: cell stacks, electrolytes, pumps and power converters, whilst power losses were also taken into account. The simulation results have been validated against measurements using experimental facility of a distributed power...... system laboratory. To study the variability and the interaction between feeders including VRB, PV system and active units an overvoltage controller has also been developed, implemented and tested successfully....

  5. Analytical Investigation and Control System Set-up of Medium Scale PV Plants for Power Flow Management

    Directory of Open Access Journals (Sweden)

    Rosario Miceli

    2012-11-01

    Full Text Available In the field of photovoltaic (PV plants and energy conversion from renewable sources, a large part of the technical literature is more devoted to practical aspects (new solar cells, electrically driven PV panels, safety, reduction of parasitic currents, etc. than to theoretical investigations. Despite this tendency, this paper presents a mathematical analysis of a medium scale photovoltaic power generation system connected to the distribution network and of its control system. In such a system, the conversion stage is unique due to the absence of a boost chopper. The conducted analysis leads to the interesting conclusion that the inverter used in the plant presents two degrees of freedom, easy to exploit in a control system in which the inverter simultaneously realizes the interconnection to the grid and the MPPT control. The structure of the control system is then presented, discussed and validated by means of numerical simulations.

  6. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors

    National Research Council Canada - National Science Library

    Buonomano, Annamaria; Calise, Francesco; Vicidomini, Maria

    2016-01-01

    ... and constructed in order to compare the electrical performance of a PVT solar eld with the one achieved by an identical solar eld consisting of conventional photovoltaic (PV) panels. The experime...

  7. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  8. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system.

    Science.gov (United States)

    Vargas, Paola; Farias, Gabriela A; Nogales, Joaquina; Prada, Harold; Carvajal, Vivian; Barón, Matilde; Rivilla, Rafael; Martín, Marta; Olmedilla, Adela; Gallegos, María-Trinidad

    2013-12-01

    Flavonoids are among the most abundant plant secondary metabolites involved in plant protection against pathogens, but micro-organisms have developed resistance mechanisms to those compounds. We previously demonstrated that the MexAB-OprM efflux pump mediates resistance of Pseudomonas syringae pv. tomato (Pto) DC3000 to flavonoids, facilitating its survival and the colonization of the host. Here, we have shown that tomato plants respond to Pto infection producing flavonoids and other phenolic compounds. The effects of flavonoids on key traits of this model plant-pathogen bacterium have also been investigated observing that they reduce Pto swimming and swarming because of the loss of flagella, and also inhibited the expression and assembly of a functional type III secretion system. Those effects were more severe in a mutant lacking the MexAB-OprM pump. Our results suggest that flavonoids inhibit the function of the GacS/GacA two-component system, causing a depletion of rsmY RNA, therefore affecting the synthesis of two important virulence factors in Pto DC3000, flagella and the type III secretion system. These data provide new insights into the flavonoid role in the molecular dialog between host and pathogen.

  9. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  10. Dual-purpose self-deliverable lunar surface PV electrical power system

    Science.gov (United States)

    Arnold, Jack H.; Harris, David W.; Cross, Eldon R.; Flood, Dennis J.

    1991-01-01

    A safe haven and work supported PV power systems on the lunar surface will likely be required by NASA in support of the manned outpost scheduled for the post-2000 lunar/Mars exploration and colonization initiative. Initial system modeling and computer analysis shows that the concept is workable and contains no major high risk technology issues which cannot be resolved in the circa 2000 to 2025 timeframe. A specific selection of the best suited type of electric thruster has not been done; the initial modeling was done using an ion thruster, but Rocketdyne must also evaluate arc and resisto-jets before a final design can be formulated. As a general observation, it appears that such a system can deliver itself to the Moon using many system elements that must be transported as dead payload mass in more conventional delivery modes. It further appears that a larger power system providing a much higher safe haven power level is feasible if this delivery system is implemented, perhaps even sufficient to permit resource prospecting and/or lab experimentation. The concept permits growth and can be expanded to include cargo transport such as habitat and working modules. In short, the combined payload could be manned soon after landing and checkout. NASA has expended substantial resources in the development of electric propulsion concepts and hardware that can be applied to a lunar transport system such as described herein. In short, the paper may represent a viable mission on which previous investments play an invaluable role. A more comprehensive technical paper which embodies second generation analysis and system size will be prepared for near-term presentation.

  11. An Optimal Charging Strategy for PV-Based Battery Swapping Stations in a DC Distribution System

    Directory of Open Access Journals (Sweden)

    Shengjun Wu

    2017-01-01

    Full Text Available Photovoltaic- (PV- based battery swapping stations (BSSs utilize a typical integration of consumable renewable resources to supply power for electric vehicles (EVs. The charging strategy of PV-based BSSs directly influences the availability, cost, and carbon emissions of the swapping service. This paper proposes an optimal charging strategy to improve the self-consumption of PV-generated power and service availability while considering forecast errors. First, we introduce the typical structure and operation model of PV-based BSSs. Second, three indexes are presented to evaluate operational performance. Then, a particle swarm optimization (PSO algorithm is developed to calculate the optimal charging power and to minimize the charging cost for each time slot. The proposed charging strategy helps decrease the impact of forecast uncertainties on the availability of the battery swapping service. Finally, a day-ahead operation schedule, a real-time decision-making strategy, and the proposed PSO charging strategy for PV-based BSSs are simulated in a case study. The simulation results show that the proposed strategy can effectively improve the self-consumption of PV-generated power and reduce charging cost.

  12. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    Science.gov (United States)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  13. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  14. Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System

    Directory of Open Access Journals (Sweden)

    G. Shiny Vikram

    2014-09-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step-up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper a coupled inductor dc-dc converter for photovoltaic system is proposed. The circuit configuration of the proposed converter is very simple. Thus, the proposed converter has higher step-up and step-down voltage gains than the conventional bidirectional dc–dc boost/buck converter. Under same electric specifications for the proposed converter and the conventional bidirectional boost/buck converter, the average value of the switch current in the proposed converter is less than the conventional bidirectional boost/buck converter. The operating principles have been applied to multi input photovoltaic system and outputs have been observed.

  15. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  16. A Vehicle License Plate Detection and Recognition System

    Directory of Open Access Journals (Sweden)

    Khalid W. Maglad

    2012-01-01

    Full Text Available Problem statement: Automatic vehicle license plate detection and recognition is a key technique in most of traffic related applications and is an active research topic in the image processing domain. Different methods, techniques and algorithms have been developed for license plate detection and recognitions. Approach: Due to the varying characteristics of the license plate from country to country like numbering system, colors, language of characters, style (font and sizes of license plate, further research is still needed in this area. Results: In most of the Middle East countries, they use the combination of Arabic and English letters, along with their countries logo. Thus, it makes the localization of plate number, the differentiation between Arabic and English letters and logo’s object and finally the recognition of those characters become a more challenging research task. The use of artificial neural network has proved itself beneficial for plate recognition, but it has not been applied for the plate detection. Radial Basis Function (RBF neural network is used both for the detection and recognition of Saudi Arabian license plates. Conclusion/Recommendations: The proposed approach has been tested on 200 front images of national license plate of Saudi Arabia. A higher percentage of accuracy has been obtained to show that the significant of this approach. The study could be further investigated in other Middle East countries.

  17. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  18. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... and nonlinear local loads. The simulation results which implemented in MATLAB/SIMULINK software verify the effectiveness of the system....

  19. Use of appliances in stand-alone PV power supply systems: problems and solutions. Task 3 use of photovoltaic power systems in stand-alone and island applications

    Energy Technology Data Exchange (ETDEWEB)

    Vallve, X.; Gafas, G. [IEA PVPS, Task 3 (Spain); Villoz, M. [IEA PVPS, Task 3 (Switzerland); Wilshaw, A. [IEA PVPS, Task 3 (United Kingdom); Jacquin, P. [IEA PVPS, Task 3 (France)

    2002-09-15

    In Stand-Alone Photovoltaic Systems (SAPV systems), special attention must be paid to the used appliances and loads. Inappropriate loads are very often the origin of PV system malfunction or failure. Start-up power peaks, or reactive power and harmonic distortion can cause system signal instability and protective devices will close the system down. A well-matched load together with a carefully selected choice of appliances can lead to significant savings in terms of reduced need for PV and electricity storage capacity. Conversely, inefficient appliances and processes, standby loads and inappropriate loads will increase the requirement for expensive PV and storage capacity. This paper presents a survey of real cases with load related problems in worldwide applications, their effect on quality and cost of the service and the solutions that were adopted and suggested alternative solutions. One of the main conclusions of the work is the importance to integrate the choice of the appliance while designing the SAPV system. (author)

  20. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  1. A Malaysian Vehicle License Plate Localization and Recognition System

    Directory of Open Access Journals (Sweden)

    Ganapathy Velappa

    2008-02-01

    Full Text Available Technological intelligence is a highly sought after commodity even in traffic-based systems. These intelligent systems do not only help in traffic monitoring but also in commuter safety, law enforcement and commercial applications. In this paper, a license plate localization and recognition system for vehicles in Malaysia is proposed. This system is developed based on digital images and can be easily applied to commercial car park systems for the use of documenting access of parking services, secure usage of parking houses and also to prevent car theft issues. The proposed license plate localization algorithm is based on a combination of morphological processes with a modified Hough Transform approach and the recognition of the license plates is achieved by the implementation of the feed-forward backpropagation artificial neural network. Experimental results show an average of 95% successful license plate localization and recognition in a total of 589 images captured from a complex outdoor environment.

