WorldWideScience

Sample records for plate forces provide

  1. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.

    Science.gov (United States)

    Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick

    2018-05-29

    This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (dbraking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (psystem (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.

  2. Rigid two-axis MEMS force plate for measuring cellular traction force

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Jung, Uijin G; Shimoyama, Isao; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi

    2016-01-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µ m  ×  15 µ m  ×  5 µ m base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m −1 and less than 0.05 µ N, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µ N over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement. (paper)

  3. A Development of Force Plate for Biomechanics Analysis of Standing and Walking

    Science.gov (United States)

    Wardoyo, S.; Hutajulu, P. T.; Togibasa, O.

    2016-08-01

    Force plates are known as an excellent teaching aid to demonstrate the kinematics and dynamics of motion and commonly used in biomechanics laboratories to measure ground forces involved in the motion of human. It is consist of a metal plate with sensors attached to give an electrical output proportional to the force on the plate. Moreover, force plates are useful for examining the kinetic characteristics of an athlete's movement. They provide information about the external forces involved in movement that can aid a coach or sports scientist to quantitatively evaluate the athlete's skill development. In this study, we develop our prototype of force plate with less than 100,- simply by using flexible force transducer attached inside rubber matt, in the form of square blocks (dimension: 250 mm × 150 mm × 10 mm), with maximum load up to 60 kg. The handmade force plate was tested by applying biomechanics analysis for standing and walking. The testing was done on Experimental Soccer Courses’ students at the Department of Physical Education, Health and Recreation, University of Cenderawasih. The design of the force plate system together with biomechanics analysis will be discussed.

  4. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.

    Science.gov (United States)

    Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon

    2018-01-01

    The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate, coinci...

  6. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  7. Three-axis optical force plate for studies in small animal locomotor mechanics

    International Nuclear Information System (INIS)

    Hsieh, S. Tonia

    2006-01-01

    The use of force plates to measure whole-body locomotor mechanics is a well-established technique. However, commercially available force plates are not sensitive enough for use on small-bodied vertebrates or invertebrates. The standard design for single- and multiple-axis, high-sensitivity force plates built by individual research groups uses semiconductor foil strain gauges to measure deflections; yet foil strain gauges are highly temperature and position sensitive, resulting in a drifting base line and nonlinear responses. I present here a design for a three-axis optical force plate that was successfully calibrated to measure forces as small as 1.5 mN and is capable of determining the position of center of pressure with a mean error of 0.07 cm along the X axis and 0.13 cm along the Y axis. Using optical sensors instead of foil strain gauges to measure deflection, this force plate is not subject to temperature-related drift and is more robust against slight positioning inaccuracies. This force plate was used to measure forces produced by amphibious fishes weighing less than 2 g as they jumped off the force platform

  8. A device for testing the dynamic performance of in situ force plates.

    Science.gov (United States)

    East, Rebecca H; Noble, Jonathan J; Arscott, Richard A; Shortland, Adam P

    2017-09-01

    Force plates are often incorporated into motion capture systems for the calculation of joint kinetic variables and other data. This project aimed to create a system that could be used to check the dynamic performance of force plate in situ. The proposed solution involved the design and development of an eccentrically loaded wheel mounted on a weighted frame. The frame was designed to hold a wheel mounted in two orthogonal positions. The wheel was placed on the force plate and spun. A VICON™ motion analysis system captured the positional data of the markers placed around the rim of the wheel which was used to create a simulated force profile, and the force profile was dependent on spin speed. The root mean square error between the simulated force profile and the force plate measurement was calculated. For nine trials conducted, the root mean square error between the two simultaneous measures of force was calculated. The difference between the force profiles in the x- and y-directions is approximately 2%. The difference in the z-direction was under 0.5%. The eccentrically loaded wheel produced a predictable centripetal force in the plane of the wheel which varied in direction as the wheel was spun and magnitude dependent on the spin speed. There are three important advantages to the eccentrically loaded wheel: (1) it does not rely on force measurements made from other devices, (2) the tests require only 15 min to complete per force plate and (3) the forces exerted on the plate are similar to those of paediatric gait.

  9. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  10. MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Thanh-Vinh, Nguyen; Jung, Uijin G; Shimoyama, Isao; Matsumoto, Kiyoshi

    2014-01-01

    A terrestrial insect can perform agile running maneuvers. However, the balance of ground reaction forces (GRFs) between each leg in an insect have remained poorly characterized. In this report, we present a micro force plate array for the simultaneous measurement of the anterior and vertical components of GRFs of multiple legs during the running motion of an ant. The proposed force plate, which consists of a 2000 µm × 980 µm × 20 µm plate base as the contact surface of an ant's leg, and the supported beams with piezoresistors on the sidewall and surface are sufficiently compact to be adjacently arrayed along the anterior direction. Eight plates arrayed in parallel were fabricated on the same silicon-on-insulator substrate to narrow the gap between each plate to 20 µm. We compartmented the plate surface into 32 blocks and evaluated the sensitivities to two-axis forces in each block so that the exerted forces could be detected wherever a leg came into contact. The force resolutions in both directions were under 1 µN within ±20 µN. Using the fabricated force plate array, we achieved a simultaneous measurement of the GRFs of three legs on one side while an ant was running. (paper)

  11. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    Science.gov (United States)

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  12. Gait Analysis Study of Runner Using Force Plate

    Directory of Open Access Journals (Sweden)

    Flaviana Catherine

    2017-02-01

    Full Text Available Humans do regular physical activities such as running. Gait is forward  propulsion of the human body using lower extremities as a thrust. Humans gait pattern is characterized by their limbs movement in terms of velocity, ground reaction force, work, kinetic energy and potential energy cycle . Human gait analysis is used to assess, to plan, and to deliver the treatment for individuals based on the conditions that affect their ability to move. Gait analysis is commonly used in running sport to improve the efficiency of athletes in running and to identify problems related to their posture or movement. The aim of this research is to do running gait analysis study of human, using force plate which equipped by track board. The benefit of this study is to provide information, ideas and new perspectives about running and its prevention over an injury. The main method that will be discussed in this study is system design of gait analysis with specific setting, hardware and software, in order to acquire data(s.

  13. Force Plate Assessment of Quiet Standing Balance Control: Perspectives on Clinical Application within Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Avril Mansfield

    2015-01-01

    Full Text Available Assessment of balance control is essential to guide physical rehabilitation poststroke. However, current observational assessment tools available to physiotherapists provide limited information about underlying dyscontrol. This paper describes a force plate-based assessment of quiet standing balance control that we have implemented for individuals attending inpatient stroke rehabilitation. The assessment uses two force plates to measure location of ground reaction forces to maintain stability in quiet standing in five conditions (eyes open, eyes closed, standing symmetrically, and maximal loading on the less-affected and more-affected limbs. Measures of interest are variability of the centers of pressure under each foot and both feet combined, weight-bearing asymmetry, and correlation of center of pressure fluctuations between limbs. We present representative values for the above-mentioned measures and case examples to illustrate how the assessment can reveal patient-specific balance control problems and direct treatment. We identify limitations to our current assessment and recommendations for future research.

