WorldWideScience

Sample records for plate image display

  1. LCD and CRT display of storage phosphor plate and limited cone beam computed tomography images for the evaluation of root canal fillings.

    Science.gov (United States)

    Baksi, B Güniz; Soğur, Elif; Gröndahl, Hans-Göran

    2009-03-01

    The aim was to compare quality of liquid crystal display (LCD) and high resolution cathode ray tube (CRT) screens for the evaluation of length and homogeneity of root canal fillings in storage phosphor plate (SPP) and limited cone beam computed tomography (LCBCT) images. Endodontic treatment was performed to 17 extracted permanent lower incisor teeth. Images of each tooth positioned in a dried mandible were obtained with Digora SPP and Accu-I-Tomo LCBCT systems. Six observers scored the quality of all images on CRT and LCD screens. Results were compared using McNemar's and Cochran's Q tests (p LCD displays (p > 0.05). Agreement among observers' scores was higher with CRT display. Within the limits of this ex vivo study, differences between LCD and CRT monitors for the evaluation of root canal fillings are clinically insignificant independent on whether conventional radiographs, captured by means of image plates, or cone beam images are being displayed.

  2. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  3. Rapid display of radiographic images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.; Whitman, Robert A.; Blaine, G. James; Jost, R. Gilbert; Karlsson, L. M.; Monsees, Thomas L.; Hassen, Gregory L.; David, Timothy C.

    1991-07-01

    The requirements for the rapid display of radiographic images exceed the capabilities of widely available display, computer, and communications technologies. Computed radiography captures data with a resolution of about four megapixels. Large-format displays are available that can present over four megapixels. One megapixel displays are practical for use in combination with large-format displays and in areas where the viewing task does not require primary diagnosis. This paper describes an electronic radiology system that approximates the highest quality systems, but through the use of several interesting techniques allows the possibility of its widespread installation throughout hospitals. The techniques used can be grouped under three major system concepts: a local, high-speed image server, one or more physician's workstations each with one or more high-performance auxiliary displays specialized to the radiology viewing task, and dedicated, high-speed communication links between the server and the displays. This approach is enhanced by the use of a progressive transmission scheme to decrease the latency for viewing four megapixel images. The system includes an image server with storage for over 600 4-megapixel images and a high-speed link. A subsampled megapixel image is fetched from disk and transmitted to the display in about one second followed by the full resolution 4-megapixel image in about 2.5 seconds. Other system components include a megapixel display with a 6-megapixel display memory space and frame-rate update of image roam, zoom, and contrast. Plans for clinical use are presented.

  4. Image Descriptors for Displays

    Science.gov (United States)

    1975-03-01

    hypothetical televison display. The viewing distance is 4 picture heights, and the bandwidth limitation has been set by the U.S. Monochrome Standards...significantly influence the power spectrum over most of the video frequency range. A large dc component and a small random component provide another scene... influences . It was Illuminated with natural light to a brightness of over 300 ft-L. The high brightness levels were chosen so as to nearly reproduce the

  5. An Automatic Number Plate Recognition System under Image Processing

    OpenAIRE

    Sarbjit Kaur

    2016-01-01

    Automatic Number Plate Recognition system is an application of computer vision and image processing technology that takes photograph of vehicles as input image and by extracting their number plate from whole vehicle image , it display the number plate information into text. Mainly the ANPR system consists of 4 phases: - Acquisition of Vehicle Image and Pre-Processing, Extraction of Number Plate Area, Character Segmentation and Character Recognition. The overall accuracy and efficiency of whol...

  6. Colour displays for categorical images

    NARCIS (Netherlands)

    Glasbey, C.; Heijden, van der G.W.A.M.; Toh, V.F.K.; Gray, A.J.

    2007-01-01

    We propose a method for identifying a set of colours for displaying 2D and 3D categorical images when the categories are unordered labels. The principle is to find maximally distinct sets of colours. We either generate colours sequentially, to maximize the dissimilarity or distance between a new col

  7. Future Directions for Astronomical Image Display

    Science.gov (United States)

    Mandel, Eric

    2000-03-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  8. Light field display and 3D image reconstruction

    Science.gov (United States)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  9. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  10. Display of nuclear medicine imaging studies

    CERN Document Server

    Singh, B; Samuel, A M

    2002-01-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Disp...

  11. An Automatic Number Plate Recognition System under Image Processing

    Directory of Open Access Journals (Sweden)

    Sarbjit Kaur

    2016-03-01

    Full Text Available Automatic Number Plate Recognition system is an application of computer vision and image processing technology that takes photograph of vehicles as input image and by extracting their number plate from whole vehicle image , it display the number plate information into text. Mainly the ANPR system consists of 4 phases: - Acquisition of Vehicle Image and Pre-Processing, Extraction of Number Plate Area, Character Segmentation and Character Recognition. The overall accuracy and efficiency of whole ANPR system depends on number plate extraction phase as character segmentation and character recognition phases are also depend on the output of this phase. Further the accuracy of Number Plate Extraction phase depends on the quality of captured vehicle image. Higher be the quality of captured input vehicle image more will be the chances of proper extraction of vehicle number plate area. The existing methods of ANPR works well for dark and bright/light categories image but it does not work well for Low Contrast, Blurred and Noisy images and the detection of exact number plate area by using the existing ANPR approach is not successful even after applying existing filtering and enhancement technique for these types of images. Due to wrong extraction of number plate area, the character segmentation and character recognition are also not successful in this case by using the existing method. To overcome these drawbacks I proposed an efficient approach for ANPR in which the input vehicle image is pre-processed firstly by iterative bilateral filtering , adaptive histogram equalization and number plate is extracted from pre-processed vehicle image using morphological operations, image subtraction, image binarization/thresholding, sobel vertical edge detection and by boundary box analysis. Sometimes the extracted plate area also contains noise, bolts, frames etc. So the extracted plate area is enhanced by using morphological operations to improve the quality of

  12. Real Image Visual Display System

    Science.gov (United States)

    1992-12-01

    cylindrical lenses, each being a plano convex lens, see Figure 8. The lenticular sheet is transparent, the front face presents Figure 8. Lenticular screen...two mutually perpendicular line images are formed. Reflected rays in the tangential plane focus at a point t and the reflected rays in the sagital plane...perpendicular to the tangential plane) focus at a point s. In the ODD the sagital rays focus at the image plane therefore the sagital astigmatism is

  13. Compact three-dimensional head-mounted display system with Savart plate.

    Science.gov (United States)

    Lee, Chang-Kun; Moon, Seokil; Lee, Seungjae; Yoo, Dongheon; Hong, Jong-Young; Lee, Byoungho

    2016-08-22

    We propose three-dimensional (3D) head-mounted display (HMD) providing multi-focal and wearable functions by using polarization-dependent optical path switching in Savart plate. The multi-focal function is implemented as micro display with high pixel density of 1666 pixels per inches is optically duplicated in longitudinal direction according to the polarization state. The combination of micro display, fast switching polarization rotator and Savart plate retains small form factor suitable for wearable function. The optical aberrations of duplicated panels are investigated by ray tracing according to both wavelength and polarization state. Astigmatism and lateral chromatic aberration of extraordinary wave are compensated by modification of the Savart plate and sub-pixel shifting method, respectively. To verify the feasibility of the proposed system, a prototype of the HMD module for monocular eye is implemented. The module has the compact size of 40 mm by 90 mm by 40 mm and the weight of 131 g with wearable function. The micro display and polarization rotator are synchronized in real-time as 30 Hz and two focal planes are formed at 640 and 900 mm away from eye box, respectively. In experiments, the prototype also provides augmented reality function by combining the optically duplicated panels with a beam splitter. The multi-focal function of the optically duplicated panels without astigmatism and color dispersion compensation is verified. When light field optimization for two additive layers is performed, perspective images are observed, and the integration of real world scene and high quality 3D images is confirmed.

  14. Perceived image quality assessment for color images on mobile displays

    Science.gov (United States)

    Jang, Hyesung; Kim, Choon-Woo

    2015-01-01

    With increase in size and resolution of mobile displays and advances in embedded processors for image enhancement, perceived quality of images on mobile displays has been drastically improved. This paper presents a quantitative method to evaluate perceived image quality of color images on mobile displays. Three image quality attributes, colorfulness, contrast and brightness, are chosen to represent perceived image quality. Image quality assessment models are constructed based on results of human visual experiments. In this paper, three phase human visual experiments are designed to achieve credible outcomes while reducing time and resources needed for visual experiments. Values of parameters of image quality assessment models are estimated based on results from human visual experiments. Performances of different image quality assessment models are compared.

  15. Microchannel Plate Imaging Detectors for the Ultraviolet

    Science.gov (United States)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  16. Image simulation for automatic license plate recognition

    Science.gov (United States)

    Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José

    2012-01-01

    Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.

  17. Digital radiography image quality: image processing and display.

    Science.gov (United States)

    Krupinski, Elizabeth A; Williams, Mark B; Andriole, Katherine; Strauss, Keith J; Applegate, Kimberly; Wyatt, Margaret; Bjork, Sandra; Seibert, J Anthony

    2007-06-01

    This article on digital radiography image processing and display is the second of two articles written as part of an intersociety effort to establish image quality standards for digital and computed radiography. The topic of the other paper is digital radiography image acquisition. The articles were developed collaboratively by the ACR, the American Association of Physicists in Medicine, and the Society for Imaging Informatics in Medicine. Increasingly, medical imaging and patient information are being managed using digital data during acquisition, transmission, storage, display, interpretation, and consultation. The management of data during each of these operations may have an impact on the quality of patient care. These articles describe what is known to improve image quality for digital and computed radiography and to make recommendations on optimal acquisition, processing, and display. The practice of digital radiography is a rapidly evolving technology that will require timely revision of any guidelines and standards.

  18. RGB imaging volumes alignment method for color holographic displays

    Science.gov (United States)

    Zaperty, Weronika; Kozacki, Tomasz; Gierwiało, Radosław; Kujawińska, Małgorzata

    2016-09-01

    Recent advances in holographic displays include increased interest in multiplexing techniques, which allow for extension of viewing angle, hologram resolution increase, or color imaging. In each of these situations, the image is obtained by a composition of a several light wavefronts and therefore some wavefront misalignment occurs. In this work we present a calibration method, that allows for correction of these misalignments by a suitable numerical manipulation of holographic data. For this purpose, we have developed an automated procedure that is based on a measurement of positions of reconstructed synthetic hologram of a target object with focus at two different reconstruction distances. In view of relatively long reconstruction distances in holographic displays, we focus on angular deviations of light beams, which result in a noticeable mutual lateral shift and inclination of the component images in space. A method proposed in this work is implemented in a color holographic display unit (single Spatial Light Modulator - SLM) utilizing Space- Division Method (SDM). In this technique, also referred as Aperture Field Division (AFD) method, a significant wavefront inclination is introduced by a color filter glass mosaic plate (mask) placed in front of the SLM. It is verified that an accuracy of the calibration method, obtained for reconstruction distance 700mm, is 34.5 μm and 0.02°, for the lateral shift and for the angular compensation, respectively. In the final experiment the presented method is verified through real-world object color image reconstruction.

  19. Imaging plates calibration to X-rays

    Science.gov (United States)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  20. Thermal neutron imaging using microchannel plates

    Science.gov (United States)

    Fraser, George W.; Pearson, James F.; Al-Horayess, O. S.; Feller, W. Bruce; Cook, Lee M.

    1993-02-01

    Microchannel plates (MCPs) are compact electron multipliers of high gain, widely used for the high resolution imaging of charged particles and photons. In this paper, we consider the use of lead glass MCPs for the imaging of thermal neutrons. Two contrasting techniques are described. The first method involves direct neutron detection within a special channel plate structure containing lithium and/or boron. We review the constraints of glass chemistry on the attainable lithium oxide and boron oxide fractions and, hence, on the maximum neutron detection efficiency. The second method involves the detection, using MCPs of standard glass composition, of the internal conversion electrons from a thin gadolinium foil. We present the first measurements of the detection efficiency, pulse height resolution and imaging properties of a pulse-counting MCP/Gd detector system.

  1. Progress in 3D imaging and display by integral imaging

    Science.gov (United States)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  2. Illumination, color and imaging evaluation and optimization of visual displays

    CERN Document Server

    Bodrogi , P

    2012-01-01

    This comprehensive and modern reference on display technology, Illumination, color and imaging focuses on visual effects and how displayed images are best matched to the human visual system. It teaches how to exploit the knowledge of color information processing to design usable, ergonomic, and visually pleasing displays and display environments. The contents describe design principles and methods to optimize self-luminous visual technologies for the user using modern still and motion image displays and the whole range of indoor light sources. Design principles and methods are derived from

  3. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD.

    Science.gov (United States)

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Ye, Yan; Chen, Xiangyu; Chen, Linsen

    2017-01-23

    Limited by the refreshable data volume of commercial spatial light modulator (SLM), electronic holography can hardly provide satisfactory 3D live video. Here we propose a holography based multiview 3D display by separating the phase information of a lightfield from the amplitude information. In this paper, the phase information was recorded by a 5.5-inch 4-view phase plate with a full coverage of pixelated nano-grating arrays. Because only amplitude information need to be updated, the refreshing data volume in a 3D video display was significantly reduced. A 5.5 inch TFT-LCD with a pixel size of 95 μm was used to modulate the amplitude information of a lightfield at a rate of 20 frames per second. To avoid crosstalk between viewing points, the spatial frequency and orientation of each nano-grating in the phase plate was fine tuned. As a result, the transmission light converged to the viewing points. The angular divergence was measured to be 1.02 degrees (FWHM) by average, slightly larger than the diffraction limit of 0.94 degrees. By refreshing the LCD, a series of animated sequential 3D images were dynamically presented at 4 viewing points. The resolution of each view was 640 × 360. Images for each viewing point were well separated and no ghost images were observed. The resolution of the image and the refreshing rate in the 3D dynamic display can be easily improved by employing another SLM. The recoded 3D videos showed the great potential of the proposed holographic 3D display to be used in mobile electronics.

  4. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  5. Interactive display system having a digital micromirror imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  6. 3D augmented reality with integral imaging display

    Science.gov (United States)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  7. Guided wave topological imaging of isotropic plates.

    Science.gov (United States)

    Rodriguez, S; Deschamps, M; Castaings, M; Ducasse, E

    2014-09-01

    Topological imaging is a recent method. So far, it has been applied to bulk waves, and high resolution has been demonstrated for imaging scatterers even with a single ultrasonic insonification of the inspected medium. This method consists of (i) emitting waves and measuring the response of the medium; (ii) solving two propagation problems: the direct problem, where the experimental source is simulated, and the adjoint problem, where the source is the time-reversed difference between the measured wave field and that obtained from the direct problem; (iii) computing the image by simply multiplying both wave fields together in the frequency domain, and integrating over the frequency. The speed of the method depends only on the cost of the field computations that are performed in the defect-free medium. The present work deals with the application of topological imaging to plate guided waves. Combining modal theory and Fourier analysis, the computations are performed in a very short time. In the investigated cases, two-dimensional in-plane imaging is based on propagation of the single S0 Lamb mode. Despite very high dispersion of that mode, scatterers are accurately located and the spatial resolution is equal to about one wavelength.

  8. Displaying Photographic Images On Computer Monitors With Limited Colour Resolution

    Science.gov (United States)

    McFall, John D.; Mitchell, Joan L.; Pennebaker, William B.

    1989-04-01

    In this paper we address the problem of displaying continuous tone photographic colour images on CRT monitors on which only a limited number of colours can be displayed simultaneously. An algorithm is presented which generates a palette of a limited number of colours, and a method is given for the actual display of a full colour image using such a palette and its associated tables.

  9. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  10. Calibration and equivalency analysis of image plate scanners

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. Jackson, E-mail: williams270@llnl.gov; Maddox, Brian R.; Chen, Hui [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kojima, Sadaoki [Institute of Laser Engineering, Osaka University, Yamada-oka, 2-6, Suita, Osaka 565-0871 (Japan); Millecchia, Matthew [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  11. Secrets of high-performance image display

    Science.gov (United States)

    Desormeaux, David A.

    1996-04-01

    Medical imaging companies have traditionally supplied the industry with image visualization solutions based on their own custom hardware designs. Today, more and more systems are being deployed using only off-the-shelf workstations. Two major factors are driving this change. First, workstations are delivering the functionality and performance required to replace custom hardware for an ever increasing subset of visualization techniques, while continuing to come down in cost. Second, cost pressures are forcing medical imaging companies to OEM the hardware platform and focus on what they do best -- delivering solutions to health care providers. This industry shift is challenging the workstation vendors to deliver the maximum inherent performance in their computer systems to medical imaging applications without locking the application into a specific vendor's hardware. Since extracting the maximum performance from a workstation is not always intuitively obvious and often requires vendor-specific tricks, the best way to deliver performance to an application is through an application programmer's interface (API). The Hewlett-Packard Image Visualization Library (HP-IVL) is such an API. It transparently delivers the maximum possible imaging performance on Hewlett-Packard workstations, while allowing significant portability between platforms. This paper describes the performance tricks and trade-offs made in the software implementation of HP's Image Visualization Library and how the HP Image Visualization Accelerator (HP-IVX) fits into the overall architecture.

  12. Augmented reality 3D display based on integral imaging

    Science.gov (United States)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  13. Evaluation of stereoscopic 3D displays for image analysis tasks

    Science.gov (United States)

    Peinsipp-Byma, E.; Rehfeld, N.; Eck, R.

    2009-02-01

    In many application domains the analysis of aerial or satellite images plays an important role. The use of stereoscopic display technologies can enhance the image analyst's ability to detect or to identify certain objects of interest, which results in a higher performance. Changing image acquisition from analog to digital techniques entailed the change of stereoscopic visualisation techniques. Recently different kinds of digital stereoscopic display techniques with affordable prices have appeared on the market. At Fraunhofer IITB usability tests were carried out to find out (1) with which kind of these commercially available stereoscopic display techniques image analysts achieve the best performance and (2) which of these techniques achieve a high acceptance. First, image analysts were interviewed to define typical image analysis tasks which were expected to be solved with a higher performance using stereoscopic display techniques. Next, observer experiments were carried out whereby image analysts had to solve defined tasks with different visualization techniques. Based on the experimental results (performance parameters and qualitative subjective evaluations of the used display techniques) two of the examined stereoscopic display technologies were found to be very good and appropriate.

  14. Singular Value Decomposition of Images from Scanned Photographic Plates

    CERN Document Server

    Kolev, Vasil; Tsvetkov, Milcho

    2013-01-01

    We want to approximate the mxn image A from scanned astronomical photographic plates (from the Sofia Sky Archive Data Center) by using far fewer entries than in the original matrix. By using rank of a matrix, k we remove the redundant information or noise and use as Wiener filter, when rank kimage of astronomical plate without that image details, is obtained. The SVD of images from scanned photographic plates (SPP) is considered and its possible image compression.

  15. Application of Cosine Zone Plates to Image Encryption

    Institute of Scientific and Technical Information of China (English)

    GE Fan; CHEN Lin-Fei; ZHAO Dao-Mu

    2008-01-01

    @@ We analyse the diffraction result of optical field after Cosine zone plate, and theoretically deduce its transform matrix. Under some conditions, its diffraction distribution is a mixture of fractional Fourier spectra. Then we use Cosine zone plate and its diffraction result to image encryption. Possible optical image encryption and decryption implementations are proposed, and some numerical simulation results are also provided.

  16. Imaging with straight-edge phase plates in the TEM.

    Science.gov (United States)

    Edgcombe, C J

    2017-06-22

    The image of a simple phase object produced by a round lens with a Foucault or Hilbert phase plate can be determined with Abbe imaging theory and a 2D transform expressed in cylindrical coordinates. The contributions to the image amplitude from a uniform disc object and an azimuthally varying plate can then be distinguished and their phases relative to the incident wave can be compared. It appears that the usual choice of added phase for a Hilbert plate causes the image of a weak disc object to vanish as the plate edge approaches the axis, but a different choice of plate thickness can enable a weak phase object to provide a linear contribution to image intensity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Real-time Image Generation for Compressive Light Field Displays

    Science.gov (United States)

    Wetzstein, G.; Lanman, D.; Hirsch, M.; Raskar, R.

    2013-02-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  18. Displaying Images and Their Characteristics from Websites on Users Computers

    Directory of Open Access Journals (Sweden)

    Goran Bidjovski

    2014-04-01

    Full Text Available The subject of the research in this scientific paper are images on the websites, with special emphasis on displaying images chosen by the Web designer, along with its characteristic, on computers of various users. In addition, users can have different operating systems, different browsers, and different preferences in terms of their computers settings. An overall direction for using images and their characteristics when designing web pages, as well as some advice and opinions on the same topic are presented here. After that, several problems which arise from displaying images on the web pages of the computer of users are analyzed, for which a few solutions for the problems, as well as recommendations on which solution when to be chosen are also given in this text. A problem with a speed for loading web pages in correlation with size of images on those pages is studied as well. Then, problems with a speed for loading web pages in correlation with number of images on the page, problems with loading speed of second image on rollover, problems with a speed for loading web pages in correlation with size of background image, problems with texture in vertical bars used for background in web pages, and problems with users monitor size and background image are also analyzed. Finally, the problem with displaying the page without specifying image height and width is also considered.

  19. AMOEBA clustering revisited. [cluster analysis, classification, and image display program

    Science.gov (United States)

    Bryant, Jack

    1990-01-01

    A description of the clustering, classification, and image display program AMOEBA is presented. Using a difficult high resolution aircraft-acquired MSS image, the steps the program takes in forming clusters are traced. A number of new features are described here for the first time. Usage of the program is discussed. The theoretical foundation (the underlying mathematical model) is briefly presented. The program can handle images of any size and dimensionality.

  20. Improved Zone Plate Coded Imaging Technique by Using Four Special Designed Gabor Zone Plates

    Institute of Scientific and Technical Information of China (English)

    CAO Lei-Feng; SHEN Yu-Ji; ZHENG Zhi-Jian; DING Yong-Kun

    2005-01-01

    @@ Direct-current component, high-order artifacts, and side lobe distortion provide serious drawbacks in the application of Fresnel zone plate coded imaging (ZPCI).The presentation provided here proposes a novel way to resolve all the above-mentioned problems.Four different Gabor zone plates are suggested to substitute the one Fresnel zone plate used in the conventional ZPCI.Perfect reconstruction will be obtained when integrally analysing the four coded images.Primary numerical simulation provided here shows good result.

  1. FELIX 3D display: an interactive tool for volumetric imaging

    Science.gov (United States)

    Langhans, Knut; Bahr, Detlef; Bezecny, Daniel; Homann, Dennis; Oltmann, Klaas; Oltmann, Krischan; Guill, Christian; Rieper, Elisabeth; Ardey, Goetz

    2002-05-01

    The FELIX 3D display belongs to the class of volumetric displays using the swept volume technique. It is designed to display images created by standard CAD applications, which can be easily imported and interactively transformed in real-time by the FELIX control software. The images are drawn on a spinning screen by acousto-optic, galvanometric or polygon mirror deflection units with integrated lasers and a color mixer. The modular design of the display enables the user to operate with several equal or different projection units in parallel and to use appropriate screens for the specific purpose. The FELIX 3D display is a compact, light, extensible and easy to transport system. It mainly consists of inexpensive standard, off-the-shelf components for an easy implementation. This setup makes it a powerful and flexible tool to keep track with the rapid technological progress of today. Potential applications include imaging in the fields of entertainment, air traffic control, medical imaging, computer aided design as well as scientific data visualization.

  2. Nanosecond gating properties of proximity focused microchannel plate image intensifiers

    Science.gov (United States)

    King, N. S. P.; King, N. S. P.; Yates, G. J.; Jaramillo, S. A.; Noel, B. W.; Detch, J. L., Jr.; Ogle, J. W.

    The optical gating properties of Multichannel plate image intensifiers were characterized. Emphasis was placed on parameters relevant to gating speed and correlations between the applied electrical and resultant optical gates.

  3. Image quality of a mobile display under different illuminations.

    Science.gov (United States)

    Lin, Po-Hung; Kuo, Wen-Hung

    2011-08-01

    This study constructed the image quality models for a small mobile display under different ambient illumination levels using Group Method and Data Handling (GMDH) and described the relationship between perceived image quality and physical measurements. 33 college students took part in this experiment and were asked to evaluate the image quality under 1500 lux (typical indoor office illumination) and 7000 lux (simulated outdoor environment) in Stage One and Stage Two, respectively. In each stage, the participants had to evaluate 21 images. 17 sets of the data as a training set were used to build the model and four sets of the data as a testing set were used to verify the model. The results indicated that the effects of luminance, contrast, correlated color temperature (CCT), and resolution were significant on perceived image quality under 1500 lux. However, color temperature was not a significant physical characteristic, and an interaction between luminance and contrast was found below 7000 lux. From the results of the experiment, it is considered that the outdoor environment (7000 lux) is not suitable for using mobile displays. Finally, once a valid image quality model is built, the subjective image quality can be established when the measurements of significant physical characteristics are provided. The results of subjective ratings can also be provided for mobile display manufacturers to improve the product quality so that their products can meet customers' requirements.

  4. Ultra-realistic imaging: a new beginning for display holography

    Science.gov (United States)

    Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David

    2014-02-01

    Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.

  5. Optical Displays: A Tutorial on Images and Image Formation

    Science.gov (United States)

    1992-10-01

    Patterson Air Force Base, Ohio 45433-6573 (NTIS A043 632) Martin, W. L. (Editor), L. V. Genco , A. P. Ginsburg, H. C. Self, H. L. Task, R. Lee, R. W...San Francisco, ,959. Wallace, F. L., "Head-up Displays... Some Unanswered Questicons," 15th Alnha Air Safety Forum, July 1968. Warren, R., L. V. Genco

  6. Displaying perfusion MRI images as color intensity projections

    CERN Document Server

    Hoefnagels, Friso; Sanchez, Ester; Lagerwaard, Frank J

    2007-01-01

    Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI or perfusion-MRI plays an important role in the non-invasive assessment of tumor vascularity. However, the large number of images provided by the method makes display and interpretation of the results challenging. Current practice is to display the perfusion information as relative cerebral blood volume maps (rCBV). Color intensity projections (CIPs) provides a simple, intuitive display of the perfusion-MRI data so that regional perfusion characteristics are intrinsically integrated into the anatomy structure the T2 images. The ease of use and quick calculation time of CIPs should allow it to be easily integrated into current analysis and interpretation pipelines.

  7. Software windows for the display of CT-images

    Energy Technology Data Exchange (ETDEWEB)

    Gell, G.; Sager, W.D.; Toelly, E.

    1983-03-01

    Software windows are a flexible and general method for defining arbitrary functions for the mapping of Hounsfield-numbers of CT-scans on to the grey levels of the display image. The method which is illustrated with the aid of a few examples has been implemented on an EMI viewing console.

  8. Input Device with Three-Dimensional Image Display

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an input device (2), such as a keyboard, comprising plurality of activation parts (4) for depression, at least one registration part (6) for individual registration of depression of activation parts, and at least one image displaying part (8), where depression...

  9. VIDA: an environment for multidimensional image display and analysis

    Science.gov (United States)

    Hoffman, Eric A.; Gnanaprakasam, Daniel; Gupta, Krishanu B.; Hoford, John D.; Kugelmass, Steven D.; Kulawiec, Richard S.

    1992-06-01

    Since the first dynamic volumetric studies were done in the early 1980s on the dynamic spatial reconstructor (DSR), there has been a surge of interest in volumetric and dynamic imaging using a number of tomographic techniques. Knowledge gained in handling DSR image data has readily transferred to the current use of a number of other volumetric and dynamic imaging modalities including cine and spiral CT, MR, and PET. This in turn has lead to our development of a new image display and quantitation package which we have named VIDATM (volumetric image display and analysis). VIDA is written in C, runs under the UNIXTM operating system, and uses the XView toolkit to conform to the Open LookTM graphical user interface specification. A shared memory structure has been designed which allows for the manipulation of multiple volumes simultaneously. VIDA utilizes a windowing environment and allows execution of multiple processes simultaneously. Available programs include: oblique sectioning, volume rendering, region of interest analysis, interactive image segmentation/editing, algebraic image manipulation, conventional cardiac mechanics analysis, homogeneous strain analysis, tissue blood flow evaluation, etc. VIDA is a built modularly, allowing new programs to be developed and integrated easily. An emphasis has been placed upon image quantitation for the purpose of physiological evaluation.

  10. Content dependent selection of image enhancement parameters for mobile displays

    Science.gov (United States)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo

    2011-01-01

    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  11. How to display science since images have no mass

    CERN Document Server

    Chevrier, Joel; Marchi, Florence; Jones, Gail

    2011-01-01

    Education, science, in fact the whole society, extensively use images. Between us and the world are the visual displays. Screens, small and large, individual or not, are everywhere. Images are increasingly the 2D substrate of our virtual interaction with reality. However images will never support a complete representation of the reality. Three-dimensional representations will not change that. Images are primarily a spatial representation of our world dedicated to our sight. Key aspects such as energy and the associated forces are not spatially materialized. In classical physics, interaction description is based on Newton equations with trajectory and force as the dual central concepts. Images can in real time show all aspects of trajectories but not the associated dynamical aspects described by forces and energies. Contrary to the real world, the world of images opposes no constrain, nor resistance to our actions. Only the physical quantities, that do not contain mass in their dimension can be satisfactory re...

  12. Reduce volume of head-up display by image stitching

    Science.gov (United States)

    Chiu, Yi-Feng; Su, Guo-Dung J.

    2016-09-01

    Head-up Display (HUD) is a safety feature for automobile drivers. Although there have been some HUD systems in commercial product already, their images are too small to show assistance information. Another problem, the volume of HUD is too large. We proposed a HUD including micro-projectors, rear-projection screen, microlens array (MLA) and the light source is 28 mm x 14 mm realized a 200 mm x 100 mm image in 3 meters from drivers. We want to use the MLA to reduce the volume by virtual image stitching. We design the HUD's package dimensions is 12 cm x 12 cm x 9 cm. It is able to show speed, map-navigation and night vision information. We used Liquid Crystal Display (LCD) as our image source due to its brighter image output required and the minimum volume occupancy. The MLA is a multi aperture system. The proposed MLA consists of many optical channels each transmitting a segment of the whole field of view. The design of the system provides the stitching of the partial images, so that we can see the whole virtual image.

  13. Si microchannel plates for image intensification

    Science.gov (United States)

    Smith, Arlynn W.; Beetz, Charles P., Jr.; Boerstler, Robert W.; Winn, D. R.; Steinbeck, John W.

    2000-11-01

    Glass microchannel plates (MCPs) have been in use by numerous manufactuers in a variety of electron multiplication applications. Conventional fabrication of MCPs follow the lines of glass drawing and etching technology. Core and clad glass are drawn together, stacked, drawn again, and finally stacked in the desired pattern. The soluble core is removed with wet chemical processing. These techniques are beginning to run into their feasible limits in terms of channel size, open area ratio, uniformity, and material issues. A strong desire exists to fabricate MCPs with accepted lithographic techniques using Si as the base material to improve uniformity and throughput. Open area ratios of as high as 95% have been achieved using lithography. However, attempts to meet other channel plate characteristics met with little success due to thermal runaway or arcing during operation, high voltage is required for electron gain. Processing improvements have lead to the complete oxidation of the Si matrix eliminating the conducting Si in the channel walls of the Si MCPs allowing high voltages to be supported. Complete oxidation of the Si to silica allows processing temperatures high than conventional glass matrices can withstand. This fact allows for high temperature growth of conductive and secondary emissive materials on the channel walls of the structure. Si MCPs with gain have now been fabricated and tested with voltages comparable to conventional glass MCPs. Channel plate characteristics such as operating voltage, strip current, and gain for Si MCPs will be presented and compared to glass MCPs.

  14. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase ...

  15. Simulation of computed radiography with imaging plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D.; Costin, M. [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Mathy, F. [CEA-LETI, Campus Minatec, F-38054, Grenoble (France); Schumm, A. [EDF R and D, 1 avenue du général de gaulle 92141 Clamart (France)

    2014-02-18

    Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

  16. Imaging flaws in thin metal plates using a magneto-optic device

    Science.gov (United States)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  17. Three-dimensional integral imaging display system via off-axially distributed image sensing

    Science.gov (United States)

    Piao, Yongri; Qu, Hongjia; Zhang, Miao; Cho, Myungjin

    2016-10-01

    In this paper, we propose a three-dimensional integral imaging display system with a multiple recorded images using off-axially distributed image sensing. First, the depth map of the 3D objects is extracted from the off-axially recorded multi-perspective 2D images by using profilometry technique. Then, the elemental image array is computationally synthesized using the extracted depth map based on ray mapping model. Finally, the 3D images are optically displayed in integral imaging system. To show the feasibility of the proposed method, the optical experiments for 3D objects are carried out and presented in this paper.

  18. A virtual image chain for perceived image quality of medical display

    Science.gov (United States)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  19. Imaging by Zernike phase plates in the TEM.

    Science.gov (United States)

    Edgcombe, C J

    2016-08-01

    The images produced from simple phase objects, lenses and Zernike phase plates when all have rotational symmetry can be calculated by 1D Fourier-Bessel transforms. For a simple disc object producing a uniform phase shift over its diameter, the resulting image can be defined for any size of object phase change. The monotonic range of intensity variation with object phase is found to depend strongly on the phase change introduced by the phase plate; this property of the system is not well predicted by the weak phase approximation. The effect of spreading the phase transition at the plate over a range of radius is beneficial if the plate phase change is sufficiently small. Weak-phase calculations for a phase distribution more typical of a spherical object are also shown.

  20. Imaging features of ductal plate malformations in adults

    Energy Technology Data Exchange (ETDEWEB)

    Venkatanarasimha, N., E-mail: nandashettykv@yahoo.com [Department of Radiology, Derriford Hospital, Plymouth (United Kingdom); Thomas, R.; Armstrong, E.M.; Shirley, J.F.; Fox, B.M.; Jackson, S.A. [Department of Radiology, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Ductal plate malformations, also known as fibrocystic liver diseases, are a group of congenital disorders resulting from abnormal embryogenesis of the biliary ductal system. The abnormalities include choledochal cyst, Caroli's disease and Caroli's syndrome, adult autosomal dominant polycystic liver disease, and biliary hamartoma. The hepatic lesions can be associated with renal anomalies such as autosomal recessive polycystic kidney disease (ARPKD), medullary sponge kidney, and nephronophthisis. A clear knowledge of the embryology and pathogenesis of the ductal plate is central to the understanding of the characteristic imaging appearances of these complex disorders. Accurate diagnosis of ductal plate malformations is important to direct appropriate clinical management and prevent misdiagnosis.

  1. Image Capture and Display Based on Embedded Linux

    Science.gov (United States)

    Weigong, Zhang; Suran, Di; Yongxiang, Zhang; Liming, Li

    For the requirement of building a highly reliable communication system, SpaceWire was selected in the integrated electronic system. There was a need to test the performance of SpaceWire. As part of the testing work, the goal of this paper is to transmit image data from CMOS camera through SpaceWire and display real-time images on the graphical user interface with Qt in the embedded development platform of Linux & ARM. A point-to-point mode of transmission was chosen; the running result showed the two communication ends basically reach a consensus picture in succession. It suggests that the SpaceWire can transmit the data reliably.

  2. Application of a three-dimensional display in diagnostic imaging.

    Science.gov (United States)

    Baxter, B; Hitchner, L E; Anderson, R E

    1982-10-01

    An autostereoscopic viewing device for tomographic scans that allows a physician to examine multiple computed tomography sections with each section properly positioned in three dimensions has been constructed and tested. Images produced on the device allow the observer to utilize both motion parallax and stereoscopic depth cues as if viewing a real three-dimensional (3D) object. These 3D images can be very striking because of the ease with which one can form a true impression of depth relationships. We describe operating principles of the viewing device and the appearance of images produced on it. Stereo photographs made from 3D images displayed on the device are included to illustrate potential applications and problems.

  3. Digital image quantification of siderophores on agar plates

    Directory of Open Access Journals (Sweden)

    Megan Y. Andrews

    2016-03-01

    Full Text Available This article presents visual image data and detailed methodology for the use of a new method for quantifying the exudation of siderophores during fungal growth. The data include images showing time series for calibration, fungal exudation, and negative controls, as well as replication accuracy information. In addition, we provide detailed protocols for making CAS assay layer plates, the digital analysis protocol for determining area of color change, and discuss growth media that do and do not work with the layer plate method. The results of these data, their interpretation, and further discussion can be found in Andrews et al., 2016 [1].

  4. Single-image hard copy display of musculoskeletal digital radiographs

    Science.gov (United States)

    Legendre, Kevin; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    Screen film radiography often fails to optimally display all regions of anatomy on muskuloskeletal exams due to the wide latitude of tissue densities present. Various techniques of image enhancement have been applied to such exams using computerized radiography but with limited success in improving visualization of structures whose final optical density lies at the extremes of the interpretable range of the film. An existing algorithm for compressing optical density extremes known as dynamic range compression has been used to increase the radiodensity of the retrocardiac region of the chest or to decrease the radiodensity of the edge of the breast in digital mammography. In the skeletal system, there are regions where a single image may contain both areas of decreased exposure that result in light images and areas of higher exposure that result in dark regions of the image. Faced with this problem, the senior author asked Fuji to formulate a modification of the DRC process that incorporates a combination of the curves used for chest and breast images. The newly designed algorithm can thus simultaneously lower the optical density of dark regions of the image and increase the optical density of the less exposed regions. The results of this modification of the DRC algorithm are presented in this paper.

  5. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply...

  6. Terahertz field imaging inside tapered parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    We present a non-invasive broadband air photonic method of terahertz field imaging inside a tapered parallel plate waveguide. The method is based on the terahertz-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct...

  7. Neutron detection with imaging plates Part II. Detector characteristics

    CERN Document Server

    Thoms, M

    1999-01-01

    On the basis of the physical processes described in Neutron detection with imaging plates - part I: image storage and readout [Nucl. Instr. and Meth. A 424 (1999) 26-33] detector characteristics, such as quantum efficiency, detective quantum efficiency, sensitivity to neutron- and gamma-radiation, readout time and dynamic range are predicted. It is estimated that quantum efficiencies and detective quantum efficiencies close to 100% can be reached making these kind of detectors interesting for a wide range of applications.

  8. 360 degree realistic 3D image display and image processing from real objects

    Science.gov (United States)

    Luo, Xin; Chen, Yue; Huang, Yong; Tan, Xiaodi; Horimai, Hideyoshi

    2016-12-01

    A 360-degree realistic 3D image display system based on direct light scanning method, so-called Holo-Table has been introduced in this paper. High-density directional continuous 3D motion images can be displayed easily with only one spatial light modulator. Using the holographic screen as the beam deflector, 360-degree full horizontal viewing angle was achieved. As an accompany part of the system, CMOS camera based image acquisition platform was built to feed the display engine, which can take a full 360-degree continuous imaging of the sample at the center. Customized image processing techniques such as scaling, rotation, format transformation were also developed and embedded into the system control software platform. In the end several samples were imaged to demonstrate the capability of our system.

  9. 360 degree realistic 3D image display and image processing from real objects

    Science.gov (United States)

    Luo, Xin; Chen, Yue; Huang, Yong; Tan, Xiaodi; Horimai, Hideyoshi

    2016-09-01

    A 360-degree realistic 3D image display system based on direct light scanning method, so-called Holo-Table has been introduced in this paper. High-density directional continuous 3D motion images can be displayed easily with only one spatial light modulator. Using the holographic screen as the beam deflector, 360-degree full horizontal viewing angle was achieved. As an accompany part of the system, CMOS camera based image acquisition platform was built to feed the display engine, which can take a full 360-degree continuous imaging of the sample at the center. Customized image processing techniques such as scaling, rotation, format transformation were also developed and embedded into the system control software platform. In the end several samples were imaged to demonstrate the capability of our system.

  10. Consistent image presentation implemented using DICOM grayscale standard display function

    Science.gov (United States)

    Kump, Kenneth S.; Omernick, Jon; French, John

    2000-04-01

    In this paper, we evaluate our ability to achieve consistent image presentation across a wide range of output devices, focusing on digital x-ray radiography for chest applications. In particular we focus on dry versus wet printers of hardcopy prints. In this evaluation, we review the expected theoretical variability using the DICOM grayscale standard display function (GSDF). The GSDF maps DICOM presentation values to luminance values that are perceived by a human. We present our methodology for calibrating devices as evaluated on sixteen printers. Seven devices were selected for a human observer study to determine if there are perceptible differences in the presentation of a given image, focusing on differences between wet and dry processes. It was found that wet printers were preferred, however, there may be other logistical and practical reasons whey dry printers may be used.

  11. Application of integral imaging autostereoscopic display to medical training equipment

    Science.gov (United States)

    Nagatani, Hiroyuki

    2010-02-01

    We applied an autostereoscopic display based on the integral imaging method (II method) to training equipment for medical treatment in an attempt to recover the binocular vision performance of strabismus or amblyopia (lazy eye) patients. This report summarizes the application method and results. The point of the training is to recognize the parallax using both eyes. The strabismus or amblyopia patients have to recognize the information on both eyes equally when they gaze at the display with parallax and perceive the stereo depth of the content. Participants in this interactive training engage actively with the image. As a result, they are able to revive their binocular visual function while playing a game. Through the training, the observers became able to recognize the amount of parallax correctly. In addition, the training level can be changed according to the eyesight difference between a right eye and a left eye. As a result, we ascertained that practical application of the II method for strabismus or amblyopia patients would be possible.

  12. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  13. DAFS measurements using the image-plate Weissenberg method

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, N.; Matsumoto, K.; Sasaki, S. [Tokyo Inst. of Technology, Materials and Structures Lab., Yokohama (Japan); Tanaka, M.; Mori, T. [National Lab. for High Energy Physics, Photon Factory, Tsukuba (Japan)

    1998-05-01

    An instrumental technique for DAFS measurements which can provide site-specific information is proposed. The approach uses (i) focusing optics with parabolic mirrors and a double-crystal monochromator, (ii) the Laue and Bragg settings and (iii) data collection by the image-plate Weissenberg method. Six image exposures are recorded per plate at five intrinsic energies and one reference energy. The single-crystal measurements were performed at the Co K-absorption edge, and the 200, 220 and 311 reflections of CoO and 511 and 911 reflections of Co{sub 3}O{sub 4} were used for analysis. The regression analysis of {chi}(k), Fourier transforms of k{sup 3}{chi}(k) and back-Fourier filtering have been performed. 20 refs.

  14. DAFS measurements using the image-plate Weissenberg method.

    Science.gov (United States)

    Sugioka, N; Matsumoto, K; Tanaka, M; Mori, T; Sasaki, S

    1998-05-01

    An instrumental technique for DAFS measurements which can provide site-specific information is proposed. The approach uses (i) focusing optics with parabolic mirrors and a double-crystal monochromator, (ii) the Laue and Bragg settings and (iii) data collection by the image-plate Weissenberg method. Six image exposures are recorded per plate at five intrinsic energies and one reference energy. The single-crystal measurements were performed at the Co K-absorption edge, and the 200, 220 and 311 reflections of CoO and 511 and 911 reflections of Co(3)O(4) were used for analysis. The regression analysis of chi(k), Fourier transforms of k(3)chi(k) and back-Fourier filtering have been performed.

  15. The character and application of a neutron imaging plate (NIP)

    Science.gov (United States)

    Karasawa, Y.; Kumazawa, S.; Miimura, N.

    We have developed a neutron imaging plate (NIP) as a new neutron detector and already reported the fundamental features of the NIP. The optimization of the NIP was carried out by changing a molar ratio of converter materials to PSL (Photostimulated luminescence) materials and thickness of the NIP. Some problems such as γ-ray sensitivity and irradiation effect for the practical use of the NIP were discussed. Several examples of application of the NIP were introduced.

  16. Computed radiographic image post-processing for automatic optimal display in picture archiving and communication system

    Science.gov (United States)

    Zhang, Jianguo; Zhou, Zheng; Zhuang, Jun; Huang, H. K.

    2000-04-01

    This paper presents the key post-processing algorithms and their software implementing for CR image automatic optimal display in picture archiving and communication system, which compliant with DICOM model of the image acquisition and presentation chain. With the distributed implementation from the acquisition to the display, we achieved the effects of better image visual quality, fast image communication and display, as well as data integrity of archived CR images in PACS.

  17. Hex-square moire patterns in imagers using microchannel plates

    Science.gov (United States)

    Lawrence, George M.

    1989-01-01

    In electronic imaging detectors using microchannel plates, the mismatch between the pixels on a square mesh and the microchannels on a hexagonal mesh produces moire image defects. Theoretical statistical estimates of the sizes of the microposition offsets and the flat field intensity errors are calculated, showing the trade-off between resolution and position accuracy. A distinction is made between moments of spot images and moments of the single-pixel-response functions. As the resolution between the hex and square meshes is improved, the detector resolution is improved, but at the expense of an about 10 percent moire pattern. These moire patterns will not be properly corrected by dividing by the flat field image.