  2. Technical performance of the Villas Carrousel PV-Wind hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Agredano, J.; Munguia, G.; Flores, J. R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Fifteen PV-Wind mini Hybrid Systems were installed at the Villas Carrousel Hotel. The first twelve were installed in December 1995. The remainder were installed during January 1997. The energy produced by the systems is used to provide the hotel illumination. Monitoring of the system`s performance has been carried out since 1996. Each system is integrated by a wind generator (Avispa) rated at 500 W, a PV array ranging from 150 to 320 Wp, an electronic control and a battery bank with capacities from 585 up to 780 Ah. The systems operate at 12 VDC and the energy produced is used through 12 V, 13 Watt high efficiency fluorescent lamps. The systems were designed to produce 140-180 Ah/day. During the first months of operation. Some problems arised with the battery voltage measurement. This parameter was formerly measured at the DC bus car of the control board. Some corrosion problems were detected there. This problem caused the undercharging of the battery banks, and in several cases abnormal operation of the wind generators were observed. In general the systems produce the energy demanded by the load. This first experience is helping to promote the Mini Hybrid technology in other applications. This paper presents some results from the system monitoring for the first year of operation that gives a general idea of the system performance. [Espanol] En el Hotel Villas Carrousel se instalaron 15 sistemas hibridos fotovoltaicos-viento. Los primeros doce se instalaron en diciembre de 1995. Los restantes se instalaron durante el mes de enero de 1997. La energia producida por los sistemas se usa para proporcionar la iluminacion del hotel. El monitoreo del rendimiento del sistema se ha llevado a cabo desde 1966. Cada sistema esta integrado por un aerogenerador (Avispa) con capacidad nominal de 500 W, en un arreglo fotovoltaico que varia de 150 a 320 Wp, un control electronico y un banco de baterias con capacidades desde 585 hasta 780 Ampere-horas. Los sistemas operan a 12 VCD y

  3. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.

  4. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) with concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.

  5. Dynamic Modeling, Control and Simulation of a Wind and PV Hybrid System for Grid Connected Application Using MATLAB

    Directory of Open Access Journals (Sweden)

    D. Mahesh Naik

    2014-07-01

    Full Text Available This paper proposes a dynamic modeling and control strategy for a grid connected hybrid wind and photovoltaic (PV energy system inter-connected to electrical grid through power electronic interface. A gearless permanent magnet synchronous generator (PMSG is used to capture the maximum wind energy. The PV and wind systems are connected dc-side of the voltage source inverter through a boost converter individually and maintain a fixed dc output at dc link. A proper control scheme is required to operate power converters to match up the grid connection requirements. This study considered the performance of modeled hybrid system under different case scenarios. All simulation models are developed using MATLAB/Simulink.

  6. PV water pumping: NEOS Corporation recent PV water pumping activities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  7. Power Quality Experimental Analysis on Rural Home Grid-Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Rita Jorge Cerqueira Pinto

    2015-01-01

    Full Text Available Microgeneration is the small-scale generation of heat or electric power or both, by individuals or buildings to meet their own needs. Recently, microgeneration is being regarded as a means to decentralize the power production of renewable energies, reducing the impacts on the grid caused by unexpected energy demands. Given the increase in microgeneration facilities, determining the quantity of energy produced and the power quality assumes growing importance in low, medium, or high voltage facilities. This paper presents a power quality analysis of two different facilities with photovoltaic generation localized in a rural area of Portugal, describing the voltage and frequency behaviour, the harmonic contents, and the total harmonic distortion. Statistical data are presented regarding the number of voltage events and occurrence of dips and swells in both facilities as a percentage of rated voltage. We conclude that some PV systems can severely affect voltage quality, forcing the grid to work at and even above the maximum voltage standard limit.

  8. Coordination of International Standards with Implementation of the IECRE Conformity Assessment System to Provide Multiple Certification Offerings for PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, George; Haring, Adrian; Spooner, Ted; Ball, Greg; Kurtz, Sarah; Heinze, Matthias; Yamamichi, Masaaki; Eguchi, Yoshihito; Ramu, Govind

    2016-11-21

    To help address the industry's needs for assuring the value and reducing the risk of investments in PV power plants; the International Electrotechnical Commission (IEC) has established a new conformity assessment system for renewable energy (IECRE). There are presently important efforts underway to define the requirements for various types of PV system certificates, and publication of the international standards upon which these certifications will be based. This paper presents a detailed analysis of the interrelationship of these activities and the timing for initiation of IECRE PV system certifications.

  9. Absolute viscosity measured using instrumented parallel plate system

    Science.gov (United States)

    Broyles, H. H.

    1967-01-01

    An automatic system measures the true average shear viscosity of liquids and viscoelastic materials, using the parallel plate method and automatically displays the results on a graphic record. This eliminates apparatus setup and extensive calculations.

  10. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  11. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  12. The implantation of a PV electric energy generation system at the Saint Peter and Saint Paul islands

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio; Silva, Patricia de Castro da [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br; Souza, Marco Antonio Carvalho [Secretaria da Comissao Interministerial para os Recursos do Mar (SECIRM), Brasilia, DF (Brazil)

    2009-07-01

    The Saint Peter and Saint Paul Islands are located at 0 degree 55.00' N and 29 degree 20.76'' W, at a distance of circa 550 M (nautical miles) NE from the City of Natal, RN (Northeast Region of Brazil), and comprises of many small islands and rocks of igneous plutonic origin. In 1998, a first Scientific Station was built in order to receive researchers involved in several projects. The CEPEL, as responsible by the electrical energy supply to the Scientific Station; designed and installed a PV electric energy generation system which had a power of 3.6 kWp. This system operated successfully for the last 10 years, suffering frequent maintenance. In 2006, a new design for the Scientific Station has been started aiming to improve its resources and safety. The new PV system has a maximum power of 7.8 kWp, and employs an updated technology (SMA, Germany). The equipment was integrated and submitted to intensive testing at facilities of CEPEL, and was installed and commissioned at the Islands in June 2008. Since the installation, the equipment has been operating as required, meeting the energy and water demand of the Station. The present paper describes the many steps involved in the implantation of the PV system at the Scientific Station. (author)

  13. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  14. Optimizing operation costs of the heating system of a household using model predictive control considering a local PV installation

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, Cosmin; Isleifsson, Fridrik Rafn; Gehrke, Oliver

    2012-01-01

    the effects of their large penetration in the distribution grid and reduces overloading the grid capacity, which is an increasing problem for the power system. The controller uses 24 hour prediction data for the ambient temperature, the solar irradiance, and for the PV output power. Simulation results...... of a thermostatic controller, a MPC with grid price optimization, and the proposed MPC are presented and discussed....

  15. Dynamic simulation of dispersed, grid-connected photovoltaic power systems: System studies

    Science.gov (United States)

    Wasynczuk, O.; Carroll, D. P.; Gareis, G. E.; Krause, P. C.; Ong, C. M.; Schwartz, R. J.

    1985-03-01

    To investigate the operating characteristics and dynamic behavior of photovoltaic (PV) power systems, four PV system configurations were selected as representative of those currently being used in PV applications. These included single and three phase, line and self commutated power conditioners with a flat plate PV array as the dc source. Detailed computer models of each of these systems were developed and incorporated into dynamic representations of typical primary and secondary distribution feeders. The dynamic electrical behavior of the PV and distribution systems following common network disturbances such as large load changes, PV system startup, and cloud cover transients are characterized. The dynamic behavior was also investigated during abnormal operating conditions following line faults, PV system malfunctions, and islanding or distribution systems containing significant levels of dispersed PV generation. Results of verification tests involving two of the single phase PV system configurations, in which the simulated response characteristics are compared with actual measurements, are also provided.

  16. A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2015-07-01

    Full Text Available This paper aims to present an improved version of a typical particle swarm optimization (PSO algorithm, such that the global maximum power point (MPP on a P-V characteristic curve with multiple peaks can be located in an efficient and precise manner for a photovoltaic module array. A series of instrumental measurements are conducted on variously configured arrays built with SANYO HIP2717 PV modules, either unshaded, partially shaded, or malfunctioning, as the building blocks. There appear two, triple and quadruple peaks on the corresponding P-V characteristic curves. Subsequently, the tracking performance comparisons, made by some practical experiments, indicate the superiority of this improved MPP tracking algorithm over the typical one.

  17. An Automatic Number Plate Recognition System under Image Processing

    Directory of Open Access Journals (Sweden)

    Sarbjit Kaur

    2016-03-01

    Full Text Available Automatic Number Plate Recognition system is an application of computer vision and image processing technology that takes photograph of vehicles as input image and by extracting their number plate from whole vehicle image , it display the number plate information into text. Mainly the ANPR system consists of 4 phases: - Acquisition of Vehicle Image and Pre-Processing, Extraction of Number Plate Area, Character Segmentation and Character Recognition. The overall accuracy and efficiency of whole ANPR system depends on number plate extraction phase as character segmentation and character recognition phases are also depend on the output of this phase. Further the accuracy of Number Plate Extraction phase depends on the quality of captured vehicle image. Higher be the quality of captured input vehicle image more will be the chances of proper extraction of vehicle number plate area. The existing methods of ANPR works well for dark and bright/light categories image but it does not work well for Low Contrast, Blurred and Noisy images and the detection of exact number plate area by using the existing ANPR approach is not successful even after applying existing filtering and enhancement technique for these types of images. Due to wrong extraction of number plate area, the character segmentation and character recognition are also not successful in this case by using the existing method. To overcome these drawbacks I proposed an efficient approach for ANPR in which the input vehicle image is pre-processed firstly by iterative bilateral filtering , adaptive histogram equalization and number plate is extracted from pre-processed vehicle image using morphological operations, image subtraction, image binarization/thresholding, sobel vertical edge detection and by boundary box analysis. Sometimes the extracted plate area also contains noise, bolts, frames etc. So the extracted plate area is enhanced by using morphological operations to improve the quality of

  18. Using A Battery Storage Wind / PV Hybrid Power Supply System Based Stand-Alone PSO To Determine The Most Appropriate.

    Directory of Open Access Journals (Sweden)

    Amam Hossain Bagdadee

    2014-08-01

    Full Text Available Wind / PV hybrid power systems, completed in time and geography, both economical and reliable than PV or wind turbine, but the hybrid system wind / PV to increase capacity. Installation of experience with traditional power design and optimization of design and operation cannot be seen with. To solve the problem in a comprehensive objective function to present the objective function of the solar wind. And reliability of the storage cells can be calculated with an investment of erosion format system resources, including the number of solar cells and batteries, but the type and amount of solar wind to change. As well as to improve not only to make the results more accurate investment costs and reliability cost of conversion optimization problems several optimization problems today.Improved optimization algorithms, PSO are used to solve nonlinear hybrid analysis is any integer optimization problem on the basis of PSO algorithm standard techniques then there is the first step convergence factor is applied to improve the detection performance of both migration are used to improve the ability of the algorithm to find the best in the whole world.