  14. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  15. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  16. Forced convection heat transfer correlation for finned plates in a duct

    International Nuclear Information System (INIS)

    Chae, Myeong-Seon; Moon, Je-Young; Chung, Bum-Jin

    2014-01-01

    Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)

  17. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  18. A global limit load solution for plates with surface cracks under combined end force and cross-thickness bending

    International Nuclear Information System (INIS)

    Lei Yuebao; Fox, Mike J.H.

    2011-01-01

    A global limit load solution for rectangular surface cracks in plates under combined end force and cross-thickness bending is derived, which allows any combination of positive/negative end force and positive/negative cross-thickness moment. The solution is based on the net-section plastic collapse concept and, therefore, gives limit load values based on the Tresca yielding criterion. Solutions for both cases with and without crack face contact are derived when whole or part of the crack is located in the compressive stress zone. From the solution, particular global limit load solutions for plates with extended surface cracks and through-thickness cracks under the same loading conditions are obtained. The solution is consistent with the limit load solution for surface cracks in plates under combined tension and positive bending due to Goodall and Webster and Lei when both the applied end force and bending moment are positive. The solution reduces to the limit load solution for plain plates under combined end force and cross-thickness bending when the crack vanishes. - Highlights: → A global limit load solution for plates with surface cracks in plates is derived. → Combined positive/negative end force and positive/negative cross-thickness moment are considered. → The solution is based on the net-section plastic collapse concept.

  19. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    Science.gov (United States)

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-05-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate.

  20. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    International Nuclear Information System (INIS)

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-01-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate. (paper)

  1. The impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from an annular or circular nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi, E-mail: cx-dem@mail.tsinghua.edu.c [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2010-08-11

    With the indirect thrust measurement of electric thrusters working at a low vacuum chamber pressure as the research background, this paper analyses the impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from a thruster with an annular or circular exit section for the free-molecule flow regime (at large Knudsen numbers). The constraint relation proposed by Cai and Boyd (2007 J. Spacecr. Rockets 44 619, 1326) about the velocity components of gas particles leaving a location on the nozzle exit section and arriving at a given spatial point outside the nozzle has been employed here to derive the analytical expressions for calculating the impact force. Sample calculation results show that if the flat plate is sufficiently large, the impact force acting on the flat plate calculated for the case without accounting for gas particle reflection at the plate surface agrees well with the axial momentum flux calculated at the thruster exit or the theoretical thrust force of the studied thruster, while accounting for the contribution of gas particles reflected from the plate surface to the impact force production may significantly increase the calculated impact force acting on the flat plate. For a Hall-effect thruster in which the thrust force is dominantly produced by the ions with high directional kinetic energy and the ions are not directly reflected from the plate surface, the contribution to the impact force production of atom species and of gas particles reflected from the plate surface is negligibly small and thus the measured axial impact force acting on a sufficiently large plate can well represent the thrust force of the thruster. On the other hand, if the contribution of the gas particles reflected from the plate surface to the impact force production cannot be neglected (e.g. for the electric thrusters with comparatively low thruster exit temperatures), appreciable error would appear in the indirect thrust measurement.

  2. Computation of the homogeneous and forced solutions of a finite length, line-driven, submerged plate.

    Science.gov (United States)

    DiPerna, Daniel T; Blake, William K; DiPerna, Xingguang Z

    2006-12-01

    A formulation is developed to predict the vibration response of a finite length, submerged plate due to a line drive. The formulation starts by describing the fluid in terms of elliptic cylinder coordinates, which allows the fluid loading term to be expressed in terms of Mathieu functions. By moving the fluid loading term to the right-hand side of the equation, it is considered to be a force. The operator that remains on the left-hand side is the same as that of the in vacuo plate: a fourth-order, constant coefficient, ordinary differential equation. Therefore, the problem appears to be an inhomogeneous ordinary differential equation. The solution that results has the same form as that of the in vacuo plate: the sum of a forced solution, and four homogeneous solutions, each of which is multiplied by an arbitrary constant. These constants are then chosen to satisfy the structural boundary conditions on the two ends of the plate. Results for the finite plate are compared to the infinite plate in both the wave number and spatial domains. The theoretical predictions of the plate velocity response are also compared to results from finite element analysis and show reasonable agreement over a large frequency range.

  3. Model to Analyze Micro Circular Plate Subjected to Electrostatic Force

    Directory of Open Access Journals (Sweden)

    Cao Tian-Jie

    2013-06-01

    Full Text Available In this paper a distributed model with three possible static modes was presented to investigate the behavior of the plate subjected to electrostatic force and uniform hydrostatic pressure both before pull in and beyond pull in. The differential governing equation of the micro circular plate specifically used for numerical solution of the three modes, in which the singularity at the center of the micro plate did not occur, was presented based on the classical thin plate theory, Taylor's series expansion and Saint-Venant's principle. The numerical solution to the differential governing equation for the different mode was mainly attributed to solve for one unknown boundary condition and the applied voltage, which could be obtained by using a two-fold method of bisection based on the shooting method. The voltage ranges over which the three modes could exist and the points where transitions occurred between the modes were computed. Incorporating the above numerical solution to the applied voltage at the normal mode with some constrained optimization method, pull-in voltage and the corresponding pull-in position can automatically be obtained. In examples, the entire mechanical behavior of the circular plate over the operational voltage ranges was investigated and the effects of different parameters on pull-in voltage were studied. The obtained results were compared with the existing results and good agreement has been achieved.

  4. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  5. Use of the Nintendo Wii Balance Board for Studying Standing Static Balance Control: Technical Considerations, Force-Plate Congruency, and the Effect of Battery Life.

    Science.gov (United States)

    Weaver, Tyler B; Ma, Christine; Laing, Andrew C

    2017-02-01

    The Nintendo Wii Balance Board (WBB) has become popular as a low-cost alternative to research-grade force plates. The purposes of this study were to characterize a series of technical specifications for the WBB, to compare balance control metrics derived from time-varying center of pressure (COP) signals collected simultaneously from a WBB and a research-grade force plate, and to investigate the effects of battery life. Drift, linearity, hysteresis, mass accuracy, uniformity of response, and COP accuracy were assessed from a WBB. In addition, 6 participants completed an eyes-closed quiet standing task on the WBB (at 3 battery life levels) mounted on a force plate while sway was simultaneously measured by both systems. Characterization results were all associated with less than 1% error. R 2 values reflecting WBB sensor linearity were > .99. Known and measured COP differences were lowest at the center of the WBB and greatest at the corners. Between-device differences in quiet stance COP summary metrics were of limited clinical significance. Lastly, battery life did not affect WBB COP accuracy, but did influence 2 of 8 quiet stance WBB parameters. This study provides general support for the WBB as a low-cost alternative to research-grade force plates for quantifying COP movement during standing.

  6. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  7. The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions

    Science.gov (United States)

    Holt, W. E.; Wang, X.; Ghosh, A.