  18. Guided wave phased array beamforming and imaging in composite plates.

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  19. Display of travelling 3D scenes from single integral-imaging capture

    Science.gov (United States)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  20. Relationship between image plates physical structure and quality of digital radiographic images in weld inspections

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Davi F.; Silva, Aline S.S.; Machado, Alessandra S.; Gomes, Celio S.; Nascimento, Joseilson; Lopes, Ricardo T., E-mail: davi@lin.ufrj.br.br, E-mail: aline@lin.ufrj.br, E-mail: celio@lin.ufrj.br, E-mail: alemachado@lin.ufrj.br, E-mail: joseilson@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2015-07-01

    In the last decades a new type of detector which is based on photostimulable luminescence was developed. There are currently many kinds of image plates (IPs) available on the market, originating from different manufacturers. Each kind of plate distinguishes itself from the others by its peculiar physical structure and composition, two factors which have a direct influence upon the quality of the digital radiographic images obtained through them. For this study, several kinds of IPs were tested in order to determine in which way such influence takes place. For this purpose, each kind of IP has been characterized and correlated to its response in the final image. The aim of this work was to evaluate procedures for employing Computed Radiography (CR) to welding inspections in laboratory conditions using the Simple Wall Simple Image Technique (SWSI). Tests were performed in steel welded joins of thickness 5.33, 12.70 and 25.40 mm, using CR scanner and IPs available on the market. It was used an X-Ray equipment as radiation source. The image quality parameters Basic Spatial Resolution (BSR), Normalized Signal-to-Noise Ratio (SNR{sub N}), contrast and detectability were evaluated. In order to determine in which way the IPs' properties are correlated to its response in the final image, the thickness of the sensitive layer was determined and the grain size and the elemental composition of this layer were evaluated. Based on the results drawn from this study, it is possible to conclude that the physical characteristics of image plates are essential for determining the quality of the digital radiography images acquired with them. Regarding the chemical composition of the plates, it was possible to determine that, apart from the chemical elements that were expected to be found (Ba, I and Br), only two plates, with high resolution, do not have fluorine in their composition; the presence of Strontium was also detected in the chemical composition of the plates supplied by a

  1. Displaying radiologic images on personal computers: image storage and compression--Part 2.

    Science.gov (United States)

    Gillespy, T; Rowberg, A H

    1994-02-01

    This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.

  2. User's guide to Sphere and Plate Interactive Display Routine (SPIDR)

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.

    1984-05-29

    An interactive graphics display program capable of producing axonometric views of three-dimensional data is described. The mathematics of the projection transformation is given. Descriptions of the individual program modules are given, and a user's manual is provided.

  3. Resistive Plate Chambers for Imaging Calorimetry - the DHCAL

    CERN Document Server

    Repond, Jose

    2014-01-01

    The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.

  4. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    Science.gov (United States)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  5. Alveolar bone measurement precision for phosphor-plate images

    Science.gov (United States)

    HILDEBOLT, CHARLES F.; COUTURE, REX; GARCIA, NATHALIA M.; DIXON, DEBRA; SHANNON, WILLIAM DOUGLAS; LANGENWALTER, ERIC; CIVITELLI, ROBERTO

    2009-01-01

    Objectives To demonstrate methods for determining measurement precision and to determine the precision of alveolar-bone measurements made with a vacuum-coupled, positioning device and phosphor-plate images. Study design Subjects were rigidly attached to the x-ray tube by means of a vacuum coupling device and custom, cross-arch, bite plates. Original and repeat radiographs (taken within minutes of each other) were obtained of the mandibular posterior teeth of 51 subjects, and cementoenamel-junction-alveolar-crest (CEJ-AC) distances were measured on both sets of images. In addition, x-ray-transmission (radiodensity) and alveolar-crest-height differences were determined by subtracting one image from the other. Image subtractions and measurements were performed twice. Based on duplicate measurements, the root-mean-square standard deviation (precision) and least-significant change (LSC) were calculated. LSC is the magnitude of change in a measurement needed to indicate that a true biological change has occurred. Results The LSCs were 4% for x-ray transmission, 0.49 mm for CEJ-AC distance, and 0.06 mm for crest-height 0.06 mm. Conclusion The LSCs for our CEJ-AC and x-ray transmission measurements are similar to what has been reported. The LSC for alveolar-crest height (determined with image subtraction) was less than 0.1 mm. Compared with findings from previous studies, this represents a highly precise measurement of alveolar crest height. The methods demonstrated for calculating LSC can be used by investigators to determine how large changes in radiographic measurements need to be before the changes can be considered (with 95% confidence) true biological changes and not noise (that is, equipment/observer error). PMID:19716499

  6. Single-image hard-copy display of the spine utilizing digital radiography

    Science.gov (United States)

    Artz, Dorothy S.; Janchar, Timothy; Milzman, David; Freedman, Matthew T.; Mun, Seong K.

    1997-04-01

    Regions of the entire spine contain a wide latitude of tissue densities within the imaged field of view presenting a problem for adequate radiological evaluation. With screen/film technology, the optimal technique for one area of the radiograph is sub-optimal for another area. Computed radiography (CR) with its inherent wide dynamic range, has been shown to be better than screen/film for lateral cervical spine imaging, but limitations are still present with standard image processing. By utilizing a dynamic range control (DRC) algorithm based on unsharp masking and signal transformation prior to gradation and frequency processing within the CR system, more vertebral bodies can be seen on a single hard copy display of the lateral cervical, thoracic, and thoracolumbar examinations. Examinations of the trauma cross-table lateral cervical spine, lateral thoracic spine, and lateral thoracolumbar spine were collected on live patient using photostimulable storage phosphor plates, the Fuji FCR 9000 reader, and the Fuji AC-3 computed radiography reader. Two images were produced from a single exposure; one with standard image processing and the second image with the standard process and the additional DRC algorithm. Both sets were printed from a Fuji LP 414 laser printer. Two different DRC algorithms were applied depending on which portion of the spine was not well visualized. One algorithm increased optical density and the second algorithm decreased optical density. The resultant image pairs were then reviewed by a panel of radiologists. Images produced with the additional DRC algorithm demonstrated improved visualization of previously 'under exposed' and 'over exposed' regions within the same image. Where lung field had previously obscured bony detail of the lateral thoracolumbar spine due to 'over exposure,' the image with the DRC applied to decrease the optical density allowed for easy visualization of the entire area of interest. For areas of the lateral cervical spine

  7. Very high position resolution gamma imaging with resistive plate chambers

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, A. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra 3004-516 (Portugal)]. E-mail: alberto@coimbra.lip.pt; Carolino, N. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra 3004-516 (Portugal); Correia, C.M.B.A. [CEI, Centro de Electronica e Instrumentacao, Universidade de Coimbra, Coimbra 3004-516 (Portugal); Fazendeiro, L. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra 3004-516 (Portugal); Ferreira, Nuno C. [IBILI, Instituto Biomedico de Investigacao de Luz e Imagem, Faculty of Medicine, Coimbra 3000 (Portugal); Marques, M.F. Ferreira [ICEMS, Departamento de Fisica, Universidade de Coimbra, Coimbra 3004-516 (Portugal); ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra 3031-199 (Portugal); Marques, R. Ferreira [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra 3004-516 (Portugal); Departamento de Fisica, Universidade de Coimbra, Coimbra 3004-516 (Portugal); Fonte, P. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra 3004-516 (Portugal); ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra 3031-199 (Portugal); Gil, C. [ICEMS, Departamento de Fisica, Universidade de Coimbra, Coimbra 3004-516 (Portugal); Macedo, M.P. [CEI, Centro de Electronica e Instrumentacao, Universidade de Coimbra, Coimbra 3004-516 (Portugal); ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra 3031-199 (Portugal)

    2006-11-01

    In this study we present experimental results from a first prototype of a positron emission tomography system based on the resistive plate chamber (RPC) technology. The system is composed of two counting heads, each one containing 16 single-gap RPC detectors capable of detecting the photon interaction point in the transaxial plane. Uniformity studies were performed for image resolution and sensitivity, yielding a rather uniform image resolution close to 0.3 mm FWHM across the field of view. The contribution of the photons noncolinearity effect to the intrinsic spatial resolution was also studied, causing a variation from 0.52 to 0.63 mm when the system diameter ranges from 60 to 120 mm, in agreement with calculations.

  8. Design and evaluation of web-based image transmission and display with different protocols

    Science.gov (United States)

    Tan, Bin; Chen, Kuangyi; Zheng, Xichuan; Zhang, Jianguo

    2011-03-01

    There are many Web-based image accessing technologies used in medical imaging area, such as component-based (ActiveX Control) thick client Web display, Zerofootprint thin client Web viewer (or called server side processing Web viewer), Flash Rich Internet Application(RIA) ,or HTML5 based Web display. Different Web display methods have different peformance in different network environment. In this presenation, we give an evaluation on two developed Web based image display systems. The first one is used for thin client Web display. It works between a PACS Web server with WADO interface and thin client. The PACS Web server provides JPEG format images to HTML pages. The second one is for thick client Web display. It works between a PACS Web server with WADO interface and thick client running in browsers containing ActiveX control, Flash RIA program or HTML5 scripts. The PACS Web server provides native DICOM format images or JPIP stream for theses clients.

  9. Modeling LCD Displays with Local Backlight Dimming for Image Quality Assessment

    DEFF Research Database (Denmark)

    Korhonen, Jari; Burini, Nino; Forchhammer, Søren

    2011-01-01

    (LCD) using light emitting diode (LED) backlight with local dimming, we present the essential considerations and guidelines for modeling the characteristics of displays with high dynamic range (HDR) and locally adjustable backlight segments. The representation of the image generated by the model can...... for evaluating the signal quality distortion related directly to digital signal processing, such as compression. However, the physical characteristics of the display device also pose a significant impact on the overall perception. In order to facilitate image quality assessment on modern liquid crystaldisplays...... the visual results produced by the model against respective images displayed on a real display with locally controlled backlight units....

  10. 77 FR 74220 - Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission...

    Science.gov (United States)

    2012-12-13

    ... COMMISSION Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission... importation of certain digital photo frames and image display devices and components thereof by reason of... likely to do so. For background, see In the Matter of Certain Devices for Connecting Computers via...

  11. A novel stereoscopic projection display system for CT images of fractures.

    Science.gov (United States)

    Liu, Xiujuan; Jiang, Hong; Lang, Yuedong; Wang, Hongbo; Sun, Na

    2013-06-01

    The present study proposed a novel projection display system based on a virtual reality enhancement environment. The proposed system displays stereoscopic images of fractures and enhances the computed tomography (CT) images. The diagnosis and treatment of fractures primarily depend on the post-processing of CT images. However, two-dimensional (2D) images do not show overlapping structures in fractures since they are displayed without visual depth and these structures are too small to be simultaneously observed by a group of clinicians. Stereoscopic displays may solve this problem and allow clinicians to obtain more information from CT images. Hardware with which to generate stereoscopic images was designed. This system utilized the conventional equipment found in meeting rooms. The off-axis algorithm was adopted to convert the CT images into stereo image pairs, which were used as the input for a stereo generator. The final stereoscopic images were displayed using a projection system. Several CT fracture images were imported into the system for comparison with traditional 2D CT images. The results showed that the proposed system aids clinicians in group discussions by producing large stereoscopic images. The results demonstrated that the enhanced stereoscopic CT images generated by the system appear clearer and smoother, such that the sizes, displacement and shapes of bone fragments are easier to assess. Certain fractures that were previously not visible on 2D CT images due to vision overlap became vividly evident in the stereo images. The proposed projection display system efficiently, economically and accurately displayed three-dimensional (3D) CT images. The system may help clinicians improve the diagnosis and treatment of fractures.

  12. System and Device with Three-Dimensional Image Display

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a binocular device (44) and a system (40) including a binocular device (44) configured for displaying one or more labels for an input device (2), such as a keyboard or a control panel, comprising a plurality of parts (4, 6) configured for activation and registration...

  13. Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays.

    Science.gov (United States)

    Fetterly, Kenneth A; Blume, Hartwig R; Flynn, Michael J; Samei, Ehsan

    2008-06-01

    Consistent presentation of digital radiographic images at all locations within a medical center can help ensure a high level of patient care. Currently, liquid crystal displays (LCDs) are the electronic display technology of choice for viewing medical images. As the inherent luminance (and thereby perceived contrast) properties of different LCDs can vary substantially, calibration of the luminance response of these displays is required to ensure that observer perception of an image is consistent on all displays. The digital imaging and communication in medicine (DICOM) grayscale standard display function (GSDF) defines the luminance response of a display such that an observer's perception of image contrast is consistent throughout the pixel value range of a displayed image. The main purpose of this work is to review the theoretical and practical aspects of calibration of LCDs to the GSDF. Included herein is a review of LCD technology, principles of calibration, and other practical aspects related to calibration and observer perception of images presented on LCDs. Both grayscale and color displays are considered, and the influence of ambient light on calibration and perception is discussed.

  14. Retina-like sensor image coordinates transformation and display

    Science.gov (United States)

    Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu

    2015-03-01

    For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.

  15. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    Science.gov (United States)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  16. Separation method of heavy-ion particle image from gamma-ray mixed images using an imaging plate

    CERN Document Server

    Yamadera, A; Ohuchi, H; Nakamura, T; Fukumura, A

    1999-01-01

    We have developed a separation method of alpha-ray and gamma-ray images using the imaging plate (IP). The IP from which the first image was read out by an image reader was annealed at 50 deg. C for 2 h in a drying oven and the second image was read out by the image reader. It was found out that an annealing ratio, k, which is defined as a ratio of the photo-stimulated luminescence (PSL) density at the first measurement to that at the second measurement, was different for alpha rays and gamma rays. By subtracting the second image multiplied by a factor of k from the first image, the alpha-ray image was separated from the alpha and gamma-ray mixed images. This method was applied to identify the images of helium, carbon and neon particles of high energies using the heavy-ion medical accelerator, HIMAC. (author)

  17. Tests of a new paper display for radiology images

    Science.gov (United States)

    Patt, Richard H.; Freedman, Matthew T.; Steller Artz, Dorothy E.; Rajan, Sunder S.; Collmann, Jeff R.; Mun, Seong K.

    1994-05-01

    Distributing a radiographic image with the verbal report would help to avoid misunderstanding and would aid the referring physician in understanding better the severity of the disease described. With magnetic resonance imaging it is customary in our practice to distribute a copy of the examination to the referring physician. Distributing a film copy of the image is expensive. Based on our initial experience with the Scitex paper printer, we believe that this system provides a paper image of sufficient quality that it would be acceptable as a referrer's copy. Paper copies are cheaper to produce and can be more easily filed with the remainder of the patient's paper based medical record. This presentation discusses the printing method employed by the Scitex printer, demonstrates comparisons between Scitex and laser print images, and discusses the current problems of interfacing the printer to image acquisition devices. As we develop our image management and communication system (IMAC), we anticipate that a need for hard copy images will remain. We discuss the role that we believe this paper printer serves in an IMAC film independent system.

  18. Neutron detection with imaging plates Part I. Image storage and readout

    CERN Document Server

    Thoms, M; Wilkinson, C

    1999-01-01

    The detection of neutrons with imaging plates is based on a sequence of physical processes, which are happening during the neutron exposure and the readout of the image information. These processes are investigated in detail starting with the neutron absorption and conversion to secondary radiation by various neutron converter materials and ending with the detection of the photostimulated luminescence, which is emitted during the readout. It is shown that these processes can be quantified by several key parameters, such as i.e. the neutron absorption cross section, the emitted secondary energy and the conversion efficiency of released secondary energy to storage centers in the storage phosphor. The resulting detector characteristics are described in the second part, namely, Neutron detection with imaging plates - part II: detector characteristics [Nucl. Instr. and Meth. A 424 (1999) 34-39].

  19. Neutron detection with imaging plates Part I. Image storage and readout

    Science.gov (United States)

    Thoms, M.; Myles, D.; Wilkinson, C.

    1999-11-01

    The detection of neutrons with imaging plates is based on a sequence of physical processes, which are happening during the neutron exposure and the readout of the image information. These processes are investigated in detail starting with the neutron absorption and conversion to secondary radiation by various neutron converter materials and ending with the detection of the photostimulated luminescence, which is emitted during the readout. It is shown that these processes can be quantified by several key parameters, such as i.e. the neutron absorption cross section, the emitted secondary energy and the conversion efficiency of released secondary energy to storage centers in the storage phosphor. The resulting detector characteristics are described in the second part, namely, Neutron detection with imaging plates - part II: detector characteristics [Nucl. Instr. and Meth. A 424 (1999) 34-39].

  20. Human Visual Performance and Flat Panel Display Image Quality

    Science.gov (United States)

    1980-07-01

    In0.42Ga0.58 amber 617 SiC yellow 590 GaN blue 440 GaN green 515 GaAs:Si with green 550 YF3YbEr GaAs:Si with blue 470 YF3:Yb:Tn InSe yellow 590 3.0...nm, from a neon gas. Other gases , and their discharge colors, which have been used in gas dis- charge displays incude argon (blue), cadmium (red

  1. Floating image device with autostereoscopic display and viewer-tracking technology

    Science.gov (United States)

    Chen, Chang-Ying; Tseng, Kun-Lung; Wang, Chy-Lin; Tsai, Chao-Hsu

    2012-03-01

    Now, numerous types of 3D display have been developed or under-developing. However, most of them present stereoscopic images in a space with limited distance from the physical screen. A display which can deliver stereoscopic images in the free space and satisfies the touching sense of viewers is always expected. As a result, we proposed a floating image device with auto-stereoscopic display and viewer tracking technology. The key technology includes that the optical projected lenses with wide view angle which exceeds 30 degrees, the optimized parameters of 2 views auto-stereoscopic display which fits the viewing specifications and the viewer tracking technology which can update the corresponding image of the particular view angle in real time. The novel display is the other choice for consumers especially for product exhibition, user interface of kiosk and a kind of apparatus of video conference, etc.

  2. A modified commercial scanner as an image plate for table-top optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Casado-Rojo, S; Lorenzana, H E; Baonza, V G

    2008-12-09

    A reliable, accurate, and inexpensive optical detector for table-top applications is described here. Based on a commercial high resolution office scanner coupled to a projection on plate, it enables a large image plate surface, allowing recording of large images without systematic errors associated to coupling optics' aberrations. Several tests on distance-dependent and steady interference patterns will be presented and discussed. The extension to other types of optical measurement by substituting the projection on plate is proposed.

  3. [Current situations and problems of quality control for medical imaging display systems].

    Science.gov (United States)

    Shibutani, Takayuki; Setojima, Tsuyoshi; Ueda, Katsumi; Takada, Katsumi; Okuno, Teiichi; Onoguchi, Masahisa; Nakajima, Tadashi; Fujisawa, Ichiro

    2015-04-01

    Diagnostic imaging has been shifted rapidly from film to monitor diagnostic. Consequently, Japan medical imaging and radiological systems industries association (JIRA) have recommended methods of quality control (QC) for medical imaging display systems. However, in spite of its need by majority of people, executing rate is low. The purpose of this study was to validate the problem including check items about QC for medical imaging display systems. We performed acceptance test of medical imaging display monitors based on Japanese engineering standards of radiological apparatus (JESRA) X-0093*A-2005 to 2009, and performed constancy test based on JESRA X-0093*A-2010 from 2010 to 2012. Furthermore, we investigated the cause of trouble and repaired number. Medical imaging display monitors had 23 inappropriate monitors about visual estimation, and all these monitors were not criteria of JESRA about luminance uniformity. Max luminance was significantly lower year-by-year about measurement estimation, and the 29 monitors did not meet the criteria of JESRA about luminance deviation. Repaired number of medical imaging display monitors had 25, and the cause was failure liquid crystal panel. We suggested the problems about medical imaging display systems.

  4. Measurement of imaging properties of scintillating fiber optic plate

    Science.gov (United States)

    Zentai, George; Ganguly, Arundhuti; Star-Lack, Josh; Virshup, Gary; Hirsh, Hayley; Shedlock, Daniel; Humber, David

    2014-03-01

    Scintillating Fiber Optic Plates (SFOP) or Fiber Optic Scintillator (FOS) made with scintillating fiber-glass, were investigated for x-ray imaging. Two different samples (T x W x L = 2cm x 5cm x 5cm) were used; Sample A: 10μm fibers, Sample B: 50μm fibers both with statistically randomized light absorbing fibers placed in the matrix. A customized holder was used to place the samples in close contact with photodiodes in an amorphous silicon flat panel detector (AS1000, Varian), typically used for portal imaging. The detector has a 392μm pixel pitch and in the standard configuration uses a gadolinium oxy-sulphide (GOS) screen behind a copper plate. X-ray measurements were performed at 120kV (RQA 9 spectrum), 1MeV (5mm Al filtration) and 6MeV (Flattening Filter Free) for Sample A and the latter 2 spectra for Sample B. A machined edge was used for MTF measurements. The measurements showed the MTF degraded with increased X-ray energies because of the increase in Compton scattering. However, at the Nyquist frequency of 1.3lp/mm, the MTF is still high (FOS value vs. Cu+GOS): (a) 37% and 21% at 120kVp for the 10μm FOS and the Cu+GOS arrays, (b) 31%, 20% and 20% at 1MeV and (c) 17%, 11% and 14% at 6MeV for the 10μm FOS, 50μm FOS and the Cu+GOS arrays. The DQE(0) value comparison were (a) at 120kV ~24% and ~13 % for the 10μm FOS and the Cu+GOS arrays (b) at 1MV 10%, 10% and 7% and (c) at 6MV 12%, ~19% and 1.6% for the 10μm FOS , 50μm FOS and Cu+GOS arrays.

  5. Analysis of the format and the TVGA display of the TIFF image file.

    Science.gov (United States)

    Xing, Shiying

    The structure of the TIFF image file is introduced in this article. The method for restoring an image in the light of the TIFF format and the installation and display of the image on the various palettes of TVGA are also introduced.

  6. Binocular and multi-view parallax images acquisition for three dimensional stereoscopic displays

    Science.gov (United States)

    Ge, Hongsheng; Sang, Xinzhu; Zhao, Tianqi; Yuan, Jinhui; Leng, Junmin; Zhang, Ying; Yan, Binbin

    2012-11-01

    It is important to acquire the proper parallax images for the stereoscopic display system. By setting the proper distance between the cameras and the location of the convergent point in this capturing configuration, the displayed 3D scene with the appropriate stereo depth and the expected effect in front of and behind the display screen can be obtained directly. The quantitative relationship between the parallax and the parameters of the capturing configuration with two cameras is presented. The capturing system with multiple cameras for acquiring equal parallaxes between the adjacent captured images for the autostereoscopic display system is also discussed. The proposed methods are demonstrated by the experimental results. The captured images with the calculated parameters for the 3D display system shows the expected results, which can provide the viewers the better immersion and visual comfort without any extra processing.

  7. Technical and radiological image quality comparison of different liquid crystal displays for radiology

    Directory of Open Access Journals (Sweden)

    Dams FE

    2014-10-01

    Full Text Available Francina EM Dams,2 KY Esther Leung,1 Pieter HM van der Valk,2 Marc CJM Kock,2 Jeroen Bosman,1 Sjoerd P Niehof1 1Medical Physics and Technology, 2Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands Background: To inform cost-effective decisions in purchasing new medical liquid crystal displays, we compared the image quality in displays made by three manufacturers. Methods: We recruited 19 radiologists and residents to compare the image quality of four liquid crystal displays, including 3-megapixel Barco®, Eizo®, and NEC® displays and a 6-megapixel Barco display. The evaluators were blinded to the manufacturers' names. Technical assessments were based on acceptance criteria and test patterns proposed by the American Association of Physicists in Medicine. Radiological assessments were performed on images from the American Association of Physicists in Medicine Task Group 18. They included X-ray images of the thorax, knee, and breast, a computed tomographic image of the thorax, and a magnetic resonance image of the brain. Image quality was scored on an analog scale (range 0–10. Statistical analysis was performed with repeated-measures analysis of variance. Results: The Barco 3-megapixel display passed all acceptance criteria. The Eizo and NEC displays passed the acceptance criteria, except for the darkest pixel value in the grayscale display function. The Barco 6-megapixel display failed criteria for the maximum luminance response and the veiling glare. Mean radiological assessment scores were 7.8±1.1 (Barco 3-megapixel, 7.8±1.2 (Eizo, 8.1±1.0 (NEC, and 8.1±1.0 (Barco 6-megapixel. No significant differences were found between displays. Conclusion: According to the tested criteria, all the displays had comparable image quality; however, there was a three-fold difference in price between the most and least expensive displays. Keywords: data display, humans, radiographic image enhancement, user-computer interface

  8. Three-dimensional electro-floating display system using an integral imaging method.

    Science.gov (United States)

    Min, Sung-Wook; Hahn, Minsoo; Kim, Joohwan; Lee, Byoungho

    2005-06-13

    A new-type of three-dimensional (3D) display system based on two different techniques, image floating and integral imaging, is proposed. The image floating is an antiquated 3D display technique, in which a large convex lens or a concave mirror is used to display the image of a real object to observer. The electro-floating system, which does not use a real object, requires a volumetric display part in order to present 3D moving pictures. Integral imaging is an autostereoscopic technique consisting of a lens array and a two-dimensional display device. The integral imaging method can be adapted for use in an electro-floating display system because the integrated image has volumetric characteristics within the viewing angle. The proposed system combines the merits of the two techniques such as an impressive feel of depth and the facility to assemble. In this paper, the viewing characteristics of the two techniques are defined and analyzed for the optimal design of the proposed system. The basic experiments for assembling the proposed system were performed and the results are presented. The proposed system can be successfully applied to many 3D applications such as 3D television.

  9. Display MTF measurements based on scanning and imaging technologies and its importance in the application space

    Science.gov (United States)

    Kaur, Balvinder; Olson, Jeff; Flug, Eric A.

    2016-05-01

    Measuring the Modulation Transfer Function (MTF) of a display monitor is necessary for many applications such as: modeling end-to-end systems, conducting perception experiments, and performing targeting tasks in real-word scenarios. The MTF of a display defines the resolution properties and quantifies how well the spatial frequencies are displayed on a monitor. Many researchers have developed methods to measure display MTFs using either scanning or imaging devices. In this paper, we first present methods to measure display MTFs using two separate technologies and then discuss the impact of a display MTF on a system's performance. The two measurement technologies were scanning with a photometer and imaging with a CMOS based camera. To estimate a true display MTF, measurements made with the photometer were backed out for the scanning optics aperture. The developed methods were applied to measure MTFs of the two types of monitors, Cathode Ray Tube (CRT) and Liquid Crystal Display (LCD). The accuracy of the measured MTFs was validated by comparing MTFs measured with the two systems. The methods presented here are simple and can be easily implemented employing either a Prichard photometer or an imaging device. In addition, the impact of a display MTF on the end-to-end performance of a system was modeled using NV-IPM.

  10. Modeling the Color Image and Video Quality on Liquid Crystal Displays with Backlight Dimming

    DEFF Research Database (Denmark)

    Korhonen, Jari; Mantel, Claire; Burini, Nino

    2013-01-01

    Objective image and video quality metrics focus mostly on the digital representation of the signal. However, the display characteristics are also essential for the overall Quality of Experience (QoE). In this paper, we use a model of a backlight dimming system for Liquid Crystal Display (LCD...

  11. Dia de los Muertos: Images, Art, and Altar on display at Squires Student Center

    OpenAIRE

    Broughton, Sandra S.

    2008-01-01

    Dia de los Muertos: Images, Art, and Altar, an exhibition featuring photographs from Mexico, artifacts from the festival, and both traditional and contemporary altars, will be on display at the Perspective Gallery in Squires Student Center through Saturday, Nov. 8.

  12. Scirrhous hepatocellular carcinoma displaying atypical findings on imaging studies

    Institute of Scientific and Technical Information of China (English)

    Soo Ryang Kim; Susumu Imoto; Taisuke Nakajima; Kenji Ando; Keiji Mita; Katsumi Fukuda; Ryo Nishikawa; Yu-ichiro Koma; Toshiyuki Matsuoka; Masatoshi Kudo; Yoshitake Hayashi

    2009-01-01

    We describe a 15-mm scirrhous hepatocellular carcinoma (HCC) in a 60-year-old man with B-type cirrhosis. Ultrasound disclosed a 15-mm hypoechoic nodule in segment 7. Contrast-enhanced US revealed heterogeneous, not diffuse, hypervascularity in the early phase and a defect in the Kupffer phase. Contrast-enhanced computed tomography (CT) revealed a heterogeneous hypervascular nodule in the early phase and a low-density area in the late phase. Magnetic resonance imaging (MRI) revealed iso- to hypointensity at T1 and high intensity at T2-weighted sequences. Contrast-enhanced MRI also revealed a heterogeneous hypervascular nodule in the early phase and washout in the late phase. Super-paramagnetic iron oxide-MRI revealed a hyperintense nodule. CT during hepatic arteriography and CT during arterial portography revealed heterogeneous hyperattenuation and a perfusion defect, respectively. Based on these imaging findings the nodule was diagnosed as a mixed well-differentiated and moderately-differentiated HCC. Histologically, the nodule was moderately-differentiated HCC characterized by typical cytological and structural atypia with dense fibrosis. Immunohistochemically, the nodule was positive for heterochromatin protein 1 and alpha-smooth muscle actin, and negative for cytokeratin 19. From the above findings, the nodule was diagnosed as scirrhous HCC. Clinicians engaged in hepatology should exercise caution with suspected scirrhous HCC when imaging studies reveal atypical findings, as shown in our case on the basis of chronic liver disease.

  13. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC).

    Science.gov (United States)

    Navarro, H; Martínez-Cuenca, R; Saavedra, G; Martínez-Corral, M; Javidi, B

    2010-12-06

    Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generate a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

  14. Air-touch interaction system for integral imaging 3D display

    Science.gov (United States)

    Dong, Han Yuan; Xiang, Lee Ming; Lee, Byung Gook

    2016-07-01

    In this paper, we propose an air-touch interaction system for the tabletop type integral imaging 3D display. This system consists of the real 3D image generation system based on integral imaging technique and the interaction device using a real-time finger detection interface. In this system, we used multi-layer B-spline surface approximation to detect the fingertip and gesture easily in less than 10cm height from the screen via input the hand image. The proposed system can be used in effective human computer interaction method for the tabletop type 3D display.

  15. [Development of a Text-Data Based Learning Tool That Integrates Image Processing and Displaying].

    Science.gov (United States)

    Shinohara, Hiroyuki; Hashimoto, Takeyuki

    2015-01-01

    We developed a text-data based learning tool that integrates image processing and displaying by Excel. Knowledge required for programing this tool is limited to using absolute, relative, and composite cell references and learning approximately 20 mathematical functions available in Excel. The new tool is capable of resolution translation, geometric transformation, spatial-filter processing, Radon transform, Fourier transform, convolutions, correlations, deconvolutions, wavelet transform, mutual information, and simulation of proton density-, T1-, and T2-weighted MR images. The processed images of 128 x 128 pixels or 256 x 256 pixels are observed directly within Excel worksheets without using any particular image display software. The results of image processing using this tool were compared with those using C language and the new tool was judged to have sufficient accuracy to be practically useful. The images displayed on Excel worksheets were compared with images using binary-data display software. This comparison indicated that the image quality of the Excel worksheets was nearly equal to the latter in visual impressions. Since image processing is performed by using text-data, the process is visible and facilitates making contrasts by using mathematical equations within the program. We concluded that the newly developed tool is adequate as a computer-assisted learning tool for use in medical image processing.

  16. Revolving lantern display using holographic 3D images with 1/f fluctuation

    Science.gov (United States)

    Uchida, Koji; Fukuda, Hiroyuki; Sakamoto, Kunio

    2007-09-01

    The authors developed the revolving lantern using images of the holographic display. Our revolving lantern playbacks the virtual images which are floating in the air. These spatial images have unexpected motions and changes. The prototype imaging unit consists of the hologram, turn table and illumination system which can change the light with 1/f fluctuation so as to reconstruct various spatial images. In this paper, we describe the spatial imaging with a holographic technology and the reconstruction system which playbacks the rotating motion and various images. A hologram playbacks images. These reconstructions are generally static images. The rotating image like a revolving lantern can be produced when a hologram is spinning on the turn table. A hologram can record and reconstruct various images using the different illumination. When the illumination system changes the illumination light, a hologram reconstructs other images.

  17. Applications and characteristics of imaging plates as detector in neutron radiography at SINQ

    CERN Document Server

    Kolbe, H; Gunia, W; Körner, S

    1999-01-01

    Imaging plate technique is a commonly accepted method in many fields as in medicine, biology and physics for detection of the distribution of beta- and gamma-radiation or X-rays on large areas. Recently a new type of imaging plate sensitive to neutrons has been developed. The storage layer is doped with gadolinium, which, after absorption of neutrons, produces radiation detectable by the same sensitive crystals used in conventional imaging plates. At the spallation neutron source, SINQ, at the Paul Scherrer Institut (CH) some of the characteristics of the neutron radiography station in combination with the imaging plate technique were investigated. The intensity distribution of the source was measured to check the accuracy for quantification of the image data. Also, the reproducibility of results obtained by this detection system was stated. For a test object, the high selectivity for different neutron absorption is demonstrated at details with low contrast. The obtainable spatial resolution was determined re...

  18. Calibration of the linear response range of x-ray imaging plates and their reader based on image grayscale values

    Science.gov (United States)

    Ren, Kuan; Xu, Tao; Zheng, Jianhua; Dong, Jianjun; Wei, Minxi; Li, Chaoguang; Cao, Zhurong; Du, Huabing; Yan, Ji; Yang, Guohong; Yi, Rongqing; Zhang, Jiyan; Huang, Tianxuan; Liu, Shenye; Wang, Feng; Yang, Zhiwen; Li, Jin; Chen, Yaohua; Lan, Ke; Ren, Guoli; Liu, Jie; Ding, Yongkun; Jiang, Shaoen

    2017-08-01

    X-ray imaging plates are one of the most important X-ray imaging detectors and are widely used in inertial-confinement fusion experiments. However, their linear response range, which is the foundation of their quantitative data analysis, has not been sufficiently deeply investigated. In this work, we develop an X-ray fluorescer calibration system and carefully explore the linear response range of X-ray imaging plates. For the first time, nearly the entire grayscale range of the X-ray imaging plate linear response—7819-64 879 in the range of 0-65 535—has been observed. Further, we discuss the uncertainties involved in the calibration process. This work demonstrates the excellent linear response qualities of X-ray imaging plates and provides a significant foundation for expanding their quantitative applied range.

  19. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  20. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  1. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Science.gov (United States)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  2. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-11-15

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  3. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner.

    Science.gov (United States)

    Dunham, G; Harding, E C; Loisel, G P; Lake, P W; Nielsen-Weber, L B

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  4. Imaging of Lamb Waves in Plates for Quantitative Determination of Anisotropy using Photorefractive Dynamic Holography

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall

    1998-06-01

    Anisotropic properties of sheet materials can be determined by measuring the propagation of Lamb waves in different directions. Electromagnetic acoustic transduction and laser ultrasonic methods provide noncontacting approaches that are often desired for application to industrial and processing environments. This paper describes a laser imaging approach utilizing the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb wave mode in all directions simultaneously. Continuous excitation is employed enabling the data to be recorded and displayed by a CCD camera. Analysis of the image produces a direct quantitative determination of the phase velocity in all directions showing plate anisotropy in the plane. Many optical techniques for measuring ultrasonic motion at surfaces have been developed for use in applications such as vibration measurement and laser ultrasonics. Most of these methods have similar sensitivities and are based on time domain processing using homodyne, Fabry-Perot [1], and, more recently, photorefractive interferometry [2]. Generally, the methods described above do not allow measurement at more than one surface point simultaneously, requiring multiple beam movements and scanning in order to produce images of surface ultrasonic motion over a large area. Electronic speckle interferometry, including shearography, does provide images directly of vibrations over large surface areas. This method has proven very durable in the field for large displacement amplitudes of several wavelengths. In addition, a sensitivity of ë/3000 has been demonstrated under laboratory conditions [3]. Full-field imaging of traveling ultrasonic waves using digital shearography has been recently reported with sensitivity in the nanometer range [4]. With this method, optical interference occurs at the photodetector

  5. THE EFFECTS OF MANUFACTURING INACCURACIES ON THE IMAGING PROPERTIES OF ZONE PLATES

    OpenAIRE

    Simpson, M.; Browne, M.; Burge, R.; Charalambous, P; Duke, P.; Michette, A.

    1984-01-01

    Any process for making soft X-ray zone plates will have associated manufacturing errors which will affect the imaging properties. The errors possible in a lithographic manufacturing technique using a scanning transmission electron microscope are discussed, and it is concluded that sufficiently accurate zone plates may readily be made.

  6. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    Science.gov (United States)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  7. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display

    Science.gov (United States)

    Gotoda, Hironobu

    2011-03-01

    A multilayer liquid crystal display (LCD) is a display device constructed by stacking multiple liquid crystal layers on top of a light source. As shown in a previous study, a multilayer LCD can deliver varying images depending on the viewers'eye positions, and can be used for auto-stereoscopic 3D viewing. However, undesirable blurring is sometimes observed in the images that a viewer receives from the display. Such blurring is notable especially around objects in the scene that are far away from the viewer. To address this problem, we propose to put a convex lens in front of the layers of liquid crystal. The lens refracts the beams of light, thus bringing the effects of moving the objects to nearer positions. Through a simulation-based study, we show that an optimal choice exists for the focal length of the lens, which reduces the local image blurring while not compromising the overall image quality.

  8. Image-quality assessment of monochrome monitors for medical soft copy display

    Science.gov (United States)

    Weibrecht, Martin; Spekowius, Gerhard; Quadflieg, Peter; Blume, Hartwig R.

    1997-05-01

    Soft-copy presentation of medical images is becoming part of the medical routine as more and more health care facilities are converted to digital filmless hospital and radiological information management. To provide optimal image quality, display systems must be incorporated when assessing the overall system image quality. We developed a method to accomplish this. The proper working of the method is demonstrated with the analysis of four different monochrome monitors. We determined display functions and veiling glare with a high-performance photometer. Structure mottle of the CRT screens, point spread functions and images of stochastic structures were acquired by a scientific CCD camera. The images were analyzed with respect to signal transfer characteristics and noise power spectra. We determined the influence of the monitors on the detective quantum efficiency of a simulated digital x-ray imaging system. The method follows a physical approach; nevertheless, the results of the analysis are in good agreement with the subjective impression of human observers.

  9. Effects of low-spatial-frequency response of phase plates on TEM imaging

    Science.gov (United States)

    Edgcombe, C. J.

    2015-10-01

    Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.

  10. Simulation study of x-ray backscatter imaging of pressure-plate improvised explosive devices

    Science.gov (United States)

    van den Heuvel, Johan; Fiore, Franco

    2012-06-01

    Improvised Explosive Devices (IEDs) triggered by pressure-plates are a serious threat in current theatres of operation. X-ray backscatter imaging (XBI) is a potential method for detecting buried pressure-plates. Monte-Carlo simulation code was developed in-house and has been used to study the potential of XBI for pressure-plate detection. It is shown that pressure-plates can be detected at depths up to 7 cm with high photon energies of 350 keV with reasonable speeds of 1 to 10 km/h. However, spatial resolution is relatively low due to multiple scattering.

  11. Imaging acquisition display performance: an evaluation and discussion of performance metrics and procedures.

    Science.gov (United States)

    Silosky, Michael S; Marsh, Rebecca M; Scherzinger, Ann L

    2016-07-08

    When The Joint Commission updated its Requirements for Diagnostic Imaging Services for hospitals and ambulatory care facilities on July 1, 2015, among the new requirements was an annual performance evaluation for acquisition workstation displays. The purpose of this work was to evaluate a large cohort of acquisition displays used in a clinical environment and compare the results with existing performance standards provided by the American College of Radiology (ACR) and the American Association of Physicists in Medicine (AAPM). Measurements of the minimum luminance, maximum luminance, and luminance uniformity, were performed on 42 acquisition displays across multiple imaging modalities. The mean values, standard deviations, and ranges were calculated for these metrics. Additionally, visual evaluations of contrast, spatial resolution, and distortion were performed using either the Society of Motion Pictures and Television Engineers test pattern or the TG-18-QC test pattern. Finally, an evaluation of local nonuniformities was performed using either a uniform white display or the TG-18-UN80 test pattern. Displays tested were flat panel, liquid crystal displays that ranged from less than 1 to up to 10 years of use and had been built by a wide variety of manufacturers. The mean values for Lmin and Lmax for the displays tested were 0.28 ± 0.13 cd/m2 and 135.07 ± 33.35 cd/m2, respectively. The mean maximum luminance deviation for both ultrasound and non-ultrasound displays was 12.61% ± 4.85% and 14.47% ± 5.36%, respectively. Visual evaluation of display performance varied depending on several factors including brightness and contrast settings and the test pattern used for image quality assessment. This work provides a snapshot of the performance of 42 acquisition displays across several imaging modalities in clinical use at a large medical center. Comparison with existing performance standards reveals that changes in display technology and the move from cathode ray

  12. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    Science.gov (United States)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  13. The Implementation of an Experimental Teleteaching System with Enhanced Document Image Display

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes a flexible experimental teleteaching system, which is established by integrating an additional document camera with desktop H.320 system to present high resolution document image to remote student site. Special software architechture has been designed to manage the document image processing part, as well as the communication with the videoconferencing part. Based on the idea of Content-based representation, the document image and video image are synthesized into a single display, which is composed of two Video Object Planes (VOP) with different resolutions. Automatic change detection is used for document image processing, which makes efficient use of the transmission channel. Experimental results demonstrate the performance of the system.

  14. Monocular 3D display unit using soft actuator for parallax image shift

    Science.gov (United States)

    Sakamoto, Kunio; Kodama, Yuuki

    2010-11-01

    The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth. This vision unit needs an image shift optics for generating monocular parallax images. But conventional image shift mechanism is heavy because of its linear actuator system. To improve this problem, we developed a light-weight 3D vision unit for presenting monocular stereoscopic images using a soft linear actuator made of a polypyrrole film.

  15. A seismic reflection image for the base of a tectonic plate.

    Science.gov (United States)

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  16. Super multi-view windshield display for long-distance image information presentation.

    Science.gov (United States)

    Takaki, Yasuhiro; Urano, Yohei; Kashiwada, Shinji; Ando, Hiroshi; Nakamura, Koji

    2011-01-17

    A three-dimensional (3D) windshield display can display driving information in the vicinity of objects in the driver's front scene. We propose a super multi-view windshield display that can present the information in a wide depth range. The super multi-view display technique provides a smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depths of 3D images displayed at far distances; these cannot be perceived by other physiological cues such as vergence, binocular disparity, and accommodation. A prototype system, which generates 36 viewing zones with a horizontal interval of 3.61 mm, was constructed. The smoothness of the motion parallax and the accuracy of the depth perception were evaluated.

  17. Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates

    Science.gov (United States)

    Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.

    2014-03-01

    This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.

  18. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    Science.gov (United States)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  19. High-resolution three-dimensional holographic display using dense ray sampling from integral imaging.

    Science.gov (United States)

    Wakunami, Koki; Yamaguchi, Masahiro; Javidi, Bahram

    2012-12-15

    We present a high-resolution three-dimensional (3D) holographic display using a set of elemental images obtained by passive sensing integral imaging (II). Hologram calculations using a high-density ray-sampling plane are achieved from the elemental images captured by II. In II display, ray sampling by lenslet array and light diffraction limits the achievable resolution. Our approach can improve the resolution since target objects are captured in focus and then light-ray information is interpolated and resampled with higher density on ray-sampling plane located near the object to be converted into the wavefront. Numerical experimental results show that the 3D scene, composed of plural objects at different depths from the display, can be reconstructed with order of magnitude higher resolution by the proposed technique.

  20. POW: A Tcl/Tk Plotting and Image Display Interface Tool for GUIs

    Science.gov (United States)

    Brown, L. E.; Angelini, L.

    We present a new Tcl/Tk based GUI interface tool which features plotting of curve and image data and allows for user input via return of regions or specific cursor positions. The package is accessible from C, Tcl, or \\fortran. POW operates on data arrays, passed to it as pointers. Each data array sent to POW is treated as either an Image object or a Vector object. Vectors are combined to form Curves. Curves and Images may then be combined to form a displayed Graph. Several Graphs can be displayed in a single Tk top-level window. The Graphs can be rearranged, magnified, and zoomed to regions of interest by the user. Individual graph axes can be ``linked'' to implement a ``multiple y-axis'' (or x-axis) plot. The POW display can be written out in PostScript, for printing.

  1. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].

    Science.gov (United States)

    Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian

    2013-02-01

    Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed.

  2. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry.