  19. PV Power-Generation System with a Phase-Shift PWM Technique for High Step-Up Voltage Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-01-01

    Full Text Available A PV power-generation system with a phase-shift pulse-width modulation (PWM technique for high step-up voltage applications is proposed. The proposed power-generation system consists of two stages. In the input stage, all power switches of the full-bridge converter with phase-shift technique can be operated with zero-current switching (ZCS at turn-on or turn-off transition. Hence, the switching losses of the power switches can be reduced. Then, in the DC output stage, a voltage-doubler circuit is used to boost a high dc-link bus voltage. To supply a utility power, a dc/ac inverter is connected to induce a sinusoidal source. In order to draw a maximum power from PV arrays source, a microcontroller is incorporated with the perturbation and observation method to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In this study, a full load power of 300 W prototype has been built. Experimental results are presented to verify the performance and feasibility of the proposed PV power-generation system.

  20. A Framework for Evaluating Economic Impacts of Rooftop PV Systems with or without Energy Storage on Thai Distribution Utilities and Ratepayers

    Science.gov (United States)

    Chaianong, A.; Bangviwat, A.; Menke, C.

    2017-07-01

    Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.

  1. A minimum achievable PV electrical generating cost

    Energy Technology Data Exchange (ETDEWEB)

    Sabisky, E.S. [11 Carnation Place, Lawrenceville, NJ 08648 (United States)

    1996-03-22

    The role and share of photovoltaic (PV) generated electricity in our nation`s future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  2. PV/T太阳能热泵系统的性能研究%Dynamic Performance of PV/T Solar-assisted Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    裴刚; 季杰; 何伟; 孙炜

    2006-01-01

    提出一种新型的太阳能热泵系统--PV/T-SAHP系统,该系统具有光电/光热综合利用的功能;建立了PV/T-SAHP系统的动态模型,对该系统的运行特性进行了数值模拟.结果显示,PV/T-SAHP系统的电效率和热效率较传统的太阳能系统和热泵系统都有明显提高,运行能耗较普通热泵大幅度降低;系统PV/T蒸发器的面积、管间距、倾角等参数的变化对电效率和热性能会产生比较大的影响,是系统优化设计的关键因素.

  3. Power of design - the future of building-integrated PV

    Energy Technology Data Exchange (ETDEWEB)

    Abbate, Cinzia [ENEL, Rome (Italy). Officine di Architettura

    2001-04-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported.

  4. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  5. Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems

    Directory of Open Access Journals (Sweden)

    Shashank Vyas

    2016-01-01

    Full Text Available Integration of solar photovoltaic (PV generation with power distribution networks leads to many operational challenges and complexities. Unintentional islanding is one of them which is of rising concern given the steady increase in grid-connected PV power. This paper builds up on an exploratory study of unintentional islanding on a modeled radial feeder having large PV penetration. Dynamic simulations, also run in real time, resulted in exploration of unique potential causes of creation of accidental islands. The resulting voltage and current data underwent dimensionality reduction using principal component analysis (PCA which formed the basis for the application of Q statistic control charts for detecting the anomalous currents that could island the system. For reducing the false alarm rate of anomaly detection, Kullback-Leibler (K-L divergence was applied on the principal component projections which concluded that Q statistic based approach alone is not reliable for detection of the symptoms liable to cause unintentional islanding. The obtained data was labeled and a K-nearest neighbor (K-NN binomial classifier was then trained for identification and classification of potential islanding precursors from other power system transients. The three-phase short-circuit fault case was successfully identified as statistically different from islanding symptoms.

  6. High Efficiency Non-isolated Three Port DC-DC Converter for PV-Battery Systems

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    This paper presents a nonisolated Three Port Converter (TPC) with a unidirectional port for photovoltaic (PV) panels and a bidirectional port for energy storage. With the proposed topology single power conversion is performed between each port, so high efficiencies are obtained. A theoretical...

  7. Detection of increased series losses in PV arrays using Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    There are well-defined methods to measure the (increased) series resistance of PV panels in controlled laboratory conditions. However, the presence of various irradiance levels and partial shadows, in case of an outdoor installation, may affect the series resistance estimation. This paper focuses...

  8. High Efficiency Non-isolated Three Port DC-DC Converter for PV-Battery Systems

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe;

    2016-01-01

    This paper presents a nonisolated Three Port Converter (TPC) with a unidirectional port for photovoltaic (PV) panels and a bidirectional port for energy storage. With the proposed topology single power conversion is performed between each port, so high efficiencies are obtained. A theoretical ana...

  9. Performance monitoring of different module technologies and design configurations of PV systems in South Africa

    CSIR Research Space (South Africa)

    Serameng, T

    2016-06-01

    Full Text Available this, a 400 kWp PV Solar plant has been installed and monitored since January 2015 at the Eskom Research and Innovation Centre (ERIC) in Rosherville, Gauteng. The plant consists of polycrystalline silicon (c-Si) and copper indium gallium selenide (CIGS...

  10. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Russell H. Bonn; Sigifredo Gonzalez

    2000-04-11

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

  11. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  12. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  13. Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

    2012-11-01

    This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

  14. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  15. Simulation and Comparative Practical Performance Analysis Of A Stand-Alone PV Power System in Gökçeada

    Directory of Open Access Journals (Sweden)

    Mete Çubukçu

    2013-05-01

    Full Text Available This study simulates and analyzes the practical performance of a 2 kW stand-alone PV power system located in Gökçeada/Turkey. System performance was calculated both by simulation and real life measurements. Although the total system efficiency and the performance ratio is simulated 5 % and 41 %, these values are calculated averagely during the real-life monitoring period as 4 % and % 32.4 respectively. The results were reported using the international evaluation parameters. The main reasons of the difference between the simulated and practical calculated values are the partial shadow effects and the limited energy generation due to the low load demand.

  16. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares...... the results of its ongoing research into the advantages and limitations of current forecasting technologies....

  17. Optimization of PV system operation in distributed electricity grids by intelligent energy management; Optimierung des Einsatzes von PV Anlagen in dezentral organisierten Stromnetzen durch intelligentes Betriebsmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Erge, T.; Laukamp, H.; Puls, H.G.; Thoma, M.; Wittwer, C. [Fraunhofer-Inst. fuer Solare Energiesysteme ISE, Freiburg (Germany); Kroeger-Vodde, A. [PSE Projektgesellschaft Solare Energiesysteme mbH (Germany)

    2005-07-01

    With an increasing number of decentralized electricity generators especially in electrical distribution grid segments, energy flows in the grids are changing from an purely centralised supply structure towards more complex distributed solutions. With lots of fluctuating electricity generation from PV or other technologies, special emphasis must be put on high supply reliability, good power quality and economic operation of the grids. This can be achieved by applying intelligent energy management. (orig.)

  18. System recognizing Bahamian license plate with touching characters

    Science.gov (United States)

    Dun, Jingyu; Zhang, Sanyuan; Ye, Xiuzi; Zhang, Yin

    2016-11-01

    Various methods are proposed for license plate recognition, but none of them are universal. Some common methods for license plate localization, character extraction, and recognition are analyzed. Then a system is proposed to recognize the Bahamian license plate with touching characters. A vertical edge-based method with a modified sliding window technique is used to locate the license plate, and a machine learning process is used to trim the region. The located license plate is rectified by using the minimum enclosing box and the stroke width value. Then the vertical projection and pairs of extreme points are combined to segment the characters. Finally, a deep learning method is used to recognize the characters. 2996 images are experimented on and the total recognition accuracy achieves 83.29%. Typical methods of each stage are implemented to compare with the proposed methods. In addition, the proposed system is experimented on a public dataset to show the generalization ability of the system. The experimental results show that the proposed system performs better than the other methods and is able to be used in a real-time application.

  19. Real-time Modelling, Diagnostics and Optimised MPPT for Residental PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso

    it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions......., which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple...... behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes...

  20. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    Science.gov (United States)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  1. High Efficiency Single-stage Grid-tied PV Inverter for Renewable Energy System

    OpenAIRE

    2012-01-01

    A single-phase grid connected transformerless photovoltaic (PV) inverter for residential application is presented. The inverter is derived from a boost cascaded with buck converter along with a line frequency unfolding circuit. Due to its novel operating modes, high efficiency can be achieved because there is only one switch operating at high frequency at a time, and the converter allows the use of power MOSFET and ultra-fast reverse recovery diode. This dissertation begins with theoretical a...

  2. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  3. Feasibility Study of a Building-Integrated PV Manager to Power a Last-Mile Electric Vehicle Sharing System

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2017-01-01

    Full Text Available Transportation is one of the largest single sources of air pollution in urban areas. This paper analyzes a model of solar-powered vehicle sharing system using building-integrated photovoltaics (BIPV, resulting in a zero-emission and zero-energy mobility system for last-mile employee transportation. As a case study, an electric bicycle sharing system between a public transportation hub and a work center is modeled mathematically and optimized in order to minimize the number of pickup trips to satisfy the demand, while minimizing the total energy consumption of the system. The whole mobility system is fully powered with BIPV-generated energy. Results show a positive energy balance in e-bike batteries and pickup vehicle batteries in the worst day of the year regarding solar radiation. Even in this worst-case scenario, we achieve reuse rates of 3.8 people per bike, using actual data. The proposed system manages PV energy using only the batteries from the electric vehicles, without requiring supportive energy storage devices. Energy requirements and PV generation have been analyzed in detail to ensure the feasibility of this approach.