    2016-12-01

    Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear

  8. Pull-in voltage of microswitch rough plates in the presence of electromagnetic and acoustic Casimir forces

    NARCIS (Netherlands)

    Palasantzas, George

    2007-01-01

    In this work, we investigate the combined influence of electromagnetic and acoustic Casimir forces on the pull-in voltage of microswitches with self-affine rough plates. It is shown that for plate separations within the micron range the acoustic term arising from pressure fluctuations can influence

  9. The Influence of Flexibility Coefficient on the Size of Internal Forces and Deformations in Circular Plates on Elastic Medium

    Directory of Open Access Journals (Sweden)

    Şandru Mirela

    2016-09-01

    Full Text Available This paper presents an analytical study which deals with the behavior of the circular plates in bending theory, considering the soil-structure interaction under Winkler's hypothesis. It was intended to illustrate the variation of internal forces and deformations according to the flexibility coefficient of plates considering three models: a fixed solid circular plate subjected to a uniformly distributed load, a fixed solid circular plate acted by a displacement applied on the exterior contour and a solid plate subjected to a temperature gradient. For this study the computation relations were written as a product between a dimensional and a non-dimensional factor, the last one indicating the variation of internal forces and deformations. For each type of action there are presented results obtained using the finite element method to illustrate the differences between this method and the analytical computation.

  10. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  11. Dual-energy X-ray absorptiometry and force-plate analysis of gait in dogs with healed femora after leg-lengthening plate fixation

    International Nuclear Information System (INIS)

    Muir, P.; Markel, M.D.; Bogdanske, J.J.; Johnson, K.A.

    1995-01-01

    Dual-energy x-ray absorptiometry was used to measure bone mineral density of four regions in healed femora of nine dogs after fracture fixation with a leg-lengthening plate. Six to 85 months (mean, 46 months) after surgery, the bone mineral density of healed femora was not significantly different from the contralateral uninjured femora (P > .05; power = 0.8 at delta = 15%). Radiolucencies around the proximal screws, apparently associated with screw loosening, were seen on radiographic views of the healed femora of three dogs. In one of these dogs, one screw in the proximal metaphysis had broken. Force-plate analysis of gait was also performed on dogs at the time of bone mineral density measurement. Peak vertical force was decreased in the pelvic limb with the healed fracture compared with the contralateral unoperated limb (P < 0.05). Clinically apparent lameness in three dogs did not appear to be associated with altered bone mineral density and may have been caused by hip osteoarthritis, a nondisplaced hairline diaphyseal fracture, and screw loosening in conjunction with extensive post-traumatic soft tissue injury

  12. Frictional characteristics of erythrocytes on coated glass plates subject to inclined centrifugal forces.

    Science.gov (United States)

    Kandori, Takashi; Hayase, Toshiyuki; Inoue, Kousuke; Funamoto, Kenichi; Takeno, Takanori; Ohta, Makoto; Takeda, Motohiro; Shirai, Atsushi

    2008-10-01

    In recent years a diamond-like carbon (DLC) film and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer have attracted attention as coating materials for implantable artificial organs or devices. When these materials are coated on vascular devices, compatibility to blood is an important problem. The present paper focuses on friction characteristics of erythrocytes to these coating materials in a medium. With an inclined centrifuge microscope developed by the authors, observation was made for erythrocytes moving on flat glass plates with and without coating in a medium of plasma or saline under the effect of inclined centrifugal force. Friction characteristics of erythrocytes with respect to these coating materials were then measured and compared to each other to characterize DLC and MPC as coating materials. The friction characteristics of erythrocytes in plasma using the DLC-coated and noncoated glass plates are similar, changing approximately proportional to the 0.5th power of the cell velocity. The cells stick to these plates in saline as well, implying the influence of plasma protein. The results using the MPC-coated plate in plasma are similar to those of the other plates for large cell velocities, but deviate from the other results with decreased cell velocity. The results change nearly proportional to the 0.75th power of the cell velocity in the range of small velocities. The results for the MPC-coated plate in saline are similar to that in plasma but somewhat smaller, implying that the friction characteristics for the MPC-coated plate are essentially independent of plasma protein.

  13. Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

    Directory of Open Access Journals (Sweden)

    Dae Seung Cho

    2016-03-01

    Full Text Available In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

  14. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  15. Interplay between geometry and temperature for inclined Casimir plates

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T D behavior of the force, we find a T D-1 behavior for inclined plates, and a ∼T D-0.3 behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ∼T D-2 occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  16. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  17. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  18. No quantum friction between uniformly moving plates

    International Nuclear Information System (INIS)

    Philbin, T G; Leonhardt, U

    2009-01-01

    The Casimir forces between two plates moving parallel to each other at arbitrary constant speed are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. Electromagnetic vacuum fluctuations do not therefore give rise to 'quantum friction' in this case, contrary to previous assertions. The result shows that the Casimir-Polder force on a particle moving at constant speed parallel to a plate also has no lateral component.

  19. Measuring the efficacy of flunixin meglumine and meloxicam for lame sows using a GAITFour pressure mat and an embedded microcomputer-based force plate system.

    Science.gov (United States)

    Pairis-Garcia, M D; Johnson, A K; Abell, C A; Coetzee, J F; Karriker, L A; Millman, S T; Stalder, K J

    2015-05-01

    Pain associated with lameness on farm is a negative affective state and has a detrimental impact on individual farm animal welfare. Animal pain can be managed utilizing husbandry tools and through pharmacological approaches. Nonsteroidal anti-inflammatory drugs including meloxicam and flunixin meglumine are compounds used in many species for pain management because they are easy to administer, long lasting, and cost-effective. Assessing an animal's biomechanical parameters using such tools as the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system provides an objective, sensitive, and precise means to detect animals in lame states. The objectives of this study were to determine the efficacy of meloxicam and flunixin meglumine for pain mitigation in lame sows using the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system. Lameness was induced in 24 mature mixed-parity sows using a chemical synovitis model and compared 3 treatments: meloxicam (1.0 mg/kg per os), flunixin meglumine (2.2 mg/kg intramuscular) and sterile saline (intramuscular). Weight distribution (kg) for each foot was collected twice per second for a total of 5 min for each time point using the embedded microcomputer-based force plate system. Stride time, stride length, maximum pressure, activated sensors, and stance time were collected using 3 quality walks (readings) for each time point using the GAITFour pressure mat gait analysis walkway system. Sows administered flunixin meglumine or meloxicam tolerated more weight on their lame leg compared with saline sows (P embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system. Analgesic drugs may be a key tool to manage negative pain affective states associated with lameness.

  20. No quantum friction between uniformly moving plates

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G; Leonhardt, U [School of Physics and Astronomy, University of St Andrews, North Haugh St Andrews, Fife KY16 9SS, Scotland (United Kingdom)], E-mail: tgp3@st-andrews.ac.uk

    2009-03-15

    The Casimir forces between two plates moving parallel to each other at arbitrary constant speed are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. Electromagnetic vacuum fluctuations do not therefore give rise to 'quantum friction' in this case, contrary to previous assertions. The result shows that the Casimir-Polder force on a particle moving at constant speed parallel to a plate also has no lateral component.

  1. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....

  2. Casimir interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation

    International Nuclear Information System (INIS)

    Teo, L. P.

    2011-01-01

    We study the finite temperature Casimir interaction between a cylinder and a plate using the exact formula derived from the Matsubara representation and the functional determinant representation. We consider the scalar field with Dirichlet and Neumann boundary conditions. The asymptotic expansions of the Casimir free energy and the Casimir force when the separation a between the cylinder and the plate is small are derived. As in the zero temperature case, it is found that the leading terms of the Casimir free energy and the Casimir force agree with those derived from the proximity force approximation when rT>>1, where r is the radius of the cylinder. Specifically, when aT 5/2 whereas, for the Casimir force, it is of order T 7/2 . In this case, the leading terms are independent of the separation a. When 1 3/2 , whereas, for the force, it is inversely proportional to a 5/2 . The first order corrections to the proximity force approximations in different temperature regions are computed using the perturbation approach. In the zero temperature case, the results agree with those derived in [M. Bordag, Phys. Rev. D 73, 125018 (2006)].