    Science.gov (United States)

    Winter, B; King, S J; Brouard, M; Vallance, C

    2014-02-01

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  3. A 3D integral imaging optical see-through head-mounted display.

    Science.gov (United States)

    Hua, Hong; Javidi, Bahram

    2014-06-02

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  4. (99m)Tc thyroid imaging system using multiple imaging plates.

    Science.gov (United States)

    Ito, Shigeki; Saze, Takuya; Ariga, Eiji; Deji, Shizuhiko; Hirota, Masahiro; Nishizawa, Kunihide

    2009-06-01

    A system for taking static thyroid (99m)Tc images was devised by using multiple imaging plates (IPs) and a low-energy high resolution collimator. System spatial resolution of the IP systems and the gamma camera was determined by referring to standards set by the National Electrical Manufacturers Association. Sensitivity was represented by using lower detection limits (LDLs). The sensitivity and resolution of IP systems using 16 IP probes connecting two collimators and 9 IPs were determined by using a 20 ml thyroid phantom, and compared with the sensitivity of gamma cameras. The sensitivity of the IP systems increased in proportion to the number of IPs. The sensitivity and resolution of a probe using 6 IPs and a high resolution collimator were equivalent to or superior to the gamma camera for taking static thyroid (99m)Tc images. IP systems can be applied clinically as mobile static nuclear imaging devices. The performance of IP systems should be thoroughly investigated for combinations of various collimators and the number of IPs in order to verify their efficacy for imaging all organs.

  5. Edge detection of steel plates at high temperature using image measurement

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHOU; Qi AN

    2009-01-01

    An edge detection method for the measure-ment of steel plate's thermal expansion is proposed in this paper, where the shrinkage of a steel plate is measured when temperature drops. First, images are picked up by an imaging system; a method of regional edge detection based on grayscales' sudden change is then applied to detect the edges of the steel plate; finally, pixel coordinates of the edge position are transformed to physical coordinates through calibration parameters. The experiment shows that the real-time, high precision, and non-contact measure-ment of the steel plate's edge position under high temperature can be realized using the imaging measure-ment method established in this paper.

  6. Determining adaptive thresholds for image segmentation for a license plate recognition system

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-06-01

    Full Text Available A vehicle license plate recognition (LPR system is useful to many applications, such as entrance admission, security, parking control, airport and cargo, traffic and speed control. This paper describe an adaptive threshold for image segmentation applied to a system for Malaysian intelligent license plate recognition (MyiLPR. Due to the different types of license plates used, the requirements of an automatic LPR system are rather different for each country. Upon receiving the input car image, this system (MyiLPR detects and segments the license plate based on proposed adaptive threshold via image and blob histogram, and blob agglomeration, and finally, it extracts geometric character features and classifies them using neural network. The use of the proposed adaptive threshold increased the detection, segmentation and recognition rate to 99%, 94.98% and 90% correspondingly, from 95%, 78.27% and 71.08% obtained with the fixed threshold used in the originally proposed system.

  7. Quality assessment of images displayed on LCD screen with local backlight dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Burini, Nino; Korhonen, Jari

    2013-01-01

    This paper presents a subjective experiment collecting quality assessment of images displayed on a LCD with local backlight dimming using two methodologies: absolute category ratings and paired-comparison. Some well-known objective quality metrics are then applied to the stimuli and their respect......This paper presents a subjective experiment collecting quality assessment of images displayed on a LCD with local backlight dimming using two methodologies: absolute category ratings and paired-comparison. Some well-known objective quality metrics are then applied to the stimuli...

  8. Confocal Image 3D Surface Measurement with Optical Fiber Plate

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao; ZHU Sheng-cheng; LI Bing; TAN Yu-shan

    2004-01-01

    A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.

  9. Vergence and accommodation to multiple-image-plane stereoscopic displays: 'Real world' responses with practical image-plane separations?

    Science.gov (United States)

    MacKenzie, K. J.; Dickson, R. A.; Watt, S. J.

    2011-03-01

    Conventional stereoscopic displays present images on a single focal plane. The resulting mismatch between the stimuli to the eyes' focusing response (accommodation) and to convergence causes fatigue and poor stereo performance. One promising solution is to distribute image intensity across a number of relatively widely spaced image planes - a technique referred to as depth filtering. Previously, we found this elicits accurate, continuous monocular accommodation responses with image-plane separations as large as 1.1 Diopters, suggesting that a relatively small (i.e. practical) number of image planes is sufficient to eliminate vergence-accommodation conflicts over a large range of simulated distances. However, accommodation responses have been found to overshoot systematically when the same stimuli are viewed binocularly. Here, we examined the minimum image-plane spacing required for accurate accommodation to binocular depth-filtered images. We compared accommodation and vergence responses to step changes in depth for depth-filtered stimuli, using image-plane separations of 0.6-1.2 D, and equivalent real stimuli. Accommodation responses to real and depth-filtered stimuli were equivalent for image-plane separations of ~0.6-0.9 D, but inaccurate thereafter. We conclude that depth filtering can be used to precisely match accommodation and vergence demand in a practical stereoscopic display, using a relatively small number of image planes.

  10. Three-dimensional display based on integral imaging using light shaping diffusor

    Science.gov (United States)

    Jiang, Xiaoyu; Yan, Zhiqiang; Yan, Xingpeng; Su, Jian; Gao, Hui

    2016-10-01

    Integral imaging is known as a promising 3D display method for its ability to reconstruct the light field of the scene. However, integral imaging suffers from low spatial resolution and narrow viewing angle due to the limited spatial bandwidth product of LCD, which prevents its commercial application. In conventional integral imaging display, spatial resolution and viewing angle are two vital factors that should be considered, and many previous research focuses on the two factors. A novel integral imaging 3D display system with large viewing angle about 35° and high spatial resolution for HVS is presented. The method is composed of a high definition 5K LCD panel, a macro lens array and a light shaping diffusor. One point of the method different from conventional integral imaging in which micro lens array is used, a macro lens array with elemental lens diameter 1cm is employed in our method to ensure a large viewing angle, however, this may result in low spatial resolution for HVS. And the other point is a light shaping diffusor is placed in front of the lens array with proper distance, and lifelike 3D reconstruction is obtained. Experimental results with full parallax, large viewing angle and high resolution 3D images are shown to verify the validity of the proposed system.

  11. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  12. Electric modelling and image analysis of channel flow in bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Gonzalez, L.; Garcia-Alegre, M.C.; Guinea, D. [Instituto de Automatica Industrial, Consejo Superior de Investigaciones Cientificas, 28500 Arganda, Madrid (Spain); Guinea, D.M.; Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, Kelsen 5, 28049 Madrid (Spain)

    2007-07-15

    Bipolar plates are an essential part of Polymer Electrolyte Membrane Fuel Cells (PEMFC) and are related to fluid conduction. The topology of a bipolar plate is critical to the homogeneous distribution of the feeding gases over the accessible zone of the electrode. An electric model that simulates flow in bipolar plates and permits the optimisation of gas feeding in PEMFCs is proposed. As a first approach, an analogy is made between the gas pressure P and an electric voltage U in a circuit and a gas flow F and an electric current I. The fluidic resistance in a bipolar plate channel is thus R=P/F and is equivalent to the electric resistance R=U/I in a branch of a circuit. Computer image processing techniques allow the validation of the present flow estimation approach based on electrical variables. Separate plates were developed to experimentally implement a complete parallel bipolar topology. (author)

  13. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O; McPhate, J; Tremsin, Anton S; Vallerga, J V; Ertley, C D; Richner, N J; Gerard, T M; Frisch, H.; Elam, Jeffrey W.; Mane, Anil U.; Wagner, Robert G.; Minot, Michael J.; O' Mahony, Aileen O; Craven, C A

    2015-07-01

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 mu m and 10 mu m pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.

  14. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O.H.W., E-mail: ossy@ssl.berkeley.edu [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Tremsin, A.S.; Vallerga, J.V.; Ertley, C.D.; Richner, N.J.; Gerard, T.M. [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Frisch, H.J. [University of Chicago, 5640 S. Ellis Ave., Chicago, Il 60637 (United States); Elam, J.W.; Mane, A.U.; Wagner, R.G. [Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Il 60439 (United States); Minot, M.J.; O' Mahony, A.; Craven, C.A. [Incom Inc., 294 Southbridge Road, Charlton, MA, 01507 (United States)

    2015-07-01

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 µm and 10 µm pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.

  15. Application of real image display and generation technique in space optical system

    Science.gov (United States)

    He, Ruicong; Lin, Li

    2014-11-01

    In space optical system, image display and generation can be influenced by various factors such as stray light, space distance, orbit parameters and so on. To acquire accurate and clear image, these factors should be considered. Before acquiring the real image, simulation is necessary. Through comparing the simulated image with the real one, accuracy can be proved. This paper focuses on building a three-dimensional (3D) model of a satellite and simulating its orbit according to the real data. The 3D images of the satellite should be acquired in specific positions and postures from a camera on another satellite. 3D Studio Max is the software used in the process to build models, simulate and generate images. It is a 3D computer graphics program for making 3D animations, models, and images. Also in the paper, stray light relevant to the satellite surfaces is analyzed. Tracepro is the software used in the stray light analyze to trace the light on the surfaces. It is an optical engineering software program for designing and analyzing optical and illumination systems. Stray light analyzing result is addicted to the 3D images, so that the images are more precise. Therefore, the final images can be complete images including light intensity information of the satellite surfaces which makes the images more real.

  16. Vergence and accommodation to multiple-image-plane stereoscopic displays: ``real world'' responses with practical image-plane separations?

    Science.gov (United States)

    MacKenzie, Kevin J.; Dickson, Ruth A.; Watt, Simon J.

    2012-01-01

    Conventional stereoscopic displays present images on a single focal plane. The resulting mismatch between the stimuli to the eyes' focusing response (accommodation) and to convergence causes fatigue and poor stereo performance. One solution is to distribute image intensity across a number of widely spaced image planes--a technique referred to as depth filtering. Previously, we found this elicits accurate, continuous monocular accommodation responses with image-plane separations as large as 1.1 Diopters (D, the reciprocal of distance in meters), suggesting that a small number of image planes could eliminate vergence-accommodation conflicts over a large range of simulated distances. Evidence exists, however, of systematic differences between accommodation responses to binocular and monocular stimuli when the stimulus to accommodation is degraded, or at an incorrect distance. We examined the minimum image-plane spacing required for accurate accommodation to binocular depth-filtered images. We compared accommodation and vergence responses to changes in depth specified by depth filtering, using image-plane separations of 0.6 to 1.2 D, and equivalent real stimuli. Accommodation responses to real and depth-filtered stimuli were equivalent for image-plane separations of ~0.6 to 0.9 D, but differed thereafter. We conclude that depth filtering can be used to precisely match accommodation and vergence demand in a practical stereoscopic display.

  17. X-ray modulation transfer functions of photostimulable phosphor image plates and scanners.

    Science.gov (United States)

    Seely, John F; Holland, Glenn E; Hudson, Lawrence T; Henins, Albert

    2008-11-01

    The modulation transfer functions of two types of photostimulable phosphor image plates were determined in the 10 keV to 50 keV x-ray energy range using a resolution test pattern with up to 10 line pairs per mm (LP/mm) and a wavelength dispersive x-ray spectrometer. Techniques were developed for correcting for the partial transmittance of the high energy x rays through the lead bars of the resolution test pattern, and the modulation transfer function (MTF) was determined from the measured change in contrast with LP/mm values. The MTF was convolved with the slit function of the image plate scanner, and the resulting point spread functions (PSFs) were in good agreement with the observed shapes and widths of x-ray spectral lines and with the PSF derived from edge spread functions. The shapes and the full width at half-maximum (FWHM) values of the PSF curves of the Fuji Superior Resolution (SR) and Fuji Maximum Sensitivity (MS) image plate detectors, consisting of the image plate and the scanner, determined by the three methods gave consistent results: The SR PSF is Gaussian with 0.13 mm FWHM, and the MS PSF is Lorentzian with 0.19 mm FWHM. These techniques result in the accurate determination of the spatial resolution achievable using image plate and scanner combinations and enable the optimization of spatial resolution for x-ray spectroscopy and radiography.

  18. Nondestructive imaging of hidden figures on license plates by X-ray radiograph.

    Science.gov (United States)

    Jeon, Oc-Yeub; Kim, Sang-Hyeon; Lee, Joong; Park, Jong-Taek; Kim, Tae-Hoon; Park, Hak-Soo; Huh, Il-Kwon; Kang, Hyung-Tae

    2009-07-01

    In this case, we investigated the modified license plates. The evidences had new embossing pressed serial numbers after erasing the original numbers on the license plates by hammering. The X-ray radiograph could visualize the hidden figures; those were virtually unseen by naked eyes or undetectable by ordinary photography. To reveal the erased figures, we performed image processing with computer software after X-ray radiographs. It proved to be an efficient nondestructive way to visualize the hidden original figures on metals.

  19. Dead-time effects in microchannel-plate imaging detectors

    Science.gov (United States)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  20. Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA

    Science.gov (United States)

    Choi, Kyongsik; Kim, Hwi; Lee, Byoungho

    2004-05-01

    A Fourier-transformed synthetic phase hologram for an auto-stereoscopic image display system is proposed and implemented. The system uses a phase-only spatial light modulator and a simple projection lens module. A modified iterative Fresnel transform algorithm method, for the reconstruction of gray-level quantized stereo images with fast convergence, high diffraction efficiency and large signal-to-noise ratio is also described. Using this method, it is possible to obtain a high diffraction efficiency(~90%), an excellent signal-to-noise ratio(> 9.6dB), and a short calculation time(~3min). Experimentally, the proposed auto-stereoscopic display system was able to generate stereoscopic 3D images very well.

  1. Image size invariant visual cryptography for general access structures subject to display quality constraints.

    Science.gov (United States)

    Lee, Kai-Hui; Chiu, Pei-Ling

    2013-10-01

    Conventional visual cryptography (VC) suffers from a pixel-expansion problem, or an uncontrollable display quality problem for recovered images, and lacks a general approach to construct visual secret sharing schemes for general access structures. We propose a general and systematic approach to address these issues without sophisticated codebook design. This approach can be used for binary secret images in non-computer-aided decryption environments. To avoid pixel expansion, we design a set of column vectors to encrypt secret pixels rather than using the conventional VC-based approach. We begin by formulating a mathematic model for the VC construction problem to find the column vectors for the optimal VC construction, after which we develop a simulated-annealing-based algorithm to solve the problem. The experimental results show that the display quality of the recovered image is superior to that of previous papers.

  2. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Dudink, Jeroen; Govaert, Paul; Zwol, Arjen L. van; Conneman, Nikk; Goudoever, Johannes B. van [Erasmus MC-Sophia Children' s Hospital, Division of Neonatology, Department of Paediatrics, Rotterdam (Netherlands); Buijs, Jan [Maxima Medical Center, Division of Neonatology, Department of Paediatrics, Veldhoven (Netherlands); Lequin, Maarten [Erasmus MC-Sophia Children' s Hospital, Division of Paediatrics, Department of Radiology, Rotterdam, Zuid-holland (Netherlands)

    2010-08-15

    Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values. (orig.)

  3. Enhancement display of veins distribution based on binocular vision and image fusion technology

    Science.gov (United States)

    Liu, Peng; Di, Si; Jin, Jian; Bai, Liping

    2014-11-01

    The capture and display of veins distribution is an important issue for some applications, such as medical diagnosis and identification. Therefore, it has become a popular topic in the field of biomedical imaging. Usually, people capture the veins distribution by infrared imaging, but the display result is similar with that of a gray picture and the color and details of skin cannot be remained. To some degree, it is unreal for doctors. In this paper, we develop a binocular vision system to carry out the enhancement display of veins under the condition of keeping actual skin color. The binocular system is consisted of two adjacent cameras. A visible band filter and an infrared band filter are placed in front of the two lenses, respectively. Therefore, the pictures of visible band and infrared band can be captured simultaneously. After that, a new fusion process is applied to the two pictures, which related to histogram mapping, principal component analysis (PCA) and modified bilateral filter fusion. The final results show that both the veins distribution and the actual skin color of the back of the hand can be clearly displayed. Besides, correlation coefficient, average gradient and average distortion are selected as the parameters to evaluate the image quality. By comparing the parameters, it is evident that our novel fusion method is prior to some popular fusion methods such as Gauss filter fusion, Intensity-hue-saturation (HIS) fusion and bilateral filter fusion.

  4. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates.

    Science.gov (United States)

    Shinsho, Kiyomitsu; Kawaji, Yasuyuki; Yanagisawa, Shin; Otsubo, Keisuke; Koba, Yusuke; Wakabayashi, Genichiro; Matsumoto, Kazuki; Ushiba, Hiroaki

    2016-05-01

    This research demonstrated that commercially available alumina is well-suited for use in large area X-ray detectors. We discovered a new radiation imaging device that has a high spatial resolution, high sensitivity, wide dynamic range, large imaging area, repeatable results, and low operating costs. The high thermoluminescent (TL) properties of Al2O3 ceramic plates make them useful for X-ray imaging devices.

  5. A guided ultrasonic imaging approach in isotropic plate structures using edge reflections

    Science.gov (United States)

    Ebrahimkhanlou, Arvin; Dubuc, Brennan; Salamone, Salvatore

    2016-04-01

    This paper presents an imaging technique to locate damage in plate-like structures by permanently attached piezoelectric transducers (PZT) capable to generate and receive guided ultrasonic waves. The technique is based on a model capable of predicting envelope of scattered waves. Correlations between the estimated scattered waves and experimental data are used for image reconstruction. The approach is validated on an aluminum plate and results are compared with two common imaging algorithms, that is, Delay and Sum (DS) and Minimum Variance (MV). Damage is simulated by placing two magnets on sides of the plate. It is shown that the inclusion of Lamb wave reflections improves the localization accuracy while making use of fewer number of sensors possible.

  6. A neutron image plate quasi-Laue diffractometer for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, F.; Castagna, J.C.; Wilkinson, C. [European Molecular Biology Laboratory, Grenoble (France)] [and others

    1994-12-31

    An instrument which is based on image plate technology has been constructed to perform cold neutron Laue crystallography on protein structures. The crystal is mounted at the center of a cylindrical detector which is 400mm long and has a circumference of 1000mm, with gadolinium oxide-containing image plates mounted on its exterior surface. Laue images registered on the plate are read out by rotating the drum and translating a laser read head parallel to the cylinder axis, giving a pixel size of 200{mu}m x 200{mu}m and a total read time of 5 minutes. Preliminary results indicate that it should be possible to obtain a complete data set from a protein crystal to atomic resolution in about two weeks.

  7. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    Science.gov (United States)

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  8. Development of Noncontact Imaging Technology for the Detection of Internal Defects of a Nuclear Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Baik, S. H.; Lee, Y. S.; Cheong, Y. M.

    2012-01-15

    The object of the research is to develop a new imaging inspection technology for the quality testing of plate-type nuclear fuel whose demanding is currently increasing in nuclear research reactors. A new noncontact imaging inspection technique is developed for the detection of internal defects in plate-type nuclear fuel. To develop the imaging inspection technique, a hardware system based on active optical interference is configured. An operating software for the developed nondestructive inspection system is developed after designing an advanced signal processing algorithm to improve the detection capability of the system. The developed system is optimized through experiments and optimal heating condition is studied. The performance of a lock-in thermography is also evaluated to see the possibility of the plate-type nuclear fuel application.

  9. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  10. Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.

    2015-01-01

    Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

  11. 77 FR 21994 - Certain Digital Photo Frames and Image Display Devices and Components Thereof; Notice of Request...

    Science.gov (United States)

    2012-04-12

    ... COMMISSION Certain Digital Photo Frames and Image Display Devices and Components Thereof; Notice of Request... importation of certain digital photo frames and image display devices and components thereof by reason of... of Certain Devices for Connecting Computers via Telephone Lines, Inv. No. 337-TA-360, USITC Pub. No...

  12. 76 FR 59737 - In the Matter of Certain Digital Photo Frames and Image Display Devices and Components Thereof...

    Science.gov (United States)

    2011-09-27

    ... COMMISSION In the Matter of Certain Digital Photo Frames and Image Display Devices and Components Thereof... after importation of certain digital photo frames and image display devices and components thereof that..., the sale for importation, and the sale within the United States after importation of certain digital...

  13. X-ray imaging microscopy at 25 keV with Fresnel zone plate optics

    CERN Document Server

    Awaji, M; Takeuchi, A; Takano, H; Kamijo, N; Tamura, S; Yasumoto, M

    2001-01-01

    X-ray imaging microscopy with a sputtered-sliced Fresnel zone plate (SS-FZP) has been developed at an X-ray energy of 25 keV. Objects were imaged in transmission with the SS-FZP as an objective with a magnification of 10.2 times, and detected with a X-ray image sensor. The performance of the imaging microscope has been tested with a gold mesh and a resolution test pattern at an undulator beamline 47XU of SPring-8. The resolution test patterns up to 0.5 mu m line-and-space structures have been resolved.

  14. Non-invasive method of field imaging in parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a new non-invasive air-photonic-based method of terahertz (THz) field imaging inside a parallel plate waveguide. The method is based on THz field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct measurements...

  15. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    Science.gov (United States)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  16. A multiple-plate, multiple-pinhole camera for X-ray gamma-ray imaging

    Science.gov (United States)

    Hoover, R. B.

    1971-01-01

    Plates with identical patterns of precisely aligned pinholes constitute lens system which, when rotated about optical axis, produces continuous high resolution image of small energy X-ray or gamma ray source. Camera has applications in radiation treatment and nuclear medicine.

  17. Designing Websites for Displaying Large Data Sets and Images on Multiple Platforms

    Science.gov (United States)

    Anderson, A.; Wolf, V. G.; Garron, J.; Kirschner, M.

    2012-12-01

    The desire to build websites to analyze and display ever increasing amounts of scientific data and images pushes for web site designs which utilize large displays, and to use the display area as efficiently as possible. Yet, scientists and users of their data are increasingly wishing to access these websites in the field and on mobile devices. This results in the need to develop websites that can support a wide range of devices and screen sizes, and to optimally use whatever display area is available. Historically, designers have addressed this issue by building two websites; one for mobile devices, and one for desktop environments, resulting in increased cost, duplicity of work, and longer development times. Recent advancements in web design technology and techniques have evolved which allow for the development of a single website that dynamically adjusts to the type of device being used to browse the website (smartphone, tablet, desktop). In addition they provide the opportunity to truly optimize whatever display area is available. HTML5 and CSS3 give web designers media query statements which allow design style sheets to be aware of the size of the display being used, and to format web content differently based upon the queried response. Web elements can be rendered in a different size, position, or even removed from the display entirely, based upon the size of the display area. Using HTML5/CSS3 media queries in this manner is referred to as "Responsive Web Design" (RWD). RWD in combination with technologies such as LESS and Twitter Bootstrap allow the web designer to build web sites which not only dynamically respond to the browser display size being used, but to do so in very controlled and intelligent ways, ensuring that good layout and graphic design principles are followed while doing so. At the University of Alaska Fairbanks, the Alaska Satellite Facility SAR Data Center (ASF) recently redesigned their popular Vertex application and converted it from a

  18. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    Science.gov (United States)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  19. Color, Scale, and Rotation Independent Multiple License Plates Detection in Videos and Still Images

    Directory of Open Access Journals (Sweden)

    Narasimha Reddy Soora

    2016-01-01

    Full Text Available Most of the existing license plate (LP detection systems have shown significant development in the processing of the images, with restrictions related to environmental conditions and plate variations. With increased mobility and internationalization, there is a need to develop a universal LP detection system, which can handle multiple LPs of many countries and any vehicle, in an open environment and all weather conditions, having different plate variations. This paper presents a novel LP detection method using different clustering techniques based on geometrical properties of the LP characters and proposed a new character extraction method, for noisy/missed character components of the LP due to the presence of noise between LP characters and LP border. The proposed method detects multiple LPs from an input image or video, having different plate variations, under different environmental and weather conditions because of the geometrical properties of the set of characters in the LP. The proposed method is tested using standard media-lab and Application Oriented License Plate (AOLP benchmark LP recognition databases and achieved the success rates of 97.3% and 93.7%, respectively. Results clearly indicate that the proposed approach is comparable to the previously published papers, which evaluated their performance on publicly available benchmark LP databases.

  20. The Design and Evaluation of the Lighting Imaging Sensor Data Applications Display (LISDAD)

    Science.gov (United States)

    Boldi, B.; Hodanish, S.; Sharp, D.; Williams, E.; Goodman, Steven; Raghavan, R.; Matlin, A.; Weber, M.

    1998-01-01

    The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm

  1. Liquid-crystal displays for medical imaging: a discussion of monochrome versus color

    Science.gov (United States)

    Wright, Steven L.; Samei, Ehsan

    2004-05-01

    A common view is that color displays cannot match the performance of monochrome displays, normally used for diagnostic x-ray imaging. This view is based largely on historical experience with cathode-ray tube (CRT) displays, and does not apply in the same way to liquid-crystal displays (LCDs). Recent advances in color LCD technology have considerably narrowed performance differences with monochrome LCDs for medical applications. The most significant performance advantage of monochrome LCDs is higher luminance, a concern for use under bright ambient conditions. LCD luminance is limited primarily by backlight design, yet to be optimized for color LCDs for medical applications. Monochrome LCDs have inherently higher contrast than color LCDs, but this is not a major advantage under most conditions. There is no practical difference in luminance precision between color and monochrome LCDs, with a slight theoretical advantage for color. Color LCDs can provide visualization and productivity enhancement for medical applications, using digital drive from standard commercial graphics cards. The desktop computer market for color LCDs far exceeds the medical monitor market, with an economy of scale. The performance-to-price ratio for color LCDs is much higher than monochrome, and warrants re-evaluation for medical applications.

  2. Novel application of simultaneous multi-image display during complex robotic abdominal procedures.

    Science.gov (United States)

    Woo, Yanghee; Choi, Gi Hong; Min, Byung Soh; Hyung, Woo Jin

    2014-03-15

    The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant's monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations.

  3. Radiological interpretation of images displayed on tablet computers: a systematic review.

    Science.gov (United States)

    Caffery, L J; Armfield, N R; Smith, A C

    2015-06-01

    To review the published evidence and to determine if radiological diagnostic accuracy is compromised when images are displayed on a tablet computer and thereby inform practice on using tablet computers for radiological interpretation by on-call radiologists. We searched the PubMed and EMBASE databases for studies on the diagnostic accuracy or diagnostic reliability of images interpreted on tablet computers. Studies were screened for inclusion based on pre-determined inclusion and exclusion criteria. Studies were assessed for quality and risk of bias using Quality Appraisal of Diagnostic Reliability Studies or the revised Quality Assessment of Diagnostic Accuracy Studies tool. Treatment of studies was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). 11 studies met the inclusion criteria. 10 of these studies tested the Apple iPad(®) (Apple, Cupertino, CA). The included studies reported high sensitivity (84-98%), specificity (74-100%) and accuracy rates (98-100%) for radiological diagnosis. There was no statistically significant difference in accuracy between a tablet computer and a digital imaging and communication in medicine-calibrated control display. There was a near complete consensus from authors on the non-inferiority of diagnostic accuracy of images displayed on a tablet computer. All of the included studies were judged to be at risk of bias. Our findings suggest that the diagnostic accuracy of radiological interpretation is not compromised by using a tablet computer. This result is only relevant to the Apple iPad and to the modalities of CT, MRI and plain radiography. The iPad may be appropriate for an on-call radiologist to use for radiological interpretation.

  4. Bifractal focusing and imaging properties of Thue-Morse Zone Plates.

    Science.gov (United States)

    Ferrando, Vicente; Giménez, Fernando; Furlan, Walter D; Monsoriu, Juan A

    2015-07-27

    We present a new family of Zone Plates (ZPs) designed using the Thue-Morse sequence. The focusing and imaging properties of these aperiodic diffractive lenses coined Thue-Morse Zone Plates (TMZPs) are examined. It is demonstrated that TMZPs produce a pair of self-similar and equally intense foci along the optical axis. As a consequence of this property, under broadband illumination, a TMZP produces two foci with an extended depth of focus and a strong reduction of the chromatic aberration compared with conventional periodic ZPs. This distinctive optical characteristic is experimentally confirmed.

  5. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  6. Elimination of the Background Noise of the Decoded Image in Fresnel Zone Plate Scanning Holography

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.

  7. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    Science.gov (United States)

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology.

  8. Novel large format sealed tube microchannel plate detectors for Cherenkov timing and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O.H.W., E-mail: ossy@ssl.berkeley.ed [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Tremsin, A.S.; Jelinsky, S.R. [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Frisch, H.J. [Enrico Fermi Institute, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL 60637 (United States)

    2011-05-21

    Large area (20x20 cm{sup 2}) sealed tube detectors using novel borosilicate glass microchannel plates, with bialkali photocathodes and strip-line readouts are being developed for Cherenkov light detection. Designs based on conventional sealed tubes with alumina brazed body construction and hot indium seals have been developed. Borosilicate glass substrates with 20 and 40 {mu}m holes have been processed using atomic layer deposition to produce functional microchannel plates. Initial results for these in a 33 mm format show gain, imaging performance, pulse shape and lifetime characteristics that are similar to standard glass microchannel plates. Large area (20x20 cm{sup 2}) borosilicate glass substrates with 20 {mu}m pores have also been made.

  9. Improvement of visualization efficiency for the nondestructive inspection image of internal defects in plate type nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cheong, Yong Moo [KAERI, Daejeon (Korea, Republic of); Kang, Young June [Chonbuk National Univ., Chonju (Korea, Republic of)

    2012-10-15

    signal processing is almost instantaneous. As a disadvantage, LIT is more sensitive to mechanic vibrations. So, in order to properly detect internal defects, several inspection parameters, such as acquisition time, processing methods, external stimulation, vibration environment etc., must be optimized when the assessment procedure is developed. If a current inspection image showing the information of internal defects is displayed on the monitor in real time, it will be helpful for the practical field application of nondestructive evaluations. For this purpose, a real time visualization technique for the detection of internal defects was developed in this paper. An active laser speckle interferometer with periodic thermal power was adopted to detect the defects. The laser speckle interferometer is sensitive to very small displacement at a resolution of nanometers by superposing the speckle patterns of two different object states. Amplitude and phase differences in deformation among intact and defective areas have been widely used for the detection of internal defects in plate specimens.

  10. A liquid crystal display with consistent moving image quality regardless of viewing angles

    Science.gov (United States)

    Kim, Jong-Man; Kim, Seung-Ryul; Kim, Jongbin; Kim, Minkoo; Lee, Seung-Woo

    2014-08-01

    This paper proposes a new overdrive (OD) technology to precisely compensate for the viewing angle dependent characteristics of LCDs. This paper reports that optical response of liquid crystal displays (LCDs) is considerably dependent on viewing angles for the first time. The new OD technology applies different OD look-up tables (LUTs) depending on the viewing angles. In addition, we combine a new OD technology with an eye tracker that is usually adopted for autostereoscopic 3D LCD systems. The application results show that a new OD technology improves the motion image quality perfectly regardless of viewing angles. We expect that our proposed method will definitely enable the LCD products to have consistent motion image quality regardless of viewing angles.

  11. Structure of the brachial plexus root and adjacent regions displayed by ultrasound imaging

    Institute of Scientific and Technical Information of China (English)

    Zhengyi Li; Xun Xia; Xiaoming Rong; Yamei Tang; Dachuan Xu

    2012-01-01

    Brachial plexuses of 110 healthy volunteers were examined using high resolution color Doppler ultrasound. Ultrasonic characteristics and anatomic variation in the intervertebral foramen, interscalene, supraclavicular and infraclavicular, as well as the axillary brachial plexus were investigated. Results confirmed that the normal brachial plexus on cross section exhibited round or elliptic hypoechoic texture. Longitudinal section imaging showed many parallel linear hypo-moderate echoes, with hypo-echo. The transverse processes of the seventh cervical vertebra, the scalene space, the subclavian artery and the deep cervical artery are important markers in an examination. The display rates for the interscalene, and supraclavicular and axillary brachial plexuses were 100% each, while that for the infraclavicular brachial plexus was 97%. The region where the normal brachial plexus root traversed the intervertebral foramen exhibited a regular hypo-echo. The display rate for the C5-7 nerve roots was 100%, while those for C8 and T1 were 83% and 68%, respectively. A total of 20 of the 110 subjects underwent cervical CT scan. High-frequency ultrasound can clearly display the outline of the transverse processes of the vertebrae, which were consistent with CT results. These results indicate that high-frequency ultrasound provides a new method for observing the morphology of the brachial plexus. The C7 vertebra is a marker for identifying the position of brachial plexus nerve roots.

  12. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    Science.gov (United States)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  13. Image edge-enhancement in optical microscopy with a phase mismatched spiral phase plate

    Institute of Scientific and Technical Information of China (English)

    Shibiao Wei; Jing Bu; Siwei Zhu; Xiaocong Yuan

    2011-01-01

    @@ We present a spiral phase filtering system with a large tolerance for edge enhancement of both phase and amplitude objects in optical microscopy.The method is based on a Fourier 4-f spatial filtering system.A phase mismatched spiral phase plate (SPP) fabricated by electron beam lithography is employed as the radial Hilbert transform for image edge enhancement.Compared with holography, SPP is simple,economical, reliable, and easy to integrate.%We present a spiral phase filtering system with a large tolerance for edge enhancement of both phase and amplitude objects in optical microscopy. The method is based on a Fourier 4-f spatial filtering system.A phase mismatched spiral phase plate (SPP) fabricated by electron beam lithography is employed as the radial Hilbert transform for image edge enhancement. Compared with holography, SPP is simple,economical, reliable, and easy to integrate.

  14. Large-format imaging plate and weissenberg camera for accurate protein crystallographic data collection using synchrotron radiation.

    Science.gov (United States)

    Sakabe, K; Sasaki, K; Watanabe, N; Suzuki, M; Wang, Z G; Miyahara, J; Sakabe, N

    1997-05-01

    Off-line and on-line protein data-collection systems using an imaging plate as a detector are described and their components reported. The off-line scanner IPR4080 was developed for a large-format imaging plate ;BASIII' of dimensions 400 x 400 mm and 400 x 800 mm. The characteristics of this scanner are a dynamic range of 10(5) photons pixel(-1), low background noise and high sensitivity. A means of reducing electronic noise and a method for finding the origin of the noise are discussed in detail. A dedicated screenless Weissenberg camera matching IPR4080 with synchrotron radiation was developed and installed on beamline BL6B at the Photon Factory. This camera can attach one or two sheets of 400 x 800 mm large-format imaging plate inside the film cassette by evacuation. The positional reproducibility of the imaging plate on the cassette is so good that the data can be processed by batch job. Data of 93% completeness up to 1.6 A resolution were collected on a single axis rotation and the value of R(merge) becomes 4% from a tetragonal lysozyme crystal using a set of two imaging-plate sheets. Comparing two types of imaging plates, the signal-to-noise ratio of the ST-VIP-type imaging plate is 25% better than that of the BASIII-type imaging plate for protein data collection using 1.0 and 0.7 A X-rays. A new on-line protein data-collection system with imaging plates is specially designed to use synchrotron radiation X-rays at maximum efficiency.

  15. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging

    Science.gov (United States)

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.

    2017-01-01

    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  16. On the Origin of the Dragon Image on the Plate from Shilovka Burial Mound

    OpenAIRE

    Liphanov Nicolay А.

    2017-01-01

    The author of the article analyzes an unique image of two opposed dragons engraved on a bone plate discovered in 1992 at barrow No.1 of Shilovka burial mound located on the right bank of the Volga river in Ulyanovsk Oblast (the excavations were conducted by R.S. Bagautdinov). The burial mound is related to the cattle breeding population of late 7th century. The article considers different hypotheses concerning the origin of these dragon images in the artistic traditions of various regions: Ch...

  17. Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates.

    Science.gov (United States)

    Fiksel, G; Marshall, F J; Mileham, C; Stoeckl, C

    2012-08-01

    The spatial resolution of two types of imaging plates, Fuji BAS-TR and Fuji BAS-SR, has been measured using a knife-edge x-ray source of 8-keV Cu K(α) radiation. The values for the spatial resolution, defined as the distance between 10% and 90% levels of the edge spread function, are 94 μm and 109 μm, respectively. The resolution values are important for quantitative analysis of x-ray and particle imaging and spectroscopic diagnostics.

  18. Needle image plates compared to conventional CR in chest radiography: Is dose reduction possible?

    Energy Technology Data Exchange (ETDEWEB)

    Berger-Kulemann, Vanessa, E-mail: vanessa.berger-kulemann@meduniwien.ac.at [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Pötter-Lang, Sarah; Gruber, Michael [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Berger, Rudolf [Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Vonbank, Karin [Department of Internal Medicine II, Division of Pneumology, Medical University of Vienna Waehringer Guertel 18-20, 1090 Vienna (Austria); Weber, Michael [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Rabitsch, Werner [Department of Internal Medicine I, Bone Marrow Transplantation, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Uffmann, Martin [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Department of Radiology, KH Neunkirchen, Peischinger Straße 19, 2620 Neunkirchen (Austria)

    2012-12-15

    Purpose: To compare image quality of standard-dose computed radiography and dose reduced needle-technology CR for supine CXR in a clinical setting. Materials and methods: We prospectively evaluated 128 radiographs of 32 immunocompromised patients. For each patient four clinical CXR were performed within one week, two with powder image plates (PIP; Fuji ST-V) and two with needle image plates (NIP; Agfa DXS) at standard and half dose, respectively. One experienced radiologist and two residents blinded to dose level and kind of imaging system rated different anatomical structures, image noise, tubes/lines and abnormalities on a image quality scale from 1 to 10 (1 = poor, 10 = excellent). The rating scores were tested for statistical differences using analysis of variance with repeated measures. Results: A statistical difference (p < 0.05) was found for the two systems as well as for the two dose levels. Overall rating scores were 6.5 for PIP with full dose, 6.2 for PIP with half dose, 7.6 for NIP with full dose and 7.4 for NIP with half dose. There was a significant difference in favour of the NIP system at the same dose level. Also the NIP images obtained at half dose were ranked significantly better compared to the PIP images at standard dose. The differences in ranking of anatomical structures and abnormalities were more pronounced in low absorption areas (pulmonary vessels, parenchyma) than in high absorption areas (mediastinum, spine). Conclusion: For supine chest radiograms the NIP technology allows for a dose reduction of 50% while providing higher image quality.

  19. Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images?

    Science.gov (United States)

    Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron

    2014-03-01

    Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.

  20. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  1. 75 FR 8115 - In the Matter of Certain Electronic Devices Having Image Capture or Display Functionality and...

    Science.gov (United States)

    2010-02-23

    .... 5,995,767, 5,774,131, and 6,281,895. 74 FR 14157 (2009). The complainant named Eastman Kodak Company... COMMISSION In the Matter of Certain Electronic Devices Having Image Capture or Display Functionality and... sale within the United States after importation of certain electronic devices having image capture...

  2. Calibrating image plate sensitivity in the 700 to 5000 eV spectral energy range

    Science.gov (United States)

    Haugh, Michael J.; Lee, Joshua; Romano, Edward; Schneider, Marilyn

    2013-09-01

    This paper describes a method to calibrate image plate sensitivity for use in the low energy spectral range. Image plates, also known as photostimulable luminescence (PSL) detectors, have often proved to be a valuable tool as a detector for plasma physics studies. Their advantages of large dynamic range, high stopping power, and resistance to neutron damage sometimes outweigh the problems of limited resolution and the remote processing required. The neutron damage resistance is required when the X-ray source is producing a high neutron flux. The Static X-ray Imager (SXI) is a key diagnostic on the National Ignition Facility (NIF) target chamber at LLNL for use in determining the symmetry of the laser beams. The SXI is essential to proper interpretation of the data from the Dante diagnostic to determine the X-ray radiation temperature. It is comprised of two diagnostics located at the top and the bottom of the target chamber. The usual detector is a large array CCD camera. For shots giving high yields of neutrons, the camera would not only be blinded by the neutrons, it would be damaged. To get around this problem, an image plate (IP) is used as the detector. The NIF application covers the energy range from 700 to 5000 eV. The type of image plates typically used for plasma physics are the Fuji BAS-MS, BAS-SR, and BAS-TR models. All models consist of an X-ray sensitive material made of BaF(Br,I):Eu2+ embedded in a plastic binder. X-rays incident on the phosphor ionize the Eu 2+ producing Eu3+ and free electrons that are trapped in lattice defects (F-centers) produced by the absence of halogen ions in the BaF2 crystal. An image plate readout scanner irradiates the IP with a red laser causing reduction of the Eu3+ and emission of a blue photon. The photon is collected using a photomultiplier and digitized to make an electronic image. Image plates are cleared of all F-centers by putting them under a bright light for about 10 minutes. They are then ready for producing a

  3. Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone

    Science.gov (United States)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Rondenay, S.

    2013-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relationship to slab seismicity, and (2) the interplate coupled zone where the great 1964 earthquake (magnitude 9.3) exhibited the largest amount of rupture. The joint teleseismic migration of two array datasets based on teleseismic receiver functions (RFs) reveals a prominent, shallow-dipping low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of RF amplitudes suggests the existence of a thin (3-5 km) low-velocity layer (shear wave velocity of ~2.0-2.5 km/s) that is ~20-40% slower than underlying oceanic crustal velocities, and is sandwiched between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio of 1.9-2.3) may be due to a thick sediment input from the trench in combination with elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of ~15 km. Both velocities and thickness of the low-velocity channel abruptly increase downdip in central Alaska, which agrees with previously published results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of a geodetically locked patch with high slip deficit, and coincides with the boundary of

  4. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    Science.gov (United States)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2013-05-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio (Vp/Vs) exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-12 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of the geodetically locked patch with high slip deficit, and coincides with the boundary of aftershock events from the 1964 earthquake. It seems plausible that this sharp change in the nature of

  5. Study on detecting spatial distribution of neutrons and gamma rays using a multi-imaging plate system.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Endo, Satoru; Takada, Jun

    2014-06-01

    In order to measure the spatial distributions of neutrons and gamma rays separately using the imaging plate, the requirement for the converter to enhance specific component was investigated with the PHITS code. Consequently, enhancing fast neutrons using recoil protons from epoxy resin was not effective due to high sensitivity of the imaging plate to gamma rays. However, the converter of epoxy resin doped with (10)B was found to have potential for thermal and epithermal neutrons, and graphite for gamma rays.

  6. Dynamics of laser-imploded core plasmas observed by ultrafast two-dimensional x-ray imaging with animation display

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Manabu; Shiraga, Hiroyuki; Shimada, Kyoko; Miyanaga, Noriaki; Takabe, Hideaki; Yamanaka, Tatsuhiko; Mima, Kunioki [Osaka Univ., Inst. of Laser Engineering, Suita, Osaka (Japan)

    1999-05-01

    In order to observe time-resolved, two-dimensional (2D) spatial distribution of x rays emitted from core plasmas at the final stage of the implosion, we have developed a multi-imaging x-ray streak camera (MIXS) and a multi-channel MIXS (McMIXS) methods as new ultrafast 2D x-ray imaging techniques. The observed time-resolved 2D x-ray and electron-temperature images of core plasmas, which are sequentially changing with time, have been displayed by using an animation method. Temporal evolutions of nonuniform structures, including shape, size, and movement of core plasmas can be observed instinctively with the animated display. The ultrafast 2D x-ray imaging with the animation display is a new powerful tool for understanding the dynamics of laser-imploded core plasmas. (author)

  7. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  8. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    Energy Technology Data Exchange (ETDEWEB)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  9. On the Origin of the Dragon Image on the Plate from Shilovka Burial Mound

    Directory of Open Access Journals (Sweden)

    Liphanov Nicolay А.

    2017-07-01

    Full Text Available The author of the article analyzes an unique image of two opposed dragons engraved on a bone plate discovered in 1992 at barrow No.1 of Shilovka burial mound located on the right bank of the Volga river in Ulyanovsk Oblast (the excavations were conducted by R.S. Bagautdinov. The burial mound is related to the cattle breeding population of late 7th century. The article considers different hypotheses concerning the origin of these dragon images in the artistic traditions of various regions: China (A.V. Komar, D.G. Savinov, B. Totev, Pelevina, Central Asia (V.G. Kotov, V.E. Flyorova, India (N.A. Fonyakova. According to the author, this image has no apparent iconographic parallels in the traditions of these regions. Such analogues are found in the art of the Mediterranean where the ancient images of various mythological creatures exist alongside the image of the sea dragon “ketos” which later became part of the Christian tradition. The appearance of this monster in the images of the first half – middle of the 1st millennium A.D. is practically identical to the dragons from Shilovka burial mound. According to the author, certain impact on the formation of the considered dragon image was made by Iranian art.

  10. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.; Williams, Walter J.

    2017-02-01

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutron radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.

  11. Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing

    Science.gov (United States)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2011-01-01

    A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.

  12. Detection of artificial occlusal caries in a phosphor imaging plate system with two types of LCD monitors versus three different films.