  4. A pragmatic performance reporting approach for describing PV Hybrid systems within mini-grids. Work in progress from IEA's PVPS Task 11 Act. 31

    Energy Technology Data Exchange (ETDEWEB)

    Swingler, Andrew [Schneider Electric, Burnaby, BC (Canada). Renewable Energies Business

    2010-07-01

    Reviewers of available PV hybrid system and mini-grid case studies are often limited to information detailing the size of the main system components (PV, battery and generator) and perhaps some historical anecdotes recalling major maintenance activities. While this enables rapid insight into the capital cost and perhaps the overall reliability of the system, this information communicates little in the way of system performance from a levelized cost of electricity and GHG emissions point of view - or what can be considered 'the business' perspective. Key system performance information must be available to effectively communicate operational system performance so system operators or perspective customers. Activity 31 of the IEA's PVPS Task 11 looks at how performance reporting can be useful, why it is often absent and what can be done to improve the current situation. This paper reviews some past work in the area of data acquisition and performance calculation used for describing PV Hybrid and mini-grid systems. In particular the IEC 61724 PV performance monitoring standard and results from the 'Benchmarking RE Components and Systems' project are considered. Ultimately, a stripped-down, easier-to-implement and flexible method for monitoring and reporting on key performance indicators is proposed based, in part, on the prior literature. The proposed framework is then used to briefly discuss the performance of two monitored PV hybrid mini-grid examples. (orig.)

  5. Speedometers for PV generators; Drehzahlmesser fuer PV-Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Fritze, Peter; Weinreich, Bernhard [Solarschmiede GmbH, Muenchen (Germany). Engineering-Abt.

    2011-05-31

    To measure the generator power of an installed PV system, it is not enough to look into the specifications of hte module producers. Fast and independent data can be provided by characteristic curve meters.

  6. PV in a sports arena; PV im Hexenkessel

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, B.

    2008-05-19

    The German soccer club Werder Bremen is reconstructing its stadium. Apart from higher spectator comfort and a better atmosphere, there will also be PV systems on the roof and external walls of the arena. (orig.)

  7. 石墨填充式PV/T系统光电光热性能试验%Experimental Study of Photovoltaic/Thermal Solar System Filled with Graphite

    Institute of Scientific and Technical Information of China (English)

    李媛媛; 张吉礼; 马良栋

    2012-01-01

    A new type of photovoltaic/thermal(PV/T) was designed with graphite filled.A hybrid experimental system for power and thermal performance of PVT is established in this paper.The test result performed at Dalian shows that the PV/T system can improve the output power by 120.67% relatively in sunny weather,compared with PV board.The momentary thermal efficiency comes up to 28.68%.Meanwhile,after a day of circulation,circulating water can make the water tank temperature rise to 38℃.%设计制作了一种以高导热材料——石墨为填充介质的新型PV/T结构,并搭建了该PV/T系统的光电光热性能综合试验台,在大连地区对其光电光热性能进行了试验研究。研究结果表明:在天气晴朗的情况下,与普通PV板相比,石墨填充式PV/T系统的输出功率相对提高可达120.67%;系统的瞬时热效率可达28.68%;系统水经过一天的循环,可使水箱温度上升至38℃。

  8. Distributed Generation and Islanding – Study on Converter Modeling of PV Grid-Connected Systems under Islanding Phenomena

    OpenAIRE

    2010-01-01

    The technique to derive a dc-ac full bridge switching converter for a PV grid-connected system are proposed in this paper. An analysis of islanding phenomena due to load variations of R and RLC connections can be easily derived by using the state-space averaging technique and the piecewise technique with feedback current control by setting up the duty cycle with sinusoidal terms around constant value of 0.5. The solution of the two proposed models can be handled via MATLAB/SIMULINK in fast sp...

  9. Operational success - Flat-plate photovoltaic systems

    Science.gov (United States)

    Risser, V. V.; Zwibel, H. S.

    The performance-to-date of 20 and 100 kW peak DOE photovoltaic array demonstration projects in New Mexico and Texas are reported. An El Paso 20 kW unit feeds power to an uninterruptible power supply for a computer controlling a 197 MW generator. System availability has been 97 percent after over 800 days of operation, and has reached monthly efficiencies of 5.3-6.2 percent. The Lovington, NM 100 kW unit has operated at an average 6.7 percent efficiency, furnishing over 15.8 MWh/mo for a 2 yr period. System availability has been 99 percent, although at increased costs due to regular maintenance.

  10. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  11. Auditory signal design for automatic number plate recognition system

    NARCIS (Netherlands)

    Heydra, C.G.; Jansen, R.J.; Van Egmond, R.

    2014-01-01

    This paper focuses on the design of an auditory signal for the Automatic Number Plate Recognition system of Dutch national police. The auditory signal is designed to alert police officers of suspicious cars in their proximity, communicating priority level and location of the suspicious car and takin

  12. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-01-01

    Full Text Available The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

  13. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Marwan M.; Ibrik, Imad H. [Energy Research Centre, An-Najah National University, Nablus, P.O. Box 721, West Bank (Palestine)

    2006-04-01

    As a contribution to the development program of rural areas in Palestine, this paper presents three energy supply alternatives for a remote village represented in PV system, diesel generator and electric grid. Design of these systems and the associated costs of their utilization are illustrated. A computer-aided dynamic economic evaluation method with five indicators is used to compare the economic-effectiveness of these energy systems. The results show that, utilizing of PV systems for rural electrification in Palestine is economically more feasible than using diesel generators or extension of the high voltage electric grid. The obtained results represents also a helpful reference for energy planers in Palestine and justify the consideration of PV systems more seriously. (author)

  14. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrik, Imad [An-Najah National Univ., Nablus (PS). Energy Research Centre; Lecumberri, Marta

    2010-07-01

    The energy situation in Palestine is somewhat unique when compared to other countries in the Middle East. There are virtually no available natural resources, and due to the ongoing political situation, the Palestinians rely (or have to rely) almost totally on Israel for their energy needs. This paper presents three energy supply alternatives for a remote village represented in PV system, diesel generator and electric grid. Design of these systems and the associated costs of their utilization are illustrated. Economic evaluation methods are used to compare the economic-effectiveness of these energy systems. The results show that, utilizing of PV systems for rural electrification in Palestine is economically more useful than using diesel generators or extension of the high voltage electric grid. The obtained results represents also a helpful reference for energy planers in Palestine and justify the consideration of PV systems more seriously. (orig.)

  15. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  16. The Detector Control Systems for the CMS Resistive Plate Chamber

    CERN Document Server

    Paolucci, P; Gómez-Reino, R; Viviani, C; Shahzad, R; Khurshid, T

    2010-01-01

    The Resistive Plate Chamber system is composed by 912 double-gap chambers equipped with about $10^4$ front-end boards. The correct and safe operation of the RPC system requires a sophisticated and complex online Detector Control System, able to monitor and control 2$\\cdot10^4$ hardware devices distributed on an area of about 5000 m$^2$. The RPC DCS acquires, monitors and stores about $10^5$ parameters coming from the detector, the electronics, the power system, the gas, and cooling systems. The DCS system and the first results, obtained during the 2007 and 2008 CMS cosmic runs, will be described in this paper.

  17. Flexible amorphous silicon solar cells and their application to PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y.; Fujikake, S.; Yoshida, T.; Sakai, H.; Natsume, F. [Fuji Electric Co. Ltd., Yokosuka, Kanagawa (Japan). New Energy Lab.

    1996-12-31

    Hydrogenated amorphous silicon (a-Si:H) solar cells are regarded as the next generation product following crystalline silicon (c-Si) solar cells. The performance of the large area cells has been improved to a practical application level and the durability has been confirmed by a number of outdoor tests at demonstration sites under various climatic conditions. The mass production technology for realizing low cost a-Si photovoltaic (PV) modules, however, has not been developed very well and is still in an elementary stage. A flexible a-Si:H PV module has been developed, which is rolled up around a cylindrical core, has a width of about 1 m, and is able to be cut to any length. The amorphous solar cell fabricated on a heat resistant plastic film with a thickness of 50 {mu}m has a new monolithic series connected structure named SCAF (Series-Connection through Apertures formed on Film) to obtain a high output voltage required for practical use. The details of the structure and the technology of the fabrication process are described as well as some of its applications. (author). 11 figs., 3 refs.

  18. Methodology and systems to ensure reliable thin-film PV modules

    Science.gov (United States)

    Call, Jon; Varde, Uday; Konson, Alla; Walters, Mike; Kotarba, Chad, III; Kraft, Tim; Guha, Subhendu

    2008-08-01

    The reliability of Uni-Solar triple-junction amorphous silicon thin-film PV modules is very important to their success in an increasingly competitive PV market. Modules must show useful operating lifetimes on the order of 20 to 30 years, and although module efficiency is very important, the total energy a module will produce is largely dependent on its operating lifetime. Thus, it is essential to evaluate module reliability in order to estimate module lifetime and establish customer warranty periods. While real world outdoor exposure testing is necessary and important, it is essential that accelerated environmental test methods are utilized to provide more rapid feedback regarding failure modes, design flaws and degradation mechanisms. The following paper gives an overview of the methodology used to ensure long-term reliability of Uni-Solar flexible thin-film modules. The applied test methods are primarily based upon accepted industry test standards such as IEC-61646, UL-1703, and ASTM. The design, screening, and qualification process to ensure the robustness of new designs is described as well as subsequent module validation testing and manufacturing process control. Test methods important for flexible module laminates are briefly discussed and examples of reliability tests are given. Upon successful design validation and certification, the quality and reliability of manufactured modules is maintained through supplier and product quality assurance programs.