  3. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  4. Push plate, mounting assembly, circuit board, and method of assembling thereof for ball grid array packages

    Science.gov (United States)

    Vaughn, Mark R.; Montague, Stephen

    2017-05-16

    A push plate that includes springs in the form of cantilever flexures and an inspection window is disclosed. The push plate provides a known, uniform, down force and minimal torque to a package to be tested. The cantilevers have a known, calculable down force producing stiffness. The window provides for viewing of the package during testing.

  5. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  6. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....

  7. Experimental and Numerical Investigation of Forced Convection Heat Transfer in Heat Sink with Rectangular Plates at Varying Inclinations on Vertical Base

    Science.gov (United States)

    Patil, Harshal Bhauso; Dingare, Sunil Vishnu

    2018-03-01

    Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).

  8. A COMPARISON OF GROUND REACTION FORCES DETERMINED BY PORTABLE FORCE-PLATE AND PRESSURE-INSOLE SYSTEMS IN ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Kosuke Nakazato

    2011-12-01

    Full Text Available For the determination of ground reaction forces in alpine skiing, pressure insole (PI systems and portable force plate (FP systems are well known and widely used in previous studies. The purposes of this study were 1 to provide reference data for the vertical component of the ground reaction forces (vGRF during alpine skiing measured by the PI and FP systems, and 2 to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier's level, skiing mode and pitch. Ten expert and ten intermediate level skiers performed 10 double turns with the skiing technique "Carving in Short Radii" as High Dynamic Skiing mode and "Parallel Ski Steering in Long Radii" as Low Dynamic Skiing mode on both the steep (23 ° and the flat (15 ° slope twice. All subjects skied with both the PI and the FP system simultaneously. During the outside phase, the mean vGRF and the maximum vGRF determined by the FP are greater than the PI (p < 0.01. Additionally during the inside phase, the mean vGRF determined by the FP were greater than the PI (p < 0.01. During the edge changing phases, the mean vGRF determined by the FP were greater than the PI (p < 0.01. However, the minimum vGRF during the edge changing phases determined by the FP were smaller than the PI (p < 0.01 in the High-Steep skiing modes of Experts and Intermediates (p < 0.001. We have found that generally, the PI system underestimates the total vGRF compared to the FP system. However, this difference depends not only the phase in the turn (inside, outside, edge changing, but also is affected by the skier's level, the skiing mode performed and pitch.

  9. Biomechanical study: resistance comparison of posterior antiglide plate and lateral plate on synthetic bone models simulating Danis-Weber B malleolar fractures

    Directory of Open Access Journals (Sweden)

    Bruna Buscharino

    2013-06-01

    Full Text Available OBJECTIVE : The purpose of this study was to compare different positions of plates in lateral malleolar Danis-Weber B fractures on synthetic bone: a lateral plate and a posterior antiglide plate. METHODS : Short oblique fractures of distal fibula at the level of the syndesmosys were simulated with a fibular osteotomy in sixteen synthetic fibula bones (Synbone®. Eight fractures were fixed with lateral plating associated with an independent lag screw, and the other eight were fixed with posterior antiglide plating with a lag screw through the plate. A strain gage was installed at the center of each plate at the osteotomy site. Supination and external rotation forces were applied to each of the two groups at the bend. RESULTS : The lateral position plate group suffered more deformity in response to supination forces compared to the group with the posterior antiglide plate, but this result was not statistically significant. In the tests with external rotation forces, the posterior antiglide plating group had significantly higher resistance (p < 0.05. CONCLUSION : When subjected to external rotation forces, osteosynthesis with posterior antiglide plate models simulating type B fractures of the lateral malleolus of the ankle is more resistant than that of the neutralization plate.

  10. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  11. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  12. An analytical study of the free and forced vibration response of a ribbed plate with free boundary conditions

    Science.gov (United States)

    Lin, Tian Ran; Zhang, Kai

    2018-05-01

    An analytical study to predict the vibration response of a ribbed plate with free boundary conditions is presented. The analytical solution was derived using a double cosine integral transform technique and then utilized to study the free and forced vibration of the ribbed plate, as well as the effect of the rib on the modal response of the uniform plate. It is shown that in addition to the three zero-frequency rigid body modes of the plate, the vibration modes of the uniform plate can be classified into four mode groups according to the symmetric properties of the plate with respect to the two orthogonal middle lines parallel to the plate edges. The four mode groups correspond to a double symmetric group, a double anti-symmetric group and two symmetric/anti-symmetric groups. Whilst the inclusion of the rib to the plate is shown to cause distortion to the distribution of vibration modes, most modes can still be traced back to the original modes of the uniform plate. Both the mass and stiffness of the rib are shown to affect the modal vibration of the uniform plate, whereby a dominant effect from the rib mass leads to a decrease in the modal frequency of the plate, whereas a dominant effect from the rib stiffness leads to an increase in plate modal frequency. When the stiffened rib behaves as an effective boundary to the plate vibration, an original plate mode becomes a pair of degenerate modes, whereby one mode has a higher frequency and the other mode has a lower frequency than that of the original mode.

  13. A heat exchanger provided with plates

    International Nuclear Information System (INIS)

    Chaix, J.E.; Fajeau, Maurice; Chlique, Bernard.

    1976-01-01

    The invention relates to a heat exchanger of the plate type, in which two fluids exchange calories through parallel metal plates, delimiting spaces separated from each other in which two fluids respectively flow without direct contact between them. The invention particularly applies in the case where one of the two fluids is water under pressure or else a circulating liquid metal, specially sodium, used in the system of a pressurised water or fast neutron reactor, the second fluid being water to be vaporised in the exchanger by the calories supplied by the first fluid. The arrangement is designed to give minimum bulk, particularly enabling the exchanger to be housed in the area between the core of a nuclear reactor and a casing or outer vessel, or else in an external sealed containment, with a view to recovering with the best efficiency the heat acquired by a coolant flowing through the core [fr

  14. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  15. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    Science.gov (United States)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  16. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  17. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  18. Effect of Chord Splice Joints on Force Distribution and Deformations in Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2007-01-01

    The span of roof trusses with punched metal plate fasteners (nail plates) makes it often necessary to use splice joints in the top and bottom chords. In the finite element models used for design of the trusses these splice joints are normally assumed to be either rotationally stiff or pinned....... Timber-to-timber contact and non-linear elastic behaviour are included in the model. Results from tests with joints under fourpoint bending are compared with predictions given by TrussLab, and a good agreement is found. Splice joints in trusses with nail plates may be assumed to be rotationally stiff...... if their deformation has no significant effect upon the distribution of member forces according to Eurocode 5. Two simple guidelines for the design and location of splice joints are given in Eurocode 5 for treating the splice joints as rotationally stiff. The reasonability of these guidelines and the influence...