    Science.gov (United States)

    Ilgüy, Mehmet; Dinçer, Semanur; Ilgüy, Dilhan; Bayirli, Gündüz

    2009-06-01

    The aim of this study was to determine diagnostic performance of a storage phosphor plate system Digora Optime (Soredex, Helsinki, Finland) with two types of LCD monitor in the detection of artificial caries when compared to Ultraspeed (D), Ektaspeed Plus (E), and Insight (F) radiographic films. Seventy extracted human molars-with artificial caries-were radiographed under identical standardized conditions using (1) a storage phosphor plate system Digora (Soredex, Helsinki, Finland), (2) Insight, (3) Ektaspeed Plus, and (4) Ultraspeed (Carestream Health Inc, Rochester, NY). All digital images and radiographs were examined by three observers for the presence or absence of artificial caries using a five-point confidence scale. Digital images were evaluated both on a LCD computer monitor (Philips 170S, Holland) and medical monitor-3 megapixel monochrome display (Me355i2, Totoku, Tokyo)-with brightness and contrast enhancement. Observer responses were evaluated using ROC analysis and other measurements for diagnostic accuracy. Storage phosphor images with medical monitor demonstrated higher mean A (z) values (0.70 +/- 0.08) than digital images with computer monitor and conventional films. Storage phosphor images with medical monitor presented the highest score, 0.97, 0.90, 0.94, for each observer, respectively. Also, true positive observations (0.82) and positive likelihood ratios (2.71) were higher in enhanced storage phosphor images with medical monitor. Caries detection of mechanically created lesions by experienced radiologists is roughly comparable when examining D-speed film images and Digora images on both the computer and medical LCD monitors, and appears to be poorer on E- and F-speed film images.

  13. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  14. Imaging the Juan de Fuca plate beneath southern Oregon using teleseismic P wave residuals

    Science.gov (United States)

    Harris, R.A.; Iyer, H.M.; Dawson, P.B.

    1991-01-01

    Images the Juan de Fuca plate in southern Oregon using seismic tomography. P wave travel time residuals from a 366-km-long seismic array operated in southern Oregon in 1982 are inverted. The southeast striking array extended from the Coast ranges to the Modoc Plateau and crossed the High Cascades at Crater Lake, Oregon. Three features under the array were imaged: one high-velocity zone and two low-velocity zones. The high-velocity zone is 3-4% faster than the surrounding upper mantle. It dips steeply at 65?? to the east beneath the Cascade Range and extends down to at least 200 km. It is proposed that this high-velocity feature is subducted Juan de Fuca plate. Two low-velocity zones were also imaged, both of which are 3-4% slower than the surrounding earth structure. The southeastern low-velocity zone may be caused by partially molten crust underlying the Crater Lake volcano region. -from Authors

  15. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    Institute of Scientific and Technical Information of China (English)

    Hyunjo Jeong; Sungjong Cho; Wei Wei

    2011-01-01

    @@ We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves.We first consider the flexural wave (A mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver.The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect.The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of- flight information on the defect location.One of the side-band signals is then extracted as a pure defect signal.A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors.The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect.

  16. X-ray imaging plate performance investigation based on a Monte Carlo simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Yao, M., E-mail: philippe.duvauchelle@insa-lyon.fr [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Duvauchelle, Ph.; Kaftandjian, V. [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Peterzol-Parmentier, A. [AREVA NDE-Solutions, 4 Rue Thomas Dumorey, 71100 Chalon-sur-Saône (France); Schumm, A. [EDF R& D SINETICS, 1 Avenue du Général de Gaulle, 92141 Clamart Cedex (France)

    2015-01-01

    Computed radiography (CR) based on imaging plate (IP) technology represents a potential replacement technique for traditional film-based industrial radiography. For investigating the IP performance especially at high energies, a Monte Carlo simulation tool based on PENELOPE has been developed. This tool tracks separately direct and secondary radiations, and monitors the behavior of different particles. The simulation output provides 3D distribution of deposited energy in IP and evaluation of radiation spectrum propagation allowing us to visualize the behavior of different particles and the influence of different elements. A detailed analysis, on the spectral and spatial responses of IP at different energies up to MeV, has been performed. - Highlights: • A Monte Carlo tool for imaging plate (IP) performance investigation is presented. • The tool outputs 3D maps of energy deposition in IP due to different signals. • The tool also provides the transmitted spectra along the radiation propagation. • An industrial imaging case is simulated with the presented tool. • A detailed analysis, on the spectral and spatial responses of IP, is presented.

  17. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    LIANG WenXi; JIN Zhan; WEI ZhiYi; ZHAO Wei; LI YingJun; ZHANG Jie; LI YuTong; XU MiaoHua; YUAN XiaoHui; ZHENG ZhiYuan; ZHANG Yi; LIU Feng; WANG ZhaoHua; LI HanMing

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri-bution and energy spectrum of hot electrons were measured with IP in the experi-ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  18. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri- bution and energy spectrum of hot electrons were measured with IP in the experi- ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  19. Towards multi-order hard X-ray imaging with multilayer zone plates.

    Science.gov (United States)

    Osterhoff, Markus; Eberl, Christian; Döring, Florian; Wilke, Robin N; Wallentin, Jesper; Krebs, Hans-Ulrich; Sprung, Michael; Salditt, Tim

    2015-02-01

    This article describes holographic imaging experiments using a hard X-ray multilayer zone plate (MZP) with an outermost zone width of 10 nm at a photon energy of 18 keV. An order-sorting aperture (OSA) is omitted and emulated during data analysis by a 'software OSA'. Scanning transmission X-ray microscopy usually carried out in the focal plane is generalized to the holographic regime. The MZP focus is characterized by a three-plane phase-retrieval algorithm to an FWHM of 10 nm.

  20. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    Science.gov (United States)

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  1. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    OpenAIRE

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried...

  2. Use of personal digital assistants for retrieval of medical images and data on high-resolution flat panel displays.

    Science.gov (United States)

    Ratib, Osman; McCoy, J Michael; McGill, D Ric; Li, Minglin; Brown, Allen

    2003-01-01

    For its new acute care hospital, the University of California at Los Angeles is evaluating innovative technology involving high-resolution flat panel display devices configured as "network appliances" that can be wall mounted for use in the retrieval and display of medical images and data. Physicians and healthcare providers can log on with wireless handheld computers, which can serve as an identification device as well as a navigational tool for selecting patient records and data. These data are displayed and manipulated on the flat panel display without the need for a keyboard or mouse. A prototype was developed with commercially available image display software, which was modified to allow the remote control of software functions from a handheld device through an infrared communication port. The system also allows navigation through the patient data in a World Wide Web-based electronic patient record. This prototype illustrates the evolution of radiologic facilities toward "shareable" high-quality display devices that allow more convenient and cost-effective access to medical images and related data in complex clinical environments, resulting in a paradigm shift in data navigation and accessibility.

  3. Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study.

    Science.gov (United States)

    Chen, Bixia; Schoemberg, Tobias; Kraff, Oliver; Dammann, Philipp; Bitz, Andreas K; Schlamann, Marc; Quick, Harald H; Ladd, Mark E; Sure, Ulrich; Wrede, Karsten H

    2016-06-01

    This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T2-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.

  4. Fluid Flow and Infrared Image Analyses on Endwall Fitted with Short Rectangular Plate Fin

    Institute of Scientific and Technical Information of China (English)

    Kenyu OYAKAWA; Islam Md. DIDARUL; Minoru YAGA

    2006-01-01

    An experimental investigation is carried out to study fluid flow and heat transfer characteristics on the endwall fitted with arrays ( 7 × 7 ) of short rectangular plate fins of different pattern (co-angular and zigzag) for different pitch ratio. Experiments were conducted in a rectangular duct of 50 mm height for an air flow of Reynolds number ranged from 18750 to 62500 based on the equivalent diameter and air velocity of the duct. Infrared image analysis technique was employed to make clear the characteristics of local heat transfer coefficients on fin base, endwall and overall surface. Flow pattern around the short rectangular plates were visualized by inducing fluorescent dye in a water channel and longitudinal vortices were observed. Increasing the distance between plates in flow direction causes heat transfer enhancement for co-angular pattern, while decreasing the distance causes heat transfer enhancement for zigzag pattern. Zigzag pattern with pitch ratio 2 is found to be more effective in heat transfer enhancement than any other cases investigated.

  5. Flaw Imaging Technique for Plate-Like Structures Using Scanning Laser Source Actuation

    Directory of Open Access Journals (Sweden)

    Changgil Lee

    2014-01-01

    Full Text Available Recently, the longitudinal, shear, and surface waves have been very widely used as ultrasonic wave-based exploration methods to identify internal defects of host structures. In this context, a noncontact nondestructive testing (NDT method is proposed to detect the damage of plate-like structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND:YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using 3-dimensional Fourier transformation (3D FT. The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a plate-like structure are conducted using the damage-sensitive features. Finally, the plates with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

  6. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    Science.gov (United States)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  7. Display of Dynamic, Volume Graphic Images by Holographic Voxel Projection. Initial Investigation

    Science.gov (United States)

    1993-04-29

    REFERENCE S 1. Veron, H., D. Southard, J. Leger, and J. Conway, " 3D Displays for Battle Management," The MITRE Corporation, Bedford, MA, 01730...published as RADC-TR-90-46 (April 1990). 2. Wilson, A., "At SID, Lasers Put New Spin on 3D Displays," ESD: The Electronic System Design Magazine, August...34Electronic Display System for Computational Holography," SPIE, Vol 1212, pp. 325-333, (January 1990). 5. Meacham, G., " Autostereoscopic Displays - Past

  8. SAMI Automated Plug Plate Configuration

    CERN Document Server

    Lorente, Nuria P F; Goodwin, Michael

    2012-01-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13 x 61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  9. Imaging the Juan de Fuca subduction plate using 3D Kirchoff Prestack Depth Migration

    Science.gov (United States)

    Cheng, C.; Bodin, T.; Allen, R. M.; Tauzin, B.

    2014-12-01

    We propose a new Receiver Function migration method to image the subducting plate in the western US that utilizes the US array and regional network data. While the well-developed CCP (common conversion point) poststack migration is commonly used for such imaging; our method applies a 3D prestack depth migration approach. The traditional CCP and post-stack depth mapping approaches implement the ray tracing and moveout correction for the incoming teleseismic plane wave based on a 1D earth reference model and the assumption of horizontal discontinuities. Although this works well in mapping the reflection position of relatively flat discontinuities (such as the Moho or the LAB), CCP is known to give poor results in the presence of lateral volumetric velocity variations and dipping layers. Instead of making the flat layer assumption and 1D moveout correction, seismic rays are traced in a 3D tomographic model with the Fast Marching Method. With travel time information stored, our Kirchoff migration is done where the amplitude of the receiver function at a given time is distributed over all possible conversion points (i.e. along a semi-elipse) on the output migrated depth section. The migrated reflectors will appear where the semicircles constructively interfere, whereas destructive interference will cancel out noise. Synthetic tests show that in the case of a horizontal discontinuity, the prestack Kirchoff migration gives similar results to CCP, but without spurious multiples as this energy is stacked destructively and cancels out. For 45 degree and 60 degree dipping discontinuities, it also performs better in terms of imaging at the right boundary and dip angle. This is especially useful in the Western US case, beneath which the Juan de Fuca plate subducted to ~450km with a dipping angle that may exceed 50 degree. While the traditional CCP method will underestimate the dipping angle, our proposed imaging method will provide an accurate 3D subducting plate image without

  10. Stereoscopic uncooled thermal imaging with autostereoscopic 3D flat-screen display in military driving enhancement systems

    Science.gov (United States)

    Haan, H.; Münzberg, M.; Schwarzkopf, U.; de la Barré, R.; Jurk, S.; Duckstein, B.

    2012-06-01

    Thermal cameras are widely used in driver vision enhancement systems. However, in pathless terrain, driving becomes challenging without having a stereoscopic perception. Stereoscopic imaging is a well-known technique already for a long time with understood physical and physiological parameters. Recently, a commercial hype has been observed, especially in display techniques. The commercial market is already flooded with systems based on goggle-aided 3D-viewing techniques. However, their use is limited for military applications since goggles are not accepted by military users for several reasons. The proposed uncooled thermal imaging stereoscopic camera with a geometrical resolution of 640x480 pixel perfectly fits to the autostereoscopic display with a 1280x768 pixels. An eye tracker detects the position of the observer's eyes and computes the pixel positions for the left and the right eye. The pixels of the flat panel are located directly behind a slanted lenticular screen and the computed thermal images are projected into the left and the right eye of the observer. This allows a stereoscopic perception of the thermal image without any viewing aids. The complete system including camera and display is ruggedized. The paper discusses the interface and performance requirements for the thermal imager as well as for the display.

  11. Nondestructive Image Detection of Cracks for a Nuclear Fuel Plate by Using Active Thermal Phase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nak Kyu; Park, Seung Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cha, Byung Heon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kang, Young June [Chonbuk National University, Jeonju (Korea, Republic of)

    2012-05-15

    Nondestructive crack detection is a key process for the safety insurance of the nuclear fuel plates which are widely used in a nuclear research reactor. Among nondestructive detection techniques, X-ray inspection technique and ultrasonic inspection technique using high frequency are widely used to detect internal cracks of a nuclear fuel plate at present. Though X-ray inspection is fast and efficient technique by providing a crack image for whole specimen area, this technique hardly provides the delaminated crack information which should be detected. Ultrasonic inspection is also an efficient tool to detect internal cracks of materials. High frequency ultrasound based on the piezoelectric transducers is usually used to detect cracks of a nuclear fuel plate. Though it is useful technique, the inspection should be carried out by an immersion test in a water-tank and its signal is complex and it is time consuming technique because the inspection is scanned point by point in sequence for whole inspection area. A commercial scanning ultrasonic system using high frequency is usually adopted to detect cracks. An alternative inspection technique to overcome the disadvantages of the high frequency ultrasonic inspection technique is needed. Especially, nondestructive imaging techniques of the internal cracks will be useful because it can be easily used in the field. One of efficient nondestructive testing techniques is infrared thermo-graphic technique. Infrared thermographic is a contactless optical imaging technique by detecting the invisible infrared radiation. Pulsed and lock-in thermography are commonly used in thermo-graphic nondestructive evaluation techniques. The two techniques are distinctly different but are deployed in the inspection of similar components. In general, these techniques are suitable for the detection of shallow planer defects, e.g. delamination in composites or adhesion defect in surface coatings. The surface of a specimen is instantaneously heated

  12. Nanosecond-gating properties of proximity-focused microchannel-plate image intensifiers

    Science.gov (United States)

    King, N. S. P.; Yates, G. J.; Jaramillo, S. A.; Ogle, J. W.

    Some fundamental properties of 18 mm-diam gated proximity focussed microchannel plate (MCP) image intensifiers used as fast image shutters in the 1 to 10 ns range were identified and studied. Light pulses from a modelocked dye laser optically sample the gated MCP. Shuttering is achieved by applying a forward biasing electrical gate pulse to the quiescently reverse-biased photocathode MCP interface. Variable delay between the gate pulse and the laser pulse permits tracing the MCP's optical response. Gating speeds, turn-on and turn-off patterns, the asymmetric spatial depedence of the MCP optical response, and resolution effects as functions of gate pulse width and photocathode-MCP bias were characterized. Variations in the intensity profiles of the phosphor's spatial response for uniform photocathode illumination are measured with a calibrated silicon intensified target focus projection, scan television camera and a high speed video digitizer while photomultipliers monitor the laser pulse and the phosphor's spatially integrated output intensities.

  13. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2014-02-01

    Full Text Available This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT for the ultrasonic Lamb wave (ULW tomography imaging (TI of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR. Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs.

  14. A new omni-directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects.

    Science.gov (United States)

    Huang, Songling; Wei, Zheng; Zhao, Wei; Wang, Shen

    2014-02-20

    This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT) for the ultrasonic Lamb wave (ULW) tomography imaging (TI) of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC) can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR). Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs.

  15. Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement.

    Science.gov (United States)

    Tang, Yuanhe; Cao, Xiangang; Liu, Hanchen; Shepherd, G G; Liu, Shulin; Gao, Haiyang; Yang, Xusan; Wu, Yong; Wang, Shuiwei

    2012-04-20

    In order to obtain information both of aurora and airglow in one image by the same detector, a PLCI based on liquid crystal plate LCP and super second-generation image intensifier SSGII is proposed in this research. The detection thresholds of the CCD for aurora and airglow are calculated. For the detectable illumination range of 10(4)-10(-2) lx, the corresponding electron count is 1.57×10(5) - 0.2 for every pixel of CCD. The structure and work principle of the PLCI are described. An LC is introduced in the front of CCD to decrease the intensities of aurora in overexposure areas by means of controlling transmittances pixel by pixel, while an image intensifier is set between the LC and CCD to increase the intensity of the weak airglow. The modulation transfer function MTF of this system is calculated as 0.391 at a Nyquist frequency of 15 lp/mm. The curve of transmittance with regard to gray level for the LC is obtained by calibration experiment. Based on the design principle, the prototype is made and used to take photos of objects under strong light greater than 2×10(5) lx. The clear details of [symbols: see text] presented in the image indicate that the PLCI can greatly improve the imaging quality. The theoretical calculations and experiment results prove that this device can extend the dynamic range and it provides a more effective method for upper atmospheric wind measurement.

  16. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  17. The Visual Display of Quantitative Information; Envisioning Information; Visual Explanations: Images and Quantities, Evidence and Narrative (by Edward R. Tufte)

    Science.gov (United States)

    Harris, Harold H.

    1999-02-01

    The Visual Display of Quantitative Information Edward R. Tufte. Graphics Press: Cheshire, CT, 1983. 195 pp. ISBN 0-961-39210-X. 40.00. Envisioning Information Edward R. Tufte. Graphics Press: Cheshire, CT, 1990. 126 pp. ISBN 0-961-39211-8. 48.00. Visual Explanations: Images and Quantities, Evidence and Narrative Edward R. Tufte. Graphics Press: Cheshire, CT, 1997. 156 pp. ISBN 0-9613921-2-6. $45.00. Visual Explanations: Images and Quantities, Evidence and Narrative is the most recent of three books by Edward R. Tufte about the expression of information through graphs, charts, maps, and images. The most important of all the practical advice in these books is found on the first page of the first book, The Visual Display of Quantitative Information. Quantitative graphics should: Show the data Induce the viewer to think about the substance rather than the graphical design Avoid distorting what the data have to say Present many numbers in a small space Make large data sets coherent Encourage the eye to compare data Reveal the data at several levels of detail Serve a clear purpose: description, exploration, tabulation, or decoration Be closely integrated with the statistical and verbal descriptions of a data set Tufte illustrates these principles through all three books, going to extremes in the care with which he presents examples, both good and bad. He has designed the books so that the reader almost never has to turn a page to see the image, graph, or table that is being described in the text. The books are set in Monotype Bembo, a lead typeface designed so that smaller sizes open the surrounding white space, producing a pleasing balance. Some of the colored pages were put through more than 20 printing steps in order to render the subtle shadings required. The books are printed on heavy paper stock, and the fact that contributing artists, the typeface, the printing company, and the bindery are all credited on one of the back flyleaves is one indication of how

  18. Influence of limited random-phase of objects on the image quality of 3D holographic display

    Science.gov (United States)

    Ma, He; Liu, Juan; Yang, Minqiang; Li, Xin; Xue, Gaolei; Wang, Yongtian

    2017-02-01

    Limited-random-phase time average method is proposed to suppress the speckle noise of three dimensional (3D) holographic display. The initial phase and the range of the random phase are studied, as well as their influence on the optical quality of the reconstructed images, and the appropriate initial phase ranges on object surfaces are obtained. Numerical simulations and optical experiments with 2D and 3D reconstructed images are performed, where the objects with limited phase range can suppress the speckle noise in reconstructed images effectively. It is expected to achieve high-quality reconstructed images in 2D or 3D display in the future because of its effectiveness and simplicity.

  19. Image quality performance of liquid crystal display systems: influence of display resolution, magnification and window settings on contrast-detail detection.

    Science.gov (United States)

    Bacher, Klaus; Smeets, Peter; De Hauwere, An; Voet, Tony; Duyck, Philippe; Verstraete, Koenraad; Thierens, Hubert

    2006-06-01

    The aim of this study was to investigate the combined effects of liquid crystal display (LCD) resolution, image magnification and window/level adjustment on the low-contrast performance in soft-copy image interpretation in digital radiography and digital mammography. In addition, the effect of a new LCD noise reduction mechanism on the low-contrast detectability was studied. Digital radiographs and mammograms of two dedicated contrast-detail phantoms (CDRAD 2.0 and CDMAM 3.4) were scored on five LCD devices with varying resolutions (1-3- and 5-megapixel) and one dedicated 5-megapixel cathode ray tube monitor. Two 5-megapixel LCDs were included. The first one was a standard 5-megapixel LCD and the second had a new (Per Pixel Uniformity) noise reduction mechanism. A multi-variate analysis of variance revealed a significant influence of LCD resolution, image magnification and window/level adjustment on the image quality performance assessed with both the CDRAD 2.0 and the CDMAM 3.4 phantoms. The interactive adjustment of brightness and contrast of digital images did not affect the reading time, whereas magnification to full resolution resulted in a significantly slower soft-copy interpretation. For digital radiography applications, a 3-megapixel LCD is comparable with a 5-megapixel CRT monitor in terms of low-contrast performance as well as in reading time. The use of a 2-megapixel LCD is only warranted when radiographs are analysed in full resolution and when using the interactive window/level adjustment. In digital mammography, a 5-megapixel monitor should be the first choice. In addition, the new PPU noise reduction system in the 5-megapixel LCD devices provides significantly better results for mammography reading as compared to a standard 5-magapixel LCD or CRT. If a 3-megapixel LCD is used in mammography setting, a very time-consuming magnification of the digital mammograms would be necessary.

  20. Image quality performance of liquid crystal display systems: Influence of display resolution, magnification and window settings on contrast-detail detection

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, Klaus [Department of Medical Physics and Radiation Protection, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)]. E-mail: klaus.bacher@ugent.be; Smeets, Peter [Department of Radiology, Ghent University Hospital, De Pintelaan 185, B-9000 Gent (Belgium); De Hauwere, An [Department of Medical Physics and Radiation Protection, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Voet, Tony [Department of Radiology, Ghent University Hospital, De Pintelaan 185, B-9000 Gent (Belgium); Duyck, Philippe [Department of Radiology, Ghent University Hospital, De Pintelaan 185, B-9000 Gent (Belgium); Verstraete, Koenraad [Department of Radiology, Ghent University Hospital, De Pintelaan 185, B-9000 Gent (Belgium); Thierens, Hubert [Department of Medical Physics and Radiation Protection, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)

    2006-06-15

    The aim of this study was to investigate the combined effects of liquid crystal display (LCD) resolution, image magnification and window/level adjustment on the low-contrast performance in soft-copy image interpretation in digital radiography and digital mammography. In addition, the effect of a new LCD noise reduction mechanism on the low-contrast detectability was studied. Digital radiographs and mammograms of two dedicated contrast-detail phantoms (CDRAD 2.0 and CDMAM 3.4) were scored on five LCD devices with varying resolutions (1-3- and 5-megapixel) and one dedicated 5-megapixel cathode ray tube monitor. Two 5-megapixel LCDs were included. The first one was a standard 5-megapixel LCD and the second had a new (Per Pixel Uniformity) noise reduction mechanism. A multi-variate analysis of variance revealed a significant influence of LCD resolution, image magnification and window/level adjustment on the image quality performance assessed with both the CDRAD 2.0 and the CDMAM 3.4 phantoms. The interactive adjustment of brightness and contrast of digital images did not affect the reading time, whereas magnification to full resolution resulted in a significantly slower soft-copy interpretation. For digital radiography applications, a 3-megapixel LCD is comparable with a 5-megapixel CRT monitor in terms of low-contrast performance as well as in reading time. The use of a 2-megapixel LCD is only warranted when radiographs are analysed in full resolution and when using the interactive window/level adjustment. In digital mammography, a 5-megapixel monitor should be the first choice. In addition, the new PPU noise reduction system in the 5-megapixel LCD devices provides significantly better results for mammography reading as compared to a standard 5-magapixel LCD or CRT. If a 3-megapixel LCD is used in mammography setting, a very time-consuming magnification of the digital mammograms would be necessary.

  1. A head-mounted display-based personal integrated-image monitoring system for transurethral resection of the prostate.

    Science.gov (United States)

    Yoshida, Soichiro; Kihara, Kazunori; Takeshita, Hideki; Fujii, Yasuhisa

    2014-12-01

    The head-mounted display (HMD) is a new image monitoring system. We developed the Personal Integrated-image Monitoring System (PIM System) using the HMD (HMZ-T2, Sony Corporation, Tokyo, Japan) in combination with video splitters and multiplexers as a surgical guide system for transurethral resection of the prostate (TURP). The imaging information obtained from the cystoscope, the transurethral ultrasonography (TRUS), the video camera attached to the HMD, and the patient's vital signs monitor were split and integrated by the PIM System and a composite image was displayed by the HMD using a four-split screen technique. Wearing the HMD, the lead surgeon and the assistant could simultaneously and continuously monitor the same information displayed by the HMD in an ergonomically efficient posture. Each participant could independently rearrange the images comprising the composite image depending on the engaging step. Two benign prostatic hyperplasia (BPH) patients underwent TURP performed by surgeons guided with this system. In both cases, the TURP procedure was successfully performed, and their postoperative clinical courses had no remarkable unfavorable events. During the procedure, none of the participants experienced any HMD-wear related adverse effects or reported any discomfort.

  2. Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method

    Science.gov (United States)

    Roozen, N. B.; Leclère, Q.; Ege, K.; Gerges, Y.

    2017-03-01

    This paper presents a new wave fitting approach to estimate the frequency dependent material properties of thin isotropic plate structures from an experimentally obtained vibrational field, exciting the plate at a single point. The method projects the measurement data on to an analytical image source model, in which Hankel's functions are used for a description of the wave fields emanating from the point of excitation, including the reflected wave fields from the edges of the finite plate. By minimizing the error between the projected field and the measured field, varying the complex wave number and the source strengths of the image sources, an optimum fit is searched for. Thus the source strengths of the image sources do not need to be determined theoretically, but are estimated from the fit on to the experimental data instead (thus avoiding difficulties in theoretically assessing the reflection coefficient of the edges of the plate). The approach uses a complex wavenumber fit, enabling the determination of the dynamic stiffness of the plate structure and its damping properties as function of frequency. The method is especially suited for plates with a sufficient amount of damping, excited at high frequencies.

  3. The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI (United States); Cody, Dianna D. [Department of Imaging Physics, University of Texas, M.D. Anderson Hospital, Houston, TX (United States)

    2004-06-01

    To explore how the size of the growth plate changes with age using three-dimensional (3D) models of the distal femoral and proximal tibial growth plates in pediatric patients. We retrospectively created 3D models of the normal unaffected distal femoral (n=20) and proximal tibial (n=10) growth plates in 14 patients (9 males, 5 females) age range 3.8-15.6 years who were referred for evaluation of premature partial closure of the growth plate or hyaline cartilage abnormality. All patients had one or more 3D fat-suppressed spoiled GRASS sequence from which models were made of normal growth plates. Total projected area was estimated from standardized maximum intensity projection (MIP) views, and volume was computed from the entire model. We also included the total projected area of the distal femur (n=7) or proximal tibia (n=8) in 11 patients (8 males, 3 females, 5-13 years) who had previously been evaluated for bone bridging. The 3D femoral and tibial growth plate anatomy was displayed. Femoral growth plate area varied from 804 mm{sup 2} to 3,463 mm{sup 2}. Femoral physeal cartilage volume varied from 2.1 cm{sup 3} to 12.6 cm{sup 3}. Tibial growth plate area varied from 736 mm{sup 2} to 3,026 mm{sup 2}. Tibial physeal cartilage volume varied from 1.9 cm{sup 3} to 13.2 cm{sup 3}. The growth plate area values appear to increase linearly with increasing age. (orig.)

  4. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    Science.gov (United States)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  5. Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination

    Science.gov (United States)

    Zhang, Hao; Tan, Qiaofeng; Jin, Guofan

    2012-07-01

    We propose a three-dimensional (3-D) holographic display system which consists of a phase-only spatial light modulator (SLM) and a modified 4-f system. The 3-D scene is generated from OpenGL, and the point source algorithm with anti-aliasing technique is used to generate the Fresnel hologram. A modified 4-f system is proposed to produce distortion-free magnification of the 3-D image and eliminate the zero-order interruption of the 3-D holographic imaging system. This method can make efficient utilization of the space-bandwidth product of the SLM, which promises the image quality and keeps the 3-D imaging zone unchanged. Numerical simulations and optical experiments are performed, and the results show that our proposed method can reconstruct enlarged 3-D optical image with correct magnification factor and low image noise.

  6. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  7. Reducing dose in urography while maintaining image quality - a comparison of storage phosphor plates and a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Margareta; Geijer, Haakan; Andersson, Torbjoern [Oerebro University Hospital, Department of Radiology, Oerebro (Sweden); Persliden, Jan [Oerebro University Hospital, Department of Medical Physics, Oerebro (Sweden); Linkoeping University, Department of Medicine and Care, Faculty of Health Sciences, Linkoeping (Sweden)

    2006-01-01

    The introduction of new flat-panel detector technology often forces us to accept too high dose levels as proposed by the manufacturers. We need a tool to compare the image quality of a new system with the accepted standard. The aim of this study was to obtain a comparable image quality for two systems - storage phosphor plates and a flat-panel system using intravenous urography (IVU) as a clinical model. The image quality figure was calculated using a contrast-detail phantom (CDRAD) for the two evaluated systems. This allowed us to set a dose for the flat-panel system that gave equivalent image quality to the storage phosphor plates. This reduced detector dose was used in an evaluation of clinical images to find out if the dose reduction from the phantom study indeed resulted in images of equal clinical image quality. The image quality was assessed using image criteria of the European guidelines for IVU with visual grading analysis. Equivalent image quality in image pairs was achieved at 30% of the dose. The CDRAD contrast-detail phantom makes it possible to find dose levels that give equal image quality using different imaging systems. (orig.)

  8. Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the North American continent

    Science.gov (United States)

    Tauzin, Benoit; Bodin, Thomas; Debayle, Eric; Perrillat, Jean-Philippe; Reynard, Bruno

    2016-04-01

    Receiver function analysis and seismic tomography show tectonic structures dipping eastward in the mantle below the Cascadia volcanic arc (western US) that have been related to the subduction of the Gorda and Juan de Fuca oceanic micro-plates. Inconsistencies in the dip angle and depth extent of the slab between the two methods undermine the interpretation of the structure and processes at work. Receiver function imaging is biased by multiple reflection phases that interfere with converted phases, and produce spurious discontinuities in images. Here, we correct the interference using a multiple mode conversion imaging technique that efficiently removes artifacts under dipping structures. The method has the advantage of being applicable to large aperture arrays, and can image large-scale structures down to the transition zone. With this approach, the interfaces between the subducting and overriding plates and the oceanic Moho are imaged at shallow depths (<120 km) with a dip angle of ∼20°, consistently with former studies. In addition, several important features are imaged with the present method. Faint converters located between 100 and 400 km depth in the mantle wedge, and strong sub-horizontal seismic scatterers near 160 km depth, may highlight dehydration and metasomatism processes in the Cascadia subduction zone. A discontinuity located at ∼15 km depth in the lithospheric mantle of the subducted plates and associated with a negative impedance contrast is interpreted as the fossil fabric of the plates acquired at the spreading ridges.

  9. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.

    Science.gov (United States)

    Freye, Chris E; Crane, Nichole A; Kirchner, Teresa B; Sepaniak, Michael J

    2013-04-16

    A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

  10. Imaging of Cocos Plate Beneath Southern Costa Rica From Receiver Function Analysis

    Science.gov (United States)

    Dzierma, Y.; Thorwart, M.; Rabbel, W.

    2007-12-01

    A transect of 19 seismological broadband stations crossing the Talamanca Mountain Range in Southern Costa Rica was operated from March 2005 to April 2007 as a part of the Collaborative Research Center SFB 574 "Volatiles and Fluids in Subduction Zones". The aim of the seismological subproject A2 was to gain insight into the structure of the Central American subduction zone and possible pathways for fluid migration. Previous studies of active seismics and local seismicity suggested to explain the gap of volcanism in the Talamanca range with the lack of a subducting slab. They assumed that the Cocos Ridge underlies the overriding plate at a shallow dip. In contrast, our receiver function analysis of 322 teleseimic earthquakes is able to image the subducting Cocos Plate down to depths of at least 100 km. The dip angle of the slab closer to the trench is outside the network but appears to be shallow, consistent with former studies. Below 40 km, the dip increases to more than 45 deg. This is supported by accurately located seismicity from a tomography study also performed by our group. Crustal structure could also be resolved by the receiver function analysis in agreement with tomography and active seismic investigations. The existence of the subducting slab poses the question why volcanism stopped 4 Ma ago; several possible scenarios are discussed.

  11. Adaptive beamforming for array imaging of plate structures using lamb waves.

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-12-01

    Lamb waves are considered a promising tool for the monitoring of plate structures. Large areas of plate structures can be monitored using active arrays employing beamforming techniques. Dispersion and multiple propagating modes are issues that need to be addressed when working with Lamb waves. Previous work has mainly focused on standard delay-and-sum (DAS) beamforming while reducing the effects of multiple modes through frequency selectivity and transducer design. This paper presents a minimum variance distortionless response (MVDR) approach for Lamb waves using a uniform rectangular array (URA) and a single transmitter. Theoretically calculated dispersion curves are used to compensate for dispersion. The combination of the MVDR approach and the two-dimensional array improves the suppression of interfering Lamb modes. The proposed approach is evaluated on simulated and experimental data and compared with the standard DAS beamformer. It is shown that the MVDR algorithm performs better in terms of higher resolution and better side lobe and mode suppression capabilities. Known issues of the MVDR approach, such as signal cancellation in highly correlated environments and poor robustness, are addressed using methods that have proven effective for the purpose in other fields of active imaging.

  12. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    Science.gov (United States)

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  13. Application of image plate for structural studies of carbon nanotubes by high-energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hawelek, L. [A. Chelkowski Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Koloczek, J. [A. Chelkowski Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Burian, A. [A. Chelkowski Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: burian@us.edu.pl; Dore, J.C. [School of Physical Sciences, University of Kent, Canterbury CT2 7NR (United Kingdom); Honkimaeki, V. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Kyotani, T. [Institute of Multidisciplinary Research and Advanced Materials, Tohoku University, Katahira, Sendai 980-8577 (Japan)

    2005-09-29

    An image plate detector coupled with high-energy synchrotron radiation was used to determine the structure factor and the radial distribution function of carbon nanotubes obtained by a template CVD process. The image plate detector has proved to be a very efficient tool for structural studies of nanotubes providing diffraction data of good quality in relatively short time. The diffraction data were converted to real space yielding the radial distribution function which can be used for quantitative analysis of the atomic arrangement of the carbon nanotubes. The obtained results are compared to those of traditional experiments using a conventional point Ge detector.

  14. Therapy imaging: a signal-to-noise analysis of metal plate/film detectors.

    Science.gov (United States)

    Munro, P; Rawlinson, J A; Fenster, A

    1987-01-01

    We have measured the modulation transfer functions [MTF (f)'s] and the noise power spectra [NPS (f)] of therapy x-ray detectors irradiated by 60Co, 6- and 18-MV radiotherapy beams. Using these quantities, we have calculated the noise-equivalent quanta [NEQ (f)] and the detective quantum efficiency [DQE (f)] to quantitate the limitations of therapy detectors. The detectors consisted of film or fluorescent screen-film combinations in contact with copper, lead, or tungsten metal plates. The resolution of the detectors was found to be comparable to fluorescent screen-film combinations used in diagnostic radiology, however, the signal-to-noise ratio [SNR (f)] of the detectors was limited due to film granularity. We conclude that improved images can be obtained by using alternative detector systems which have less noise or film granularity.

  15. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  16. Response functions of imaging plates to photons, electrons and 4He particles.

    Science.gov (United States)

    Bonnet, T; Comet, M; Denis-Petit, D; Gobet, F; Hannachi, F; Tarisien, M; Versteegen, M; Aléonard, M M

    2013-10-01

    Imaging plates from Fuji (BAS-SR, MS, and TR types) are phosphor films routinely used in ultra high intensity laser experiments. However, few data are available on the absolute IP response functions to ionizing particles. We have previously measured and modeled the IP response functions to protons. We focus here on the determination of the responses to photons, electrons, and (4)He particles. The response functions are obtained on an energy range going from a few tens of keV to a few tens of MeV and are compared to available data. The IP sensitivities to the different ionizing particles demonstrate a quenching effect depending on the particle stopping power.

  17. Calibration of imaging plates to electrons between 40 and 180 MeV.

    Science.gov (United States)

    Rabhi, N; Bohacek, K; Batani, D; Boutoux, G; Ducret, J-E; Guillaume, E; Jakubowska, K; Thaury, C; Thfoin, I

    2016-05-01

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d'Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

  18. Comparison of discrimination methods for alpha radiation signals using imaging plates.

    Science.gov (United States)

    Chen, B; Zhuo, W

    2012-11-01

    The discrimination of different radiation signals is important for quantitative measurements of naturally occurring radionulides by using the technique of imaging plates (IPs). In this study, four discrimination algorithms previously proposed for discriminating and counting the incident alpha signals were experimentally compared from the view points of linearity response, the discrimination capability of alpha signals from beta signals and the detection uncertainty. The results showed that all the methods had a good linearity response and could discriminate alpha signals from beta signals. In general, a larger region of interest (ROI) has a higher detection efficiency, but the discrimination capability of alpha signals from beta signals is worse. By taking into account both the detection efficiency and the uncertainty of detection, the algorithm using an ROI of 5 × 100 μm × 100 μm was considered to be the most appropriate method for quantitative measurements of alpha radiation.

  19. A compensating method of an imaging plate response to clinical proton beams

    CERN Document Server

    Kohno, R; Takada, Y; Terunuma, T; Sakae, T; Matsumoto, K

    2002-01-01

    For charged particle irradiations, the response of an imaging plate (IP) changes around the Bragg peak. Therefore, an appropriate compensation is necessary for the evaluation of dose distribution formed by charged particles such as protons. In this paper, the response of IPs to clinical proton beams is investigated. An experimentally-obtained depth-dose distribution (an ordinary Bragg curve) by a silicon semiconductor detector (SSD) is employed to evaluate the compensation factors as a function of proton penetrating depth, i.e. residual range. A typical dose distribution in a water phantom formed by an L-shaped bolus is measured by IPs and corrected by using the information of those compensation factors; the residual proton range is successfully calculated by the pencil beam algorithm at an arbitrary point. The results show a good agreement with the measurements by the SSD within the rms error of 3.0%.

  20. Design and performance of an imaging plate system for X-ray diffraction study

    Science.gov (United States)

    Amemiya, Yoshiyuki; Matsushita, Tadashi; Nakagawa, Atsushi; Satow, Yoshinori; Miyahara, Junji; Chikawa, Jun-ichi

    1988-04-01

    A new readout system for a BaFBr: Eu 2+ photostimulable phosphor screen (imaging plate) was constructed by modifying a drum scanner, with a design optimized for X-ray diffraction and scattering applications. An effort was made to achieve a high detective quantum efficiency below 20 keV, a small pixel size (25 μm × 25 μm), a low quantization noise (0.22%) using 12-bit A/D converters, and the capability to cover an inherent dynamic range (1:10 5) of the photostimulated luminescence by using two photomultiplier tubes. This system is being used in several synchrotron radiation experiments: Laue diffraction of protein crystals, small angle diffraction from a single muscle fiber, powder diffraction from crystals in a diamond anvil cell, and time-resolved small-angle X-ray scattering from a synthetic polymer during stretching.

  1. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively.

  2. Resonant X-ray diffraction using high-resolution image-plate data

    Energy Technology Data Exchange (ETDEWEB)

    Ehrenberg, H.; Knapp, M.; Hartmann, T.; Fuess, H. [Technische Hochschule Darmstadt (Germany). Fachbereich Materialwissenschaften; Wroblewski, T. [Hamburger Synchrotron Lab., Hamburg (Germany)

    2000-06-01

    The experimental setup for the collection of synchrotron X-ray powder diffraction data from samples with high absorption ({mu}R > 10) is described. It consists of a combination of a vacuum chamber with an image-plate system. A numerical absorption correction for the applied geometry has been derived and the data were corrected accordingly. Values for f'(Er) and f{sup ''}(Er) were refined from eight measurements on Er{sub 5}Re{sub 2}O{sub 12} above and below the Er L{sub III} absorption edge. Successful refinement of the crystallographic data has verified the high quality of the collected intensities. (orig.)

  3. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  4. High Spatial Resolution Investigations of Microchannel Plate Imaging Properties for UV Detectors

    Science.gov (United States)

    Siegmund, Oswald

    1996-01-01

    Microchannel plate (MCP) photon counting detectors are currently being used with great success on many of the recent NASA/ESA ultraviolet (UV) astrophysics missions that make observations in the 1OO A - 1600 A range. These include HUT, the Wide Field Camera on ROSAT, EUVE, ALEXIS, ORFEUS, and SOHO. These devices have also been chosen to fly on future UV astrophysics missions such as FUSE, FUVITA, IMAGE, and both the HST STIS and Advanced Camera instruments. During the period of this award we have fabricated a dual-chamber vacuum test facility to carry out laboratory testing of detector resolution, image stability and linearity, and flat field performance to enable us to characterize the performance of MCPs and their associated read-out architectures. We have also fabricated and tested a laboratory 'test-bed' delay line detector, which can accommodate MCP's with a wide range of formats and run at high data rates, to continue our studies of MCP image fixed pattern noise, and particularly for new small pore MCP's which have recently come onto the market. These tests were mainly focussed on the assessment of cross delay-line (XDL) and double delay line (DDL) anode read-out schemes, with particular attention being focussed on flat-field and spatial resolution performance.

  5. Dependence of fading patterns of photo-stimulated luminescence from imaging plates on radiation, energy, and image reader

    CERN Document Server

    Ohuchi, H

    2002-01-01

    We have been investigating the fading characteristics of imaging plates (IPs) as integral type detectors. The dependence on alpha, beta, and gamma ray radiation and their energies of the fading effect was measured using three types of IPs (BAS-UR, BAS-TR, and BAS-MS). The functions to correct the fading were determined by using the method reported in a previous paper. In all types of IPs, we confirmed that the fading effect is independent of the energy of the incident particles of beta and gamma rays and also independent of radiation except for the first component, which fades out in a very short time after irradiation with alpha rays. These results are very useful in the utilization of IPs as integral detectors in practical radiation fields. Empirically, the fading pattern is known to change when the IP is scanned by different types of image readers. The differences in the fading patterns obtained with two types of image readers, the BAS-1000 and the BAS-5000 (Fuji Film Co.), is discussed. Development of an ...

  6. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  7. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Haris, K. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Singh, Param Jeet [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Shastri, Aparna, E-mail: ashastri@barc.gov.in [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sunanda, K.; Babita, K.; Rao, S.V.N. Bhaskara [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ahmad, Shabbir; Tauheed, A. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2014-12-11

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu{sup 2+} phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O{sub 2}, N{sub 2}O and SO{sub 2} are carried out to evaluate the performance of the IP detection system. An FWHM of ∼0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible. - Highlights: • Incorporation of an image plate detection system on HRVUV beamline at Indus-1. • Design and fabrication of mounting mechanisms, performance evaluation of new system. • Photoabsorption spectra of Xe, O{sub 2}, SO{sub 2} and N{sub 2}O recorded in the region 1150–2300 Å. • Sensitivity, wavelength coverage, reproducibility and resolution of IP demonstrated. • First report of IP detector for VUV photoabsorption using synchrotron radiation.

  8. High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics.

    Science.gov (United States)

    Harkness, Ty; McNulty, Jason D; Prestil, Ryan; Seymour, Stephanie K; Klann, Tyler; Murrell, Michael; Ashton, Randolph S; Saha, Krishanu

    2015-10-01

    Understanding the mechanisms underpinning cellular responses to microenvironmental cues requires tight control not only of the complex milieu of soluble signaling factors, extracellular matrix (ECM) connections and cell-cell contacts within cell culture, but also of the biophysics of human cells. Advances in biomaterial fabrication technologies have recently facilitated detailed examination of cellular biophysics and revealed that constraints on cell geometry arising from the cellular microenvironment influence a wide variety of human cell behaviors. Here, we create an in vitro platform capable of precise and independent control of biochemical and biophysical microenvironmental cues by adapting microcontact printing technology into the format of standard six- to 96-well plates to create MicroContact Printed Well Plates (μCP Well Plates). Automated high-content imaging of human cells seeded on μCP Well Plates revealed tight, highly consistent control of single-cell geometry, cytoskeletal organization, and nuclear elongation. Detailed subcellular imaging of the actin cytoskeleton and chromatin within live human fibroblasts on μCP Well Plates was then used to describe a new relationship between cellular geometry and chromatin dynamics. In summary, the μCP Well Plate platform is an enabling high-content screening technology for human cell biology and cellular engineering efforts that seek to identify key biochemical and biophysical cues in the cellular microenvironment.