  19. Design and Development of a Maximum Power Point Tracking (MPPT charge controller for Photo-Voltaic (PV power generation system

    Directory of Open Access Journals (Sweden)

    Muhammad Riazul Hamid

    2016-06-01

    Full Text Available This paper describes how to implement MPPT using the most popular switching power supply topology. There are many published works on this topic, but only a tiny portion of them show how to actually implement the algorithms in hardware, as well as state common problems and pitfalls. In our work to keep the design simple we have used Arduino Nano. It has features like: LCD display, Led Indication and it is equipped with various protections to protect the circuitry from abnormal condition. This design is suitable for a 50W solar panel to charge a commonly used 12V lead acid battery. As the maximum power point (MPP of photovoltaic (PV power generation systems changes with changing atmospheric conditions (e.g. solar radiation and temperature, an important consideration in the design of efficient PV systems is to track the MPP correctly. We have implemented the most common MPPT algorithm named Perturb and Observe (PO to control the output of a synchronous buck-converter

  20. Understanding innovation system build up : the rise and fall of the Dutch PV Innovation System

    NARCIS (Netherlands)

    Negro, S.O.; Vasseur, V.; Sark, W.G.J.H.M. van; Hekkert, M.P.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energ

  1. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  2. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  3. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  4. Simulation of stand alone PV systems; Dokuritsugata taiyoko hatsuden system no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, I.; Sakuta, K. [Electrotechnical Laboratory, Tsukuba (Japan); Oshiro, T. [Japan Quality Assurance Organization, Tokyo (Japan); Kurokawa, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Studies are performed to develop a simulation program for a stand-alone photovoltaic power generation system equipped with a lead acid battery. In this stand-alone photovoltaic power generation system, the load is connected in shunt with the solar cell array output through the intermediary of a lead acid battery and inverter. The program is a model in which the solar cell model is built taking parallel resistance into account, and the temperature-dependence of the constants is described using approximations experimentally obtained by Solar Techno Center of JQA (Japan Quality Assurance Organization), Hamamatsu. Insolation data for the model is described using METPV compiled by Japan Weather Association, and load data is described using data actually measured at Shizuoka. This program is compared with the data of operation at Hamamatsu, and the result is almost satisfactory. Simulations are conducted at five typical locations in Japan using this program, and it is found that the array load matching correction factor is dependent on seasonal changes rather than locality, that the battery contribution rate does not change much throughout the year, and that it is not dependent on locality. 5 refs., 7 figs., 3 tabs.

  5. THE PARALLEL CONFOCAL DETECTING SYSTEM USING OPTICAL FIBER PLATE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.

  6. The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts

    Directory of Open Access Journals (Sweden)

    Aldo Orioli

    2016-11-01

    Full Text Available In July 2013, the Italian photovoltaic (PV support policies changed the feed-in tariff (FIT mechanism and turned to a tax credits program, which is currently in force. The aim of this paper is to investigate how such a radical change has influenced the electricity demand coverage of the PV systems installed in urban contexts. A methodology, which connects the economic assessment to a detailed architectural and energy suitability analysis, was applied to some case studies to analyse the relationships between the physical parameters related to multi-storey buildings (roof shapes, number of floors and area of flats and the most relevant economic and financial features affecting the viability of rooftop PV systems. The study, which considers only the electricity produced by the PV systems that are economically profitable, highlighted that the tax credits scheme is even more effective in covering the electrical consumption of densely urbanised Italian city districts. The results, which are significantly influenced by the latitude of the analysed districts, underline the opportunity for governments to adopt PV promoting policies that are more sensitive to the amount of solar energy available in the different regions of their national territory.

  7. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  8. Grid-Connected Fuzzy-PID Control of PV Power Generation System%光伏发电系统的并网模糊PID控制

    Institute of Scientific and Technical Information of China (English)

    贺运胜

    2013-01-01

    在三相两级式并网逆变器数学模型的基础上,将模糊PID控制策略引入光伏发电系统的并网控制中.通过数字仿真和物理仿真表明模糊控制与PID控制相结合的模糊PID控制,改善了光伏系统并网控制的动态过程,能够实现光伏系统的平滑并网.%ied in the grid control of PV system in this paper. The digital simulation and physical simulation show that the fuzzy-PID control strategy can improve the PV system grid control dynamic process and realize the smooth connection of the PV system with the power grid.

  9. Dual-bath Plating of Composition Modulated Alloys (CMA) based on a newly developed Computer Controlled Plating System

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Leisner, Peter; Møller, Per

    1994-01-01

    of a computer controlled plating system for producing large scale CMA-coatings. Employing a dual-bath technique, multilayered materials with more than 1000 alternating layers have been manufactured and investigated. The thickness of each layer ranges from 25 nm to several microns. The characterisation results......, as obtained with SEM and applications for multilayered systems such as Cu/Ni and Cu/Co, as well as the possibilities and limitation of the plating system will be discussed....

  10. Examination of optimal data acquisition for evaluation of PV systems; Taiyoko hatsuden system hyoka no tame no saiteki keisoku shuho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, H.; Kurokawa, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K.; Tsuda, I. [Electrotechnical Laboratory, Tsukuba (Japan)

    1996-10-27

    A 70 kW-class photovoltaic (PV) power generation system of the Tsukuba Research Cooperation Center, Agency of Industrial Science and Technology was evaluated using hourly measurement data. Hourly solar irradiation, mean PV module temperature, hourly array generated power, hourly PV system generated power were selected as the measurement items, to examine the validity of measurement method. Furthermore, based on these measurement data, the loss factors were estimated, which reduce the system efficiency. They included the losses due to the shadow effect, the deterioration of module efficiency with the raise of temperature, the mismatch of tracking control of the maximum power point, and the reduction of inverter efficiency with the input power phenomena. To estimate these loss factors from hourly measurement data, the system was evaluated by defining characteristic parameters. As a result, it was found that the main factors were the shadow effect and the mismatch loss, which reduce the mean annual output factor of the system to 65%. 3 refs., 6 figs., 1 tab.

  11. Measurement system for determination of current-voltage characteristics of PV modules

    Science.gov (United States)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  12. Sizing modelling and simulation of PV generation system feeding a 6 MW induction motor dedicated to pumping applications

    Directory of Open Access Journals (Sweden)

    Samir HADJERI

    2017-06-01

    Full Text Available This paper proposes an autonomous photovoltaic (PV pumping system for rural/remote applications especially in the large desert in northern Africa where the sun radiation is abundant. Since PV generators exhibit nonlinear I-V characteristics and their maximum power point varies with solar radiation. For this reason, the MPPT controller is used to optimize the solar energy conversion by guaranteeing fast maximum power point tracking (MPPT. This feature has an essential role in dynamic response and efficiency of the photovoltaic system, thus it maximizes the amount of extracted natural gas to be conveyed to another site for an ulterior utilization. Here a robust maximum power point tracker (MPPT using incremental conductance algorithm is applied to the duty cycle value of the DC-DC converter which acts directly on the drive speed. A DC/DC boost is used to enhance voltage up to the favourite level and the SVPWM inverter connects it to a powerful induction motor for a pumping of natural gas application, these systems are at the heart of many industrial sectors such as the oil industry, the production of thermal and nuclear energy etc. An understanding of how these systems operate is essential to increase their performance and reduce their operating costs. Furthermore, three phase voltage-fed PWM inverters are recently showing growing popularity for multi-megawatt industrial drive applications, the main purpose of these topologies is to provide a three-phase voltage source, where the amplitude, phase, and frequency of the voltages should always be controllable. The model of a three-phase voltage source inverter is modelled and discussed based on space vector modulation theory. Simulation results are obtained using MATLAB/Simulink environment for effectiveness of the proposed system.

  13. Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari Niapour, S.A.KH., E-mail: s.a.kh.mozaffari.niapour@gmail.com [Faculty of Electrical and Computer Engineering, University of Tabriz, 51664 Tabriz (Iran, Islamic Republic of); Danyali, S.; Sharifian, M.B.B.; Feyzi, M.R. [Faculty of Electrical and Computer Engineering, University of Tabriz, 51664 Tabriz (Iran, Islamic Republic of)

    2011-08-15

    Highlights: {yields} Employing the BLDC motor in water pumping systems. {yields} Utilizing the ZSI as a single-stage power converter in the PV water pumping systems based on BLDC motor. {yields} Improvement of the conventional IC MPPT method with the fuzzy logic control scheme to save more energy from the PV array. {yields} Taking the advantages of the DTC drive of the BLDC motor. {yields} Optimizing the water pumping system speed response characteristic by PSO. - Abstract: This paper discusses operation performance of a water pumping system consist of a brushless dc (BLDC) motor coupled a centrifugal pump and accompanying a Z-source inverter (ZSI) fed by a photovoltaic (PV) array, to be improved. Despite conventional double-stage power converters, this paper proposes utilizing a single-stage ZSI to extract the maximum power of the PV array and supply the BLDC motor simultaneously. Utilizing the ZSI provides some inherent advantages such as high efficiency and low cost, which is very promising for PV systems due to its novel voltage buck/boost capability. In addition, in order to precisely perform the maximum power point tracking (MPPT) of the PV array the fuzzy logic-incremental conductance (FL-IC) MPPT scheme is proposed. The proposed FL-IC MPPT scheme provides enough modification to the conventional IC method to enjoy an appropriate variable step size MPPT control signal for the ZSI. Moreover, direct torque control (DTC) is found more effective in comparison with hysteresis current control with current shaping to drive the BLDC motor, because it benefits from faster torque response, reduced torque ripple, less sensitivity to parameters variations, and simple implementation. In the mean time, due to the frequently variations of the PV power generation; delivered mechanical power to the centrifugal pump is variable. Thus, the BLDC motor should be driven with variable reference speed. In order to improve the speed transient response of the BLDC motor and enhance

  14. A compact seven switches topology and reduced DC-link capacitor size for single-phase stand-alone PV system with hybrid energy storages

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    Single-phase stand-alone PV system is suitable for household applications in remote area. Hybrid battery/ultra-capacitor energy storage can reduce charge and discharge cycles and avoid deep discharges of battery. This paper proposes a compact seven switches structure for stand-alone PV system......, which otherwise needs nine switches configuration, inclusive of one switch for boost converter, four switches for single-phase inverter and four switches for two DC/DC converters of battery and ultra-capacitor. It is well-known that a bulky DC-link capacitor is always required to absorb second...

  15. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  16. Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, Chatsworth, CA (United States)

    1997-06-01

    The overall goal of this effort is to reduce the installed cost of utility scale grid connected photovoltaic power systems. The focus of the effort is on ``BOS`` (Balance-Of-System) component manufacturing technology, which essentially involves all PV power system engineering, manufacturing, assembly and construction tasks from the receipt of a PV module to the deliver of grid connected electricity.