  19. Free and Forced Vibration of the Moderately Thick Laminated Composite Rectangular Plate on Various Elastic Winkler and Pasternak Foundations

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2017-01-01

    Full Text Available An improved Fourier series method (IFSM is applied to study the free and forced vibration characteristics of the moderately thick laminated composite rectangular plates on the elastic Winkler or Pasternak foundations which have elastic uniform supports and multipoints supports. The formulation is based on the first-order shear deformation theory (FSDT and combined with artificial virtual spring technology and the plate-foundation interaction by establishing the two-parameter foundation model. Under the framework of this paper, the displacement and rotation functions are expressed as a double Fourier cosine series and two supplementary functions which have no relations to boundary conditions. The Rayleigh-Ritz technique is applied to solve all the series expansion coefficients. The accuracy of the results obtained by the present method is validated by being compared with the results of literatures and Finite Element Method (FEM. In this paper, some results are obtained by analyzing the varying parameters, such as different boundary conditions, the number of layers and points, the spring stiffness parameters, and foundation parameters, which can provide a benchmark for the future research.

  20. Predictions of the effect of stratification on superimposed forced and free convection between vertical parallel plates for various boundary conditions

    International Nuclear Information System (INIS)

    Cowan, G.H.; Irvine, T.J. Jr.; Quarini, G.L.

    1983-01-01

    The velocity and temperature equations for laminar buoyancy and forced convection flows between vertical flat parallel plates are presented. The thermal boundary conditions on the plate define the buoyancy driven field, while the channel Reynolds number defines the forced flow field. Specific examples relating to tall narrow channels with laminar convention and to closed high ratio cavities (as may be found in the proposed active and passive insulation systems for sodium cooled fast reactors) are presented. The analysis is limited to the laminar flow regimes, whilst some reactor situations are likely to be turbulent, hence a proposal for a simple extension of this analysis to the turbulent regime is made. It is shown how the analysis can be made to apply to fluids of various Prandtl numbers. (author)

  1. The Impact of Nitinol Staples on the Compressive Forces, Contact Area, and Mechanical Properties in Comparison to a Claw Plate and Crossed Screws for the First Tarsometatarsal Arthrodesis.

    Science.gov (United States)

    Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2016-06-01

    Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).

  2. Physical Profiling Performance of Air Force Primary Care Providers

    Science.gov (United States)

    2017-08-09

    AFRL-SA-WP-TR-2017-0014 Physical Profiling Performance of Air Force Primary Care Providers Anthony P. Tvaryanas1; William P...COVERED (From – To) September 2016 – January 2017 4. TITLE AND SUBTITLE Physical Profiling Performance of Air Force Primary Care Providers...encounter with their primary care team. An independent medical standards subject matter expert (SME) reviewed encounters in the electronic health record

  3. Flow of nanofluid past a Riga plate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Adeel, E-mail: adeelahmed@comsats.edu.pk [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan); Laboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice (France); Asghar, Saleem [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan); Department of Mathematics, King Abdul Aziz University, Jeddah (Saudi Arabia); Afzal, Sumaira [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan)

    2016-03-15

    This paper studies the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. The mathematical model incorporates the Brownian motion and thermophoresis effects due to nanofluid and the Grinberg-term for the wall parallel Lorentz force due to Riga plate. The analytical solution of the problem is presented using the perturbation method for small Brownian and thermophoresis diffusion parameters. The numerical solution is also presented to ensure the reliability of the asymptotic method. The comparison of the two solutions shows an excellent agreement. The correlation expressions for skin friction, Nusselt number and Sherwood number are developed by performing linear regression on the obtained numerical data. The effects of nanofluid and the Lorentz force due to Riga plate, on the skin friction are discussed. - Highlights: • Mixed convection flow of a nanofluid past a vertical Riga plate. • The Brownian motion and thermophoresis effects due to nanofluid are incorporated. • Grinberg-term represents the wall parallel Lorentz force due to Riga plate. • The correlation expressions for skin friction, Nusselt and Sherwood numbers are developed. • The effects of nanofluid and the Lorentz force on the skin friction are discussed.

  4. The reliability of linear position transducer, force plate and combined measurement of explosive power-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-03-01

    The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87-0.95, CV = 3.4%-8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%-53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77-0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.

  5. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  6. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    Science.gov (United States)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  7. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    Science.gov (United States)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  8. Chaos control for the plates subjected to subsonic flow

    Science.gov (United States)

    Norouzi, Hamed; Younesian, Davood

    2016-07-01

    The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.

  9. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  10. Hydroelasticity of a Floating Plate

    DEFF Research Database (Denmark)

    Chen, X.; Jensen, Jørgen Juncher; Cui, W.

    2003-01-01

    The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method in...

  11. Fringe Capacitance of a Parallel-Plate Capacitor.

    Science.gov (United States)

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  12. Biomechanical comparison of double-row locking plates versus single- and double-row non-locking plates in a comminuted metacarpal fracture model.

    Science.gov (United States)

    Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B

    2009-12-01

    Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.

  13. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  14. Thermally developing forced convection and the corresponding thermal stresses in a porous plate channel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; LIU Xuemei

    2007-01-01

    Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.

  15. Hydrodynamics of a three-dimensional self-propelled flexible plate

    Science.gov (United States)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  16. Controlling the Casimir force via the electromagnetic properties of materials

    International Nuclear Information System (INIS)

    Yang Yaping; Chen Hong; Zeng Ran; Zhu Shiyao; Zubairy, M. Suhail

    2010-01-01

    The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.

  17. Unsteady force estimation using a Lagrangian drift-volume approach

    Science.gov (United States)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  18. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  19. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    Science.gov (United States)

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy ( 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Confirmation of the extraterrestrial forces decisive effect on earthquake triggering and lithospheric plates movement.

    Science.gov (United States)

    Ostrihansky, L.; Kalenda, P.

    2012-04-01

    In contrast to unsuccessful searching for biweekly tides earthquakes triggering the Earth's rotation variations give the unambiguous answer that the extreme positions of the Earth's acceleration and deceleration trigger earthquakes. In addition to it, an important repetition of earthquakes with 19 years period of the Meton's cycle and nutation has been found. Further, it has been found that the continental heating by the Sun and formation of the thermoelastic wave is an important factor of affecting of the Earth's surface and the plate movement. For this the special static vertical pendulum serves with the optimum length of several tens of meters, which after its refinement will be an important instrument for confirmation of stated claims. This problem is so far important that the scientific community advocates an opinion that earthquakes are caused by fluently acting forces in the Earth's interior, i.e. by forces causing absolutely unpredictable disturbances of the Earth' crust. This work is in outstanding interest of the European Union because the volcanic eruptions in Iceland, till now unpredictable, disturb the air-traffic in Europe in spite that just earthquakes in the Mid-Atlantic Ridge show unequivocal earthquake triggering in rhythm of the Earth's rotation variations.