  9. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    Science.gov (United States)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  10. Multilevel Wavelet Feature Statistics for Efficient Retrieval, Transmission, and Display of Medical Images by Hybrid Encoding

    Science.gov (United States)

    Yang, Shuyu; Mitra, Sunanda; Corona, Enrique; Nutter, Brian; Lee, DJ

    2003-12-01

    Many common modalities of medical images acquire high-resolution and multispectral images, which are subsequently processed, visualized, and transmitted by subsampling. These subsampled images compromise resolution for processing ability, thus risking loss of significant diagnostic information. A hybrid multiresolution vector quantizer (HMVQ) has been developed exploiting the statistical characteristics of the features in a multiresolution wavelet-transformed domain. The global codebook generated by HMVQ, using a combination of multiresolution vector quantization and residual scalar encoding, retains edge information better and avoids significant blurring observed in reconstructed medical images by other well-known encoding schemes at low bit rates. Two specific image modalities, namely, X-ray radiographic and magnetic resonance imaging (MRI), have been considered as examples. The ability of HMVQ in reconstructing high-fidelity images at low bit rates makes it particularly desirable for medical image encoding and fast transmission of 3D medical images generated from multiview stereo pairs for visual communications.

  11. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    Science.gov (United States)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-09-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85I 0:15:Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  12. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, Hiroko, E-mail: hiroko@mail.pharm.tohoku.ac.j [Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Kondo, Yasuhiro [Ishinomaki Senshu University, 1 Shinmito Minamisakai Ishinomaki-shi, Miyagi 986-8580 (Japan)

    2010-09-21

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr{sub 0:85}I{sub 0:15}:Eu{sup 2+} have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu{sup 2+} luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  13. 手持显控终端的目标标牌自动布局算法%An automatic placement algorithm of label plates of targets for handheld display and control terminal

    Institute of Scientific and Technical Information of China (English)

    沈静波; 刘扬; 牛洁

    2012-01-01

    针对雷达手持显控终端显示屏幕小、目标标牌和点航迹相互重叠影像用户识别的问题,本文提出了一种目标标牌自动布局算法,通过旋转布局的方式可以快速实时地计算标牌位置,在保证标牌靠近目标航迹的基础上,充分避免标牌之间以及标牌和航迹点之间的重叠发生。该算法可以适应雷达不同显示模式的需求,支持雷达常用干预操作。%The screen of the display and control terminal is small, and the label plates, plots and tracks of the targets are overlapped so that the users can hardly identify them. Therefore, an automatic placement algorithm of the label plates of the targets is proposed to solve the problem above. The positions of the label plates can be calculated rapidly and real-timely through the rotating placement. Make sure that the label plates are close to the target tracks, on the basis of which the overlap among the label plates and between the label plates and the tracks is avoided to the full. The algorithm can adapt to the needs of different radar display modes, supporting the common intervention operations.

  14. Comparative evaluation of image quality in computed radiology systems using imaging plates with different usage time; Avaliacao comparativa da qualidade da imagem em sistemas de radiologia computadorizada utilizando Imaging Plates com diferentes tempos de uso

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, M.V.; Luz, R.M. da; Capaverde, A.S., E-mail: marcos.lazzaro@acad.pucrs.br [Hospital Sao Lucas (PUC-RS), Porto Alegre, RS (Brazil); Silva, A.M. Marques da [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Fisica

    2015-04-15

    Computed Radiology (CR) systems use imaging plates (IPs) for latent image acquisition. Taking into account the quality control (QC) of these systems, imaging plates usage time is undetermined. Different recommendations and publications on the subject suggest tests to evaluate these systems. The objective of this study is to compare the image quality of IPs of a CR system, in a mammography service, considering the usage time and consistency of assessments. 8 IPs were used divided into two groups: the first group included 4 IPs with 3 years of use (Group A); the second group consisted of 4 new IPs with no previous exposure (Group B). The tests used to assess the IP's quality were: Uniformity, Differential Signal to Noise Ratio (SDNR), Ghost Effect and Figure of Merit (FOM). Statistical results show that the proposed tests are shown efficient in assessing the conditions of image quality obtained in CR systems in mammography and can be used as determining factors for the replacement of IP's. Moreover, comparing the two sets of IP, results led to the replacement of all the set of IP’s with 3 years of use. This work demonstrates the importance of an efficient quality control, not only with regard to the quality of IP's used, but in the acquisition system as a whole. From this work, these tests will be conducted on an annual basis, already targeting as future work, monitoring the wear of IP's Group B and the creation of a baseline for analysis and future replacements. (author)

  15. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  16. Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack

    Directory of Open Access Journals (Sweden)

    Jung-Ryul Lee

    2014-01-01

    Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.

  17. Nanosecond Gating Properties Of Proximity-Focused Microchannel-Plate Image Intensifiers

    Science.gov (United States)

    King, N. S.; Yates, G. J.; Jaramillo, S. A.; Ogle, J. W.; Detch, J. L.

    1981-12-01

    Some fundamental properties of 18-mm-diam gated proximity-focussed microchannel-plate (MCP) image intensifiers used as fast image shutters in the 1 to 10 ns range have been identified and studied. Light pulses (≍ 5-ps-wide) from a modelocked dye laser optically sample the gated MCP. Shuttering is achieved by applying a forward-biasing electrical gate pulse to the quiescently reverse-biased photocathode-MCP interface. Variable delay (≍ 30-ps jitter) between the gate pulse and the laser pulse permit tracing the MCP's optical response. Gating speeds, turn-on and turn-off patterns, the asymmetric spatial dependence of the MCP optical response, and resolution effects as functions of gate pulse width and photocathode-MCP bias have been characterized. Shutter times of >= 750 ps and <= 5 1p/mm resolution with the MCP fully on were observed. Variations in the intensity profiles of the phosphorl.s spatial response for uniform photocathode illumination are measured with a calibrated silicon-intensified-target (SIT) focus projection, scan (FPS) television camera and a high-speed video digitizer while photomultipliers (PMTs) monitor the laser pulse and the phosphor's spatially integrated output intensities. The characterization system, gating and biasing circuits, and experimental results will be presented.

  18. Determination of the optimal energy level in spectral CT imaging for displaying abdominal vessels in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi0415@163.com [Beijing Children' s Hospital, Capital Medical University, Imaging Center, No. 56, Nanlishi Road, Xicheng District, Beijing 100045 (China); Yu, Tong, E-mail: hemophilia@126.com [Beijing Children' s Hospital, Capital Medical University, Imaging Center, No. 56, Nanlishi Road, Xicheng District, Beijing 100045 (China); Duan, Xiaomin, E-mail: potatocat@yeah.net [Beijing Children' s Hospital, Capital Medical University, Imaging Center, No. 56, Nanlishi Road, Xicheng District, Beijing 100045 (China); Peng, Yun, E-mail: ppengyun@yahoo.com [Beijing Children' s Hospital, Capital Medical University, Imaging Center, No. 56, Nanlishi Road, Xicheng District, Beijing 100045 (China); Zhai, Renyou, E-mail: zhairenyou@163.com [Beijing Chaoyang Hospital, Capital Medical University, Imaging Center, No. 8, Gongti South Road, Chaoyang District, Beijing 100020 (China)

    2014-03-15

    Purpose: To determine the optimal energy level in contrast-enhanced spectral CT imaging for displaying abdominal vessels in pediatric patients. Materials and methods: This retrospective study was institutional review board approved. 15 children (8 males and 7 females, age range, 6–15 years, mean age 10.1 ± 3.1 years) underwent contrast-enhanced spectral CT imaging for diagnosing solid tumors in abdomen and pelvic areas were included. A single contrast-enhanced scan was performed using a dual energy spectral CT mode with a new split contrast injection scheme (iodixanol at 1–1.5 ml/kg dose. 2/3 first, 1/3 at 7–15 s after the first injection). 101 sets of monochromatic images with photon energies of 40–140 keV with 1 keV interval were reconstructed. Contrast-noise-ratio (CNR) for hepatic portal or vein were generated and compared at every energy level to determine the optimal energy level to maximize CNR. 2 board-certified radiologists interpreted the selected image sets independently for image quality scores. Results: CT values and CNR for the vessels increased as photon energy decreased from 140 to 40 keV: (CT value: 48.29–570.12 HU, CNR: 0.08–14.90) in the abdominal aorta, (58.48–369.73 HU, 0.64–5.87) in the inferior vena cava, and (58.48–369.73 HU, 0.06–6.96) in the portal vein. Monochromatic images at 40–50 keV (average 42.0 ± 4.67 keV) could display vessels above three levels clearly, and with excellent image quality scores of 3.17 ± 0.58 (of 4) (k = 0.50). The CNR values at the optimal energy level were significantly higher than those at 70 keV, an average energy corresponding to the conventional 120 kVp for abdominal CT imaging. Conclusion: Spectral CT imaging provides a set of monochromatic images to optimize image quality and enhance vascular visibility, especially in the hepatic portal and vein systems. The best CNR for displaying abdominal vessels in children was obtained at 42 keV photon energy level.

  19. More than the Verbal Stimulus Matters: Visual Attention in Language Assessment for People with Aphasia Using Multiple-Choice Image Displays

    Science.gov (United States)

    Heuer, Sabine; Ivanova, Maria V.; Hallowell, Brooke

    2017-01-01

    Purpose: Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic…

  20. New method for identifying features of an image on a digital video display

    Science.gov (United States)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  1. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2016-05-01

    Full Text Available This paper proposes a new cross-hole tomography imaging (CTI method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs. The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  2. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    Science.gov (United States)

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-05-02

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  3. 90Sr in mammal teeth from contaminated areas in the former Soviet Union measured by imaging plates.

    Science.gov (United States)

    Toyoda, Shin; Hino, Yoshitsugu; Romanyukha, Alexander A; Tarasov, Oleg; Pivovarov, Sergey P; Hoshi, Masaharu

    2010-02-01

    Imaging plates sensitive to beta rays were used to obtain the images of 90Sr in tooth samples taken from mammals collected in contaminated areas of the former Soviet Union. The average concentrations of 90Sr in the samples were determined by comparing the intensities of the luminescence using a single crystal of KCl. The results showed that the determined 90Sr concentration has a positive correlation with the soil contamination levels in the South Ural region. Tooth samples from both inside of the Semipalatinsk nuclear test site and the villages nearby have detectable amounts of 90Sr, indicating the possible presence of residual soil contamination. The present study demonstrates that using imaging plates is a very sensitive method to detect 90Sr in teeth as well as to estimate low-level 90Sr contamination in soil.

  4. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display.

    Science.gov (United States)

    Zinser, Max J; Mischkowski, Robert A; Dreiseidler, Timo; Thamm, Oliver C; Rothamel, Daniel; Zöller, Joachim E

    2013-12-01

    There may well be a shift towards 3-dimensional orthognathic surgery when virtual surgical planning can be applied clinically. We present a computer-assisted protocol that uses surgical navigation supplemented by an interactive image-guided visualisation display (IGVD) to transfer virtual maxillary planning precisely. The aim of this study was to analyse its accuracy and versatility in vivo. The protocol consists of maxillofacial imaging, diagnosis, planning of virtual treatment, and intraoperative surgical transfer using an IGV display. The advantage of the interactive IGV display is that the virtually planned maxilla and its real position can be completely superimposed during operation through a video graphics array (VGA) camera, thereby augmenting the surgeon's 3-dimensional perception. Sixteen adult class III patients were treated with by bimaxillary osteotomy. Seven hard tissue variables were chosen to compare (ΔT1-T0) the virtual maxillary planning (T0) with the postoperative result (T1) using 3-dimensional cephalometry. Clinically acceptable precision for the surgical planning transfer of the maxilla (orthognathic planning.

  5. Study on kinetics of hydrogen dissolution and hydrogen solubility in oxides using imaging plate technique

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, K., E-mail: hashi@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu Univ., Fukuoka (Japan); Ogata, K.; Nishikawa, M.; Tanabe, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu Univ., Fukuoka (Japan); Abe, S.; Akamaru, S.; Hatano, Y. [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama (Japan)

    2013-11-15

    Using a tritium imaging plate technique, kinetics of tritium dissolution and its solubility in several oxides were examined. Mirror-polished single crystals of alumina, spinel and zirconia were used as specimens, which were exposed to 133 Pa of a tritium(T)–deuterium(D) gas mixture (T/(T + D) ∼ 0.17) at temperatures ranging from 673 to 973 K for 1–5 h. The T surface activity on the specimens increased with increasing temperature and exposure time, it almost saturated at 873 K and reached 2 × 10{sup 5} Bq/cm{sup 2} (1 × 10{sup 14} T/cm{sup 2}), and no clear difference appeared among the types of specimens. The T activity in the oxide bulk also increased with temperature, in which there was a trend for the oxides: spinel ≧ zirconia ≧ alumina. In the T dissolution process for all oxides, the concentration gradient due to its diffusion was not observed even for short exposure times: the T density was almost uniform over the specimens in transition states and increased with exposure time up to the saturated value. These experimental results suggested that the rate-controlling process of T dissolution in the temperature region should be not its diffusion in the oxides but dissociation of hydrogen molecules (T–D mixture in this case) into atoms, its adsorption on the surface and/or T penetration from the surface into the bulk.

  6. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Science.gov (United States)

    Haris, K.; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Babita, K.; Rao, S. V. N. Bhaskara; Ahmad, Shabbir; Tauheed, A.

    2014-12-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible.

  7. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    CERN Document Server

    Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

  8. Three-dimensional imaging with simultaneous reproduction of two image elements in one display pixel by information-dependent polarization coding.

    Science.gov (United States)

    Ezhov, Vasily

    2010-05-20

    Information-dependent (active) polarization encoding can be used to simultaneously present two image-resolvable elements [elements of left and right views of a three-dimensional (3D) scene] in a single display pixel. Polarization decoding, with the help of passive polarization filters, makes it possible to separate elements of left and right views and to observe them independently by left and right eyes. In this paper the basic theory of such 3D displays is developed. The relevant solutions of the general equation of light elliptical polarization are obtained in all important cases: cases of controlled birefringence and/or optical activity as three basic controlled polarization encoders. The obtained formulas are essentially the forms of signals that should control the values of birefringence and optical activity to realize the required polarization encoding. Optical schemes of flat-panel direct-view stereoscopic and autostereoscopic displays with the use of liquid crystal polarization encoding matrices are considered.

  9. 图像处理在车牌识别技术中的应用%Application of image processing in license plate recognition technique

    Institute of Scientific and Technical Information of China (English)

    刘萌

    2014-01-01

    该课题论述了在车牌识别中运用到的各种数字图像处理技术,经过图像摄取、车牌图像预处理、VLP检测、字符分割、OCR、车牌识别几个过程构成了车牌牌照自动识别系统。图像处理在车牌识别技术中的应用方便了人们的生活。%This paper discusses all kinds of digital image processing technology to use in vehicle license plate recognition,image after ingestion,the license plate image preprocessing,VLP detection,character segmentation,OCR,license plate recognition process consists of automatic recognition system of vehicle license plate.Application of image processing in license plate recognition technique to facilitate people's life.

  10. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm

    OpenAIRE

    Masaki Kobayashi; Daisuke Kikuchi; Hitoshi Okamura

    2009-01-01

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. T...

  11. Sigmoid plate dehiscence: Congenital or acquired condition?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaohui, E-mail: lzhtrhos@163.com [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Li, Jing, E-mail: lijingxbh@yahoo.com.cn [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Zhao, Pengfei, E-mail: zhaopengf05@163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Lv, Han, E-mail: chrislvhan@126.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Dong, Cheng, E-mail: derc007@sina.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Liu, Wenjuan, E-mail: wenjuanliu@163.com [Jining No. 1 People' s Hospital, No. 6 Health Street, Jining 272100 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China)

    2015-05-15

    Highlights: • CT with multiplanar reformations can accurately display the sigmoid platet dehiscence. • The prevalence of sigmoid plate dehiscence was no significant difference among different age groups. • The size of sigmoid plate bony defects were not statistically different among different age groups. • The sigmoid plate dehiscence is more commonly a congenital than an acquired condition. - Abstract: Background and purpose: The imaging features of sigmoid plate dehiscence-induced pulsatile tinnitus have been presented. The origin of the sigmoid plate dehiscence, however, remains unclear. Our aim was to assess the prevalence and extent of sigmoid plate dehiscence on computed tomography (CT) images in multiple age groups to determine whether this condition is more likely to be congenital or acquired. Materials and methods: We retrospectively reviewed contrast-enhanced CT images of sigmoid plates of temporal bones in 504 patients. Each temporal bone was characterized as normal or dehiscent. Patients were then subcategorized into four age groups, and the prevalence and extent of dehiscent sigmoid plates in each group were calculated and compared. Results: Overall, 80 patients had sigmoid plate dehiscence, nine of whom had it bilaterally. In successively older age groups, the prevalences of sigmoid plate dehiscence were 18.9%, 20.1%, 14.5%, and 12.7%, respectively. Respective average anteroposterior bony defect diameters were 3.7 ± 1.7, 3.0 ± 1.3, 3.1 ± 1.5, and 3.0 ± 1.1 mm. Respective average vertical bony defect diameters were 3.6 ± 2.3, 2.6 ± 1.2, 3.2 ± 1.5, and 3.0 ± 1.7 mm. The prevalence and extent of sigmoid plate dehiscence were not statistically different among the four age groups. Conclusions: The similar radiologic prevalence and extent of dehiscent sigmoid plates among the age groups suggest that the dehiscence is more commonly a congenital than an acquired condition.

  12. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    Science.gov (United States)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  13. Displaying gray shades in liquid crystal displays

    Indian Academy of Sciences (India)

    T N Ruckmongathan

    2003-08-01

    Quality of image in a display depends on the contrast, colour, resolution and the number of gray shades. A large number of gray shades is necessary to display images without any contour lines. These contours are due to limited number of gray shades in the display causing abrupt changes in grayness of the image, while the original image has a gradual change in brightness. Amplitude modulation has the capability to display a large number of gray shades with minimum number of time intervals [1,2]. This paper will cover the underlying principle of amplitude modulation, some variants and its extension to multi-line addressing. Other techniques for displaying gray shades in passive matrix displays are reviewed for the sake of comparison.

  14. Imaging of Lesser Metatarsophalangeal Joint Plantar Plate Degeneration, Tear, and Repair.

    Science.gov (United States)

    Linklater, James M; Bird, Stephen J

    2016-04-01

    Plantar plate degeneration and tear is a common cause of forefoot pain, typically involving the second metatarsophalangeal joint at the proximal phalangeal insertion laterally, frequently confused with the second web space Morton neuroma. The condition has received increased attention with the development of surgical techniques that can result in successful repair of the plantar plate and substantial improvement in patient symptoms. High-resolution MRI or ultrasound can confirm a diagnosis of plantar plate degeneration and tear and exclude other pathologies, particularly Morton neuroma. The normal plantar plate is a mildly hyperechoic structure on ultrasound and is hypointense on all conventional MR sequences. Plantar plate degeneration manifests on ultrasound as hypoechoic echotextural change and on MRI as mild signal hyperintensity on short TE sequences, becoming less conspicuous on long TE sequences. Adjacent entheseal bony irregularity is commonly present. Plantar plate tears on ultrasound may be seen as an anechoic cleft defect or area of heterogeneous echotexture, sometimes more conspicuous with dorsiflexion stress. Plantar plate tears demonstrate greater signal hyperintensity on proton-density sequences, becoming more conspicuous on fat-suppressed proton density and T2-weighted sequences. Edema and fibrotic change in the pericapsular fat plane is commonly seen in the setting of an adjacent plantar plate tear and should not be misinterpreted as reflecting a Morton neuroma.

  15. Quantitative Evaluation of Growth Plates around the Knees of Adolescent Soccer Players by Diffusion-Weighted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Zmago Krajnc

    2015-01-01

    Full Text Available Purpose. To quantitatively evaluate growth plates around the knees in adolescent soccer players utilizing the diffusion-weighted MR imaging (DWI. Methods. The knees and adjacent growth plates of eleven 14-year-old male soccer players were evaluated by MRI before (end of season’s summer break and after two months of intense soccer training. MRI evaluation was conducted in coronal plane by PD-FSE and DWI. All images were screened for any major pathological changes. Later, central growth plate surface area (CGPSA was measured and the apparent diffusion coefficient (ADC values were calculated in two most central coronal slices divided into four regions: distal femur medial (DFM, distal femur lateral (DFL, proximal tibia medial (PTM, and proximal tibia lateral (PTL. Results. No gross pathology was diagnosed on MRI. CGPSA was not significantly reduced: DFM 278 versus 272, DFL 265 versus 261, PTM 193 versus 192, and PTL 214 versus 210. ADC decrease was statistically significant only for PTM: DFM 1.27 versus 1.22, DFL 1.37 versus 1.34, PTM 1.13 versus 1.03 (p=0.003, and PTL 1.28 versus 1.22. Conclusions. DWI measurements indicate increased cellularity in growth plates around knees in footballers most prominent in PTM after intense training. No detectable differences on a standard PD-FSE sequence were observed.

  16. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Science.gov (United States)

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  17. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    Full Text Available The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  18. Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images.

    Science.gov (United States)

    Hyun, Joo-Bong; Hwang, Dong-Choon; Shin, Dong-Hak; Kim, Eun-Soo

    2007-11-01

    A novel curved computational integral imaging reconstruction (C-CIIR) technique for the virtually curved integral imaging (VCII) system is proposed, and its performances are analyzed. In the C-CIIR model, an additional virtual large-aperture lens is included to provide a multidirectional curving effect in the reconstruction process, and its effect is analyzed in detail by using the ABCD matrix. With this method, resolution-enhanced 3D object images can be computationally reconstructed from the picked-up elemental images of the VCII system. To confirm the feasibility of the proposed model, some experiments are carried out. Experiments revealed that the sampling rate in the VCII system could be kept at a maximum value within some range of the distance z, whereas in the conventional integral imaging system it linearly decreased as the distance z increased. It is also shown that resolutions of the object images reconstructed by the C-CIIR method have been significantly improved compared with those of the conventional CIIR method.

  19. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    Science.gov (United States)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most recently ALD MCPs with an opaque GaN photocathode (100-350nm range) on the MCP surface has been demonstrated in a sealed tube configuration. These ALD MCPs show

  20. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  1. Are Contemporary Media Images Which Seem to Display Women as Sexually Empowered Actually Harmful to Women?

    Science.gov (United States)

    Halliwell, Emma; Malson, Helen; Tischner, Irmgard

    2011-01-01

    There has been a shift in the depiction of women in advertising from objectifying representations of women as passive sex objects to agentic sexual representations where the women appear powerful and in control (Gill, 2007a, 2008), and there is substantial evidence that these representations have a negative impact on women's body image. However,…

  2. High resolution image of the Lithosphere-Asthenosphere Boundary of the subducting Nazca plate beneath northern Chile

    Science.gov (United States)

    Sodoudi, F.; Yuan, X.; Asch, G.; Kind, R.

    2010-12-01

    Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent IPOC (Integrated Plate boundary Observatory Chile) stations, we were able to obtain new constraints on the shape and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 40 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper and deeper slab to the north of 21° S to the flatter southern segment is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21° S. We have also mapped the continental Moho of the South American plate at depths ranging between 60-70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge. The Lithosphere-Astheonsphere Boundary (LAB) of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The LAB lies at a depth of 80 km beneath the coastal area and dips from a depth of 100 km beneath the Coastal Cordillera to about 150 km underneath the Western Cordillera. High frequency PRF data enabled us to make confident estimates of the top and bottom of the Nazca lithosphere, which results in a lithospheric thickness of 57-60 km. In relation to the age of the Nazca plate, which is assumed to be ~ 50

  3. Oblique synoptic images, produced from digital data, display strong evidence of a "new" caldera in southwestern Guatemala

    Science.gov (United States)

    Duffield, W.; Heiken, G.; Foley, D.; McEwen, A.

    1993-01-01

    The synoptic view of broad regions of the Earth's surface as displayed in Landsat and other satellite images has greatly aided in the recognition of calderas, ignimbrite plateaus and other geologic landforms. Remote-sensing images that include visual representation of depth are an even more powerful tool for geologic interpretation of landscapes, but their use has been largely restricted to the exploration of planets other than Earth. By combining Landsat images with digitized topography, we have generated regional oblique views that display compelling evidence for a previously undocumented late-Cenozoic caldera within the active volcanic zone of southwestern Guatemala. This "new" caldera, herein called Xela, is a depression about 30 km wide and 400-600 m deep, which includes the Quezaltenango basin. The caldera depression is breached only by a single river canyon. The caldera outline is broadly circular, but a locally scalloped form suggests the occurrence of multiple caldera-collapse events, or local slumping of steep caldera walls, or both. Within its northern part, Xela caldera contains a toreva block, about 500 m high and 2 km long, that may be incompletely foundered pre-caldera bedrock. Xela contains several post-caldera volcanoes, some of which are active. A Bouguer gravity low, tens of milligals in amplitude, is approximately co-located with the proposed caldera. The oblique images also display an extensive plateau that dips about 2?? away from the north margin of Xela caldera. We interpret this landform to be underlain by pyroclastic outflow from Xela and nearby Atitla??n calderas. Field mapping by others has documented a voluminous rhyolitic pumiceous fallout deposit immediately east of Xela caldera. We speculate that Xela caldera was the source of this deposit. If so, the age of at least part of the caldera is between about 84 ka and 126 ka, the ages of deposits that stratigraphically bracket this fallout. Most of the floor of Xela caldera is covered

  4. Three-dimensional integral imaging displays using a quick-response encoded elemental image array: an overview

    Science.gov (United States)

    Markman, A.; Javidi, B.

    2016-06-01

    Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.

  5. Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis.

    Science.gov (United States)

    Chen, Cheng; Jin, Dakai; Liu, Yinxiao; Wehrli, Felix W; Chang, Gregory; Snyder, Peter J; Regatte, Ravinder R; Saha, Punam K

    2016-09-21

    Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The method's ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p  =  0.06), 7.2% (p  =  0.07) and 16.2% (p  =  0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.

  6. EVALUATION OF CHROMATICITY COORDINATES SHIFT FOR IMAGE DISPLAYED ON LIQUID CRYSTAL PANELS WITH VARIOUS PROPERTIES ON COLOR REPRODUCTION

    Directory of Open Access Journals (Sweden)

    I. O. Zharinov

    2016-03-01

    Full Text Available Subject of Research.We consider the problem of evaluation of chromaticity coordinates shift for image displayed on liquid crystal panels with various properties on color reproduction. A mathematical model represents the color reproduction characteristics. The spread of the color characteristics of the screens has a statistical nature. Differences of color reproduction for screens are perceived by the observer in the form of different colors and shades that are displayed on the same type of commercially available screens. Color differences are characterized by numerical measure of the difference of colors and can be mathematically compensated. The solution of accounting problem of the statistical nature of the color characteristics spread for the screens has a particular relevance to aviation instrumentation. Method. Evaluation of chromaticity coordinates shift of the image is based on the application of the Grassmann laws of color mixing.Basic data for quantitative calculation of shift are the profiles of two different liquid crystal panels defined by matrixes of scales for components of primary colors (red, green, blue. The calculation is based on solving the system of equations and calculating the color difference in the XY-plane. In general, the calculation can be performed in other color spaces: UV, Lab. The statistical nature of the spread of the color characteristics for the screens is accounted for in the proposed mathematical model based on the interval setting of coordinate values of the color gamut triangle vertices on the set of commercially available samples. Main Results. Carried outresearches result in the mathematical expressions allowing to recalculate values of chromaticity coordinates of the image displayed on various samples of liquid crystal screens. It is shown that the spread of the color characteristics of the screens follows bivariate normal distribution law with the accuracy sufficient for practice. The results of

  7. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display.

    Science.gov (United States)

    Zhou, Xiongtu; Peng, Yuyan; Peng, Rong; Zeng, Xiangyao; Zhang, Yong-Ai; Guo, Tailiang

    2016-09-14

    The low-cost large-scale fabrication of microlens arrays (MLAs) with precise alignment, great uniformity of focusing, and good converging performance are of great importance for integral imaging 3D display. In this work, a simple and effective method for large-scale polymer microlens arrays using screen printing has been successfully presented. The results show that the MLAs possess high-quality surface morphology and excellent optical performances. Furthermore, the microlens' shape and size, i.e., the diameter, the height, and the distance between two adjacent microlenses of the MLAs can be easily controlled by modifying the reflowing time and the size of open apertures of the screen. MLAs with the neighboring microlenses almost tangent can be achieved under suitable size of open apertures of the screen and reflowing time, which can remarkably reduce the color moiré patterns caused by the stray light between the blank areas of the MLAs in the integral imaging 3D display system, exhibiting much better reconstruction performance.

  8. Multi-wavelength sensitive holographic polymer dispersed liquid crystal grating applied within image splitter for autostereoscopic display

    Science.gov (United States)

    Zheng, Jihong; Wang, Kangni; Gao, Hui; Lu, Feiyue; Sun, Lijia; Zhuang, Songlin

    2016-09-01

    Multi-wavelength sensitive holographic polymer dispersed liquid crystal (H-PDLC) grating and its application within image splitter for autostereoscopic display are reported in this paper. Two initiator systems consisting of photoinitiator, Methylene Blue and coinitiator, p-toluenesulfonic acid as well as photoinitiator, Rose Bengal and coinitiator, Nphenylglycine are employed. We demonstrate that Bragg gratings can be formed in this syrup polymerized under three lasers simultaneously including 632.8nm from He-Ne laser, 532nm from Verdi solid state laser, and 441.6nm from He- Cd laser. The diffraction efficiency of three kinds of gratings with different exposure wavelength are 57%, 75% and 33%, respectively. The threshold driving voltages of those gratings are 2.8, 3.05, and 2.85 V/μm, respectively. We also present the results for the feasibility of this proposed H-PDLC grating applied into image splitter without color dispersion for autostereoscopic display according to experimental splitting effect.

  9. Establishing a Customized Guide Plate for Osteotomy in Total Knee Arthroplasty Using Lower-extremity X-ray and Knee Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-01-01

    Conclusions: A customized guide plate to create an accurate osteotomy in TKAs may be created using lower-extremity X-ray and knee CT images. This allows for shorter operative times and better postoperative alignment than the traditional surgery. Application of the digital guide plate may also result in better short-term outcomes.

  10. America on Display: Constructing and Containing Images of the United States

    Directory of Open Access Journals (Sweden)

    Ted Hovet

    2009-11-01

    Full Text Available America’s identity in the nineteenth century was commonly located in the grand features of its landscape and its abundant natural resources. This essay investigates how these ideas were reproduced and exploited in two popular American exhibitions that toured England during the middle and later parts of the century: John Banvard’s 'moving panorama' of the Mississippi River, first displayed in 1848, and Buffalo Bill’s Wild West Show, which debuted in 1887. I will show how the responses to these exhibitions in the British popular press reveal particular strategies undertaken to manage the implications of America’s prodigious features. It was through the enthusiastic and often exaggerated promotion of America’s remarkable size and natural resources that America’s potential as an equal - or superior - cultural and political entity was safely contained, ultimately reducing America, however big, to little more than a fascinating but harmless spectacle. The very packaging of these spectacles allowed viewers to imagine that the awe-inspiring landscape was still what most profoundly defined America. Yet the recreation of these landscapes through virtual technologies anticipated the means by which America would come to be understood in the twentieth century, an America whose power had nothing to do with the mere size of its landscape, but was industrial, cultural, and commercial.

  11. Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone

    Science.gov (United States)

    Kim, YoungHee; Abers, Geoffrey A.; Li, Jiyao; Christensen, Douglas; Calkins, Josh; Rondenay, Stéphane

    2014-03-01

    We image the slab underneath a 450 km long transect of the Alaska subduction zone to investigate (1) the geometry and velocity structure of the downgoing plate and their relationship to slab seismicity and (2) the interplate coupled zone where the great 1964 earthquake (Mw 9.2) exhibited the largest amount of rupture. The joint teleseismic migration of two array data sets based on receiver functions (RFs) reveals a prominent, shallow-dipping low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of RF amplitudes suggests the existence of a thin layer (Vs of ~2.1-2.6 km/s) that is ~20-40% slower than underlying oceanic crustal velocities, and is sandwiched between the subducted slab and the overriding plate. The observed megathrust layer (with Vp/Vs of 1.9-2.3) may be due to a thick sediment input from the trench in combination with elevated pore fluid pressure in the channel. Our image also includes an unusually thick low-velocity crust subducting with a ~20° dip down to 130 km depth at ~200 km inland beneath central Alaska. The unusual nature of this subducted segment results from the subduction of the Yakutat terrane crust. Our imaged western edge of the Yakutat terrane aligns with the western end of a geodetically locked patch with high slip deficit, and coincides with the boundary of aftershock events from the 1964 earthquake. It appears that this sharp change in the nature of the downgoing plate could control the slip distribution of great earthquakes on this plate interface.

  12. Three-contrast, metal test pattern (Snellen E-plate) in evaluation of imaging techniques in clinical chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, H.

    A metal test pattern based on a minified Snellen-type E-plate was evaluated in testing six imaging techniques for chest radiography. The device consisted of three contrast zones and it was attached to the patient's back over the right lung during chest radiography. The values for visual detectability of the E-figures were compared with the film scores obtained by grading the radiographs with respect to visibility of diagnostically important anatomic details. The test plate proved to be a simple, quick and reproducible tool for testing several imaging techniques at the same time. The E-plate results were similar to those of the visual grading analysis in most respects. A few discrepancies existed, which were probably due to the inability of the test pattern to fully consider the effect of motion unsharpness and varying scattering conditions within the human thorax, as well as to great differences in roentgen ray absorption properties between Au and tissues. (orig.).

  13. Development of a soft x-ray plasma camera with a Fresnel zone plate to image laser produced plasmas

    Science.gov (United States)

    Kado, M.; Mori, M.; Nishiuchi, M.; Ishino, M.; Kawachi, T.

    2009-09-01

    A soft x-ray plasma camera operated at 3.35nm in the water window x-ray region is developed and demonstrated imaging gas jet plasmas of several spices produced with a 10TW Ti: sapphire laser. The plasma camera consists of a 300nm thick Ag/Ti/Si3N4 x-ray band pass filter with bandwidth of 1.43nm to cut visible light and also to reduce colour aberration of the Fresnel zone plate, a Fresnel zone plate with diameter of 1mm and outermost zone width of 300nm, and a soft x-ray CCD camera. The magnification of the plasma camera is 10. The soft x-ray plasma camera powered by a Fresnel zone plate is a very powerful tool to observe laser produced plasmas since it is 1000 times brighter and has 5 times higher spatial resolution comparing ordinary x-ray pinhole camera. The soft x-ray images of helium, nitrogen, argon, krypton, and xenon gas jet plasmas are obtained changing gas pressure from 0.01MPa to 1MPa.

  14. High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan

    Science.gov (United States)

    Padhy, S.; Furumura, T.

    2016-12-01

    Thermal models predict that the oceanic crust of the young (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism

  15. 城市DSM的快速获取及其三维显示的研究%Fast Acquiring Urban DSM Image and Displaying 3D Image

    Institute of Scientific and Technical Information of China (English)

    尤红建; 刘彤; 苏林; 刘少创; 郭冠军; 李树楷

    2001-01-01

    城市数字表面模型(DSM)作为城市的重要信息有着十分广泛的应用,机载三维成像仪可以快速获取DSM数据,而无需地面控制点。该文介绍了利用三维成像仪快速获取城市DSM图像的数据处理技术,阐述了基于城市DSM影像显示城市三维模型的原理,着重分析了显示城市DSM图像奇异表面的方法和侧面处理思想。最后通过珠海、澳门地区飞行数据的处理和三维鸟瞰显示,说明了方法的可行性。%As an important urban information, urban digital surface models(DSM) are widely used in many fields. Airborne 3D imager which is developed by the Institute of Remote Sensing Applications, Chinese Academy of Sciences can acquire DSM in quasi-real-time without any ground control points. The data processing technology to acquire urban DSM by 3D imager is presented in this paper. How to display urban DSM which is different from natural surface in 3D is discussed in detail. An example of data processing and 3D displaying of urban DSM is given at the end. According to the fly test the efficiency of 3D imager is several times higher than that of traditional methods to acquire urban DSM, and the method to display urban DSM in 3D is feasible.

  16. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Energy Technology Data Exchange (ETDEWEB)

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  17. Image-based ELISA on an activated polypropylene microtest plate--a spectrophotometer-free low cost assay technique.

    Science.gov (United States)

    Parween, Shahila; Nahar, Pradip

    2013-10-15

    In this communication, we report ELISA technique on an activated polypropylene microtest plate (APPµTP) as an illustrative example of a low cost diagnostic assay. Activated test zone in APPµTP binds a capture biomolecule through covalent linkage thereby, eliminating non-specific binding often prevalent in absorption based techniques. Efficacy of APPµTP is demonstrated by detecting human immunoglobulin G (IgG), human immunoglobulin E (IgE) and Aspergillus fumigatus antibody in patient's sera. Detection is done by taking the image of the assay solution by a desktop scanner and analyzing the color of the image. Human IgE quantification by color saturation in the image-based assay shows excellent correlation with absorbance-based assay (Pearson correlation coefficient, r=0.992). Significance of the relationship is seen from its p value which is 4.087e-11. Performance of APPµTP is also checked with respect to microtiter plate and paper-based ELISA. APPµTP can quantify an analyte as precisely as in microtiter plate with insignificant non-specific binding, a necessary prerequisite for ELISA assay. In contrast, paper-ELISA shows high non-specific binding in control sera (false positive). Finally, we have carried out ELISA steps on APPµTP by ultrasound waves on a sonicator bath and the results show that even in 8 min, it can convincingly differentiate a test sample from a control sample. In short, spectrophotometer-free image-based miniaturized ELISA on APPµTP is precise, reliable, rapid, and sensitive and could be a good substitute for conventional immunoassay procedures widely used in clinical and research laboratories.

  18. Experience of the Indirect Neutron Radiography Method Based on the X-ray Imaging Plate at CARR

    Science.gov (United States)

    Wei, Guohai; Han, Songbai; Wang, Hongli; He, Linfeng; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    Indirect neutron radiography (INR) experiments by X-ray imaging plate were carried out at the China Advanced Research Reactor (CARR). The key experiment parameters were optimized, especially the exposure time of the neutron converter andimaging plate. The optimized total exposure time is 37.25 min, it is two-fifths of the timebased on the film method under the same experimental conditions. The qualitative and quantitativeinspections were tested with dummy nuclear fuel rods and a water temperaturesensor ofa motor vehicle. The spring in the sensor and the defects of the dummy fuel rod's pellets can be qualitatively detected. The thickness of the tape at one position on the cladding of the dummy nuclear fuel rodwas quantitatively calculated to be 9.57 layers with the relative error of ±4.3%.

  19. 4D megahertz optical coherence tomography (OCT): imaging and live display beyond 1 gigavoxel/sec (Conference Presentation)

    Science.gov (United States)

    Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas

    2016-03-01

    Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.

  20. Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Nespor D.

    2014-06-01

    Full Text Available The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals.

  1. Application of Image Processing in License Plate Identification%图像处理在车牌识别中的运用

    Institute of Scientific and Technical Information of China (English)

    姚兆楠

    2014-01-01

    License plate identification is to point to license plate characters extracted from vehicle image information by computer vision, image processing and pattern identification method. License plate identification can be divided into three parts:license plate location,character division and character identification. Realizing each part by using MATLAB software program and finally identify the license plate.%车牌识别是指通过计算机视觉、图像处理与模式识别能方法从车辆图像中提取车牌字符信息,从而确定车辆的身份。车牌识别分为车牌定位、字符分割、字符识别三大部分。采用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。

  2. Magnetic field distribution in the presence of paramagnetic plates in magnetic resonance imaging: a combined numerical and experimental study.

    Science.gov (United States)

    Mertens, Philipp; Machann, Juergen; Mueller-Bierl, Bernd; Steidle, Guenter; Bellemann, Matthias E; Schick, Fritz

    2008-05-01

    The amount and geometric distribution of paramagnetic components in tissue is considered as the basis of T2*-weighted magnetic resonance imaging (MRI). Such techniques are routinely applied for assessment of iron in parenchymal organs such as the liver (hemosiderosis). Furthermore, susceptibility sensitive MRI is discussed as an alternative method to x-ray techniques for quantitative assessment of paramagnetic spongy bone components in patients with osteoporosis. The presented work is dedicated to systematically examining the possible influences of macroscopic arrangements of paramagnetic plates on the magnetic field. In a theoretical approach magnetic field distribution was simulated applying decomposition of the plates in single dipoles. Plate size and distances between parallel plates, as well as plate orientation with respect to the static field, were varied for these numerical simulations. Experiments on corresponding plate arrangements were carried out on a 3 T whole body MR scanner using the field-sensitive MR sequence technique for B0 field mapping. Further examinations were carried out on a bone preparation of the femur, where T2* maps were measured and analyzed on a pixel-by-pixel basis at two orientations with respect to the static field. A series of experiments were performed using isotropic and anisotropic volume elements in three-dimensional gradient echo sequences. Resulting magnetic field distributions in the experimentally recorded B0 field maps were in good agreement with the numerical simulations. Field distortions dominated in areas close to the plates and especially near the edges. Those areas showed strong local field gradients, leading to pronounced signal dephasing effects. The examination of the bone preparations revealed different T2* values for identical regions in the bone when the orientation of the bone or the pixel geometry was changed with respect to the magnetic field. Those effects amounted to nearly 70% (22.9 ms versus 13.6 ms in

  3. Pocket-size solid-state iPOD and flash drives for gigabyte storage, display and transfer of digital medical images: Review and work initiated

    Directory of Open Access Journals (Sweden)

    Sankaran A

    2009-01-01

    Full Text Available A locally assembled image viewer system with pocket-size iPOD (80 GB and flash (2 GB drives for gigabyte storage, display and transfer of digital medical images, oriented towards training purposes, is described. Both the iPOD and flash drive enable storage of thousands of images from diverse medical-imaging equipments. The iPOD, in addition, can display with sufficient resolution any of these images and serves as a transportable preview device. Through the use of a computer, these devices can access/ store/ display the images/ photos from a CD, digital camera or the internet. A TV image viewing unit is also provided. The operational features and the advantages of these devices are discussed in detail. The quality assurance (QA of the displays has been successfully carried out with standard test patterns. The image quality has been tested with dynamic and static medical images. The system will be highly useful for storage and remote display of multitude of images from several modalities in the hospital, as well as other images, from the point of view of education and training. It has good potential for use in clinical diagnosis as well. Other recent advancements using iPHONE and improved but expensive computers, integrated with picture archiving and communication system (PACS as well as radiology and hospital information system (RHIS for versatile applications in modern radiology, are also highlighted.This system, assembled with indigenous equipments, is much less expensive and specially suited for teaching radiologists, physicists and technologists, particularly in developing countries.

  4. Pocket-size solid-state iPOD and flash drives for gigabyte storage, display and transfer of digital medical images: Review and work initiated.

    Science.gov (United States)

    Sankaran, A

    2009-07-01

    A locally assembled image viewer system with pocket-size iPOD (80 GB) and flash (2 GB) drives for gigabyte storage, display and transfer of digital medical images, oriented towards training purposes, is described. Both the iPOD and flash drive enable storage of thousands of images from diverse medical-imaging equipments. The iPOD, in addition, can display with sufficient resolution any of these images and serves as a transportable preview device. Through the use of a computer, these devices can access/ store/ display the images/ photos from a CD, digital camera or the internet. A TV image viewing unit is also provided. The operational features and the advantages of these devices are discussed in detail. The quality assurance (QA) of the displays has been successfully carried out with standard test patterns. The image quality has been tested with dynamic and static medical images. The system will be highly useful for storage and remote display of multitude of images from several modalities in the hospital, as well as other images, from the point of view of education and training. It has good potential for use in clinical diagnosis as well. Other recent advancements using iPHONE and improved but expensive computers, integrated with picture archiving and communication system (PACS) as well as radiology and hospital information system (RHIS) for versatile applications in modern radiology, are also highlighted.This system, assembled with indigenous equipments, is much less expensive and specially suited for teaching radiologists, physicists and technologists, particularly in developing countries.