  17. First-year performance of the Chorreras pv-hybrid ice-making system in Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Luis; Foster, Robert; Cota, Alma D [Southwest Technology Development Institute, Las Cruces, New Mexico (United States)

    2000-07-01

    This paper describes the reliability and performance of the Chorreras photovoltaic (PV) hybrid ice-making system. The system is a first of its kind in the world and is located near the fishing village of Chorreras, which is located along a man-made lake in a remote desert area of the State of Chihuahua in northern Mexico. The information gathered from technical field visits and a GOES satellite-based data collection system are reviewed to discuss system design and operation. The system has been working well in producing ice on a daily basis with only some minor control problems and water line calcification that reduced ice production until the line was cleaned. The hybrid system provides a daily average of 8.9 kWh at 240 volts to the ice-maker. The system Coefficient of Performance (COP) is about 0.65 and a total of 97 percent of the energy has been supplied by the PV array, while only 3 percent has been supplied by the back-up propane-fueled generator. Production of ice varies slightly each month due to changes in insolation and ambient temperatures. Overall ice production averages about 85 kg of ice per day. This project and this paper are dedicated to the memory of Ing. Juan Jose Onate Rodriguez from the Direccion General de Desarrollo Rural, who was the original project developer for the State of Chihuahua. [Spanish] Este articulo describe la confiabilidad y el rendimiento del sistema hibrido fotovoltaico (PV) de Chorreras para produccion de hielo. El sistema es el primero en su tipo en el mundo y esta localizado cerca del pueblo de pescadores de Chorreras, a la orilla de un lago artificial en un area desertica remota en el estado de Chihuahua, al norte de Mexico. Se esta revisando la informacion recopilada por las visitas tecnicas de campo y por el sistema de recoleccion de datos satelital GOES para analizar el diseno y operacion del sistema, que ha estado funcionando con buenos resultados en la produccion diaria de hielo, teniendo solo problemas menores de

  18. A small PV-module for 3.6 kW(thermal) stand-alone solar oven tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Urbano Castelan, J.A. [CINVESTAV-IPN, Mexico, D.F. (Mexico). Electric Engineering Dept.]|[SEPI-ESIME and ICE-ESIME Professional Unit ' Adolfo Lopez Mateos' , Mexico, D.F. (Mexico); Matsumoto, Yasuhiro; Asomoza P., R. [CINVESTAV-IPN, Mexico, D.F. (Mexico). Electric Engineering Dept.; Martinez Munoz, A.; Escoto Mora, G.; Sotelo Trujillo, A.; Aceves Hernandez, F.J.; Jacome Rodriguez, A. [SEPI-ESIME and ICE-ESIME Professional Unit ' Adolfo Lopez Mateos' , Mexico, D.F. (Mexico)

    2004-07-01

    This article shows how 3.6 kWTH solar oven concentrating system is operated by using only 5 watt-peak PV-module for its tracking system. The solar oven is autonomous and designed for Marias Islands, Mexican rural area for food cooking, sea water distillation and medical instrumental sterilization. The PV-module charges continuously energy in a capacitive storage to move two 12 DCV motors of 36W each. These electric motors adjusts azimuth and altitude depending of solar position determined by an electronic optical sensor for an optimum concentration position. There have been made two versions for this purpose, the first one consists on digital states (on/off) for light and dark conditions over a ''Greek cross'', and the second one provides redundancy because it has two detection elements besides it is possible to have coarse, medium and fine The solar oven system of 360 mirrors (10X10cm2 each) achieves temperature of about 300 C at its oil-container. This oil-container transmits the heat directly to the commercial kettle, maintaining 120 C at the pressure of 1.05kg/cm2. Maria's Islands has an average of 340 sunny days in a year. We expect a contribution for forest conservation avoiding firewood consumption in the near future. Foregoing Mexican rural area has great potential in solar resources for their inhabitant needs. Food cooking, water distillations are most important daily-life activities. In Mexico, solar cooking oven has been introduced since 1955, however, this cooking technique was not assimilated due to the local people's social and cultural aspects. This development is intended to be applied in those rural areas in Mexican Republic because there are 28 million people that still use firewood leading to diverse problems such as health pulmonary emphysema, body burnings, deforestation, and CO2 emissions. (orig.)

  19. Performance Research on Photovoltaic/Thermovoltaic Solar System in Building-integrated Solar Systems%太阳能建筑光伏/热电系统(PV/TV)性能研究

    Institute of Scientific and Technical Information of China (English)

    魏晨光; 邓晓颖; 刘正权; 包亦望; 李聪; 邱一富

    2012-01-01

    In this paper, a novel hybrid photovoltaic/thermovoltaic solar system (PV/TV) was designed with PV cells, heat collector and thermoelectric generator. This PV/TV system can collect heat from solar panels so as to reduce its surface temperature, and then to generate electricity using the temperature difference technology and devices. Simulation experiments were conducted in Beijing. The performance of this system from April to October was analyzed, and the application of PV/TV system in photovoltaic building was discussed primarily. The results indicated that the generating efficiency per unit area of this PV/TV system was 5% ~ 15% higher than that of a pure PV system.%本文将太阳能电池板、集热器、热电发电片结合起来,设计并开发制成了一套光伏/热电系统(PV/TV),在利用太阳能电池发电的同时,可将热量收集并利用其发电.而后将这种系统在北京地区进行了室外模拟实验,测试并讨论了该系统在4 ~10月的发电性能,对PV/TV系统在光伏建筑中的应用进行了初步探讨.结果表明,相对于单纯的光伏发电系统,PV/TV系统单位面积发电效率有5% ~ 15%的提高.

  20. A dynamic simulation of a flat-plate collector system

    Science.gov (United States)

    Annino, A.

    1983-04-01

    A numerical model for the performance of a flat plate solar collector array is presented, with account taken of thermal transients and calculation on a microcomputer. The system modeled consists of a flat plate array, the heat transfer fluid, an insulated storage tank, an exchange loop for heating a secondary fluid, and a load maintained by a pump. The one-dimensional analysis includes equations for the energy balances, with consideration given to heat losses to the outside. A function is defined for the total incident solar radiation, and behavior is simulated over the entire 24-hr day, weighted by the highest and lowest recorded temperatures. Good agreement has been found with experimental data.

  1. Maximum power point tracking in PV systems based on adaptive control and sliding mode control

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz-Valencia

    2015-01-01

    Full Text Available Los sistemas fotovoltaicos (PV son comúnmente controlados utilizando estructuras PI o PID, las cuales no pueden asegurar estabilidad global y un tiempo de establecimiento constante. Por esto, los algoritmos de optimización, e.g. Perturbar y Observar (P&O, son diseñados utilizando el tiempo de establecimiento más alto en el rango de operación, lo cual produce una búsqueda lenta del punto de máxima potencia (MPP para gran parte del rango de operación, introduciendo pérdidas dinámicas de potencia al sistema. Este artículo propone combinar un controlador adaptativo y un controlador de corriente por modos deslizantes (SMCC para garantizar estabilidad global y un tiempo de establecimiento constante para cualquier condición de operación, lo que permite incrementar la potencia generada en comparación con controladores PI y PID. El SMCC permite mitigar las perturbaciones del sistema y garantizar estabilidad global, mientras que el controlador adaptativo define la referencia del SMCC para asegurar un tiempo de estabilización constante. El diseño de la nueva estructura de control se soporta con análisis matemáticos y simulaciones realizadas en Matlab® para validar la robustez del sistema.

  2. 77 FR 58580 - Interview Room Recording System Standard and License Plate Reader Standard Workshops

    Science.gov (United States)

    2012-09-21

    ... of Justice Programs Interview Room Recording System Standard and License Plate Reader Standard... System Standard and License Plate Reader Standard Workshops. SUMMARY: The National Institute of Justice... development of NIJ performance standards for Interview Room Recording Systems and License Plate Readers used...

  3. Research and development of system to utilize photovoltaic energy. Study on large-scale PV power supply system; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyo energy kyokyu system no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on large-scale PV power supply systems in fiscal 1994. (1) On optimization of large-scale systems, the conceptual design of the model system was carried out which supposes a large-scale integrated PV power generation system in desert area. As a result, a pair of 250kW generation system was designed as minimum one consisting power unit. Its frame and construction method were designed considering weather conditions in the inland of China. (2) On optimization of large-scale transmission systems, as large-scale power transmission systems for PV power generation, the following were studied: AC aerial transmission, DC aerial transmission, superconducting transmission, hydrogen gas pipeline, and LH2 tanker transport. (3) On the influence of large-scale systems, it was estimated that emission control is expected by substituting PV power generation for coal fired power generation, the negative influence on natural environment cannot be supposed, and the favorable economic effect is expected as influence on social environment. 4 tabs.

  4. Energy and exergy analysis of PV/T air collectors connected in series

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Solanki, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tiwari, Arvind [Department of Design, Production and Management, University of Twente (Netherlands)

    2009-08-15

    In this paper an attempt has been made to derive the analytical expressions for N hybrid photovoltaic/thermal (PV/T) air collectors connected in series. The performance of collectors is evaluated by considering the two different cases, namely, Case I (air collector is fully covered by PV module (glass to glass) and air flows above the absorber plate) and Case II (air collector is fully covered by PV module (glass to glass) and air flows below the absorber plate). This paper shows the detailed analysis of energy, exergy and electrical energy by varying the number of collectors and air velocity considering four weather conditions (a, b, c and d type) and five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. It is found that the collectors fully covered by PV module and air flows below the absorber plate gives better results in terms of thermal energy, electrical energy and exergy gain. Physical implementation of BIPV system has also been evaluated. If this type of system is installed on roof of building or integrated with building envelope will simultaneously fulfill the electricity generation for lighting purpose and hot air can be used for space heating or drying. (author)

  5. Analysis of the Influence of the Stability Factors of PV/T-SAHP on the Performance of the System

    Directory of Open Access Journals (Sweden)

    Haitao Wang

    2015-12-01

    Full Text Available The integrated photovoltaic/thermal collector (PV/T with solar assisted heat pump (SAHP often operates under an undesigned condition. Against the backdrop of heat pump system oscillation resulting from the mismatching between collectors area and compressor capacity, this work explores the dynamic performance of heat pump system at a fixed compressor frequency when the condensing water temperature and electronic expansion valve (EEV opening are variable or invariable. We also consider why the system is unstable and propose the theory of SAHP system stability. Also, a preliminary performance analysis is made on SAHP system that is respectively influenced by an inverter compressor and EEV. The MSS(Minimum Stable Signal line theory is proposed to account for system unstabilty in the research of the match between EEV and evaporators, that is to say, the critical problem of keep the system stability is to find out how evaporators superheat under the circumstance of specified loads and its corresponding EEV opening, in other words, to find the MSS line.