  1. Experimental investigation of the unsteady two-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Tartaglia, G.P.

    1985-07-01

    The coolant flow across the perforated dip-plate during a hypothetical core disruptive accident (HCDA) in a liquid metal fast breeder reactor was simulated in a one-dimensional model. Experiments with a water-air mixture as fluid were run by varying the following parameters: geometry of the dip-plate (perforation ratio, number of the holes), height of the fluid head over the dip-plate, air volumetric fraction, size of the air bubbles, acceleration of the fluid. The pressure drop across the dip-plate, the forces acting on the dip-plate and on the upper plate, acceleration and displacement of the piston, the air volumetric fraction and the size of the air bubbles were measured in a wide range of Strouhal and acceleration numbers. The flow pattern downstream the dip-plate was filmed with a high-speed camera. The following correlations were investigated: resistance coefficients as a function of the acceleration and Strouhal number, time delay of the force on the upper plate as a function of the cavitation number, and forces and impulses acting on the upper plate compared with those acting on the dip-plate. Finally, using high-speed film pictures, the formation of fluid jets downstream the dip-plate was investigated. The following relations were obtained: displacement of the mixture surface and of the jets as a function of the perforation ratio and of the air volumetric fraction, and cavitation volume as a function of the cavitation number. (orig.) [de

  2. Flow over a traveling wavy foil with a passively flapping flat plate

    Science.gov (United States)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  3. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  4. A locking compression plate versus the gold-standard non-locking plate with lag screw for first metatarsophalangeal fusion: A biomechanical comparison.

    Science.gov (United States)

    Mandell, Daniel; Karbassi, John; Zhou, Hanbing; Burroughs, Brian; Aurigemma, Philip; Patel, Abhay R

    2018-03-01

    The treatment of end-stage first metatarso-phalangeal joint (MTP) arthritis has been arthrodesis. A dorsal non-locking plate with a lag screw has been the standard traditional fixation method. This study compares the biomechanical strength of a locking compression plate (LCP) with and without internal compression versus this known gold standard. In group 1, six matched pairs of cadaver great toes were used to compare the standard non-locking dorsal plate and 3.5mm lag screw to an anatomic locking compression plate in which a lag screw was utilized rather than the internal compression features of the plate. In group 2, another six matched pairs of cadaver great toes were used to compare the gold standard to the locking compression plate, utilizing the plate's internal compression feature instead of a lag screw. A material testing system (MTS) machine applied loads to the MTP joints and measured displacement and stiffness of the constructs. The stiffness of the constructs (Young's modulus) was calculated from the force-displacement curves, and the displacement was measured. The locking compression plate group that used the compression features of the plate, without the lag screw, had less joint displacement and higher stiffness than control (p<0.05). The same plating construct in which a lag screw was used rather than internal compression of the plate was found to be stiffer than the control (p<0.05), but displacement was not statistically significant. The results suggest that a locking compression plate alone provides the stiffest construct for a first MTP joint fusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  6. Casimir Force Between Quantum Plasmas

    International Nuclear Information System (INIS)

    Buenzli, P.

    2005-01-01

    Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)

  7. Experimental investigation of the unsteady one-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.

    1982-07-01

    The flow of the coolant through the perforated dip-plate during a hypothetical core-disruptive accident in a sodium-cooled fast breeder reactor was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip plate were run. The pressure drop through the dip-plate and the forces acting on the dip-plate and on the upper plug of the reactor vessel in a wide range of the Reynolds and Strouhal numbers were measured. The flow pattern downstreams the perforated plate was filmed with high-speed cameras. The resistance coefficients for the unsteady flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using the high-speed film pictures the formation of fluid jets downstream the dip-plate was investigated. (orig.) [de

  8. Stochastic Lorentz forces on a point charge moving near the conducting plate

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Wu, T.-H.; Lee, D.-S.

    2008-01-01

    The influence of quantized electromagnetic fields on a nonrelativistic charged particle moving near a conducting plate is studied. We give a field-theoretic derivation of the nonlinear, non-Markovian Langevin equation of the particle by the method of Feynman-Vernon influence functional. This stochastic approach incorporates not only the stochastic noise manifested from electromagnetic vacuum fluctuations, but also dissipation backreaction on a charge in the form of the retarded Lorentz forces. Since the imposition of the boundary is expected to anisotropically modify the effects of the fields on the evolution of the particle, we consider the motion of a charge undergoing small-amplitude oscillations in the direction either parallel or normal to the plane boundary. Under the dipole approximation for nonrelativistic motion, velocity fluctuations of the charge are found to grow linearly with time in the early stage of the evolution at the rather different rate, revealing strong anisotropic behavior. They are then asymptotically saturated as a result of the fluctuation-dissipation relation, and the same saturated value is found for the motion in both directions. The observational consequences are discussed

  9. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  10. Improving greater trochanteric reattachment with a novel cable plate system.

    Science.gov (United States)

    Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan

    2013-03-01

    Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Determining the dimensions of essential medical coverage required by military body armour plates utilising Computed Tomography.

    Science.gov (United States)

    Breeze, J; Lewis, E A; Fryer, R

    2016-09-01

    Military body armour is designed to prevent the penetration of ballistic projectiles into the most vulnerable structures within the thorax and abdomen. Currently the OSPREY and VIRTUS body armour systems issued to United Kingdom (UK) Armed Forces personnel are provided with a single size front and rear ceramic plate regardless of the individual's body dimensions. Currently limited information exists to determine whether these plates overprotect some members of the military population, and no method exists to accurately size plates to an individual. Computed Tomography (CT) scans of 120 male Caucasian UK Armed Forces personnel were analysed to measure the dimensions of internal thoraco-abdominal anatomical structures that had been defined as requiring essential medical coverage. The boundaries of these structures were related to three potential anthropometric landmarks on the skin surface and statistical analysis was undertaken to validate the results. The range of heights of each individual used in this study was comparable to previous anthropometric surveys, confirming that a representative sample had been used. The vertical dimension of essential medical coverage demonstrated good correlation to torso height (suprasternal notch to iliac crest) but not to stature (r(2)=0.53 versus 0.04). Horizontal coverage did not correlate to either measure of height. Surface landmarks utilised in this study were proven to be reliable surrogate markers for the boundaries of the underlying anatomical structures potentially requiring essential protection by a plate. Providing a range of plate sizes, particularly multiple heights, should optimise the medical coverage and thus effectiveness of body armour for UK Armed Forces personnel. The results of this work provide evidence that a single width of plate if chosen correctly will provide the essential medical coverage for the entire military population, whilst recognising that it still could overprotect the smallest individuals

  12. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    NARCIS (Netherlands)

    Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.

    2015-01-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions

  13. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  14. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature

    Science.gov (United States)

    Bimonte, Giuseppe

    2018-04-01

    A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.

  15. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  16. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  17. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  18. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.

    Science.gov (United States)

    Corbee, R J; Maas, H; Doornenbal, A; Hazewinkel, H A W

    2014-10-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Light Sail Inspired Model to Harness Casimir Forces for Propellantless Propulsion

    International Nuclear Information System (INIS)

    DeBiase, R. L.

    2010-01-01

    The model used to calculate Casimir forces for variously shaped conducting plates in this paper assumes the vacuum energy pervades all space and that photons randomly pop into and out of existence. While they exist, they possess energy and momentum that can be transferred by reflection as in a light sail. Quantum mechanics in the model is entirely bound up in the Casimir equation of force per unit area. This model is compared with two different experiments: that of Chen and Mohideen demonstrating lateral Casimir forces for sinusoidally corrugated spherical and flat plates and Lamoreaux demonstrating normal Casimir forces between a conducting sphere and flat plate. The calculated forces using this model were compared to the forces obtained in these experiments as well as with calculations using the proximity force approximation. In both cases the results (when compared to the actual plates measured and calculated using non-corrected equations) were less than a few parts per thousand different for the range of separation distances used. When the model was used to calculate forces on the opposite plates, different force magnitudes were obtained seemingly indicating prospects for propellentless propulsion but requiring skeptical verification.