  5. Multiple damage identification and imaging in an aluminum plate using effective Lamb wave response automatic extraction technology

    Science.gov (United States)

    Ouyang, Qinghua; Zhou, Li; Liu, Xiaotong

    2016-04-01

    In order to identify multiple damage in the structure, a method of multiple damage identification and imaging based on the effective Lamb wave response automatic extraction algorithm is proposed. In this method, the detected key area in the structure is divided into a number of subregions, and then, the effective response signals including the structural damage information are automatically extracted from the entire Lamb wave responses which are received by the piezoelectric sensors. Further, the damage index values of every subregion based on the correlation coefficient are calculated using the effective response signals. Finally, the damage identification and imaging are performed using the reconstruction algorithm for probabilistic inspection of damage (RAPID) technique. The experimental research was conducted using an aluminum plate. The experimental results show that the method proposed in this research can quickly and effectively identify the single damage or multiple damage and image the damages clearly in detected area.

  6. Subcellular in vivo time-lapse imaging and optical manipulation of Caenorhabditis elegans in standard multiwell plates.

    Science.gov (United States)

    Rohde, Christopher B; Yanik, Mehmet Fatih

    2011-01-01

    High-resolution in vivo time-lapse assays require repeated immobilization and imaging of whole animals. Here we report a technology for screening Caenorhabditis elegans at cellular resolution over its entire lifespan inside standard multiwell plates using repeated immobilization, imaging and optical manipulation. Our system does not use any fluidic or mechanical components, and can operate for tens of thousands of cycles without failure. It is also compatible with industrial high-throughput screening platforms and robotics, and it allows both chemical, and forward and reverse genetic screens. We used this technology to perform subcellular-resolution femtosecond laser microsurgery of single neurons in vivo, and to image the subsequent regeneration dynamics at subcellular resolution. Our single-neuron in vivo time-lapse analysis shows that neurite regrowth occurring over short time windows is significantly greater than that predicted by ensemble averaging over many animals.

  7. Availability of color calibration for consistent color display in medical images and optimization of reference brightness for clinical use

    Science.gov (United States)

    Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa

    2013-03-01

    Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .

  8. Multimodal sparse reconstruction in guided wave imaging of defects in plates

    Science.gov (United States)

    Golato, Andrew; Santhanam, Sridhar; Ahmad, Fauzia; Amin, Moeness G.

    2016-07-01

    A multimodal sparse reconstruction approach is proposed for localizing defects in thin plates in Lamb wave-based structural health monitoring. The proposed approach exploits both the sparsity of the defects and the multimodal nature of Lamb wave propagation in plates. It takes into account the variation of the defects' aspect angles across the various transducer pairs. At low operating frequencies, only the fundamental symmetric and antisymmetric Lamb modes emanate from a transmitting transducer. Asymmetric defects scatter these modes and spawn additional converted fundamental modes. Propagation models are developed for each of these scattered and spawned modes arriving at the various receiving transducers. This enables the construction of modal dictionary matrices spanning a two-dimensional array of pixels representing potential defect locations in the region of interest. Reconstruction of the region of interest is achieved by inverting the resulting linear model using the group sparsity constraint, where the groups extend across the various transducer pairs and the different modes. The effectiveness of the proposed approach is established with finite-element scattering simulations of the fundamental Lamb wave modes by crack-like defects in a plate. The approach is subsequently validated with experimental results obtained from an aluminum plate with asymmetric defects.

  9. Displacement tracking in single human trabecula with metal-plated micro-spheres using X-ray radiography imaging

    Science.gov (United States)

    Jiroušek, O.; Kytýř, D.; Doktor, T.; Dammer, J.; Krejčí, F.

    2013-02-01

    This study presents an improved radiographic method for strain measurement in very small samples of a single trabeculae. X-ray micro-radiography was used to track the deformation behaviour of individual trabecula during mechanical loading. As the X-ray micro-radiography images of a single trabecula show no significant features applicable for digital image correlation (DIC) a random pattern of markers was created on the surfaces of the samples to improve the accuracy of tracking. Metal plated borosilicate glassmicro-spheres (mean diameter 10 μm) were used as the markers for trabecular displacement tracking. Two different X-ray imaging setups were used for this purpose. The specimens of isolated trabeculae were loaded by a micro-mechanical testing device developed with respect to radiographical observation. This compact device enables a high precision three-point bending measurement. The specimen was continuously irradiated during the loading procedure by a micro-focus X-ray source. The radiographs were acquired by a single-photon counting silicon pixel detector and s flat panel sensor with CsI flipped scintillator plate. Circular Hough transform was used to locate positions of the spherical markers in the sequence of acquired radiographs and to calculate the strain in the loaded sample. The gold-coated micro-spheres provide clearly visible features in the sequence of radiographs after beam hardening correction, which in conjunction with pattern recognition algorithm enables to substantially improve the accuracy of strain measurements.

  10. High-resolution imaging X-ray detector. [using microchannel plates and electronic readout for spaceborne telescope

    Science.gov (United States)

    Kellogg, E.; Henry, P.; Murray, S.; Van Speybroeck, L.; Bjorkholm, P.

    1976-01-01

    The paper describes an X-ray detector using microchannel plates as a photocathode surface and imaging photoelectron multiplier, and a crossed wire grid as a two-dimensional position-sensitive detector. The position resolution is 10 microns. The crossed wire grid consists of 100-micron-diam wires on 200-micron centers. Position sensing is accomplished by electronic interpolation to 1/20 of the wire spacing. The quantum efficiency of the microchannel plates varies from 29% at 0.28 keV to 5% at 3 keV. This detector will provide second-of-arc X-ray imaging in the focal plane of the 342.9-cm focal length grazing-incidence telescope being prepared for the HEAO-B observatory. By addition of suitable photocathodes, it can be used for single-photon imaging light detection in the UV, visible, and near-IR-ranges. In all cases, it gives a very low dark counting rate, allows timing of individual events to 1 microsec or less, and can handle counting rates up to 10,000 per sec.

  11. Collection of reciprocal space maps using imaging plates at the Australian National Beamline Facility at the Photon Factory.

    Science.gov (United States)

    Mudie, S T; Pavlov, K M; Morgan, M J; Hester, J R; Tabuchi, M; Takeda, Y

    2004-09-01

    Weissenberg screens and a translating cassette have been employed to allow an imaging plate to collect 30 scans per readout. In this configuration the imaging plate functions as a curved one-dimensional position-sensitive detector and, by changing the sample angle for each of the scans, two-dimensional images were produced in reciprocal space. This method of data collection leads to a reduction in scan time compared with methods based on a scintillation detector, particularly for asymmetric reflections. The data-collection method was tested using InGaN/GaN/AlN multilayers on sapphire substrates, since these exhibit broad features in reciprocal space. The geometry of the scans in reciprocal space required the data to be interpolated onto a Cartesian grid. Several interpolation schemes were investigated, with the results compared with the reciprocal space maps collected using a triple-axis scheme with a point detector. The quality of the interpolated reciprocal space maps depends upon the size and shape of the feature in reciprocal space, the interpolation method used, and the step size of the sample rotation. The method can be extended to three dimensions without an increase in data-collection time.

  12. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  13. Processless offset printing plates

    Directory of Open Access Journals (Sweden)

    Sanja Mahović Poljaček

    2015-06-01

    Full Text Available With the implementation of platesetters in the offset printing plate making process, imaging of the printing plate became more stable and ensured increase of the printing plate quality. But as the chemical processing of the printing plates still highly influences the plate making process and the graphic reproduction workflow, development of printing plates that do not require chemical processing for offset printing technique has been one of the top interests in graphic technology in the last few years. The main reason for that came from the user experience, where majority of the problems with plate making process could be connected with the chemical processing of the printing plate. Furthermore, increased environmental standards lead to reducing of the chemicals used in the industrial processes. Considering these facts, different types of offset printing plates have been introduced to the market today. This paper presents some of the processless printing plates.

  14. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  15. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-06-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  16. Rapid small-angle X-ray diffraction of a tonically contracting molluscan smooth muscle recorded with imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Y.; Okada, K.; Yoshida, O.; Seto, T.; Amemiya, Y.

    1989-02-01

    Small-angle X-ray diffraction patterns from the anterior byssus retractor muscles of Mytilus edulis contracting tonically in response to stimulation with acetylcholine were recorded in a 30 s exposure with synchrotron radiation and a high-sensitivity X-ray area detector called an imaging plate. The 190 A layer line from the thin filaments increased in intensity with increase in tonic tension up to 6x10/sup 4/ kg m/sup -2/. Above this value, the layer-line intensity remained almost constant and comparable to that for a contracting skeletal muscle, indicating that the same structural changes of the thin filaments occur in both muscles.

  17. Energy-harvesting laser phosphor display and its design considerations

    Science.gov (United States)

    Fujieda, Ichiro; Itaya, Shunsuke; Ohta, Masamichi; Hirai, Yuuki; Kohmoto, Takamasa

    2017-04-01

    One can convert a luminescent solar concentrator to a display by projecting intensity-modulated light on it. We fabricated a 95 mm×95 mm×10 mm screen by sandwiching a thin coumarin 6 layer with two acrylic plates. We removed the light source in a commercial projector and fed a blue laser beam into its optics. It displayed monochrome images on the screen clearly. A photodiode covered a 10 mm×10 mm region on the edge surface of the screen. As we pulsed the laser, the photodiode output varied synchronously. Its output indicates that a fully covered version would harvest up to 71% of the incoming laser power. However, a ghost image was noticeable when we displayed a high-contrast still image. We address two aspects in design considerations. First, tiling small modules will reduce the thickness of a large-area projection system and alleviate its self-absorption loss. For seamless tiling, we can attach output couplers to the surface of the transparent plate and extract photoluminescence (PL) photons in each module. Second, the origin of the ghost image is the PL photons reflected at the plate-air interface inside the screen. Thinning the transparent plate facing the projector will eliminate such an optical cross talk.

  18. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  19. The Effect of NEXRAD Image Looping and National Convective Weather Forecast Product on Pilot Decision Making in the Use of a Cockpit Weather Information Display

    Science.gov (United States)

    Burgess, Malcolm A.; Thomas, Rickey P.

    2004-01-01

    This experiment investigated improvements to cockpit weather displays to better support the hazardous weather avoidance decision-making of general aviation pilots. Forty-eight general aviation pilots were divided into three equal groups and presented with a simulated flight scenario involving embedded convective activity. The control group had access to conventional sources of pre-flight and in-flight weather products. The two treatment groups were provided with a weather display that presented NEXRAD mosaic images, graphic depiction of METARs, and text METARs. One treatment group used a NEXRAD image looping feature and the second group used the National Convective Weather Forecast (NCWF) product overlaid on the NEXRAD display. Both of the treatment displays provided a significant increase in situation awareness but, they provided incomplete information required to deal with hazardous convective weather conditions, and would require substantial pilot training to permit their safe and effective use.

  20. Correlation of the same fields imaged in the TEM, confocal, LM, and microCT by image registration: from specimen preparation to displaying a final composite image.

    Science.gov (United States)

    Keene, Douglas R; Tufa, Sara F; Wong, Melissa H; Smith, Nicholas R; Sakai, Lynn Y; Horton, William A

    2014-01-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities and then registering and overlaying the fields obtained in each modality to create a composite view. One of the images is made somewhat transparent, allowing detail in the underlying image to be visible and assisting in the registration of the two images. As an example, an image localizing a specific tissue component by fluorescence may be overlaid atop a TEM image of the same field. The resulting composite image would demonstrate specific ultrastructural features in the high-resolution TEM field, which are colorized in the overlay. Other examples include composites from MicroCT or soft X-ray images overlaid atop light microscopy or TEM images. Automated image registration may be facilitated by a variety of sophisticated computer programs utilized by high-throughput laboratories. This chapter is meant for the more occasional user wishing to align images manually. ImageJ is a public domain, image processing program developed at the National Institutes of Health and is available to anyone as a free download. ImageJ performs marvelously well for the purpose of image registration; therefore, step-by-step instructions are included here. Specimen handling, including fixation and choice of embedding media, is not straightforward for correlative imaging. A step-by-step description of the protocols which work in our laboratory is included for simultaneous localization in LM, EM and micro-CT, as well as maintaining GFP emission in tissue embedded for TEM. © 2014 Elsevier Inc. All rights reserved.

  1. Investigation of optimal display size for viewing T1-weighted MR images of the brain using a digital contrast-detail phantom.

    Science.gov (United States)

    Fujita, Hideki; Kuwahata, Nao; Hattori, Hiroyuki; Kinoshita, Hiroshi; Fukuda, Haruyuki

    2016-01-08

    We clarified the relationship between the display size of MRI images and observer performance using a digital contrast-detail (d-CD) phantom. The d-CD phantom was developed using Microsoft Visual Basic 2010 Express. It had a 512 × 512 matrix in size and a total of 100 holes, whose diameter increased stepwise from 4 to 40 pixels with a 4-pixel interval in the vertical direction; the contrast varied stepwise in the horizontal direction. The digital driving level (DDL) of the back-ground, the width of the DDL, and the contrast were adjustable. These parameters were determined on the basis of the actual T1-weighted magnetic resonance (MR) images of the brain. In this study, the DDL, width, and contrast were set to 85, 20, and 1, respectively. The observer performance study was performed for three different display sizes (30 cm × 30 cm as the enlarged size, 16 cm × 16 cm as the original size, and 10 cm × 10 cm as the reduced size) using a 2-megapixel color liquid crystal display monitor, and it was analyzed using Friedman and Wilcoxon statistical tests. The observer performances for the original display (p sizes (p size, whereas there was no significant difference between the original display and reduced display sizes (p = 0.31). Evaluation with the digital phantom simulating MR imaging also revealed that the original and reduced display sizes were superior to the enlarged display size in observer performance. The d-CD phantom enables a short-term evaluation of observer performance and is useful in analyzing relation-ship between display size and observer performance.

  2. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; El Nasr, S. Seif; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A. P.; Pusa, P.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2009-12-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  3. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2009-01-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  4. Imaging the Southeast Caribbean Plate Margin with Teleseismic P-wave Tomography

    Science.gov (United States)

    Bravo, T. K.; Pavlis, G. L.

    2007-12-01

    As part of the Bolivar Project, the Passive Array Group (authors plus Funvisis; University of the West Indies; University of California, San Diego; and Rice University) operated a 113 station, broadband array in Venezuela and the southern Antilles. The combined array ran from December 2003 to May 2005 with stations running from the craton south of the Orinoco River to OBS instruments located on oceanic crust of the Caribbean plate. This collaborative geological and geophysical study of the Caribbean-South American Plate boundary was designed to investigate the large scale structure and tectonic framework of this northern boundary of South America. We measured P wave residuals from 382 teleseismic events with a two-step procedure. First, we used a new array processing method to cross-correlate vertical component data with an array beam computed through a robust, nonlinear stacking method. Second, we reviewed the cross-correlation results adding picks manually for stations that did not correlate reliably with the array beam. We used these P wave residuals to construct a series of P- wave tomographic models of this region. Robust features seen in these models include: (1) a high velocity upper mantle under the craton grading to lower velocities under the Orinoco basin; (2) higher velocities are seen in western Venezuela that correlate with the subducting Nazca plate; and (3) the subduction of the Atlantic at the Antilles Arc is marginally resolved in the northwest corner of the study area.

  5. License Plate Recognition Based on Image Processing%基于图像处理的车牌识别研究

    Institute of Scientific and Technical Information of China (English)

    郑雪

    2014-01-01

    The application of image processing technique was put forward to identify the license plate aiming at solving the prob-lem of license plate recognition in the intelligent traffic management system. License plate location, character segmentation, and li-cense plate recognition are the most important three parts, which constitute the license plate recognition system. First, using HSV model and RGB model to identify and segment the color image, and preliminary positioning for the license plate image. Then li-cense plate tilt correction was processed by Radon transform, and using the projection method for license plate location and seg-mentation. At last, read the result of license information recognized. Simulation by MATLAB programming and experiment, the results show that using image processing technology can quickly identify the license plate, and is an effective method to study the license plate recognition.%针对智能交通管理系统中的车牌识别问题,提出应用图像处理技术对汽车的牌照进行识别。车牌定位(LPL, License Plate Location)、车牌分割(LPS, License Plate Segmentation)、车牌识别(LPR, License Plate Recognition)是实现车牌识别系统的最主要的三个部分。先采用HSV模型和RGB模型识别与分割彩色图像,并初步定位车牌图像;再采用radon变换实现车牌的倾斜校正,用投影法对车牌进行定位和分割;最后通过语音读出识别到的车牌信息。通过MATLAB编程进行实验仿真,结果表明利用图像处理技术能够快速地识别出汽车牌照,是一种研究车牌识别的有效方法。

  6. Rapid and simultaneous in situ assessment of aflatoxins and stilbenes using silica plate imprinting mass spectrometry imaging.

    Directory of Open Access Journals (Sweden)

    Diogo N de Oliveira

    Full Text Available A fast and direct combination of techniques for simultaneous mycotoxin and phytoalexin identification in peanut skin and kernel is described. Silica Plate Imprinting Laser Desorption/Ionization Mass Spectrometry Imaging (SPILDI-MSI is a powerful technique that exhibits great advantages, such as solvent-free and matrix-free characteristics, as well as no sample preparation or separation steps. It also permits accurate identification of mycotoxins and phytoalexins with unique fingerprint profiles in just a few seconds. Results are expressed as chemical images of the 4 identified types of aflatoxins (B1, B2, G1 and G2 and a stilbenoid (resveratrol. Also, SPILDI-MSI allows the comparison between the spatial distribution of aflatoxins and resveratrol found in kernel and skin. This novel application has proven to be useful for instantaneous qualitative assessment of aflatoxins and stilbenoids both in the peanut skin and kernel and offers precise tracking of fungal contamination in nuts and other foodstuffs.

  7. Rapid and simultaneous in situ assessment of aflatoxins and stilbenes using silica plate imprinting mass spectrometry imaging.

    Science.gov (United States)

    de Oliveira, Diogo N; Ferreira, Mônica S; Catharino, Rodrigo R

    2014-01-01

    A fast and direct combination of techniques for simultaneous mycotoxin and phytoalexin identification in peanut skin and kernel is described. Silica Plate Imprinting Laser Desorption/Ionization Mass Spectrometry Imaging (SPILDI-MSI) is a powerful technique that exhibits great advantages, such as solvent-free and matrix-free characteristics, as well as no sample preparation or separation steps. It also permits accurate identification of mycotoxins and phytoalexins with unique fingerprint profiles in just a few seconds. Results are expressed as chemical images of the 4 identified types of aflatoxins (B1, B2, G1 and G2) and a stilbenoid (resveratrol). Also, SPILDI-MSI allows the comparison between the spatial distribution of aflatoxins and resveratrol found in kernel and skin. This novel application has proven to be useful for instantaneous qualitative assessment of aflatoxins and stilbenoids both in the peanut skin and kernel and offers precise tracking of fungal contamination in nuts and other foodstuffs.

  8. Avaliação por imagem das lesões da placa de crescimento Imaging of growth plate injuries

    Directory of Open Access Journals (Sweden)

    Matiko Yanaguizawa

    2008-06-01

    Full Text Available As estruturas responsáveis pelo crescimento do osso incluem a fise (também chamada placa de crescimento e as epífises. Afecções que acometem pacientes com o esqueleto imaturo, ou seja, com a placa de crescimento ainda aberta, podem interferir no crescimento ósseo, resultando em complicações como parada do crescimento, encurtamento dos membros ou deformidades angulares. Condições traumáticas que resultam muitas vezes em fraturas epifisárias são a causa mais comum das lesões da placa de crescimento. A avaliação cuidadosa desses pacientes pelos métodos de diagnóstico por imagem atualmente disponíveis, sobretudo a radiografia, a tomografia computadorizada e a ressonância magnética, permite o reconhecimento precoce do comprometimento das estruturas relacionadas ao crescimento ósseo, além de tratamento adequado, diminuindo a possibilidade do desenvolvimento de tais complicações.The structures responsible for the growth of bones include the physis (also called growth plate and the epiphysis. Affections involving patients with immature skeletons, i.e., with a still open growth plate, may affect the bone growth, resulting in complications such as growth arrest, limb shortening and angular deformities. Traumatic conditions, many times resulting in epiphyseal fractures, are the most frequent cause of growth plate injuries. A careful evaluation of these patients by means of currently available imaging methods, especially radiography, computed tomography and magnetic resonance imaging, allows an early diagnosis of the involvement of structures related to the bone growth, besides an appropriate management, reducing the probability of secondary complications.

  9. Depth profiling of hydrogen in ferritic/martensitic steels by means of a tritium imaging plate technique

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Teppei, E-mail: t-otsuka@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan)

    2013-12-15

    Highlights: ► We applied a tritium imaging plate technique to depth profiling of hydrogen in bulk. ► Changes of hydrogen depth profiles in the steel by thermal annealing were examined. ► We proposed a release model of plasma-loaded hydrogen in the steel. ► Hydrogen is trapped at trapping sites newly developed by plasma loading. ► Hydrogen is also trapped at surface oxides and hardly desorbed by thermal annealing. -- Abstract: In order to understand how hydrogen loaded by plasma in F82H is removed by annealing at elevated temperatures in vacuum, depth profiles of plasma-loaded hydrogen were examined by means of a tritium imaging plate technique. Owing to large hydrogen diffusion coefficients in F82H, the plasma-loaded hydrogen easily penetrates into a deeper region becoming solute hydrogen and desorbs by thermal annealing in vacuum. However the plasma-loading creates new hydrogen trapping sites having larger trapping energy than that for the intrinsic sites beyond the projected range of the loaded hydrogen. Some surface oxides also trap an appreciable amount of hydrogen which is more difficult to remove by the thermal annealing.

  10. Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Lee, Jung Sik; Bae, Sung Min; Lee, Hyun Ki [Wonkwang University, Iksan (Korea, Republic of)

    2010-06-15

    This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure

  11. Mössbauer spectroscopy of europium-containing glasses: optical activator study for x-ray image plates

    Science.gov (United States)

    Johnson, C. E.; Vu, M.; Johnson, J. A.; Brown, D. E.; Weber, J. K. R.; Paßlick, C.; Schweizer, S.

    2014-04-01

    A fluorozirconate glass (ZBLAN) containing BaCl 2 nanocrystals doped with divalent Eu is a promising material for x-ray image plates for medical diagnosis. Since it is known that Eu 2+ readily oxidizes to Eu 3+, which reduces fluorescence efficiency of the image plates, 151Eu Mössbauer spectroscopy was used in this work to monitor the Eu oxidation state of the samples during degradation over time in the presence of ambient humidity. In addition, Mössbauer spectroscopic experiments show that the oxidation state has already changed during the glass melt: The sample made from 5 mol% EuCl 2 contained 78 % EuCl 2 + 22 % EuCl 3 deduced from the relative areas of the absorption lines. The sample made from 2.5 mol% EuCl2 + 2.5 mol% EuCl2 contained 37 % EuCl2 + 63 % EuCl3, i.e. 26 % of the original EuCl 2 was oxidized to EuCl 3.

  12. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    Science.gov (United States)

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  13. Display System Image Quality

    Science.gov (United States)

    1988-04-01

    windecreen movement table and an optical angular deviation measurement device (Task, Genco , Smith, and Dabbs, 1983). For most HUDs, the spectral...ASD(ENA)-TR-83-5019, Dec 1983, pp 11-19. Task, H.L., Genco , L.V., Smith, K., and Dabbs, G., "System for measuring angular deviation in a tranparency

  14. Image Descriptors for Displays

    Science.gov (United States)

    1977-02-01

    13, 274 (1969). 15. E. E. Smith and K. T. Spoehr, ’The Perception of Printea inglish," in SB. Kantowitz , ed., ihumr Information Processing: Tutorials...Processing Research," in B. Kantowitz , ed., Human Information Processing: Tutorials in Performance and Cognition (Halsted Press, New York, 1974). 26. J. J

  15. Middle infrared hyperspectral imaging of adhesives, varnishes and inks on Al plate and papers by using a bolometer camera and an imaging type interferometer

    Science.gov (United States)

    Sugawara, Shigeru; Yoshida, Mitsuhiro; Saito, Tsubasa; Nakayama, Yoshihiko; Tsutsui, Yasuyuki; Taniguchi, Hideya; Ishimaru, Ichiro

    2016-10-01

    We built a hyperspectral imaging apparatus using middle-infrared light of 8-14 μm, which has a strong ability to identify organic materials, and attempted visualization of the distribution of organic materials that could not be identified by a naked eye. For this purpose, we utilized a low-cost bolometer camera (Nippon Avionics co., ltd. C100V, Japan) for its easy availability rather than an expensive mercury cadmium telluride (MCT) array sensor. To compensate for the low sensitivity of this bolometer, we adopted a Fourier-type spectroscopic system (Aoi Electronics co. ltd., Japan) using an imaging interferometer devised by the Kagawa University, Japan; this interferometer has higher light-utilization efficiency than Michelson interferometers, which are used in popular interferometry techniques. In this study, 4 types of adhesives, 9 types of varnishes and more than 50 types of inks were put on Al plates of size 10 cm × 10 cm and were used as samples. Glossy paper for printing photos with an inkjet printer was also used as a sample. A 300 °C black body of size 15 cm × 15 cm was used as a light source. Spectra of 320 × 240 points were measured at a wavelength resolution of approximately 9 cm-1. The mirror was scanned only once. The measurement time was approximately 30 s. Hyperspectral images of adhesives, varnishes and inks on Al plate and paper were successfully measured. Spectra over a 5 × 5-pixel neighborhoods were averaged, and the averaged spectra were compared with those measured by a commercially available Fourier transform infrared (FTIR) spectroscopy. The averaged and measured spectra had absorption peaks at the same wavelengths. Furthermore, by analyzing the measured spectra, the distribution of substances invisible to the naked eye was visualized. Our results show that if low-absorbance organic materials are put on a high-reflectance surface such as an Al plate, the middle-infrared hyperspectral imaging could be measured using a bolometer

  16. Evaluation of relative speed of latent images in relation to changes in fading time and storage temperature of imaging plates in computed radiography systems.

    Science.gov (United States)

    Seoung, Youl-Hun

    2014-01-01

    This study aimed to evaluate the relative speed (RS) of latent images in relation to changes in the fading time and storage temperature of imaging plates (IPs) in computed radiography systems. The storage temperatures adopted were 20, 30, and 40°C, while the fading times employed were 0, 4, 8, 12, and 24 hours. The X-ray exposure factors were 50 kVp, 10 mAs, and a 150 cm distance from an IP to an X-ray source. In the processing of each image, the parameters used for multi-scale image contrast amplification were multiscale image contrast, noise reduction, edge enhancement, and latitude reduction, all assigned a value of 0. Image sensitivity was used to convert linear properties. The RS used for the characteristic curve was evaluated using a uniform aluminum 11-step wedge. Results show that the RS values of IPs with changing fading time were 17.8 ± 0.9 at 20°C, 13.9 ± 1.1 at 30°C, and 13.4 ± 0.9 at 40°C. On the basis of these findings, we conclude that IPs should be stored in the long term at temperatures as low as 20°C.

  17. Development of Multi-gap Resistive Plate Chamber (MRPC) for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.; Roy, A. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Biswas, S., E-mail: saikat.ino@gmail.com [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany); Chattopadhyay, S.; Das, G.; Pal, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2013-08-01

    The low cost and high resolution Multi-gap Resistive Plate Chamber (MRPC) opens up a new possibility to find an efficient alternative detector for the Time of Flight (TOF) based Positron Emission Tomography, where the sensitivity of the system depends largely on the time resolution of the detector. In a layered structure, suitable converters can be used to increase the photon detection efficiency. In this paper results of the cosmic ray test of a four-gap bakelite-based prototype MRPC operated in streamer mode and six-gap glass-based MRPC operated in avalanche mode are discussed.

  18. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    Science.gov (United States)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad

  19. In-line positioning of ultrasound images using wireless remote display system with tablet computer facilitates ultrasound-guided radial artery catheterization.

    Science.gov (United States)

    Tsuchiya, Masahiko; Mizutani, Koh; Funai, Yusuke; Nakamoto, Tatsuo

    2016-02-01

    Ultrasound-guided procedures may be easier to perform when the operator's eye axis, needle puncture site, and ultrasound image display form a straight line in the puncture direction. However, such methods have not been well tested in clinical settings because that arrangement is often impossible due to limited space in the operating room. We developed a wireless remote display system for ultrasound devices using a tablet computer (iPad Mini), which allows easy display of images at nearly any location chosen by the operator. We hypothesized that the in-line layout of ultrasound images provided by this system would allow for secure and quick catheterization of the radial artery. We enrolled first-year medical interns (n = 20) who had no prior experience with ultrasound-guided radial artery catheterization to perform that using a short-axis out-of-plane approach with two different methods. With the conventional method, only the ultrasound machine placed at the side of the head of the patient across the targeted forearm was utilized. With the tablet method, the ultrasound images were displayed on an iPad Mini positioned on the arm in alignment with the operator's eye axis and needle puncture direction. The success rate and time required for catheterization were compared between the two methods. Success rate was significantly higher (100 vs. 70 %, P = 0.02) and catheterization time significantly shorter (28.5 ± 7.5 vs. 68.2 ± 14.3 s, P method as compared to the conventional method. An ergonomic straight arrangement of the image display is crucial for successful and quick completion of ultrasound-guided arterial catheterization. The present remote display system is a practical method for providing such an arrangement.

  20. Plate-like structure damage location identification based on Lamb wave baseline-free probability imaging method

    Directory of Open Access Journals (Sweden)

    Dongsheng Li

    2017-01-01

    Full Text Available Damage-scattering signal extraction using conventional ultrasonic guided wave–based damage detection techniques requires the measurement of baseline data under pristine condition. This study proposes a baseline-free ultrasonic guided wave damage localization and imaging method based on Lamb wave baseline-free probability imaging method. Although traditional Lamb wave probability imaging can monitor damage location in plate-like structures, the absolute time of arrival and magnitude of the signal are affected by several factors and are therefore difficult to obtain. This study also proposes a probability-based hyperbola diagnostic imaging method that is based on different times of arrival and has no magnitude information. A distributed active sensor network conforming to a pulse-echo configuration and time window functions is developed to separate damage-scattering signals from structural response signals. Continuous wavelet transform is used to calculate the time of flight of damage signal waves. The numerical simulation and experiments validate the effectiveness of the proposed method in identifying damage.

  1. Local orbital angular momentum revealed by spiral phase plate imaging in transmission electron microscopy

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that is getting increasingly more attention over the past couple of years. Beams with a well defined OAM, the so-called vortex beams, are applied already in e.g. telecommunication, astrophysics, nanomanipulation and chiral measurements in optics and electron microscopy. Also the OAM of a wave induced by the interaction with a sample, shows great potential of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and sho...

  2. Reducing dose in urography while maintaining image quality-a comparison of storage phosphor plates and a flat-panel detector.

    Science.gov (United States)

    Jansson, Margareta; Geijer, Håkan; Persliden, Jan; Andersson, Torbjörn

    2006-01-01

    The introduction of new flat-panel detector technology often forces us to accept too high dose levels as proposed by the manufacturers. We need a tool to compare the image quality of a new system with the accepted standard. The aim of this study was to obtain a comparable image quality for two systems-storage phosphor plates and a flat-panel system using intravenous urography (IVU) as a clinical model. The image quality figure was calculated using a contrast-detail phantom (CDRAD) for the two evaluated systems. This allowed us to set a dose for the flat-panel system that gave equivalent image quality to the storage phosphor plates. This reduced detector dose was used in an evaluation of clinical images to find out if the dose reduction from the phantom study indeed resulted in images of equal clinical image quality. The image quality was assessed using image criteria of the European guidelines for IVU with visual grading analysis. Equivalent image quality in image pairs was achieved at 30% of the dose. The CDRAD contrast-detail phantom makes it possible to find dose levels that give equal image quality using different imaging systems.

  3. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Directory of Open Access Journals (Sweden)

    Kimura Shinzo

    2006-01-01

    Full Text Available This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L and fern (Dryopteris filix-max CL. Schoff plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested.

  4. 基于OpenGL的SAR实时图像显示%OpenGL based SAR real-time image display

    Institute of Scientific and Technical Information of China (English)

    张娟; 刘国霞; 陈光辉

    2015-01-01

    Since imaging radar needs to display massive image data and can present many graphic details in practical opera⁃tion,the requirements in the aspects of displayed authenticity and real⁃time capacity are very high. When image is scrolling in display screen,the image data consists the entered original image data and new entered image data. The two sets of image data are displayed in the same plane. It is noticed that when image data displays,it also requires to overlay the relevant flight⁃parameter information and time information. To satisfy the display requirements of imaging radar,dual⁃cache technology and fusion technology of OpenGL system were adopted in VxWorks operating system,by which the smooth,complete,dynamic and real⁃time anima⁃tion effect can be obtained.%成像雷达在实际的操作中显示的图像数据量颇大,并且能呈现出图形的许多细节,因此,对显示的现实性、实时性要求很高。图像在屏面空间滚动时,数据中会包含已经输入的原始图像数据,同时也会滚动显示新录入的图像数据,两组图像数据在同一平面显示,而且要注意到在进行图像数据显示时,还要求在其空间上叠加相应的飞参信息和时间信息。因此,为满足成像雷达的显示需求,在VxWorks操作系统下通过采用OpenGL系统具有的双缓存技术和融合技术,可以获得平滑的、完整的、动感的、实时的动画效果。

  5. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging.

    Science.gov (United States)

    Agatonovic-Kustrin, Snezana; Hettiarachchi, Chandima G; Morton, David W; Razic, Slavica

    2015-01-01

    Health benefits of wine, especially with red wine, have been linked to the presence of a wide range of phenolic antioxidants. Thus, the aim of this study was to develop a simple, high performance thin layer chromatographic (HPTLC) method combined with high resolution digital plate images to visually compare multiple wine samples simultaneously on a single chromatographic plate and to quantify levels of gallic acid, caffeic acid, resveratrol and rutin, as representatives of the four different classes of phenolics found in wines. We also wanted to investigate the contribution of the investigated phenolic compounds to the total polyphenolic content (TPC) and total antioxidant capacity (TAC) of the wine samples. The average concentrations of caffeic acid, gallic acid, resveratrol, and rutin in the red wines were 2.15, 30.17, 0.59 and 2.47 mg/L respectively with their concentration below limit of quantification in the white wine samples. The highest concentration of resveratrol and rutin is found in the Cabernet and Shiraz wine samples. The amounts of gallic acid are correlated with TPC (r=0.58). Italian wines have the highest correlation between TPC and TAC (r=0.99) although they do not contain detectable amounts of resveratrol, they contain significant amount of rutin. Therefore, antioxidant properties might be associated with the presence of flavanols in these wines.

  6. Phase contrast without phase plates and phase rings--optical solutions for improved imaging of phase structures.

    Science.gov (United States)

    Piper, Timm; Piper, Jörg

    2013-10-01

    Using the optical methods described, phase specimens can be observed with a modified light microscope in enhanced clarity, purified from typical artifacts which are apparent in standard phase contrast illumination. In particular, haloing and shade-off are absent, lateral and vertical resolution are maximized and the image quality remains constant even in problematic preparations which cannot be well examined in normal phase contrast, such as specimens beyond a critical thickness or covered by obliquely situated cover slips. The background brightness and thus the range of contrast can be continuously modulated and specimens can be illuminated in concentric-peripheral, axial or paraxial light. Additional contrast effects can be achieved by spectral color separation. Normal glass or mirror lenses can be used; they do not need to be fitted with a phase plate or a phase ring. The methods described should be of general interest for all disciplines using phase microscopy.

  7. The direct measurement using an imaging plate for coincidence of radiation centre and laser position in external radiation therapy.

    Science.gov (United States)

    Terunuma, Toshiyuki; Sakae, Takeji; Nohtomi, Akihiro; Tsunashima, Yoshikazu

    2003-02-21

    A new method of quality assurance has been studied to measure coincidence of the radiation centre and a patient-setup laser position on a transverse plane to the beam at the isocentre. This measurement is achieved by using an imaging plate (IP). When radiation is applied to an IP, the energy is stored as trapped electrons. The number of electrons is decreased by local laser exposure. As a result, the radiation field produced by external beam irradiation is recorded as 'positive' information and the position of the patient-setup laser is recorded as 'negative' on an IP. The advantages of this method are the direct measurement, short time and high resolution. These are required for daily and monthly quality checks. We confirmed the advantage of this method by an experiment using a proton beam.

  8. First results of KALI-30 GW with 1 MV flash X-rays generation and characterization by Imaging plate

    Science.gov (United States)

    Sharma, A.; Shaikh, A. M.; Senthil, K.; Mitra, S.; Chandra, R.; Vishnu, S.; Sandeep, S.; Roy, A.; Rakhee, M.; Sharma, V.; Danish, M. B.; Kolge, T. S.; Ranjeet, K.; Agrawal, R.; Saroj, P. C.; Tewari, S. V.; Mittal, K. C.

    2014-07-01

    The design, development and commissioning of 1 MV pulsed electron accelerator producing Flash X-Rays is described in this paper. This pulsed power system is based on bipolar MARX generator and Blumlein followed by Explosive electron emission diode assembly. The peak pulsed power is ~ 30 GW. The electron energies in the range of 400 keV to 1030 keV are produced and delivered to experimental load of Industrial diode. Electrons are emitted from a stainless steel ring at ground potential by explosive field emission and bombard the anode tungsten pin for flash X-rays generation. The relativistic electron beam has been simulated within the diode chamber and pattern shows the beam propagation. Imaging plates are used to characterize the source size and optimization has been reported.

  9. Polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  10. Image translational shifts in microchannel plate detectors due to the presence of MCP channel bias

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2002-01-01

    A detailed study of possible image displacements in MCP detectors due to the presence of MCP pore bias is presented. We show that fluctuations of the rear accelerating field, characteristic to some MCP detector configurations, result in translational shifts of the entire image, which degrade the detector spatial resolution. It was experimentally observed that a 10% increase in the rear voltage of 400 V for a detector with 13 deg. -biased MCPs and 8.5 mm MCP-to-anode distance results in a 32 mu m shift of the image in the direction opposite to the pore bias. Increasing the voltage to 800 V induced a 200 mu m image displacement. No displacement was observed for a detector with a 0 deg. -biased output MCP. We also present a model for calculation of the charge footprint centroid in MCP detectors based on the output distribution function of the charge cloud. The results of our computer simulation of the image displacements prove to be in a very good agreement with the experimental data, thus providing the basis fo...

  11. Development of Computerized Scheme for Adjustment of Display Grayscale in Brain Diffusion-Weighted Magnetic Resonance Images with Acute Ischemic Stroke

    Science.gov (United States)

    Nagashima, Hiroyuki; Harakawa, Tetsumi; Doi, Kunio

    We developed a computerized scheme for proper adjustment of display grayscale in brain diffusion-weighted magnetic resonance images (DWI) with acute ischemic stroke by using thalamic signal intensity on concurrent images (b0 image). In our computerized scheme, the gray level of b0 image was first normalized, and the brain region was segmented using thresholding and labeling techniques. The lateral inclination in b0 image was then corrected semi-automatically by rotating and shifting. Each of the thalamic positions was determined by using the coordinate information in the brain region. The average signal intensity of the thalamus was measured on the region of interest (ROI) selected, and the thalamus in one side with the low signal intensity was selected. The display grayscale in DWI was finally adjusted by using the signal intensity of the selected thalamus. The thalamus positions in all cases were confirmed to be included in the thalamic outline. In 30 training cases, the average error between the thalamic signal intensity obtained from the manual selection and the computerized scheme were 1.8%±1.5, and in 30 testing cases, 1.3%±1.2. Our computerized scheme has a potential in the determination of the display grayscale of brain DWI, and would be useful to radiologists in decision-making for radiological diagnosis.

  12. The Research of License Plate Image Preprocessing Method Base on VC++%基于VC++车牌图像预处理方法研究

    Institute of Scientific and Technical Information of China (English)

    李德峰; 丁玉飞; 邱细亚

    2011-01-01

    车牌图像识别的预处理是车牌图像识别系统的重要环节之一。该文简要地介绍车牌图像受环境因素影响所呈现的特征后,系统地阐述了车牌识别系统中图像预处理的各个步骤,包括图像的灰度化、中值滤波、灰度拉伸、sobel算子梯度锐化、二值化等。提出了一种图像预处理方案.并运用VC++编程开发的软件验证了各阶段的实验结果,证实了这种方案对图像的预处理可以达到较好的处理效果,%The license plate image preprocessing is one component of the license Plate recognition system. This paper systematically describes each step of the image preprocessing in the license plate recognition system after describing briefly the characteristics of the license plate images affected by environmental factors,including gray-scale image,median filtering,gray stretch,sobel operator image sharpening,license plate title correction and so on.Proposing an image preprocessing program and developing the Software using VC++ program,which verified the experimental results of the various stages that confirmed the image preprocessing program can achieve better processing results.

  13. 红外图像显示算法研究及其实现%Research and Realization of infrared image display algorithm

    Institute of Scientific and Technical Information of China (English)

    魏挺; 苗毅; 鹿琦

    2016-01-01

    通过对直方图显示变换算法的分析、研究,最终选取平台直方图法并结合Visual C++6.0编程语言开发了红外图像格式转换软件,使得在红外图像的处理过程中提高图像显示质量的同时,还摆脱了原有软件狗的限制。%Through display of histogram transform algorithm analysis and research,and ultimately selected platform histogram method and infrared image format conversion software is developed with Visual C + + 6.0 programming language,making in infrared image processing to improve the image display quality at the same time,also placed off limits of the original software dog.

  14. Determination of Rate of Degradation of Iron Plates Due To Rust Using Image Processing -A Review

    Directory of Open Access Journals (Sweden)

    Priyanka Choudhary

    2014-03-01

    Full Text Available Abstract: most of industries and bridges around us make use of iron for manufacturing their products. On the other hand corrosion is a natural process that deteriorates the integrity of iron surface. Therefore, rusting of iron takes place. To avoid unwanted accidents in industries and bridges, it is necessary to detect rusting in earlier stage, so that it can be prevented. Digital image processing for the detection of the rusting provides fast, accurate and objectives results. In this research paper, we have done a systematic review of algorithms that help us to detect the rust area from a metal (iron.it has been found that most of researches are bring their images, processing series in usage for this purpose due to its simplicity in implementing and due to fact the images help capturing the visual inspection process easily and due to the ground teeth. The image processing techniques explored by other peoples based on in-depth analysis, we have also proposed a novel technique to overcome the limitation.

  15. Determination of Rate of Degradation of Iron Plates due to Rust using Image Processing

    Directory of Open Access Journals (Sweden)

    Priyanka Choudhary

    2015-02-01

    Full Text Available Most of industries and bridges around us make use of iron for manufacturing their products. On the other hand corrosion is a natural process that deteriorates the integrity of iron surface. Therefore, rusting of iron takes place. To avoid unwanted accidents in industries and bridges, it is necessary to detect rusting in earlier stage, so that it can be prevented. Digital image processing for the detection of the rusting provides fast, accurate and objectives results. In this research paper, we have done a systematic review of algorithms that help us to detect the rust area from a metal (iron.it has been found that most of researches are bring their images, processing series in usage for this purpose due to its simplicity in implementing and due to fact the images help capturing the visual inspection process easily and due to the ground teeth. The image processing techniques explored by other peoples based on in-depth analysis, we have also proposed a novel technique to overcome the limitation.

  16. JAVA Stereo Display Toolkit

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  17. Saturation and Dynamic Range of Microchannel Plate-Based X-Ray Imagers

    Energy Technology Data Exchange (ETDEWEB)

    ,

    2012-05-04

    This paper describes recent advances in Monte Carlo simulations of microchannel plate (MCP)–based x-ray detectors, a continuation of ongoing work in this area. A Monte Carlo simulation model has been developed over the past several years by National Security Technologies, LLC (NSTec). The model simulates the secondary electron emission process in an MCP pore and includes the effects of gain saturation. In this work we focus on MCP gain saturation and dynamic range. We have performed modeling and experimental characterizations of L/D = 46, 10-micron diameter, MCP-based detectors. The detectors are typically operated by applying a subnanosecond voltage pulse, which gates the detector on. Agreement between the simulations and experiment is very good for a variety of voltage pulse waveforms ranging in width from 150 to 300 ps. The results indicate that such an MCP begins to show nonlinear gain around 5 × 10^4 electrons per pore and hard saturation around 105 electrons per pore. The simulations show a difference in MCP sensitivity vs voltage for high flux of photons producing large numbers of photoelectrons on a subpicosecond timescale. Simulations and experiments both indicate an MCP dynamic range of 1 to 10,000, and the dynamic range depends on how the voltage is applied.

  18. Multi-thread Programming for Image Display of Navigational Radar%导航雷达图像显示的多线程编程

    Institute of Scientific and Technical Information of China (English)

    祝宏涛; 姚萌; 蔡天艳; 项凌云

    2011-01-01

    The software of displaying the navigational radar images on SoPC platform was designed. The task of code was divided according to the system running engineering and radar image display task which includes radar circle and character data. The divided code task includes hardware initialization, data sampling, range set, window display and system shutdown.Corresponding to the divided task, a method af multi-thread programming in Windows OS was taken to compile the software for the radar image display. The results of the software ruuning on the SoPC platform indicates that it can meet the needs of the navigational radar image display.%设计了导航雷达图像在SoPC硬件平台上显示的软件系统,根据雷达图像显示任务和系统的运行工程对代码的任务进行划分,雷达图像显示任务包括雷达圆和文字数据两部分,划分后的代码任务包括硬件初始化、开始数据接收处理、量程设置、窗口显示、关机等5个任务,对应划分后的任务采用了Windows下的多线程方法编写雷达图像显示的软件系统.经过在SoPC硬件平台上调试运行,效果显示能够满足导航雷达图像显示的各项要求.