  6. A new method for estimating insolation based on PV-module currents in a cluster of stand-alone solar systems

    NARCIS (Netherlands)

    Nieuwenhout, F; van der Borg, N; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2007-01-01

    In order to evaluate the performance of solar home systems (SHSs), data on local insolation is a prerequisite. We present a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV) module currents

  7. Estimating insolation based on PV-module currents in a cluster of stand-alone solar systems: Introduction of a new method

    NARCIS (Netherlands)

    Nieuwenhout, F; van den Borg, N.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2006-01-01

    In order to evaluate the performance of solar home systems (SHS), data on local insolation is a prerequisite. We present the outline of a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV)-m

  8. Design of Fuzzy-PID Controller of PV Grid-connected Control System%光伏并网系统模糊PID控制器的设计

    Institute of Scientific and Technical Information of China (English)

    贺运胜

    2013-01-01

    As illumination is stochastic and uncertain, a set of PID parameters can hardly achieve satisfactory control performance for grid-connected control for photovoltaic system. Based on the mathematical model of three-phase two-stage PV grid inverter, fuzzy-PID control strategy is applied in the grid control of PV system. Digital simulation and physical simulation show that fuzzy-PID control strategy can improve the PV system grid control dynamic process and the PV system can smoothly connect the grid.%由于光照具有随机性和不确定性等特点,光伏并网控制若采用传统PID控制,仅一组固定的参数难以在不同光照下均具有良好的并网控制效果。在三相两级式并网逆变器数学模型的基础上,将模糊PID控制策略引入光伏系统的并网控制中。通过数字仿真和物理仿真表明模糊控制与PID控制相结合的模糊PID控制,改善了光伏系统并网控制的动态过程,能够实现光伏系统的平滑并网。

  9. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.

  10. A new method for estimating insolation based on PV-module currents in a cluster of stand-alone solar systems

    NARCIS (Netherlands)

    Nieuwenhout, F; van der Borg, N; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2007-01-01

    In order to evaluate the performance of solar home systems (SHSs), data on local insolation is a prerequisite. We present a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV) module currents

  11. Estimating insolation based on PV-module currents in a cluster of stand-alone solar systems: Introduction of a new method

    NARCIS (Netherlands)

    Nieuwenhout, F; van den Borg, N.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2006-01-01

    In order to evaluate the performance of solar home systems (SHS), data on local insolation is a prerequisite. We present the outline of a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV)-m

  12. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume IV. Design analysis and trade-off study

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    Detailed reference designs developed for optimally sized photovoltaic-thermal (PV-T) systems are presented for three selected applications. The results of trade-off analyses to determine the effects of load variations, new components, changes in location, and variations in array cost are also discussed.

  13. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  14. High-efficiency Transformerless PV Inverter Circuits

    OpenAIRE

    Chen, Baifeng

    2015-01-01

    With worldwide growing demand for electric energy, there has been a great interest in exploring photovoltaic (PV) sources. For the PV generation system, the power converter is the most essential part for the efficiency and function performance. In recent years, there have been quite a few new transformerless PV inverters topologies, which eliminate the traditional line frequency transformers to achieve lower cost and higher efficiency, and maintain lower leakage current as well. With an ov...

  15. Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    West, R.; Mackamul, K.; Duran, G.

    2000-03-06

    This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

  16. Low concentrator PV optics optimization

    Science.gov (United States)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  17. 一种新型PV/T复合系统电、热性能对比研究%Comparative Study on Electrical and Thermal Properties of a Novel Photovoltaic/Thermal System

    Institute of Scientific and Technical Information of China (English)

    李光明; 刘祖明; 李景天; 廖华; 朱勋梦; 张卫东

    2013-01-01

    To improve PV/T energy output performance,a novel hybrid photovoltaic/thermal solar system is designed with flat stainless box as solar heat collector combined with aluminum alloy backplane monocrystalline silicon PV components.Experiments are conducted on the novel PV/T system,PV module and solar heat collector at same condition.Experimental results show that the electrical performances are compared between novel PV/T and conventional PV module.The voltage electrical efficiency,fill factor,output power and power generation of novel PV/T system have respectively been enhanced about 0.5 ~ 1.5V,9.76%,1.49%,3.75% and 4.02%,but thermal efficiency of PV/T system have been reduced about 22%.Compared with pure PV system or the nature circulation of the solar water collector,Novel PV/T system has other advantages,such as less occupied area,higher total performance efficiency,greater power generation and better efficiency of integrated performance.%为提高光伏光热一体化系统(PV/T)能量输出,将新型铝合金背板型光伏组件和自行设计制作的不锈钢扁盒流道集热板相结合,用导热硅胶加以粘接构成新型PV/T复合系统.将新型PV/T复合系统、常规TPT背板光伏组件、常规平板集热器至于同于工况下进行测试,测试结果表明,与TPT光伏组件相比,新型PV/T系统的电压约提升了0.5~1.5V,电转换效率、填充因子、输出功率及发电量平均提高了9.76%、1.49%、3.75%、4.02%.而复合系统热效率比常规平板集热器约低22%左右.相对于常规TPT光伏系统或自然循环平板集热器热水系统,新型PV/T系统有发电量高、占地面积小、综合性能效率高等优点.

  18. Establishment of an in vitro system for studies on the induced resistance of cotton to Xanthomonas campestris pv. malvacearum Estabelecimento de sistema in vitro para estudos da resistência induzida à Xanthomonas campestris pv. malvacearum em algodoeiro

    Directory of Open Access Journals (Sweden)

    ADILSON KENJI KOBAYASHI

    2000-04-01

    Full Text Available An in vitro system for studying the resistance response of cotton (Gossypium hirsutum L. to Xanthomonas campestris pv. malvacearum was investigated. Cell suspension cultures, established from hypocotyl-derived callus of cotton cultivar 101-102B, were treated with bacterial extracellular polysaccharides (EPS extracted from the incompatible race 18 of X. campestris pv. malvacearum. EPS at 600 mug/mL caused pronounced darkening of the suspension cultures, as indicative of cell death, 48 hours after incubation. Protein electrophoresis analysis of the time course of EPS-treated cells showed differential accumulation of several protein bands after 12-24 hours. The time course of protein accumulation and cell death was consistent with an elicitor-mediated hypersensitive response.Desenvolveu-se um sistema in vitro para estudar a resistência do algodoeiro (Gossypium hirsutum L. à Xanthomonas campestris pv. malvacearum. Foram utilizados calos originados a partir de hipocótilos da cultivar de algodoeiro 101-102B para estabelecer culturas de células em suspensão, as quais foram tratadas com polissacarídeos extracelulares bacterianos (EPS extraídos da raça incompatível 18 de X. campestris pv. malvacearum. O tratamento com EPS, na concentração de 600 mig/mL, causou acentuado escurecimento das culturas em suspensão, indicativo de morte celular, 48 horas após a incubação. A análise temporal do perfil eletroforético de proteínas extraídas das células tratadas com EPS mostrou um acúmulo diferencial de diversas proteínas após 12-24 horas. O acúmulo de proteínas e a morte celular ao longo do período estudado foram consistentes com um padrão de resposta de hipersensibilidade causada por elicitores.

  19. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  20. 78 FR 59065 - Interview Room Recording System Standard and License Plate Reader Standard Workshops

    Science.gov (United States)

    2013-09-25

    ... of Justice Programs Interview Room Recording System Standard and License Plate Reader Standard... Recording System Standard and License Plate Reader Standard Workshops. SUMMARY: The National Institute of... Plate Readers used by criminal justice agencies. Sessions are intended to inform manufacturers, test...

  1. PV output smoothing with energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  2. An Automatic System of Vehicle Number-Plate Recognition Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents an automatic system of vehicle number-plate recognition based on neural networks. In this system, location of number-plate and recognition of characters in number-plate can be automatically completed. Pixel colors of Number-plate area are classified using neural network, then color features are extracted by analyzing scanning lines of the cross-section of number-plate. It takes full use of number-plate color features to locate number plate. Characters in number-plate can be effectively recognized using the neural networks. Experimental results show that the correct rate of number-plate location is close to 100%, and the time of number-plate location is less than 1 second. Moreover, recognition rate of characters is improved due to the known number-plate type. It is also observed that this system is not sensitive to variations of weather, illumination and vehicle speed. In addition, and also the size of number-plate need not to be known in prior. This system is of crucial significance to apply and spread the automatic system of vehicle number-plate recognition.

  3. Biomechanical comparison of orthogonal versus parallel double plating systems in intraarticular distal humerus fractures

    Directory of Open Access Journals (Sweden)

    Ata C. Atalar

    2017-01-01

    Conclusion: Our study showed that both plating systems had similar biomechanical stabilities when anatomic plates with distal locking screws were used in intraarticular distal humerus fractures in artificial humerus models.

  4. Study of installation of PV systems at campus; Campus ni okeru taiyoko hatsuden donyu ni kansuru kenkyu (taiyo denchi nomi wo secchishita baai no yobi kento)

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, N.; Tanaka, H.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1997-11-25

    In terms of energy consumption, environmentality and economical efficiency in the case of installing the photovoltaic power system on the rooftop of the university campus, a comparative study was conducted with other power generation systems. As objects to be comparatively studied, selected were the all-electric type centralized space heating/cooling system, cogeneration system, nighttime heat storage system and centralized system with solar cells installed. The panel area of the PV system is 10,000m{sup 2} on the rooftop and 7,000{sup 2} on the outer wall. About data on solar radiation, average values obtained in Nagoya were used. Assessment was made in terms of energy consumption amount at the time of operation, system COP, emission amounts of CO2, NOx and SOx at the time of manufacturing and operation, initial cost, running cost, etc. As a result of the study, an effect of reducing global warming gas was admitted in the PV system. However, the initial cost of the solar cell panel was high, and the life cycle cost of the PV system was lower than other systems. 1 ref., 7 figs., 3 tabs.