  20. Biomechanical analysis of acromioclavicular joint dislocation treated with clavicle hook plates in different lengths.

    Science.gov (United States)

    Shih, Cheng-Min; Huang, Kui-Chou; Pan, Chien-Chou; Lee, Cheng-Hung; Su, Kuo-Chih

    2015-11-01

    Clavicle hook plates are frequently used in clinical orthopaedics to treat acromioclavicular joint dislocation. However, patients often exhibit acromion osteolysis and per-implant fracture after undergoing hook plate fixation. With the intent of avoiding future complications or fixation failure after clavicle hook plate fixation, we used finite element analysis (FEA) to investigate the biomechanics of clavicle hook plates of different materials and sizes when used in treating acromioclavicular joint dislocation. Using finite element analysis, this study constructed a model comprising four parts: clavicle, acromion, clavicle hook plate and screws, and used the model to simulate implanting different types of clavicle hook plates in patients with acromioclavicular joint dislocation. Then, the biomechanics of stainless steel and titanium alloy clavicle hook plates containing either six or eight screw holes were investigated. The results indicated that using a longer clavicle hook plate decreased the stress value in the clavicle, and mitigated the force that clavicle hook plates exert on the acromion. Using a clavicle hook plate material characterized by a smaller Young's modulus caused a slight increase in the stress on the clavicle. However, the external force the material imposed on the acromion was less than the force exerted on the clavicle. The findings of this study can serve as a reference to help orthopaedic surgeons select clavicle hook plates.

  1. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    Science.gov (United States)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  2. Flow over a cylinder with a hinged-splitter plate

    Science.gov (United States)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  3. Experiments on forced convection form a horizontal heated plate in a packed bed of glass spheres

    Energy Technology Data Exchange (ETDEWEB)

    Renken, K.J. (Univ. of Wisconsin, Milwaukee (USA)); Poulikakos, D. (Univ. of Illinois, Chicago (USA))

    1989-02-01

    This paper presents an experimental investigation of boundary-layer forced convective heat transfer from a flat isothermal plate in a packed bed of spheres. Extensive experimental results are reported for the thermal boundary-layer thickness, the temperature field, and the local wall heat flux (represented by the local Nusselt number). Theoretical findings of previous investigations using the Darcy flow model as well as a general model for themomentum equation accouting for flow inertia and macroscopic shear wtih and without variable porosity are used to evaluate the theoretical models. Several trends are revealed regarding the conditions of validity of these flow models. Overall the general flow model including variable porosity appears to perform better, even through the need for serious improvements in modeling becomes apparent.

  4. Laser Induced Forced Motion and Stress Waves in Plates and Shells.

    Science.gov (United States)

    1981-08-01

    the plate at the center, normal to the plate surface. The Laser used was a Holobeam model 630-QNd glass system. This Laser produces an output power (in...V o 0 0 I lue ceill I Ii 1)r1 i 11im and hot nchary\\ cond i t i ons S or tile i n it i aI I St ate toget her with ji(. 38c ) iiav he u ISed to

  5. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  6. Stress wave calculations in composite plates using the fast Fourier transform.

    Science.gov (United States)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  7. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  8. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  9. Virtual haptic system for intuitive planning of bone fixation plate placement

    Directory of Open Access Journals (Sweden)

    Kup-Sze Choi

    2017-01-01

    Full Text Available Placement of pre-contoured fixation plate is a common treatment for bone fracture. Fitting of fixation plates on fractured bone can be preoperatively planned and evaluated in 3D virtual environment using virtual reality technology. However, conventional systems usually employ 2D mouse and virtual trackball as the user interface, which makes the process inconvenient and inefficient. In the paper, a preoperative planning system equipped with 3D haptic user interface is proposed to allow users to manipulate the virtual fixation plate intuitively to determine the optimal position for placement on distal medial tibia. The system provides interactive feedback forces and visual guidance based on the geometric requirements. Creation of 3D models from medical imaging data, collision detection, dynamics simulation and haptic rendering are discussed. The system was evaluated by 22 subjects. Results show that the time to achieve optimal placement using the proposed system was shorter than that by using 2D mouse and virtual trackball, and the satisfaction rating was also higher. The system shows potential to facilitate the process of fitting fixation plates on fractured bones as well as interactive fixation plate design.

  10. Stiffness Matters: Part II - The Effects of Plate Stiffness on Load-Sharing and the Progression of Fusion Following ACDF In Vivo.

    Science.gov (United States)

    Peterson, Joshua M; Chlebek, Carolyn; Clough, Ashley M; Wells, Alexandra K; Batzinger, Kathleen E; Houston, John M; Kradinova, Katerina; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H

    2018-03-19

    Real time in vivo measurement of forces in the cervical spine of goats following anterior cervical discectomy and fusion (ACDF). To measure interbody forces in the cervical spine during the time course of fusion following ACDF with plates of different stiffnesses. Following ACDF, the biomechanics of the arthrodesis is largely dictated by the plate. The properties of the plate prescribe the extent of load-sharing through the disc space versus the extent of stress-shielding. Load-sharing promotes interbody bone formation and stress-shielding can inhibit maturation of bone. However, these principles have never been validated in vivo. Measuring in vivo biomechanics of the cervical spine is critical to understanding the complex relationships between implant design, interbody loading, load-sharing, and the progression of fusion. Anterior cervical plates of distinct bending stiffnesses were placed surgically following ACDF in goats. A validated custom force-sensing interbody implant was placed in the disc space to measure load-sharing in the spine. Interbody loads were measured in vivo in real time during the course of fusion for each plate. Interbody forces during flexion/extension were highly dynamic. In animals that received high stiffness plates, maximum forces were in extension whereas in animals that received lower stiffness plates, maximum forces were in flexion. As fusion progressed, interbody load magnitude decreased. The magnitude of interbody forces in the cervical spine is dynamic and correlates to activity and posture of the head and neck. The magnitude and consistency of forces in the interbody space correlates to plate stiffness with more compliant plates resulting in more consistent load-sharing. The magnitude of interbody forces decreases as fusion matures suggesting that smart interbody implants may be used as a diagnostic tool to indicate the progression of interbody fusion. N/A.

  11. Panel Flutter Emulation Using a Few Concentrated Forces

    Science.gov (United States)

    Dhital, Kailash; Han, Jae-Hung

    2018-04-01

    The objective of this paper is to study the feasibility of panel flutter emulation using a few concentrated forces. The concentrated forces are considered to be equivalent to aerodynamic forces. The equivalence is carried out using surface spline method and principle of virtual work. The structural modeling of the plate is based on the classical plate theory and the aerodynamic modeling is based on the piston theory. The present approach differs from the linear panel flutter analysis in scheming the modal aerodynamics forces with unchanged structural properties. The solutions for the flutter problem are obtained numerically using the standard eigenvalue procedure. A few concentrated forces were considered with an optimization effort to decide their optimal locations. The optimization process is based on minimizing the error between the flutter bounds from emulated and linear flutter analysis method. The emulated flutter results for the square plate of four different boundary conditions using six concentrated forces are obtained with minimal error to the reference value. The results demonstrated the workability and viability of using concentrated forces in emulating real panel flutter. In addition, the paper includes the parametric studies of linear panel flutter whose proper literatures are not available.