  19. Determination of Absolute Plate Spacing for the Fabry-Perot Subassembly of the Thermosphere Imager for Global Observations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Task 1: rad test AD7746 component for failure dosage for use in GEO Task 2: Algorithm for determining absolute plate spacing of the TIGO Fabry-Perot plates,...

  20. 基于车辆牌照图像的识别技术研究%Research on Image Recognition Technology Based on Vehicle License Plate

    Institute of Scientific and Technical Information of China (English)

    石昊苏

    2015-01-01

    This paper,the whole process of vehicle license plate image recognition is discussed in four aspects:preprocessing,vehicle license plate location,character segmentation and character recognition.Through the analysis of the part of the algorithm,the problem of image quality is solved effectively,and the related problems of batch and automatic vehicle license plate recognition are identiifed.%文章讨论了车辆牌照图像识别整个过程的四个环节:预处理、车辆牌照定位、字符分割、字符识别。通过优化改进Canny算法有效地解决了图像质量不足,批量、自动识别车辆牌照的相关问题。

  1. Imaging plates applied to gamma-ray image measurement%成像板伽马图像测量研究

    Institute of Scientific and Technical Information of China (English)

    付澜; 张建华; 祁建敏; 章法强; 谢红卫; 陈进川

    2012-01-01

    研究了成像板辐射图像测量的基本原理及其物理机制,并将其应用于伽马图像测量.建立了MS,SR和TR三种类型成像板数值模拟模型,分别使用MCNPX程序和基于GEANT4开发的NPE程序计算了三种成像板对不同能量伽马射线的能量沉积,计算结果表明:SR和MS成像板比TR成像板能量沉积在低能部分大3~5倍,高能部分大7~9倍.实验测量了MS成像板γ灵敏度随铜膜厚度的变化关系,测量结果与理论计算结果有较好的一致性.理论与实验结果表明:成像板伽马图像测量的空间分辨力优于50 μm.%Basic principles and physical mechanism of image measurement by using imaging plates (IPs) are studied in this paper, and fundamental problems about applications of the IPs in gamma-ray image measurement are also analyzed. Monte Carlo models of imaging plates in common use are built, involving three types of IPs, i. e. MS, SR, TR. And the energy deposition of gamma rays of different energies in the IPs are calculated through the MCNPX code and the NPE code based on a Geant4 platform. As a result, the energy deposition of SR-type and MS-type IPs is 3-5 times larger than that of TR-type IPs in the low energy part, and 7-9 times larger in the high energy part. The theoretical and experimental results of the relation between gamma-ray sensitivity of MS-type IPs and copper foil thickness agree well with each other. The spatial resolution of IPs in gamma-ray imaging is better than 50 μm.

  2. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging.

    Science.gov (United States)

    Ray, Aniruddha; Mukundan, Ananya; Xie, Zhixing; Karamchand, Leshern; Wang, Xueding; Kopelman, Raoul

    2014-11-07

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well.

  3. Application of the laser generated focused-Lamb wave for non-contact imaging of defects in plate.

    Science.gov (United States)

    Jhang, Kyung-Young; Shin, Min Jae; Lim, Byoung Ok

    2006-12-22

    The laser generation method of focused-Lamb wave is expected to have high defect-detection ability with advantages of non-contact testing. In this method, the laser beam is illuminated on the surface of the object through an arrayed-arc slit, and then the energy of the generated Lamb wave is concentrated on the focus point of arc. This focusing effect enables the concentration of higher wave intensity on the focus with better S/N ratio of signal, and has better spatial resolution compared to the conventional line arrayed method. This paper describes a 2-D imaging system using this laser generated, focused-Lamb wave combined with its detection by the air-coupled transducer. This technique is fully non-contact so it can be easily applied for the automatic inspection. The effectiveness of the proposed method was verified by experiments on a 1-mm thick aluminum plate with artificial drill-hole defect with diameters of 1mm. The 2-D image of was constructed by scanning and the result showed that the location and size of defects were clearly detected.

  4. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    Science.gov (United States)

    Ray, Aniruddha; Mukundan, Ananya; Xie, Zhixing; Karamchand, Leshern; Wang, Xueding; Kopelman, Raoul

    2014-11-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well.

  5. Image Shutters: Gated Proximity-Focused Microchannel-Plate (MCP) Wafer Tubes Versus Gated Silicon Intensified Target (SIT) Vidicons

    Science.gov (United States)

    Yates, G. J.; King, N. S. P.; Jaramillo, S. A.; Ogle, J. W.; Noel, B. W.; Thayer, N. N.

    1983-03-01

    The imaging characteristics of two fast image shutters used for recording the spatial and temporal evolution of transient optical events in the nanosecond range have been studied. Emphasis is on the comparative performances of each shutter type under similar conditions. Response data, including gating speed, gain, dynamic range, shuttering efficiency, and resolution for 18 and 25-mm-diam proximity-focused microchannel-plate (MCP) intensifiers are com-pared with similar data for a prototype electrostatically-focused 25-mm-diam gated silicon-intensified-target (SIT) vidicon currently under development for Los Alamos National Laboratory. Several key parameters critical to optical gating speed have been varied in both tube types in order to determine the optimum performance attainable from each design. These include conductive substrate material and thickness used to reduce photocathode resistivity, spacing between gating electrodes to minimize interelectrode capacitance, the use of con-ductive grids on the photocathode substrate to permit rapid propagation of the electrical gate pulse to all areas of the photocathode, and different package geometries to provide a more effective interface with external biasing and gating circuitry. For comparable spatial resolution, most 18-mm-diam MCPs require gate times > 2.5 ns while the fastest SIT has demonstrated sub-nanosecond optical gates as short as r 400 ± 50 ps for full shuttering of the 25-mm-diam input window.

  6. Technical feasibility and safety of image-guided parieto-occipital ventricular catheter placement with the assistance of a wearable head-up display.

    Science.gov (United States)

    Yoon, Jang W; Chen, Robert E; ReFaey, Karim; Diaz, Roberto J; Reimer, Ronald; Komotar, Ricardo J; Quinones-Hinojosa, Alfredo; Brown, Benjamin L; Wharen, Robert E

    2017-05-19

    Wearable technology is growing in popularity as a result of its ability to interface with normal human movement and function. Using proprietary hardware and software, neuronavigation images were captured and transferred wirelessly via a password-encrypted network to the head-up display. The operating surgeon wore a loupe-mounted wearable head-up display during image-guided parieto-occipital ventriculoperitoneal shunt placement in two patients. The shunt placement was completed successfully without complications. The tip of the catheter ended well within the ventricles away from the ventricular wall. The wearable device allowed for continuous monitoring of neuronavigation images in the right upper corner of the surgeon's visual field without the need for the surgeon to turn his head to view the monitors. The adaptable nature of this proposed system permits the display of video data to the operating surgeon without diverting attention away from the operative task. This technology has the potential to enhance image-guided procedures. Copyright © 2017 John Wiley & Sons, Ltd.

  7. [Evaluation of image quality using the normalized-rank approach for primary class liquid-crystal display (LCD) monitors with different colors and resolution].

    Science.gov (United States)

    Kuroki, Hidefumi; Katayama, Reiji; Sakaguchi, Taro; Maeda, Takashi; Morishita, Junji; Hayabuchi, Naofumi

    2010-11-20

    The purposes of this study were to evaluate the image quality of five types of liquid-crystal display (LCD) monitors by utilizing the normalized-rank approach and to investigate the effect of LCD monitor specifications, such as display colors, luminance, and resolution, on the evaluators' ranking. The LCD monitors used in this study were 2, 3 and 5 mega-pixel monochrome LCD monitors, and 2 and 3 mega-pixel color LCD monitors (Eizo Nanao Corporation). All LCD monitors were calibrated to the grayscale standard display function (GSDF) with different maximum luminance (recommended luminance) settings. Also, four kinds of radiographs were used for observer study based on the normalized-rank approach: three adult chest radiographs, three pediatric chest radiographs, three ankle joint radiographs, and four double-contrasted upper gastrointestinal radiographs. Ten radiological technologists participated in the observer study. Monochrome LCD monitors exhibited superior ranking with statistically significant differences (pLCD monitors in all kinds of radiographs. The major difference between monochrome and color monitors was luminance. Therefore, it is considered that the luminance of LCD monitors affects observers' evaluations based on image quality. Moreover, in the case of radiographs that include high frequency image components, the monitor resolution also affects the evaluation. In clinical practice, it is necessary to optimize the luminance and choose appropriate LCD monitors for diagnostic images.

  8. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

    Science.gov (United States)

    Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; Garand, Etienne

    2017-09-01

    A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicality and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.

  9. Imaging at soft X-ray wavelengths with high-gain microchannel plate detector systems

    Science.gov (United States)

    Timothy, J. Gethyn

    1986-01-01

    Multianode microchannel array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 mm are now under evaluation at visible, UV and soft X-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 mm are under development for use in the NASA Goddard Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with Cs I photocathodes can provide a high-resolution imaging capability at EUV and soft X-ray wavelengths and can deliver a maximum count rate from each array in excess of 10 to the 6th counts/s. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode of operation, and performance characteristics of the MAMA detectors are described, and the program for the development of the very-large-format detectors is outlined.

  10. IP(Image Plate)板的使用与保养

    Institute of Scientific and Technical Information of China (English)

    吴珊红

    2009-01-01

    计算机X线摄影(Computer Radiography CR)目前应用临床已逐渐成熟与完善。IP(Image Plate)板作为记录影像的媒介已全面取代传统屏/胶组合暗盒,成为CR成像系统的关键元件。IP性能优劣直接影响CR成像质量。因此,对IP板进行正确使用与合理保养是延长IP使用期限,保证CR图像质量及CR系统正常运转的首要条件,结合我们实际使用情况做如下探讨。

  11. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wen Quan, E-mail: dingwenquan1982@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Zhou, Xue Jun, E-mail: zxj0925101@sina.com [Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Tang, Jin Bo, E-mail: jinbotang@yahoo.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Gu, Jian Hui, E-mail: gujianhuint@163.com [Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu (China); Jin, Dong Sheng, E-mail: jindongshengnj@aliyun.com [Department of Radiology, Jiangsu Province Official Hospital, Nanjing, Jiangsu (China)

    2015-06-15

    Highlights: • 3D displays of peripheral nerves can be achieved by 2 MIP post-processing methods. • The median nerves’ FA and ADC values can be accurately measured by using DTI6 data. • Adopting 6-direction DTI scan and MIP can evaluate peripheral nerves efficiently. - Abstract: Objectives: To achieve 3-dimensional (3D) display of peripheral nerves in the wrist region by using maximum intensity projection (MIP) post-processing methods to reconstruct raw images acquired by a diffusion tensor imaging (DTI) scan, and to explore its clinical applications. Methods: We performed DTI scans in 6 (DTI6) and 25 (DTI25) diffusion directions on 20 wrists of 10 healthy young volunteers, 6 wrists of 5 patients with carpal tunnel syndrome, 6 wrists of 6 patients with nerve lacerations, and one patient with neurofibroma. The MIP post-processing methods employed 2 types of DTI raw images: (1) single-direction and (2) T{sub 2}-weighted trace. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the median and ulnar nerves were measured at multiple testing sites. Two radiologists used custom evaluation scales to assess the 3D nerve imaging quality independently. Results: In both DTI6 and DTI25, nerves in the wrist region could be displayed clearly by the 2 MIP post-processing methods. The FA and ADC values were not significantly different between DTI6 and DTI25, except for the FA values of the ulnar nerves at the level of pisiform bone (p = 0.03). As to the imaging quality of each MIP post-processing method, there were no significant differences between DTI6 and DTI25 (p > 0.05). The imaging quality of single-direction MIP post-processing was better than that from T{sub 2}-weighted traces (p < 0.05) because of the higher nerve signal intensity. Conclusions: Three-dimensional displays of peripheral nerves in the wrist region can be achieved by MIP post-processing for single-direction images and T{sub 2}-weighted trace images for both DTI6 and DTI25

  12. Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array.

    Science.gov (United States)

    Kim, Do-Hyeong; Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Jeong, Ji-Seong; Lee, Jae-Won; Kim, Kyung-Ah; Kim, Nam; Yoo, Kwan-Hee

    2013-12-01

    This paper proposes an open computer language (OpenCL) parallel processing method to generate the elemental image arrays (EIAs) for hexagonal lens array from a three-dimensional (3D) object such as a volume data. Hexagonal lens array has a higher fill factor compared to the rectangular lens array case; however, each pixel of an elemental image should be determined to belong to the single hexagonal lens. Therefore, generation for the entire EIA requires very large computations. The proposed method reduces processing time for the EIAs for a given hexagonal lens array. By using the proposed image space parallel processing (ISPP) method, it can enhance the processing speed that generates the 3D display of real-time interactive integral imaging for hexagonal lens array. In our experiment, we implemented the EIAs for hexagonal lens array in real-time and obtained a good processing time for a large of volume data for multiple cases of lens arrays.

  13. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display

    Science.gov (United States)

    Li, Jiawen; Ma, Teng; Jing, Joseph; Zhang, Jun; Patel, Pranav M.; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    We have developed a novel integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5 mm-long rigid-part and 0.9 mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding interventional procedures. By placing the OCT ball lens and IVUS 45MHz single element transducer back-to-back at the same axial position, this probe can provide automatically co-registered, co-axial OCT-IVUS imaging. To demonstrate its capability, 3D OCT-IVUS imaging of a pig's coronary artery in real-time displayed in polar coordinates, as well as images of two major types of advanced plaques in human cadaver coronary segments, was obtained using this probe and our upgraded system. Histology validation is also presented.

  14. Anatomy of the Java plate interface from depth-migrated seismic images: Implications for sediment transfer

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2008-12-01

    We present seismic data from the western Java margin off Indonesia. The newly pre-stack depth migrated seismic images resolve the structural details of the western Java forearc and the fate of sediment subducted at the trench. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is transported down a subduction channel. Basal mass transfer occurs by episodic accretion of sediment beneath the submerged forearc as the active detachment stepwise descends to a deeper level below the outer wedge. Fluctuations in subduction channel dimensions are enhanced by deep-reaching thrust faults that are traced from a velocity singularity marking the top of the oceanic basement towards the seafloor. These thrust faults breach the subduction channel and inhibit recycling of material to mantle depth, while serving as an incremental ramp along which the active detachment is transferred to a lower position. The high ratio of accreted/subducted sediment is associated with the evolution of a large bivergent wedge (>100 km) despite the comparatively low sediment input to the trench (member type of subduction zone where near-complete accretion of the trench sediment fill by frontal and basal accretion is supported by the lack of evidence for subducted sediment in the geochemical signature of Mt. Guntur and Mt. Gallunggung, two volcanoes positioned in the prolongation of our seismic line on Java.

  15. Position and time resolution measurements with a microchannel plate image intensifier: A comparison of monolithic and pixelated CeBr{sub 3} scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Ulrich, E-mail: ulrich.ackermann@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Eschbaumer, Stephan, E-mail: stephan.eschbaumer@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Bergmaier, Andreas, E-mail: andreas.bergmaier@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Egger, Werner, E-mail: werner.egger@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Sperr, Peter, E-mail: peter.sperr@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Greubel, Christoph, E-mail: christoph.greubel@unibw.de [Universität der Bundeswehr München, Institut für angewandte Physik und Messtechnik (LRT2), Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); and others

    2016-07-01

    To perform Four Dimensional Age Momentum Correlation measurements in the near future, where one obtains the positron lifetime in coincidence with the three dimensional momentum of the electron annihilating with the positron, we have investigated the time and position resolution of two CeBr{sub 3} scintillators (monolithic and an array of pixels) using a Photek IPD340/Q/BI/RS microchannel plate image intensifier. The microchannel plate image intensifier has an active diameter of 40 mm and a stack of two microchannel plates in chevron configuration. The monolithic CeBr{sub 3} scintillator was cylindrically shaped with a diameter of 40 mm and a height of 5 mm. The pixelated scintillator array covered the whole active area of the microchannel plate image intensifier and the shape of each pixel was 2.5·2.5·8 mm{sup 3} with a pixel pitch of 3.3 mm. For the monolithic setup the measured mean single time resolution was 330 ps (FWHM) at a gamma energy of 511 keV. No significant dependence on the position was detected. The position resolution at the center of the monolithic scintillator was about 2.5 mm (FWHM) at a gamma energy of 662 keV. The single time resolution of the pixelated crystal setup reached 320 ps (FWHM) in the region of the center of the active area of the microchannel plate image intensifier. The position resolution was limited by the cross-section of the pixels. The gamma energy for the pixel setup measurements was 511 keV.

  16. GUI for Coordinate Measurement of an Image for the Estimation of Geometric Distortion of an Opto-electronic Display System

    Science.gov (United States)

    Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar

    2017-06-01

    Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.

  17. GUI for Coordinate Measurement of an Image for the Estimation of Geometric Distortion of an Opto-electronic Display System

    Science.gov (United States)

    Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar

    2016-07-01

    Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.

  18. 集成成像立体显示技术研究进展%Progress in Integral Imaging Display Technology

    Institute of Scientific and Technical Information of China (English)

    夏军; 曲笛; 周学超; 缪陈峰

    2011-01-01

    Integral imaging is a three-dimensional display technology that can provide both horizontal and vertical motion parallax. In this paper the problems of current integral imaging technology, such as depth of view, viewing angle, pseudoscopic image, have been discussed. And the methods that developed to solve these problems are reviewed. The progress in computational integral imaging reconstruction is also introduced. Recent progress indicates that a 2D and 3D convertible integral imaging display is a promising technology for a super-slim real-3D auto-stereoscopic display in the future.%集成成像立体显示是一种水平和垂直方向同时具有运动视差的真三维立体显示技术.本文概述了集成成像立体显示在显示三维图像时存在的景深范围小,视角范围窄,赝像等问题,介绍了提升景深范围、扩大视角、消除赝像的技术方法.介绍了利用子图像阵列进行计算机三维虚拟重建的最新研究进展.通过研究指出,具有二维和三维显示模式转换功能的集成成像立体显示技术是超薄型真三维立体显示器的重要发展方向.

  19. Handbook of Visual Display Technology

    CERN Document Server

    Cranton, Wayne; Fihn, Mark

    2012-01-01

    The Handbook of Visual Display Technology is a unique work offering a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. An invaluable compilation of information, the Handbook will serve as a single reference source with expert contributions from over 150 international display professionals and academic researchers. All classes of display device are covered including LCDs, reflective displays, flexible solutions and emissive devices such as OLEDs and plasma displays, with discussion of established principles, emergent technologies, and particular areas of application. The wide-ranging content also encompasses the fundamental science of light and vision, image manipulation, core materials and processing techniques, display driving and metrology.

  20. Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, M.; Otsuka, T.; Hashizume, K. [Interdisciplinary Graduate School of Engineering and Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Tokunaga, K. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M. [Japan Atomic Energy Agency - JAEA, Naka, Ibaraki (Japan)

    2015-03-15

    Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.

  1. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  2. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  3. Implementation of an X ray image plate camera in characterisation and crystallisation studies of iron based alloys

    CERN Document Server

    Steer, W A

    2001-01-01

    Developed in the early 1980s, versatile X-ray storage phosphor screens have opened up new possibilities in diffraction instruments for crystallography. Originally adopted by high-pressure researchers using diamond-anvil cells and very small sample volumes, flat phosphor screens give great advantage because of their high intrinsic sensitivity. But less demanding applications still stand to benefit from increased throughput and enhanced count rates made possible by this technology. With this in mind the Curved Image Plate camera, a large radius (350mm and 185mm) Debye-Scherrer instrument primarily designed for use with capillary-contained powder samples had been devised. As a substantial part of this work, new software to pre-process the data, calibration procedures and modes of operation were developed to enable the full potential of the system to be realised. One particular application of the CIP camera is the comparative study of a large number of samples, for example as a function of heat treatment. Amorpho...

  4. A noiseless kilohertz frame rate imaging detector based on microchannel plates read out with the Medipix2 CMOS pixel chip

    CERN Document Server

    Mikulec, Bettina; Ferrère, Didier; La Marra, Daniel; McPhate, J B; Tremsin, A S; Siegmund, O H W; Vallerga, J V; Clement, J; Ponchut, C; Rigal, J M; CERN. Geneva

    2006-01-01

    A new hybrid optical imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors (WFS) for ground-based telescopes. The detector consists of a photocathode and proximity focused microchannel plates (MCPs) read out by the Medipix2 CMOS pixel ASIC. Each pixel of the Medipix2 device measures 55x55 um2 and comprises pre-amplifier, a window discriminator and a 14-bit counter. The 256x256 Medipix2 array can be read out noiselessly in 287 us. The readout can be electronically shuttered down to a temporal window of a few us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. Measurements with ultraviolet light yield a spatial resolution of the detector at the Nyquist limit. Sub-pixel resolution can be achieved using centroiding algorithms. For the AO application, very high continuous frame rates of the order of 1 kHz are required for a matrix of 512x512 pixels. The design concepts of a parallel readout board are presented that will allow ...

  5. Ionic matrices pre-spotted matrix-assisted laser desorption/ionization plates for patient maker following in course of treatment, drug titration, and MALDI mass spectrometry imaging.

    Science.gov (United States)

    Bonnel, David; Franck, Julien; Mériaux, Céline; Salzet, Michel; Fournier, Isabelle

    2013-03-01

    In the current study, we compared plastic matrix-assisted laser desorption/ionization (MALDI) plates pre-spotted with different solid ionic matrices. Data reflect that after 3 months of storage, the standards were oxidized in α-cyano-4-hydroxycinnamic acid (HCCA) whether or not in HCCA/3-acetylpyridine (3APY) and HCCA/aniline, and certain peptides, such as ubiquitin, were not detected using the HCCA matrix, whereas they were detected in pre-spotted ionic matrices. Application in peptidomics of these MALDI matrices pre-spotted plates (after 3 months of storage) with ovarian cyst fluid showed less intense signals with HCCA than with solid ionic matrices. We show that these pre-spotted ionic matrices plates can be used for relative drug quantification, high mass protein detection, and MALDI mass spectrometry imaging.

  6. Projection displays

    Science.gov (United States)

    Chiu, George L.; Yang, Kei H.

    1998-08-01

    Projection display in today's market is dominated by cathode ray tubes (CRTs). Further progress in this mature CRT projector technology will be slow and evolutionary. Liquid crystal based projection displays have gained rapid acceptance in the business market. New technologies are being developed on several fronts: (1) active matrix built from polysilicon or single crystal silicon; (2) electro- optic materials using ferroelectric liquid crystal, polymer dispersed liquid crystals or other liquid crystal modes, (3) micromechanical-based transducers such as digital micromirror devices, and grating light valves, (4) high resolution displays to SXGA and beyond, and (5) high brightness. This article reviews the projection displays from a transducer technology perspective along with a discussion of markets and trends.

  7. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    Science.gov (United States)

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility.

  8. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  9. Military display performance parameters

    Science.gov (United States)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  10. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

    Science.gov (United States)

    Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-02-23

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  11. Graphics processing unit (GPU) implementation of image processing algorithms to improve system performance of the control acquisition, processing, and image display system (CAPIDS) of the micro-angiographic fluoroscope (MAF)

    Science.gov (United States)

    Swetadri Vasan, S. N.; Ionita, Ciprian N.; Titus, A. H.; Cartwright, A. N.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  12. A research and application of image enhancement algorithm in license plate image preprocessing%图像增强算法在车牌图像预处理中的研究与应用

    Institute of Scientific and Technical Information of China (English)

    江治国; 章飞

    2012-01-01

    The license plate image quality collected by camera in fog scenes is lower,which have a greater impact on image preprocessing in the license plate recognition system,resulting in being less effective in license plate location and identification.A simulation experiment was performed by using color restoration of multi-scale Retinex algorithm and image dehazing algorithms of dark channel priority to enhance actual image based on actual license plate image acquisition in fog.Experimental results show that this method can improve the contrast of the image and filters the fog well so that the better results are achieved in license plate location and recognition.%雾天场景下摄像头采集到的车牌图像质量较低,在车牌识别系统中对图像预处理产生较大影响,从而造成车牌定位和识别效果较差。以雾天环境下实际采集的车牌图像为例,分别采用带色彩恢复的多尺度Retinex算法和暗原色先验去雾算法对实际图像增强进行仿真实验。实验结果表明,利用暗原色先验去雾算法对图像进行增强处理,能够提高图像的对比度,实现去雾效果,从而使车牌定位和车牌识别达到更好的效果。

  13. Study on radiation dose in the medical image data display method-focus on the DICOM standard

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su [Dept. of Radio-technology, Health Welfare, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2015-12-15

    DICOM (Digital Imaging and Communications in Medicine) standards are generally introduced as de facto and de jure standards in modern medical imaging devices to store and to transmit medical image information. DICOM Dose Structured Report (DICOM dose SR) is implemented to report radiation exposure information in image acquiring process. and DIOCM Modality Performed Procedure Step (DICOM MPPS) is also partly used to report this exposure with the information in its DICOM tag. This article is focused on three type of radiation exposure information of DICOM standards, 1) DICOM dose SR, 2) DICOM MPPS and 3) Radiation Exposure Monitoring(REM) profile by Integrating the Healthcare Enterprise(IHE), to study on radiation exposure reporting. Healthcare facility and its staff of medical imaging related to radiation exposure should have a deep understanding of radiation exposure, and it required a standards to enhance the quality control of medical imaging and the safety of patients and staffs. Staff member have to pay attention on radiation exposures and controlling processes from the purchasing stage of X-ray devices.

  14. A very simple, robust and fast method for estimating and displaying average time constants of T2 decays from multiecho MRI images using color intensity projections

    CERN Document Server

    Cover, Keith S

    2008-01-01

    While the multiexponential nature of T2 decays measured in vivo is well known, characterizing T2 decays by a single time constant is still very useful when differentiating among structures and pathologies in MRI images. A novel, robust, fast and very simple method is presented for both estimating and displaying the average time constant for the T2 decay of each pixel from a multiecho MRI sequence. The average time constant is calculated from the average of the values measured from the T2 decay over many echoes. For a monoexponential decay, the normalized decay average varies monotonically with the time constant. Therefore, it is simple to map any normalized decay average to an average time constant. This method takes advantage of the robustness of the normalized decay average to both artifacts and multiexponential decays. Color intensity projections (CIPs) were used to display 32 echoes acquired at a 10ms spacing as a single color image. The brightness of each pixel in each color image was determined by the i...

  15. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.

    Science.gov (United States)

    Serrat, Maria A; Efaw, Morgan L; Williams, Rebecca M

    2014-02-15

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

  16. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas.

    Science.gov (United States)

    Musgrave, Christopher S A; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 10(10) and 10(11) W/cm(2)) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  17. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  18. Measurements of neutron distribution in neutrons-{gamma}-rays mixed field using imaging plate for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kenichi [Center of Medical Education, Sapporo Medical University, 17, Minami 1 Jo, Chuo-ku, Sapporo 060-8556 (Japan)], E-mail: tanakaken@sapmed.ac.jp; Endo, Satoru [Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2010-01-15

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and {gamma}-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D{sub 2}O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by {gamma}-rays, which was estimated using IP without Gd. The {gamma}-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for {sup 60}Co {gamma}-rays, in estimating the {gamma}-ray contribution to Gd-doped IP signal. Then measured distribution of the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction rate is so sensitive to {gamma}-ray energy, e.g. the discrepancy of the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33 keV to 1.253 MeV.

  19. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    Science.gov (United States)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  20. Polyplanar optical display electronics

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  1. The License Plate Image Binarization Based on Otsu Algorithm and Its MATLAB Realization%基于Otsu算法的车牌图像二值化及其Matlab实现

    Institute of Scientific and Technical Information of China (English)

    陈思

    2012-01-01

    Using the technology of binary license plate image based on Otsu algorithm, the principle of Otsu algorithm and the method principle of binary processing of license plate gray image are given in this article. At last, the effect of license plate image binarization is realized by MATLAB.%本文利用Otsu算法二值化车牌图像的技术,给出了Otsu算法的原理,以及对车牌灰度图像进行二值化处理的方法原理;最后用MATLAB来实现车牌图像二值化的效果。

  2. Image Acquisition and VGA Display Based on OV7620 and FPGA%基于FPGA和OV7620的图像采集及VGA显示

    Institute of Scientific and Technical Information of China (English)

    宋海吒; 唐立军; 谢新辉

    2011-01-01

    In order to complete Video image processing system,design of image acquisition and display system. In this system, FPGA is used as control kernel, through the SCCB bus initialization OV7620 digital image sensor for image acquisition and image data stored; The control signal were synthesized according to the VGA interface protocol and scheduling of THS8133, and the horizontal and vertical synchronization signalswere synthesized according to the VGA interface standard using Verilog HDL. Test shows that the system design is reasonable, simple and easy to implement hardware and can achieve real-time data acquisition and outcome of the aquisition VGA display. This system has been proved to be well designed and highly practical.%为完成视频图像处理系统,设计了图像采集显示系统.系统以FPGA为控制核心,通过SCCB总线初始化OV7620数字图像传感器,实现图像的采集和图像数据的存储;用Verilog HDL编写了对THS8133的控制信号和VGA显示的行同步和场同步信号,完成VGA接口协议.试验表明,系统设计合理,硬件电路简洁且实现容易,能够实现数据的实时采集和采集结果的VGA显示,具有较高的实用价值.

  3. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    Science.gov (United States)

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  4. Structure of the Lithosphere-Asthenosphere System Beneath the Juan de Fuca Plate: Results of Body Wave Imaging Using Cascadia Initiative Data

    Science.gov (United States)

    Byrnes, J. S.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    The plate-scale deployment of ocean bottom seismometers (OBS) as part of the Cascadia Initiative (CI) of NSF provides a unique opportunity to study the structure and dynamics of the lithosphere-asthenosphere system beneath an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continent. Here we present tomographic images of the seismic structure of oceanic upper mantle beneath the Juan de Fuca (JdF) and Gorda plates derived from body wave delay times. The results constrain structural anomalies beneath the JdF and Gorda spreading centers, the Blanco and Mendocino transform faults, near ridge hotspots such as Axial Seamount, and the upper mantle structure beneath the subducting oceanic lithosphere. We measured delay times of teleseismic P and S wave phases for the first two years of the CI. Our tomographic analysis assumes both isotropic and anisotropic starting models and accounts for finite-frequency effects and three-dimensional ray bending. Preliminary results indicate that the upper mantle structure beneath the JdF spreading center is asymmetric, with lower shear wave velocities beneath the Pacific plate (also the direction of ridge migration). On a regional scale, regions of lower seismic velocities beneath the JdF and Gorda spreading centers correlate with shallower ridge depths. Beneath the southern Gorda plate a low velocity anomaly is detected, which is absent to the north; this anomaly is bounded to the south by the Mendocino transform. Ongoing work includes analysis of the third year of CI data, which will improve resolution of structure and allow better definition of anomalies in the vicinity of the Blanco transform. In addition, we will combine ocean and continental data to obtain images of the Cascadia subduction zone.

  5. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukuhiro1962@hotmail.com [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Ito, Ryu; Ohto, Masao; Sakamoto, Akio [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru [Department of General Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi, Chiba 260-0856 (Japan); Yamagata, Hitoshi [Toshiba Medical Systems Corporation, Otawara 324-0036 (Japan)

    2012-09-15

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  6. Functionalized Nano-Film Microchannel Plate: A Single High Aspect Ratio Device for High Resolution, Low Noise Astronomical Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to apply proven nano-film technology to enable Microchannel plate (MCP) devices to be manufactured on a range of insulating substrates and...

  7. Functionalized Nano-Film Microchannel Plate: A Single High Aspect Ratio Device for High Resolution, Low Noise Astronomical Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atomic layer deposited functional nano-film technology is used to manufacture Microchannel plate (MCP) devices capable of high gain / low ion feedback operation, on...

  8. Metaphorical Images of Schooling: Beliefs about Teaching and Learning among Prospective Teachers from the United States Displaying Different Motivational Profiles

    Science.gov (United States)

    Thomson, Margareta Maria

    2016-01-01

    This study focused on investigating the types of schooling beliefs (teaching and learning) expressed through metaphorical images by prospective teachers (PTs) from the United States. Participants (N = 215) rated 10 schooling metaphors illustrating the "student-school-teacher" relationships (i.e. "Passenger-Bus-Driver"; Student…

  9. Latest development of display technologies

    Science.gov (United States)

    Gao, Hong-Yue; Yao, Qiu-Xiang; Liu, Pan; Zheng, Zhi-Qiang; Liu, Ji-Cheng; Zheng, Hua-Dong; Zeng, Chao; Yu, Ying-Jie; Sun, Tao; Zeng, Zhen-Xiang

    2016-09-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies.

  10. A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan and Department of Radiology, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan)

    2015-08-15

    Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signals for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors

  11. Defense display market assessment

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    1998-09-01

    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system (NVIS) compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD market for direct-view and large-area military displays is presently estimated to be in excess of 242,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within Service weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern display technologies being developed for civil- commercial markets.

  12. Additive and subtractive transparent depth displays

    NARCIS (Netherlands)

    Kooi, F.L.; Toet, A.

    2003-01-01

    Image fusion is the generally preferred method to combine two or more images for visual display on a single screen. We demonstrate that perceptual image separation may be preferable over perceptual image fusion for the combined display of enhanced and synthetic imagery. In this context image separat

  13. Hyperspectral imaging for detection of non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups on spread plates of mixed cultures

    Science.gov (United States)

    Yoon, Seung Chul; Windham, William R.; Ladely, Scott; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Narang, Neelam; Cray, William C.

    2012-05-01

    We investigated the feasibility of visible and near-infrared (VNIR) hyperspectral imaging for rapid presumptive-positive screening of six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) on spread plates of mixed cultures. Although the traditional culture method is still the "gold standard" for presumptive-positive pathogen screening, it is time-consuming, labor-intensive, not effective in testing large amount of food samples, and cannot completely prevent unwanted background microflora from growing together with target microorganisms on agar media. A previous study was performed using the data obtained from pure cultures individually inoculated on spot and/or spread plates in order to develop multivariate classification models differentiating each colony of the six non-O157 STEC serogroups and to optimize the models in terms of parameters. This study dealt with the validation of the trained and optimized models with a test set of new independent samples obtained from colonies on spread plates of mixed cultures. A new validation protocol appropriate to a hyperspectral imaging study for mixed cultures was developed. One imaging experiment with colonies obtained from two serial dilutions was performed. A total of six agar plates were prepared, where O45, O111 and O121 serogroups were inoculated into all six plates and each of O45, O103 and O145 serogroups was added into the mixture of the three common bacterial cultures. The number of colonies grown after 24-h incubation was 331 and the number of pixels associated with the grown colonies was 16,379. The best model found from this validation study was based on pre-processing with standard normal variate and detrending (SNVD), first derivative, spectral smoothing, and k-nearest neighbor classification (kNN, k=3) of scores in the principal component subspace spanned by 6 principal components. The independent testing results showed 95% overall

  14. Imaging of radioactive material and its host particle from the nuclear power plant accident in Japan by using imaging plate and electron microscopy

    Science.gov (United States)

    Adachi, Kouji; Zaizen, Yuji; Kimura, Tohru; Sakoh, Hiroshi; Igarashi, Yasuhito

    2013-04-01

    The Fukushima Daiichi Nuclear Power Plant accident in Japan on March, 2012, dispersed radioactive materials. In the Meteorological Research Institute, where locates 170 km south west from the power plant, we collected two types of filter aerosol samples and wet and dry deposition particles before and after the accident. Using these samples, we analyzed 1) radioactivity using an imaging plate (IP), which visualizes the radioactivity of samples in a two-dimensional plane with space resolution ~0.05 mm and 2) shape and compositions of particles that host radioactive materials using a scanning electron microscope (SEM) with energy-dispersive X-ray spectrometer (EDS). From the samples collected on March 15 and 21, we found radioactive spots on the filter samples using the IP, suggesting that radioactive materials, presumably Cs, were carried from the power plant. Radioactivity was also detected over the aggregates of dust particles in wet and dry deposition samples collected from March 2011. We did not find any detectable radioactive materials after the April when using the IP. We further investigated the radioactive spots using the SEM to identify the host particles of the radioactive materials and to detect radioactive materials from the EDS analysis. From the SEM analysis, we found that the particles on the filters include sulfate, mineral dust, and metals, but there were no particular particles or materials in the radioactive spots comparing to those in other area. The result suggests that the radioactive materials are hosted on the surface of other particles or inside them. We, so far, did not obtain any evidences that the radioactive materials are particulate with larger than 0.1 micro meter. Further analysis will need to identify the source of radioactive spots from individual particles using a manipulator as well as SEM and IP. Such studies will reveal where the radioactive materials exist in the environment, how they resuspend in the air, and how they could

  15. MR图像中附加图信息提取及图像显示实现%Implementation of Both Additional Information Extraction and Image Display from MR Image

    Institute of Scientific and Technical Information of China (English)

    万遂人; 顾翠艳; 孙钰

    2013-01-01

    MR图像中的附加图信息(overlay)可以为磁共振波谱(MRS)提供指导,同时能帮助医生定位病灶,从而准确显示附加图信息,对辅助医学影像诊断具有非常重要的意义.然而常用的一些DICOM浏览工具在显示DICOM医学图像时往往会丢失对于磁共振波谱研究有重要意义的附加信息.基于此种情况,本文采用江苏省人民医院提供的磁共振波谱数据,对像素的提取方法和附加信息进行仔细研究,同时在DICOM图像上显示实验,并在Eclipse开发环境中,利用Java语言和开源包dcm4che-2.0.23进行DICOM显示程序dicomreader的开发.实验结果证明,本文的Java程序dicomreader软件可以快速将DICOM转换显示为图像并精确显示出附加信息,并且提取出来的附加信息可以用于研究人员定位脑肿瘤等病变组织、对脑组织进行三维重建、对MRI图像进行分割或是根据波谱信息进行临床诊断等相关研究.%Additional figure information in MR images is able to provide guidance for Magnetic Resonance Spectrum (MRS),helping located lesions,and it has certain clinical application significance.While several free Digital Imaging and Communication in Medicine (DICOM) Viewers are able to display DICOM image files and key information,however it still has some shortages in the applications to the area of scientific research.First at all,their major basic function is just to display images.In some extent,they could only give the assistance to the research of magnetic resonance data.And then they are unable to completely display some special kinds of DICOM images,such as Siemens/GE magnetic resonance imaging.The location information of MRI images would be often lost in it.Above all,a program named dicomreader that displays DICOM image properly is developed by using Java and the open source toolkit of dcm4che.The process for extracting overlay pixels and displaying additional information on the DICOM images is also proposed

  16. High spatial resolution X-UV Fresnel zone plates imaging; Imagerie a haute resolution spatiale dans le domaine X-UV a l'aide de lentilles a zone de Fresnel

    Energy Technology Data Exchange (ETDEWEB)

    Pichet-Thomasset, M

    1999-07-01

    The goal of this work is to study the capabilities of imaging of Fresnel zone plates in the 1.5. and 2 keV X-ray range for the imaging of laser-produced plasmas. The diagnostic is composed of a Fresnel zone plate with good imaging capabilities and a multilayer mirror to select the spectral emission bandwidth of the plasma we want to study. This diagnostic was evaluated at the Centre d'Etudes de Limeil-Valenton experiments to study spatial resolution with this kind of X-ray source. The images we obtained showed that there is no geometric aberrations over an object field of several millimetre. Fresnen zone plates are often used for monochromatic biological objects imaging in the water window around 400 eV but they offer large prospects for laser produced plasma imaging. (author)

  17. Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D. [including routines, convolution filtering, image expansion, and fast Fourier transformation

    Science.gov (United States)

    Cecil, R. W.; White, R. A.; Szczur, M. R.

    1972-01-01

    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing.

  18. Arrays of holes fabricated by electron-beam lithography combined with image reversal process using nickel pulse reversal plating

    Science.gov (United States)

    Awad, Yousef; Lavallée, Eric; Lau, Kien Mun; Beauvais, Jacques; Drouin, Dominique; Cloutier, Melanie; Turcotte, David; Yang, Pan; Kelkar, Prasad

    2004-05-01

    A critical issue in fabricating arrays of holes is to achieve high-aspect-ratio structures. Formation of ordered arrays of nanoholes in silicon nitride was investigated by the use of ultrathin hard etch mask formed by nickel pulse reversal plating to invert the tonality of a dry e-beam resist patterned by e-beam lithography. Ni plating was carried out using a commercial plating solution based on nickel sulfamate salt without organic additives. Reactive ion etching using SF6/CH4 was found to be very effective for pattern transfer to silicon nitride. Holes array of 100 nm diam, 270 nm period, and 400 nm depth was fabricated on a 5×5 mm2 area. .

  19. Progress in the development of a new angiography suite including the high resolution micro-angiographic fluoroscope (MAF): a control, acquisition, processing, and image display system (CAPIDS), and a new detector changer integrated into a commercial C-arm angiography unit to enable clinical use

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian N.; Keleshis, Christos; Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel; Rudin, Stephen

    2010-04-01

    Due to the high-resolution needs of angiographic and interventional vascular imaging, a Micro-Angiographic Fluoroscope (MAF) detector with a Control, Acquisition, Processing, and Image Display System (CAPIDS) was installed on a detector changer which was attached to the C-arm of a clinical angiographic unit. The MAF detector provides high-resolution, high-sensitivity, and real-time imaging capabilities and consists of a 300 μm-thick CsI phosphor, a dual stage micro-channel plate light image intensifier (LII) coupled to a fiber optic taper (FOT), and a scientific grade frame-transfer CCD camera, providing an image matrix of 1024×1024 35 μm square pixels with 12 bit depth. The Solid-State X-Ray Image Intensifier (SSXII) is an EMCCD (Electron Multiplying charge-coupled device) based detector which provides an image matrix of 1k×1k 32 μm square pixels with 12 bit depth. The changer allows the MAF or a SSXII region-of-interest (ROI) detector to be inserted in front of the standard flat-panel detector (FPD) when higher resolution is needed during angiographic or interventional vascular imaging procedures. The CAPIDS was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF or SSXII including: fluoroscopy, roadmapping, radiography, and digital-subtraction-angiography (DSA). The total system has been used for image guidance during endovascular image-guided interventions (EIGI) using prototype self-expanding asymmetric vascular stents (SAVS) in over 10 rabbit aneurysm creation and treatment experiments which have demonstrated the system's potential benefits for future clinical use.

  20. Novel chemiluminescent imaging microtiter plates for high-throughput detection of multiple serum biomarkers related to Down's syndrome via soybean peroxidase as label enzyme.

    Science.gov (United States)

    Zhao, Fang; Chai, Da; Lu, Jusheng; Yu, Jiachao; Liu, Songqin

    2015-08-01

    Novel chemiluminescent (CL) imaging microtiter plates with high-throughput, low-cost, and simple operation for detection of four biomarkers related to Down's syndrome screening were developed and evaluated. To enhance the sensitivity of CL immunosensing, soybean peroxidase (SBP) was used instead of horseradish peroxide (HRP) as a label enzyme. The microtiter plates were fabricated by simultaneously immobilizing four capture monoclonal antibodies, anti-inhibin-A, anti-unconjugated oestriol (anti-uE3), anti-alpha-fetoprotein (anti-AFP), and beta anti-HCG (anti-β-HCG), on nitrocellulose (NC) membrane to form immunosensing microtiter wells. Under a sandwiched immunoassay, the CL signals on each sensing site of the microtiter plates were collected by a charge-coupled device (CCD), presenting an array-based chemiluminescence imaging method for detection of four target antigens in a well at the same time. The linear response to the analyte concentration ranged from 0.1 to 40 ng/mL for inhibin-A, 0.075 to 40 ng/mL for uE3, 0.2 to 400 ng/mL for AFP, and 0.4 to 220 ng/mL for β-HCG. The proposed microtiter plates possessed high-throughput, good stability, and acceptable accuracy for detection of four antigens in clinical serum samples and demonstrated potential for practical applicability of the proposed method to Down's syndrome screening. Graphical Abstract Schematic evaluation of the microtiter plater for simultaneous detection of the four biomarkers.