  5. Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria.

    Science.gov (United States)

    Berger, Carolin; Robin, Guillaume P; Bonas, Ulla; Koebnik, Ralf

    2010-07-01

    Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen Xanthomonas campestris pv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase-beta-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as the Yersinia homologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue from Yersinia, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.

  6. Fire fighting with high risk. Firemen demand an emergency shutoff option for PV systems; Loeschen mit Risiko. Die Feuerwehr fordert von der Solarbranche ein 'Not-Aus' fuer Photovoltaikanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, Andreas

    2011-01-15

    It is a horror scenario for home owners with PV systems: Firemen cannot fight a fire in a burning house because free PV cables make it too risky. Emergency shutoff technologies may offer a way out. There are several technologies already commercially available but there is no legal regulation as yet, and experts are not in agreement about the optimum concepts.

  7. Evolution of the Mariana Convergent Plate Margin System

    Science.gov (United States)

    Fryer, Patricia

    1996-02-01

    The Mariana convergent plate margin system of the western Pacific provides opportunities for studying the tectonic and geochemical processes of intraoceanic plate subduction without the added complexities of continental geology. The system's relative geologic simplicity and the well-exposed sections of lithosphere in each of its tectonic provinces permit in situ examination of processes critical to understanding subduction tectonics. Its general history provides analogs to ancient convergent margin terranes exposed on land and helps to explain the chemical mass balance in convergent plate margins. The Mariana convergent margin's long history of sequential formation of volcanic arcs and extensional back arc basins has created a series of volcanic arcs at the eastern edge of the Philippine Sea plate. The trenchward edge of the overriding plate has a relatively sparse sediment cover. Rocks outcropping on the trench's inner slope are typical of the early formed suprasubduction zone's lithosphere and have been subjected to various processes related to its tectonic history. Pervasive forearc faulting has exposed crust and upper mantle lithosphere. Many large serpentinized peridotite seamounts are within 100 km of the trench axis. From these we can learn the history of regional metamorphism and observe and sample active venting of slab fluids. Ocean drilling recovered suprasubduction zone lava sequences erupted since the Eocene that suggest that the forearc region remains volcanologically dynamic. Seismic studies and seafloor mapping show evidence of deformation throughout forearc evolution. Large portions of uplifted southern forearc are exposed at the larger islands. Active volcanoes at the base of the eastern boundary fault of the Mariana Trough vary in size and composition along strike and record regional differences in source composition. Their locations along strike of the arc are controlled in part by cross-arc structures that also facilitate formation of submarine

  8. The effectiveness of small scale Photovoltaic (PV) systems design and cost analysis simulation on Saudi Arabian Economy

    Science.gov (United States)

    Almansour, Faris Abdullah

    -Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.

  9. Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs

    Directory of Open Access Journals (Sweden)

    Kyeon Hur

    2012-04-01

    Full Text Available This paper presents look-ahead energy management system for a grid-connected residential photovoltaic (PV system with battery under critical peak pricing for electricity, enabling effective and proactive participation of consumers in the Smart Grid’s demand response. In the proposed system, the PV is the primary energy source with the battery for storing (or retrieving excessive (or stored energy to pursue the lowest possible electricity bill but it is grid-tied to secure electric power delivery. Premise energy management scheme with an accurate yet practical load forecasting capability based on a Kalman filter is designed to increase the predictability in controlling the power flows among these power system components and the controllable electric appliances in the premise. The case studies with various operating scenarios demonstrate the validity of the proposed system and significant cost savings through operating the energy management scheme.

  10. Studying the Impact of Distributed Solar PV on Power Systems using Integrated Transmission and Distribution Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Himanshu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krad, Ibrahim [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-24

    This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solar PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.

  11. Preliminary investigation into the use of solar PV systems for residential application in Bandar Sri Iskandar, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dimas, F.A.; Gillani, S.I.; Ans, M.S. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    In the near future, Malaysia is expected to be a net importer of oil, and the nation will have to face issues related to the security of supply and economic consequences. It is also anticipated that the energy demand for the country will increase with the increase in population and GDP. Realizing the situation, it is important that further emphasis is given into the diversification of energy resources. One method is the exploitation of renewable energy to minimize the effects of global warming. Photovoltaic technology is widely used around the world in locations with scarce power generation options. It is used for various applications and Building Integrated Photovoltaic (BIPV) system is one of them. However, photovoltaic is still expensive compared to conventional methods of generating electricity. So a careful design of the system is required to ensure economic viability. This study describes a preliminary investigation of a solar PV system for residential applications in Bandar Sri Iskandar. Sizing procedures based on the peak sun hour concept is described for a Malaysian typical terraced house. Current and voltage measurements of the solar panel were carried out to predict the output under actual conditions at the site.

  12. Performance evaluation of Maximum Power Point Tracking algorithm with buck dc-dc converter for Solar PV system

    OpenAIRE

    Ahteshamul Haque

    2016-01-01

    The energy crisis concern leads to look for alternate source of energy. Solar energy is considered as most reliable among the all renewable energy sources. Solar PV (Photovoltaic) is used to convert solar energy into electric energy. The efficiency of solar PV is very low and its characteristic is nonlinear. To overcome these drawbacks a technique known as maximum power point tracking is used. This algorithm is implemented in the control circuit of DC – DC converter. The objective...

  13. 光伏发电项目的财务评价体系构建%Financial Evaluation System of PV Project

    Institute of Scientific and Technical Information of China (English)

    张娟; 王芸

    2015-01-01

    光伏发电是新时期符合时代特点的首选能源,中国相关部门就补贴、退税、电价、并网及融资等问题出台若干配套政策,为其市场发展更提供了有力支持。尤其甘肃省河西地区属于太阳能资源丰富地区,被开发潜力巨大,光伏发电市场发展迅速。准确地对光伏发电项目进行财务评价,可以为企业投资光伏发电项目提供可靠的投资依据,规范光伏发电产业及市场合理发展。以建设项目经济评价相关理论为基础,在国家现行财税制度和价格体系的前提下,建立光伏发电项目经济评价方法与体系,并进行实证分析。%PV is the first choice of new energy during New Era,the introduction of relevant departments on subsidies,tax issues, electricity,grid and financing in china provides a strong support for the development of PV market.Especially,as solar energy resource-rich areas,PV market is developing rapidly in Hexi areas of Gansu province.Accurate financial evaluation of PV project can provide a reliable basis for Investor of PV project,regulate the development of PV market.Under the current tax and price system,this paper constructs financial evaluation system of PV project based on the theory of Construction project economic evaluation,and makes Empirical Analysis.

  14. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.

    Science.gov (United States)

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-03-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.

  15. Convection pattern and stress system under the African plate

    Science.gov (United States)

    Liu, H.-S.

    1977-01-01

    Studies on tectonic forces from satellite-derived gravity data have revealed a subcrustal stress system which provides a unifying mechanism for uplift, depression, rifting, plate motion and ore formation in Africa. The subcrustal stresses are due to mantle convection. Seismicity, volcanicity and kimberlite magmatism in Africa and the development of the African tectonic and magnetic features are explained in terms of this single stress system. The tensional stress fields in the crust exerted by the upwelling mantle flows are shown to be regions of structural kinship characterized by major concentration of mineral deposits. It is probable that the space techniques are capable of detecting and determining the tectonic forces in the crust of Africa.

  16. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, J.

    2006-07-01

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  17. Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lambarski, T.; Minyard, G. [Solar Electric Specialties, Willits, CA (United States)

    1997-03-01

    This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

  18. Distributed PV Adoption - Sensitivity to Market Factors

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter; Sigrin, Ben

    2016-02-01

    NREL staff used the dSolar (distributed solar) model to forecast the adoption of distributed, behind-the-meter PV through the year 2050 for 9 different scenarios. The scenarios varied in their assumptions about a carbon tax, the cost of PV systems in the future, and what credit would be given for excess generation once current net metering policies expire.

  19. Estimating insolation based on PV-module currents in a cluster of stand-alone solar systems: Introduction of a new method

    Energy Technology Data Exchange (ETDEWEB)

    Nieuwenhout, Frans; Van der Borg, Nico [Energy Research Centre of the Netherlands, Petten (Netherlands); Van Sark, Wilfried; Turkenburg, Wim [Copernicus Institute for Sustainable Development and Innovation, Utrecht University (Netherlands). Department of Science, Technology and Society

    2006-09-15

    In order to evaluate the performance of solar home systems (SHS), data on local insolation is a prerequisite. We present the outline of a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV)-module currents from a number of solar home systems, located a few kilometres apart. The objective is to obtain reliable daily and monthly insolation figures that are representative for an area of a few square kilometres. (author)

  20. 大型太阳能并网发电模型及应用%Model of Large PV and Its Applications on Power System Analysis

    Institute of Scientific and Technical Information of China (English)

    杨秀媛; 刘小河; 张芳; 张利

    2011-01-01

    大型太阳能光伏发电是解决电力供应的有效途径之一.由于光伏发电的不确定性,大规模光伏电源的接入将对电力系统的运行产生影响.目前,用于分析大型光伏系统对电网暂态稳定性影响的整体模型尚不成熟.在分析光伏系统各组成元件模型的基础上,给出了大型光伏并网发电系统的暂态模型;通过对光照变化、并网点电压变化2种情况下的响应进行仿真,验证了模型的有效性.分析了大型光伏电源并入某地区电网时对系统频率稳定、电压稳定和功角稳定的影响.所提出方法为含有光伏发电的电网提供了借鉴.%Large scale photovoltaic (PV) generation is another way to generate electricity. When a large capacity PV system connected to the grid, much impact could be brought to the grid due to its uncertainty. Presently, the whole model of PV system is still defective for the analysis of power system transient stability. The transient model of large scale grid-connected PV generation system was given based on the model of each component of PV generation system. Response of the model was simulated respectively when the illumination changes, or the voltage at grid-connected point changes. PV systems of different capacities connected to a district grid were studied in the respect of frequency stability, voltage stability and power angle stability. The methods proposed could be applied to the power grid with photovoltaic generation integration.