  1. Establishing a Customized Guide Plate for Osteotomy in Total Knee Arthroplasty Using Lower-extremity X-ray and Knee Computed Tomography Images

    Institute of Scientific and Technical Information of China (English)

    Jin Zhang; Xiao-Bin Tian; Li Sun; Ru-Yin Hu; Jia-Liang Tian; Wei Han; Jin-Min Zhao

    2016-01-01

    Background: The conventional method cannot guarantee the precise osteotomies required for a perfect realignment and a better prognosis after total knee arthroplasty (TKA).This study investigated a customized guide plate for osteotomy placement in TKAs with the aid of the statistical shape model technique using weight-bearing lower-extremity X-rays and computed tomography (CT) images of the knee.Methods: From October 2014 to June 2015, 42 patients who underwent a TKA in Guizhou Provincial People's Hospital were divided into a guide plate group (GPG, 21 cases) and a traditional surgery group (TSG, 21 cases) using a random number table method.In the GPG group, a guide plate was designed and printed using preoperative three-dimensional measurements to plan and digitally simulate the operation.TSG cases were treated with the conventional method.Outcomes were obtained from the postoperative image examination and short-term follow-up.Results: Operative time was 49.0 ± 10.5 min for GPG, and 62.0 ± 9.7 min in TSG.The coronal femoral angle, coronal tibial angle, posterior tibial slope, and the angle between the posterior condylar osteotomy surface and the surgical transepicondylar axis were 89.2 ± 1.7°, 89.0 ± 1.1°, 6.6 ± 1.4°, and 0.9 ± 0.3° in GPG, and 86.7 ± 2.9°, 87.6 ± 2.1°, 8.9 ± 2.8°, and 1.7 ± 0.8° in TSG, respectively.The Hospital for Special Surgery scores 3 months after surgery were 83.7 ± 18.4 in GPG and 71.5 ± 15.2 in TSG.Statistically significant differences were found between GPG and TSG in all measurements.Conclusions: A customized guide plate to create an accurate osteotomy in TKAs may be created using lower-extremity X-ray and knee CT images.This allows for shorter operative times and better postoperative alignment than the traditional surgery.Application of the digital guide plate may also result in better short-term outcomes.

  2. 基于三值图像的车牌定位算法%License plate location algorithm based on three-valued image

    Institute of Scientific and Technical Information of China (English)

    安红新; 蒋建国; 齐美彬; 刘红海

    2012-01-01

    A new method is presented for locating license plates in complex background, such as uneven illumination. Firstly, the color image is converted into three-valued image processing. Then using the color consistency between the license plate characters, the license plate location is carried out by positioning of the character spacing line inverse area, therefore the difficult problem of positioning is solved. The experimental results show that the algorithm can accurately locate the license plate, has good robust to the impact of the body color and the color of the outside world, and can effectively exclude printing characters such as texture cluster disruption. It also shows that the method makes up for the information missing caused by license plate image binary, and provides more useful character information for the subsequent character segmentation, recognition processing.%针对复杂场景中光照不均匀情况下的车牌定位问题,提出了一种新的定位方法.该方法首先对彩色图像进行三值化,然后利用车牌字符之间颜色的一致性,通过定位字符间隔线反推字符区域进行车牌定位,解决了定位难的问题.实验结果表明,本文算法可以准确定位车牌,对车身颜色和外界颜色的影响有很好的鲁棒性,有效剔除打印字符等纹理簇照成的干扰,同时弥补了在光照不均匀等情况下车牌区域进行二值化可能导致的信息缺失,为后续字符分割、识别处理提供更有利的信息.

  3. Design of image vibrotactile display system for the blind%用于盲人的图像振动触觉显示系统设计

    Institute of Scientific and Technical Information of China (English)

    吴涓; 宋振中; 吴伟雄; 李莅圆; 宋爱国

    2011-01-01

    In order to help the visually impaired perceive images with vibrotactile device, a tactile image display system is designed. It consists of a camera and an 8 × 8 tactor array based on an embedded system. In this system, the image is acquired from the camera, and then a 2-D image outline is captured. And the tactor array is automatically numbered into a linked list, producing dynamic vibrotactile stimuli, through which users can perceive image outline. The experimental results show that the vibrotactile display system has advantages in timeliness and portability. The dynamic vibrating coding is consistent with human tactile perception characters. Using this device, subjects with close contours can be identified more effectively.%为了帮助视觉障碍者以振动触觉方式感知图像信息,设计了一个能自动采集图像信息并将图像轮廓转换为振动触觉刺激的触觉显示系统.该系统主要由摄像头和基于嵌入式系统的8x8振动触觉刺激阵列组成.系统能通过摄像头采集图片信息,提取物体二维轮廓特征,并以顺时针链表形式依次触发振动电机,产生动态振动触觉刺激,让佩戴者通过触觉刺激感知图像中物体轮廓特征.实验表明,该原理样机系统具有实时性好、携带方便的优点.动态振动触觉编码的方法符合人的触觉感知特性,对封闭轮廓物体形状的触觉提示识别率较高.

  4. Attempts of Thermal Imaging Camera Usage in Estimations of the Convective Heat Loss From a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Denda Hubert

    2014-01-01

    Full Text Available In this paper a new method for determining heat transfer coefficients using a gradient method has been developed. To verify accuracy of the proposed method vertical isothermal heating plate with natural convection mechanism has been examined. This configuration was deliberately chosen, because of the fact that such case is historically the earliest and most thoroughly studied and its rich scientific documentation – the most reliable. New method is based on temperature field visualization made in perpendicular plane to the heating surface of the plate using infrared camera. Because the camera does not record temperature of air itself but the surface only, therefore plastic mesh with low thermal conductivity has been used as a detector. Temperature of each mesh cell, placed perpendicular to the vertical heating surface and rinsed with convection stream of heated air could be already recorded by infrared camera. In the same time using IR camera surface of heating plate has been measured. By numerical processing of the results matrix temperature gradient on the surface ∂T/∂x │ x=0, local heat transfer coefficients αy, and local values of Nusselt number Nuy, can be calculated. After integration the average Nusselt number for entire plate can be calculated. Obtained relation characteristic numbers Nu = 0.647 Ra 0.236 (R2 = 0.943, has a good correlation with literature reports and proves usefulness of the method.

  5. Panoramic endoluminal display with minimal image distortion using circumferential radial ray-casting for primary three-dimensional interpretation of CT colonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Soo; Park, Seong Ho; Kim, Namkug; Lee, Jeongjin; Kim, Ah Young; Ha, Hyun Kwon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Kim, Jin Kook [INFINITT Co., Ltd., Seoul (Korea); Park, Beom Jin [Korea University College of Medicine, Department of Radiology, Seoul (Korea); Kim, Young Jun [Konkuk University School of Medicine, Konkuk University Hospital, Department of Radiology, Seoul (Korea); Lee, Min Woo [Konkuk University School of Medicine, Konkuk University Hospital, Department of Radiology, Seoul (Korea); Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology, Seoul (Korea)

    2009-08-15

    The purpose of this study was to develop a panoramic endoluminal display technique, the band view, which causes minimal image distortion, and to determine its feasibility as a time-efficient primary three-dimensional review method of CT colonography (CTC). Image distortion was compared between the band view and four other three-dimensional review modes using ten 10-mm and ten 20-mm electronically generated polyps. Diagnostic performance and interpretation time were compared between the band view and the conventional endoluminal view by two independent readers in 52 patients who underwent CTC and colonoscopy on the same day. Mean image distortion index values, in which 1 indicates no distortion and the larger value represents greater distortion, were significantly smaller with the band view (1.03 and 1.01 for 10-mm and 20-mm polyps, respectively) than with the filet view (1.65 and 1.55) or the virtual colon dissection (3.27 and 3.85) (P{<=}0.004). The sensitivity and specificity for detecting adenomatous polyps {>=}6 mm did not differ, but the mean interpretation time was significantly shorter with the band view than with the conventional endoluminal view by 1.8 and 4.5 minutes in readers 1 and 2, respectively (P<0.0001). The band view can be a time-efficient alternative for primary three-dimensional review of CTC. (orig.)

  6. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    CERN Document Server

    Alejo, A; Ahmed, H; Krygier, A G; Doria, D; Clarke, R; Fernandez, J; Freeman, R R; Fuchs, J; Green, A; Green, J S; Jung, D; Kleinschmidt, A; Lewis, C L S; Morrison, J T; Najmudin, Z; Nakamura, H; Nersisyan, G; Norreys, P; Notley, M; Oliver, M; Roth, M; Ruiz, J A; Vassura, L; Zepf, M; Borghesi, M

    2014-01-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6+, O8+, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented.

  7. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    Science.gov (United States)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  8. Position-sensitive detector system OBI for High Resolution X-Ray Powder Diffraction using on-site readable image plates

    Science.gov (United States)

    Knapp, M.; Joco, V.; Baehtz, C.; Brecht, H. H.; Berghaeuser, A.; Ehrenberg, H.; von Seggern, H.; Fuess, H.

    2004-04-01

    A one-dimensional detector system has been developed using image plates. The detector is working in transmission mode or Debye-Scherrer geometry and is on-site readable which reduces the effort for calibration. It covers a wide angular range up to 110° and shows narrow reflection half-widths depending on the capillary diameter. The acquisition time is in the range of minutes and the data quality allows for reliable Rietveld refinement of complicated structures, even in multi-phase samples. The detector opens a wide field of new applications in kinetics and temperature resolved measurements.

  9. Position-sensitive detector system OBI for High Resolution X-Ray Powder Diffraction using on-site readable image plates

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, M. E-mail: mknapp@tu-darmstadt.de; Joco, V.; Baehtz, C.; Brecht, H.H.; Berghaeuser, A.; Ehrenberg, H.; Seggern, H. von; Fuess, H

    2004-04-01

    A one-dimensional detector system has been developed using image plates. The detector is working in transmission mode or Debye-Scherrer geometry and is on-site readable which reduces the effort for calibration. It covers a wide angular range up to 110 deg. and shows narrow reflection half-widths depending on the capillary diameter. The acquisition time is in the range of minutes and the data quality allows for reliable Rietveld refinement of complicated structures, even in multi-phase samples. The detector opens a wide field of new applications in kinetics and temperature resolved measurements.

  10. Dynamic Color Displays Using Stepwise Cavity Resonators.

    Science.gov (United States)

    Chen, Yiqin; Duan, Xiaoyang; Matuschek, Marcus; Zhou, Yanming; Neubrech, Frank; Duan, Huigao; Liu, Na

    2017-09-13

    High-resolution multicolor printing based on pixelated optical nanostructures is of great importance for promoting advances in color display science. So far, most of the work in this field has been focused on achieving static colors, limiting many potential applications. This inevitably calls for the development of dynamic color displays with advanced and innovative functionalities. In this Letter, we demonstrate a novel dynamic color printing scheme using magnesium-based pixelated Fabry-Pérot cavities by gray scale nanolithography. With controlled hydrogenation and dehydrogenation, magnesium undergoes unique metal and dielectric transitions, enabling distinct blank and color states from the pixelated Fabry-Pérot resonators. Following such a scheme, we first demonstrate dynamic Ishihara plates, in which the encrypted images can only be read out using hydrogen as information decoding key. We also demonstrate a new type of dynamic color generation, which enables fascinating transformations between black/white printing and color printing with fine tonal tuning. Our work will find wide-ranging applications in full-color printing and displays, colorimetric sensing, information encryption and anticounterfeiting.

  11. Crosstalk elimination in multi-view autostereoscopic display based on polarized lenticular lens array

    Science.gov (United States)

    Wang, Zhi-Yuan; Hou, Chun-Ping

    2015-01-01

    An autostereoscopic display composed of a directional backlight, an image display panel, a striped half-wave plate, and a polarized lenticular lens array is proposed. The directional backlight emitting the parallel light can redirect the cones of light to lenticular lens array and reduce the chromatic spatial-interference effect. The striped half-wave plate, located in front of the image display panel, transformed the polarization direction of the lights from the directional backlight into two mutually perpendicular directions. The polarized lenticular lens array not only can divide the light from the left and right view images to send to left and right eyes but also can reduce the crosstalk of the stereoscopic images. The proposed autostereoscopic display can produce high quality stereoscopic images without crosstalk at the optimal viewing distance. Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A301), the National Natural Science Foundation of China (Grant No. 60932007), the Postdoctoral Science Programs Foundation of the Ministry of Education of China (Grant No. 0110032110029), and the Key Projects in the Tianjin Science & Technology Pillar Program, China (Grant No. 11ZCKFGX02000).

  12. The Ultimate Display

    CERN Document Server

    Fluke, C J

    2016-01-01

    Astronomical images and datasets are increasingly high-resolution and multi-dimensional. The vast majority of astronomers perform all of their visualisation and analysis tasks on low-resolution, two-dimensional desktop monitors. If there were no technological barriers to designing the ultimate stereoscopic display for astronomy, what would it look like? What capabilities would we require of our compute hardware to drive it? And are existing technologies even close to providing a true 3D experience that is compatible with the depth resolution of human stereoscopic vision? We consider the CAVE2 (an 80 Megapixel, hybrid 2D and 3D virtual reality environment directly integrated with a 100 Tflop/s GPU-powered supercomputer) and the Oculus Rift (a low- cost, head-mounted display) as examples at opposite financial ends of the immersive display spectrum.

  13. Research on color restoration of color image display%彩色图像显示系统的色彩还原技术研究

    Institute of Scientific and Technical Information of China (English)

    王欢; 陈向宁; 姜明勇

    2014-01-01

    图像从输入设备到显示器观察,再到输出设备或最终的图像文件的流程中,由于不同设备的呈色机理、呈色特性、所采用的呈色空间不同,造成颜色信息在不同的设备间传递时出现了偏差,要维护原始的色彩是非常困难的。借助PCS空间,通过多项式分区回归的方法进行色彩空间转换。实验结果表明,这种方法能够实现彩色图像显示系统的色彩还原且精度较高。%In the course of image processing, an image enters the input device, experiences observation in the monitor, and arrives at the output device or the final image file. In this process, due to the different coloring mechanism, colorimetric characteristics and colorimetric space of different devices, there occurs color distortion when color information passes between different devices, so it is rather difficult to maintain the original color. With the PCS space, this paper converts color spaces by the method of polynomial zone regression. The result shows that this method can achieve color reproduc-tion for color image display system with high precision.

  14. The VLT Real Time Display

    Science.gov (United States)

    Herlin, T.; Brighton, A.; Biereichel, P.

    The VLT Real-Time Display (RTD) software was developed in order to support image display in real-time, providing a tool for users to display video like images from a camera or detector as fast as possible on an X-Server. The RTD software is implemented as a package providing a Tcl/Tk image widget written in C++ and an independent image handling library and can be used as a building block, adding display capabilities to dedicated VLT control applications. The RTD widget provides basic image display functionality like: panning, zooming, color scaling, colormaps, intensity changes, pixel query, overlaying of line graphics. A large set of assisting widgets, e.g., colorbar, zoom window, spectrum plot are provided to enable the building of image applications. The support for real-time is provided by an RTD image event mechanism used for camera or detector subsystems to pass images to the RTD widget. Image data are passed efficiently via shared memory. This paper describes the architecture of the RTD software and summarizes the features provided by RTD.

  15. Attempts of Thermal Imaging Camera Usage in Estimations of the Convective Heat Loss From a Vertical Plate

    OpenAIRE

    Denda Hubert; Lewandowski Witold M.; Ryms Michał; Wcisło Patrycja; Klugmann-Radziemska Ewa

    2014-01-01

    In this paper a new method for determining heat transfer coefficients using a gradient method has been developed. To verify accuracy of the proposed method vertical isothermal heating plate with natural convection mechanism has been examined. This configuration was deliberately chosen, because of the fact that such case is historically the earliest and most thoroughly studied and its rich scientific documentation – the most reliable. New method is based on temperature field visualization made...

  16. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    Science.gov (United States)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  17. 基于条件随机场的低图像质量车牌字符分割%SEGMENTING CHARACTERS ON LICENSE PLATE WITH LOW IMAGE QUALITY BASED ON CONDITIONAL RANDOM FIELDS

    Institute of Scientific and Technical Information of China (English)

    傅建强; 冯瑞

    2014-01-01

    提出一种基于条件随机场的车牌字符分割算法,能够对光照不均、相机拍摄角度造成的低图像质量的车牌图像,特别是日益增多的车牌边框与字符相连接车牌图像进行有效的字符分割。算法首先进行车牌图像校正,然后利用标注车牌数据进行模型学习,对车牌图像像素列进行分类识别,最后组合成车牌字符分割结果。理论分析与实验结果验证了算法的有效性。%This paper proposes a conditional random fields-based character segmentation method,it can make effective characters segmentation for the license plate image with low image quality caused by uneven light and shooting angle of camera,etc.,in particular,for those increasingly growing license plates images whose plate characters are connected with plate borders.First,the correction of license plate image is conducted,and then the labelled plate data are used to train the model for the classification and identification of the pixel columns in license plate image,finally the segmentation results of the license plate characters are combined.Theoretical analysis and experimental results all verify the effectiveness of the algorithm.

  18. Ten inch Planar Optic Display

    Energy Technology Data Exchange (ETDEWEB)

    Beiser, L. [Beiser (Leo) Inc., Flushing, NY (United States); Veligdan, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  19. TOF-SIMS imaging of halide/thiocyanate anions and hydrogen sulfide in mouse kidney sections using silver-deposited plates.

    Science.gov (United States)

    Akahoshi, Noriyuki; Ishizaki, Itsuko; Naya, Masayuki; Maekawa, Toshihiko; Yamazoe, Shougo; Horiuchi, Tadashi; Kajimura, Mayumi; Ohashi, Yoshiharu; Suematsu, Makoto; Ishii, Isao

    2012-02-01

    In vivo imaging of reactive small molecule metabolites with high spatial resolution and specificity could give clues to understanding pathophysiology of various diseases. We herein applied time of flight-secondary ion mass spectrometry (TOF-SIMS) to newly developed silver-deposited plates that were stamped on mouse tissues, and succeeded in visualization of halide (Cl(-), Br(-), and I(-)) and pseudohalide thiocyanate (SCN(-)) anions, a class of substrates for neutrophils/eosinophil peroxidases to produce hypohalous acids (HOX/OX(-) mixture; X: (pseudo)halides), as well as hydrogen sulfide (H(2)S). Forty-micrometer frozen mouse kidney sections on cover glasses were attached to 37 °C preheated silver-deposited plates and incubated at -10 °C for 1 h. After sputter cleaning to remove surface contaminants, the plates were analyzed by TOF-SIMS to identify distribution of Br(-), AgBr(2)(-), I(-), AgI(2)(-), SCN(-), as well as S(2-) and AgS(-) as products of tissue-derived H(2)S. Br(-), AgBr(2)(-), I(-), and SCN(-) anions were mainly distributed in core regions including the inner medulla and inner stripe of the outer medulla (except for I(-)), rather than outer regions such as the cortex and outer stripe of the outer medulla. AgI(2)(-) anion was spread over the whole kidney, although its levels were relatively low. In contrast, S(2-) and AgS(-) anions were mainly present in the outer regions. To our knowledge, this is the first imaging study to reveal the distribution of (pseudo)halides and H(2)S in animal tissue sections.

  20. Sobre uma metodologia de apresentação de imagem médica About a method for displaying medical images

    Directory of Open Access Journals (Sweden)

    Biancamano Pellegrinetti

    2004-06-01

    Full Text Available Este trabalho demonstra os resultados preliminares, parciais, da experimentação e aceitação de uma metodologia para apresentação de imagens médicas, que utiliza programas simples, sem custo por serem "freewares", que podem ser utilizados em plataformas computacionais medianas, normalmente subutilizadas, não sendo necessários programas extensos, de alto custo, aprendizado dificultado pela sofisticação, tornando mais simples e acessível a possibilidade de visualização, apresentação, impressão, documentação, arquivamento, transmissão eletrônica e disponibilidade para consulta de uma gama de imagens médicas.We present the preliminary results of testing and acceptance of a method for displaying medical images that employs simple computer freewares that can be run in unsophisticated computational platforms, which are commonly underutilized. This method allows easy and accessible visualization, printing, documenting, archiving, consulting and electronic transmission of a wide range of medical images without the need of expensive, complex and difficult to learn softwares.

  1. Modification and utilization of abandoned oral radioactive image plate%口腔放射中报废成像板的改造利用

    Institute of Scientific and Technical Information of China (English)

    黄朝辉

    2011-01-01

    目前应用CR(computed radiography)技术进行口腔颌面医学影像检查被广泛应用.作为CR技术的核心组件-成像板(image plate,IP)承载着重要作用.其易磨损及划伤势必会影响成像效果,也缩短了使用寿命.笔者在操作中利用一些常用的工具对IP加以改造,使其能达到理想的使用寿命,而且摄取的影像更加清晰.%Compuled radiography (CR) technology is widely used to obtain maxillotacial radiograph.As the core component, image plate (IP) plays an important role in CR technology.However, IP is liable to be abraded and scuffed, the service life of IP is limited.Accordingly, We modified IP, prolonged the service life of IP and increased the resolution of radiograph.

  2. Multiple-Dynode-Layer Microchannel Plate

    Science.gov (United States)

    Woodgate, Bruce E.

    1990-01-01

    Improved microchannel-plate electron image amplifier made of stack of discrete microchannel-plate layers. New plates easier to manufacture because no need to etch long, narrow holes, to draw and bundle thin glass tubes, or to shear plates to give microchannels curvatures necessary for reduction of undesired emission of ions. Discrete dynode layers stacked with slight offset from layer to layer to form microchannel plate with curved channels. Provides for relatively fast recharging of microchannel dynodes, with consequent enhancement of performance.

  3. Universal Numeric Segmented Display

    CERN Document Server

    Azad, Md Abul kalam; Kamruzzaman, S M

    2010-01-01

    Segmentation display plays a vital role to display numerals. But in today's world matrix display is also used in displaying numerals. Because numerals has lots of curve edges which is better supported by matrix display. But as matrix display is costly and complex to implement and also needs more memory, segment display is generally used to display numerals. But as there is yet no proposed compact display architecture to display multiple language numerals at a time, this paper proposes uniform display architecture to display multiple language digits and general mathematical expressions with higher accuracy and simplicity by using a 18-segment display, which is an improvement over the 16 segment display.

  4. Conventional versus storage phosphor-plate digital images to visualize the root canal system contrasted with a radiopaque medium.

    Science.gov (United States)

    Naoum, Hani J; Chandler, Nicholas P; Love, Robert M

    2003-05-01

    The pulp tissue was removed from 20 mandibular first molar teeth using 2.5% NaOCl irrigation and hand files. The dried canals were infused with radiopaque contrast medium. Standardized conventional and Digora digital images were obtained of each tooth positioned in a dried mandible at 0- and 30-degree horizontal angulations. Three evaluators rated the image clarity of the 0- and 30-degree original, enhanced, three-dimensional, zoom, and reverse digital image modes as superior, equal, or inferior to corresponding 0- and 30-degree conventional radiographs. The ratings were compared using the Wilcoxon signed rank test. The original, three-dimensional, zoom, or reverse digital images were inferior to the conventional radiographs for clarity of canal anatomy. The enhanced digital images were not always inferior to the conventional radiographs and were the only images superior to the original digital images. Overall, evaluators rated the image clarity of root canal anatomy on conventional radiographs better than on Digora images. However, factors in the experimental design may have contributed to this result.

  5. Hierarchical self-organization of tectonic plates

    CERN Document Server

    Morra, Gabriele; Müller, R Dietmar

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.

  6. Three-dimensional display technologies.

    Science.gov (United States)

    Geng, Jason

    2013-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

  7. A design for eliminating display rotation of image-watching-aiming-system based on FPGA%一种基于FPGA的图像观瞄系统消像旋设计

    Institute of Scientific and Technical Information of China (English)

    冉欢欢; 刘建高; 高升久; 黄自力

    2011-01-01

    针对现代武器观瞄系统显示图像旋转干扰操作手瞄准的问题,提出了一种基于FPGA的消像旋设计方案.该方案根据从平台姿态传感器获得的旋转姿态信息,对显示图像进行反向旋转,从而消除显示图像的旋转,方便操作手瞄准.该方案同时扩展了无极变焦功能,解决了操杆与显示分辨力不一致的问题,提高了武器观瞄系统的瞄准精确度.%To tackle with the problem that the rotation of displaying image disturbs the operator in modern weapon aiming system, this article proposes a kind of design for eliminating display rotation of image-watching-aiming-system based on Field Programmable Gate Array(FPCA). This scheme obtains rotation carriage information from the plat roof carriage sensor, rotates the displaying image reversely,eliminates the rotation of displaying image, and convemences the aiming of operators. This scheme also expands the ability of changeable focus successively, solves the inconsistence of resolution ratio between the displaying and the operational stick, and improves the perfect precision of aiming.

  8. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    Directory of Open Access Journals (Sweden)

    Corrado Costa

    2012-05-01

    Full Text Available In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples’ color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix. This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.

  9. Application of Image Processing in License Plate localization and Character Segmentation%图像处理技术在车牌定位与字符分割中的应用

    Institute of Scientific and Technical Information of China (English)

    张馨; 林凤涛

    2012-01-01

    The plate location and character segmentation is a key part of the license plate recognition systems,the positioning accuracy and the segmentation accuracy directly effects the effect of the license plate recognition.Based on the image processing technology,it firstly correct grayscale images, Wiener filtering, binarization in order to extracted the plate from the image the license plate image accurately,Linear mapping is used to enhance image grayscale range, plate location can be obtained based on the horizontal scanning lines combined with prior constraints algorithm.license character segmentation problem can be solved by otsu method based on the least squares method. Simulation experimental with Matlab results proved that the algorithm proposed has advantages of fast license plate localization and character segmentation.%车牌定位和字符分割是车牌识别系统中关键的部分,定位的准确程度与分割准确性直接影响到车牌识别的效果.基于图像处理技术,对车牌灰度图像的进行灰度修正,Wiener滤波并进行二值化,使之能够准确地从图像中提取出车牌.采用线性映射的方法,增强图像灰度范围,基于水平扫描与先验知识约束条件相结合的算法进行车牌定位,同时利用最小二乘法原理,实现了最大类间方差法对车牌进行分割.用MATLAB软件进行仿真实现,验证效果好.

  10. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  11. 利用薄板样条函数的无人机飞行质量检查%Flight Quality Inspection for UAV Images Using Thin Plate Spline

    Institute of Scientific and Technical Information of China (English)

    佘毅; 李冲; 黄瑞金

    2016-01-01

    针对无人机航测影像重叠度、旋角等检查项受飞行状态和地形起伏影响难以准确评估飞行质量的问题,提出一种快速自动评价无人机飞行质量的方法.该方法结合ORB(Oriented FAST and Rotated BRIEF)匹配算法和薄板样条函数,可用于无人机影像航向重叠度、旁向重叠度和像片旋角的检查.首先采用ORB算法与最近邻算法提取影像间的同名点,使用随机抽样一次性方法剔除误匹配点对,然后通过薄板样条函数建立影像间的坐标转换关系,最后依据无人机飞行质量检验方法计算影像间的重叠度和旋角.实验结果表明本文提出方法检查结果的可靠性.%Flight quality is difficult to accurately assess,because the degree of overlapping and swing angle are affected by the flight state and the terrain.This paper proposes a method that could fast and automatically evaluate the flight quality of the unmanned aerial vehicle.Combined the ORB matching algorithm and the thin plate spline mapping model,this method could calculate overlap and swing angle.Firstly,the ORB algorithm and the nearest neighbor algorithm are employed to extract homologue points.The RANSAC is employed to eliminate matching error.Secondly,the thin plate spline model is employed to establish the relationship between the images.Finally,the image overlap and the swing angle are calculated based on the calculation method of the flight quality of unmanned aerial vehicle images.The actual data was used to verify the method.The experimental results show that the method based on the ORB matching algorithm and the thin plate spline mapping model could reach reliable examination results.

  12. The moving plate capacitor paradox

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  13. Breath-hold gadolinium-enhanced three-dimensional MR thoracic aortography. Higher spatial resolution imaging with phased-array coil and three-dimensional surface display

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Hata, Ryoichiro; Tamura, Akihisa; Kohata, Minako; Miyasaka, Kenji; Kajima, Toshio; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    2000-09-01

    The aim of this study was to examine signal intensities of data sets from MR thoracic aortography and to evaluate three-dimensional surface display (3DSD) for postprocessing. Twenty-five patients were imaged with gadolinium-enhanced 3D fast gradient echo sequence. The intensity at the aortic arch was significantly higher than that at the mediastinal fat (p<0.0001). The signal-to-noise ratio was lower at the aortic arch than at the ascending and descending aorta, whereas the contrast-to-noise ratio was fairly high at the aortic arch. Although in one case (4%) the intensity at the arch was smaller than that at the mediastinal fat, 3DSD was successfully performed in all cases. Superiority of 3DSD over maximum intensity projection was obtained in 67% of the cases. 3DSD was evaluated to be superior to maximum intensity projection in all cases of thoracic aortic aneurysm and coarctation of aorta. Higher resolution MR thoracic aortography could be successfully performed with phased-array coil and 3DSD. (author)

  14. Display Apple M7649Zm

    CERN Multimedia

    2001-01-01

    It was Designed for the Power Mac G4. This Apple studio display gives you edge-to-edge distortion-free images. With more than 16.7 million colors and 1,280 x 1,024 dpi resolution, you view brilliant and bright images on this Apple 17-inch monitor.

  15. 车牌识别系统中的超分辨率图像重建技术研究%Research of super-resolution image reconstruction in license plate recognition system

    Institute of Scientific and Technical Information of China (English)

    林明儒

    2015-01-01

    针对车牌识别系统中图像模糊和分辨率低而影响车牌识别效果的问题,提出利用超分辨率重建来提高车牌图像分辨率的解决方法。建立了凸集投影(POCS)算法的数学模型,研究了凸集投影超分辨率重建的实现过程,并用仿真实验进行了验证。实验结果表明:采用凸集投影算法进行图像重建,可以提高车牌图像分辨率,丰富图像细节信息,能够有效提高车牌识别的准确率,并且迭代次数越多,图像重建效果越好。%In the license plate recognition system,blurred image and low resolution affect the effect of license plate recognition.A method which uses the super-resolution image reconstruction to improve the resolution of plate image is proposed.In this paper,mathematical model of projection onto convex sets (POCS)is estab-lished and the process of image reconstruction based on POCS is researched.Simulation experiments are con-ducted to verify the research.Experimental results show that,image reconstruction based on POCS algorithm can improve the resolution of license plate image,rich detail information of the image,enhance the vehicle license plate recognition system performance.Through the experiments,the more iterations are made,the better effects of image reconstruction appear.

  16. License plate detection algorithm

    Science.gov (United States)

    Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds

    2013-12-01

    A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.

  17. Noiseless, kilohertz-frame-rate, imaging detector based on micro-channel plates readout with the Medipix2 CMOS pixel chip

    CERN Document Server

    McPhate, J; Tremsin, A; Siegmund, O; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors. The detector consists of proximity focused microchannel plates (MCPs) read out by pixelated CMOS application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2"). Each Medipix2 pixel has an amplifier, lower and upper charge discriminators, and a 14-bit chounter. The 256x256 array can be read out noiselessly (photon counting) in 286 us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. The readout can be electronically shuttered down to a terporal window of a few microseconds with an accuracy of 10 ns. Good quantum efficiencies can be achieved from the x-ray (open faced with opaque photocathodes) to the optical (sealed tube with multialkali or GaAs photocathode).

  18. Applying the digital-image-correlation technique to measure the deformation of an old building’s column retrofitted with steel plate in an in situ pushover test

    Indian Academy of Sciences (India)

    Shih-Heng Tung; Ming-Hsiang Shih; Wen-Pei Sung

    2014-06-01

    An in situ pushover test is carried out on an old building of Guan-Miao elementary school in south Taiwan. Columns of this building are seismically retrofitted with steel plate. The DIC (digital-image-correlation) technique is used to measure the deformation of the retrofitted column. The result shows that the DIC technique can be successfully applied to measure the relative displacement of the column. Additionally, thismethod leads to the measurement of relative displacements formany points on the column simultaneously. Hence, the column deformation curve, rotation and curvature can be determined using interpolation method. The resulting curvaturediagram reveals that the phenomenon of plastic hinge occurs at about 2% storey drift ratio, and that the DIC technique can be applied to measure column deformation in a full scale in situ test.

  19. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  20. Military display market segment: helicopters

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2004-09-01

    The military display market is analyzed in terms of one of its segments: helicopter displays. Parameters requiring special consideration, to include luminance ranges, contrast ratio, viewing angles, and chromaticity coordinates, are examined. Performance requirements for rotary-wing displays relative to several premier applications are summarized. Display sizes having aggregate defense applications of 5,000 units or greater and having DoD applications across 10 or more platforms, are tabulated. The issue of size commonality is addressed where distribution of active area sizes across helicopter platforms, individually, in groups of two through nine, and ten or greater, is illustrated. Rotary-wing displays are also analyzed by technology, where total quantities of such displays are broken out into CRT, LCD, AMLCD, EM, LED, Incandescent, Plasma and TFEL percentages. Custom, versus Rugged commercial, versus commercial off-the-shelf designs are contrasted. High and low information content designs are identified. Displays for several high-profile military helicopter programs are discussed, to include both technical specifications and program history. The military display market study is summarized with breakouts for the helicopter market segment. Our defense-wide study as of March 2004 has documented 1,015,494 direct view and virtual image displays distributed across 1,181 display sizes and 503 weapon systems. Helicopter displays account for 67,472 displays (just 6.6% of DoD total) and comprise 83 sizes (7.0% of total DoD) in 76 platforms (15.1% of total DoD). Some 47.6% of these rotary-wing applications involve low information content displays comprising just a few characters in one color; however, as per fixed-wing aircraft, the predominant instantiation involves higher information content units capable of showing changeable graphics, color and video.

  1. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    Science.gov (United States)

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    Science.gov (United States)

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  3. Image shutters: Gated proximity-focused Microchannel Plate (MCP) wafer tubes versus gated Silicon Intensified Target (SIT) vidicons

    Science.gov (United States)

    Yates, G. J.; King, N. S. P.; Jaramillo, S. A.; Ogle, J. W.; Noel, B. W.; Thayer, N. N.

    Response data, including gating speed, gain, dynamic range, shuttering efficiency, and resolution for 18- and 25-mm-diam proximity-focused microchannel-plate (MCP) intensifiers are compared with similar data for a prototype electrostatically-focused 25-mm-diam gated silicon-intensified-target (SIT) vidicon. Conductive substrate material and thickness used to reduce photocathode resistivity, spacing between gating electrodes to minimize inter-electrode capacitance, the use of conductive grids on the photocathode substrate to permit rapid propagation of the electrical gate pulse to all areas of the photocathode, and different package geometries to provide a more effective interface with external biasing and gating circuitry were varied in both tube types to determine optimal performance from each design. For comparable spatial resolution, most 18-mm-diam MCPs require gate times 2.5 ns while the fastest SIT has demonstrated sub-nanosecond optical gates as short as approximately 400 + or - 50 ps for full shuttering of the 25-mm-diam input window.

  4. Effective color design for displays

    Science.gov (United States)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  5. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate

    Science.gov (United States)

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; Hilsabeck, T. J.; Izumi, N.; Khan, S.; Kyrala, G. A.; Ma, T.; Pak, A.

    2016-11-01

    The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10 × improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method [J. Salmon et al., J. Math. Imaging Vision 48, 279294 (2014)] to improve the robustness of the DIXI data analysis. Here we present results on ignition-relevant experiments at the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P0, P2, and P4 Legendre modes, and their temporal evolution/swings).

  6. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  7. Analysis of multiple recording methods for full resolution multi-view autostereoscopic 3D display system incorporating VHOE

    Science.gov (United States)

    Hwang, Yong Seok; Cho, Kyu Ha; Kim, Eun Soo

    2014-03-01

    In this paper, we propose multiple recording process of photopolymer for a full-color multi-view including multiple-view auto-stereoscopic 3D display system based on VHOE (Volume Holographic Optical Element). To overcome the problems such as low resolution, and limited viewing zone of conventional 3D-display without glasses, we designed multiple recording condition of VHOE for multi-view display. It is verified that VHOE may be optically made by angle-multiplexed recording of pre-designed multiple-viewing zone that uniformly is recorded through optimized exposuretime scheduling scheme. Here, VHOE-based backlight system for 4-view stereoscopic display is implemented, in which the output beams that playing a role reference beam from LGP(Light guide plate)t may be sequentially synchronized with the respective stereo images displayed on the LCD panel.

  8. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  9. 裸眼3D LCD动静态图像显示的设计研究%Design and research on displaying images and texts on naked-eye 3 D LCD

    Institute of Scientific and Technical Information of China (English)

    宋凡; 梁发云; 刘敏; 许鹏; 王兴鹏

    2015-01-01

    The naked-eye 3 D LCD could be applied to various image display device and can also be used to display the 2D and 3D graphics . ×ith the continuous improvement of the TFT LCD resolution,it needed better hardware technology to display the full image correctly. According to the actual demand of displaying images and texts ,the LCD driving interfaces were designed in this paper based on FPGA. And the circuital timing sequence was generated by the hardware logic algorithm to send pixel data correctly through the RGB line. The results showed that the design could achieve stably performance and acquire a dynamic display of images and texts by online de-bugging .%裸眼3D LCD能够应用到多种图像显示器件中,满足二维及三维图形显示。在TFT LCD的分辨率不断提高的情况下,也对正确显示完整图像的硬件技术提出了更高的要求。根据图像与文字显示的现实需求,使用FP-GA来驱动液晶屏接口。并用硬件逻辑算法产生LCD驱动的时序电路,配合RGB数据线完成像素的正确传送。在线调试结果表明该设计能达到稳定的显示效果,实现了图像和字符的动态显示。

  10. Updated defense display market assessment

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    1999-08-01

    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD installed base for direct-view and large-area military displays is presently estimated to be in excess of 313,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within future weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern, especially flat panel, display technologies being developed to replace older, especially cathode ray tube, technology for civil-commercial markets. Total DoD display needs (FPD, HMD) are some 427,000.

  11. Image Processing Technology in the Motor Vehicle License Plate Recognition Technology Application%图像处理技术在机动车车牌自动识别技术中的应用

    Institute of Scientific and Technical Information of China (English)

    宁彬

    2013-01-01

    主要分析了图像处理技术在机动车车牌自动识别技术中的应用.按照车牌定位由彩色图转化到灰度图、车牌区域分割、车牌位置校正等步骤,对车牌字符的识别进行了分析,并对自动识别技术进行了改进.基于图像处理技术设计的机动车辆车牌自动识别系统,在保障交通顺畅运行方面发挥着巨大作用.从实际应用效果看图像处理技术在机动车车牌自动识别技术实际运用中效果良好,具有一定的推广价值.%The application of image processing technology in the motor vehicle license plate automatic identification technology was analyzed. In accordance with the license plate location transformed by the color chart to grayscale, license plate region segmentation, the license plate position correction step on the license plate character recognition, and automatic identification technology improvements. Motor vehicle car brand automatic identification system design based on the image processing technology, play a huge role in the protection of traffic running smoothly. From the effect of practical application of image processing technology in the motor vehicle license plate automatic identification technology to practical use in the good results, the promotional value.

  12. Optical Near-Field Plates

    Science.gov (United States)

    2015-04-08

    color filtering and spectral imaging ,” Nat. Comm. 1, 59 (2010). 3. H.-F. Shi and L. J. Guo, “Design of Plasmonic Near Field Plate at Opitical...AFRL-OSR-VA-TR-2015-0085 OPTICAL NEAR-FILED PLATES Roberto Merlin UNIVERSITY OF MICHIGAN Final Report 04/08/2015 DISTRIBUTION A: Distribution...03-2015 Final 09/01/2009-12/31/2014 Optical Near-Field Plates FA9550-09-1-0636 erlin, Roberto, D. The University of Michigan Ann Arbor, MI 48109

  13. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  14. Distributing Sloan Digital Sky Survey Plates and Posters as Interactive Teaching Tools

    Science.gov (United States)

    Skinner, Danielle; Meredith, Kate; Masters, Karen; MacDonald, Nick

    2016-01-01

    Thousands of aluminum spectroscopic plug plates from the Sloan Digital Sky Surveys await second lives as teaching tools in the Plates for Education program. Educators from formal and informal settings around the globe can take part in this program, which was launched in August of 2015. As part of this EPO effort, educators are provided with a plate, a corresponding poster, and educational materials (through the voyages.sdss.org website). Each plug plate represents the spectroscopic targets from a unique three-degree section of the sky. The poster displays the optical image associated with the target area. Together with the SkyServer Plate Browser and Navigate tools, students can locate individual objects, examine spectra, and pursue their own studies. As of September 2015, forty-five plates and posters had been distributed to teachers during professional development workshops. Follow-up research will be conducted to determine how effective the plates and posters are in teaching students about astronomy and the SDSS data. Materials and outlines for conducting professional development workshops are available to SDSS collaborators interested in hosting their own educational events.

  15. Create Your Plate

    Medline Plus

    Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...

  16. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser".

    Science.gov (United States)

    Boutoux, G; Batani, D; Burgy, F; Ducret, J-E; Forestier-Colleoni, P; Hulin, S; Rabhi, N; Duval, A; Lecherbourg, L; Reverdin, C; Jakubowska, K; Szabo, C I; Bastiani-Ceccotti, S; Consoli, F; Curcio, A; De Angelis, R; Ingenito, F; Baggio, J; Raffestin, D

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  17. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV.

    Science.gov (United States)

    Bonnet, T; Comet, M; Denis-Petit, D; Gobet, F; Hannachi, F; Tarisien, M; Versteegen, M; Aleonard, M M

    2013-01-01

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Région Aquitaine) accelerator at the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  18. Qualitative and quantitative high performance thin layer chromatography analysis of Calendula officinalis using high resolution plate imaging and artificial neural network data modelling.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Loescher, Christine M

    2013-10-10

    Calendula officinalis, commonly known Marigold, has been traditionally used for its anti-inflammatory effects. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of chlorogenic acid, caffeic acid and rutin in Calendula plant extracts. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. A hundred and one signal intensities in each of the HPTLC chromatograms were correlated to the amounts of applied chlorogenic acid, caffeic acid, and rutin using an ANN. The developed ANN correlation was used to quantify the amounts of 3 marker compounds in calendula plant extracts. The minimum quantifiable level (MQL) of 610, 190 and 940 ng and the limit of detection (LD) of 183, 57 and 282 ng were established for chlorogenic, caffeic acid and rutin, respectively. A novel method for quality control of herbal products, based on HPTLC separation, high resolution digital plate imaging and ANN data analysis has been developed. The proposed method can be adopted for routine evaluation of the phytochemical variability in calendula extracts. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Are tiled display walls needed for astronomy?

    CERN Document Server

    Meade, Bernard F; Manos, Steven; Sinnott, Richard O

    2014-01-01

    Clustering commodity displays into a Tiled Display Wall (TDW) provides a cost-effective way to create an extremely high resolution display, capable of approaching the image sizes now gen- erated by modern astronomical instruments. Astronomers face the challenge of inspecting single large images, many similar images simultaneously, and heterogeneous but related content. Many research institutions have constructed TDWs on the basis that they will improve the scientific outcomes of astronomical imagery. We test this concept by presenting sample images to astronomers and non- astronomers using a standard desktop display (SDD) and a TDW. These samples include standard English words, wide field galaxy surveys and nebulae mosaics from the Hubble telescope. These experiments show that TDWs provide a better environment for searching for small targets in large images than SDDs. It also shows that astronomers tend to be better at searching images for targets than non-astronomers, both groups are generally better when em...

  20. Examination of Global Seismic Tomography Images and Sea-Surface Magnetic Field Anomaly Profiles in the West Philippine Basin for the Large Clockwise Rotation of the Philippine Sea Plate during the Last 55 Million Years

    Science.gov (United States)

    Choe, H.; Lee, S. M.

    2014-12-01

    The Philippine Sea Plate is thought to have undergone a 90° clockwise rotation during the last 55 million years. However, evidences for such an argument are rather circumstantial. For instance, paleomagnetic measurements for the large rotation are derived largely from Halmahera, Indonesia which is quite close to the plate boundary. It is thus possible that this region may have undergone local deformation separate from the main parts of the Philippine Sea Plate. In this study, we examine the global seismic tomography images of the mantle beneath the Philippine Sea Plate and the marine magnetic field anomaly data at the sea surface from the West Philippine Basin to see whether they agree with the presumed motion of the Philippine Sea Plate. Our comparison between the plate reconstruction and global tomography suggests that the rotation of Philippine Sea Plate may not have been continuous but instead experienced a temporal break at around 32 Ma. The exact nature of this pause is uncertain, but it may be related to a sudden change in the configuration of subduction systems. A detail comparison with recent results from IODP Legs 350 and 351 is therefore necessary, including a search for a change in the depositional style of basin sediment. We also examined the detailed the shape of magnetic anomalies (such as skewness) and compare them with the previous model by allowing the magnetization to have direction corresponding to that during the opening of the West Philippine Basin. At this moment, it is too early to tell if the sudden change at around 32 Ma or other inferred breaks can be seen in the magnetic profiles as well.