  12. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    perpendicular to the direction of motion is derived theoretically in a consistent manner. The perpendicular reaction force is of paramount importance for prediction the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled with the horizontal...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...

  13. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    Science.gov (United States)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  14. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth

    2014-08-01

    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  15. Plate-shaped non-contact ultrasonic transporter using flexural vibration.

    Science.gov (United States)

    Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi

    2014-02-01

    We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. Copyright © 2013. Published by Elsevier B.V.

  16. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  17. Design and operation of AFC ramp plates for track clearance on longwall faces

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, I R

    1975-10-01

    A study of the use of AFC ramp plates carried out in the University of Newcastle upon Tyne is reported. A 1/4-scale ramp plate test rig was designed and the effects of pushing force, ramp plate toe angle, track width and other factors were studied.

  18. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    Science.gov (United States)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-04-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  19. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Science.gov (United States)

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  20. Wettability measurements of irregular shapes with Wilhelmy plate method

    Science.gov (United States)

    Park, Jaehyung; Pasaogullari, Ugur; Bonville, Leonard

    2018-01-01

    One of the most accurate methods for measuring the dynamic contact angle of liquids on solid surfaces is the Wilhelmy plate method. This method generally requires the use of rectangular samples having a constant perimeter in the liquid during advancing and receding cycles. A new formulation based on the Wilhelmy force balance equation to determine the contact angle for plate samples with irregular shapes has been developed. This method employs a profile plot obtained from an optical image to determine the perimeter (i.e. wetted length) of the sample as a function of the immersion depth. The raw force data measured by the force tensiometer is manipulated using the profile plot and the Wilhelmy equation to determine the wetting force and consequently advancing and the receding contact angle. This method is verified with both triangular and irregular PTFE samples in water, and measured contact angles are in good agreement with results from conventional regular shaped samples with a constant perimeter.

  1. The Casimir Effect Upon A Single Plate

    OpenAIRE

    Hoodbhoy, Pervez

    2004-01-01

    In the presence of an external field, the imposition of specific boundary conditions can lead to interesting new manifestations of the Casimir effect. In particular, it is shown here that even a single conducting plate may experience a non-zero force due to vacuum fluctuations. The origins of this force lie in the change induced by the external potential in the density of available quantum states.

  2. Biomechanical Analysis of Implanted Clavicle Hook Plates With Different Implant Depths and Materials in the Acromioclavicular Joint: A Finite Element Analysis Study.

    Science.gov (United States)

    Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih

    2016-11-01

    Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Best Technical Approach Analysis (BTA) for Force Provider Wastewater Management

    Science.gov (United States)

    1994-07-07

    TC/ AEAGC- FMD (CONT) I L ,1 I* ATCD-SE SUBJECT: Operational Requirements Document (ORD) for the Force Provider (FP) DISTRIBUTION: (CONT) Commander...MISSION 09 OP"RATI09AL FTA "tI*E Of TNE ALTIENATIVEI ONIDPOWO ... OXIDATION P*N) OR W~AAGE LAC" (300 9900 1 1 fEE?) PERPO*M ... IWNAT ARt ?NJ PSINCIVAi

  4. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    Science.gov (United States)

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  5. Sila kojom vazduh pritiska pokretnu ploču/Force of the air pressure on a moving plate

    Directory of Open Access Journals (Sweden)

    Leonid Ivanovich Gretchihin

    2014-10-01

    Full Text Available U radu je razrađena matematički model gasodinamičkog opstrujavanja ravne ploče pri njenom kretanju sa pozitivnim i negativnim napadnim uglom. Pokazano je da pri malim brzinama kretanja, silu uzgona i čeoni otpor određuje gasodinamički tok vazduha u izlaznoj oblasti opstrujavanja, a pri brzinama kretanja koje su bliske brzini zvuka odlučujuću ulogu vrši uzajamno udarno dejstvo ploče sa molekulima okružujuće sredine u ulaznoj oblasti opstrujavanja. Otcepljena struja iza ploče se ne pojavljuje pri malim brzinama kretanja. Određeni su uslovi kada čeoni otpor i sila uzgona ploče menjaju znak. / (ruski Razrabotana matematičeskaja model' gazodinamičeskogo obtekanija ploskoj plastiny pri ee dviženii s položitel'nym i otricatel'nym uglom ataki. Pokazano, čto pri malyh skorostjah dviženija plastiny pod''emnaja sila i lobovoe soprotivlenie opredeljajutsja gazodinamikoj tečenija vozduha v tyl'noj oblasti, a pri skorostjah dviženija blizkih k skorosti zvuka rešajuščuju rol' vypolnjaet udarnoe vzaimodejstvie plastiny s molekulami okružajuščej sredy v perednej oblasti. Sryvnoe tečenie za plastinoj pri malyh skorostjah dviženija ne voznikaet. Opredeleny uslovija, kogda lobovoe soprotivlenie i pod''emnaja sila plastiny izmenjaet znak. / This paper developed a mathematical model of gas dynamic fluid flow for a flat plate during its movement with positive and negative angles of attack. It is shown that at low velocities, the lifting force and the frontal resistance are determined by gasdynamic air flow in the fluid flow exit areawhile at velocities close to the speed of sound the decisive role is played by a mutualeffect of the pplate coliding with molecules of the surrounding environment in the fluid flow incidence field. The airflow behind the plate does not appear at low velocities. The conditions when the frontal resistance and the lifting force change the sign are determined.

  6. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  7. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  8. Extended Analysis of the Casimir Force

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-04-01

    Full Text Available There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measurements on the force between a pair po lished plane plates consisting of different metals, the plates having very small or zero air gaps. T his corre- sponds to the largest possible Casimir force. Even then, the re may arise problems with other adhering forces, possibly to be clarified in further experiments.

  9. Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    perpendicular to the direction of motion is derived theoretically in a new consistent manner. The perpendicular reaction force is of paramount importance for predicting the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...

  10. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  11. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    International Nuclear Information System (INIS)

    Xu, S C; Li, J Q; Zhang, R

    2006-01-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible

  12. Fermionic Casimir effect for parallel plates in the presence of compact dimensions with applications to nanotubes

    International Nuclear Information System (INIS)

    Bellucci, S.; Saharian, A. A.

    2009-01-01

    We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into purely topological, single plate and interaction parts. With independence of the lengths of the compact dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is always negative. In order to obtain the resulting force, the contributions from both sides of the plates must be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out and only the interaction term contributes to the Casimir force. Applications of the general formulae to Kaluza-Klein-type models and carbon nanotubes are given. In particular, we show that for finite-length metallic nanotubes, the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones, they are attractive for small lengths of the nanotube and repulsive for large lengths.

  13. Nonmonotonic Thermal Casimir Force from Geometry-Temperature Interplay

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2010-01-01

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.

  14. Posterior column acetabular fracture fixation using a W-shaped angular plate: A biomechanical analysis.

    Directory of Open Access Journals (Sweden)

    Ke Su

    Full Text Available The purpose of this study was to compare the stability and feasibility of four fixation constructs in a posterior column acetabular fracture: one reconstruction plate, one reconstruction plate and lag screw, two reconstruction plates, and a W-shaped acetabular angular plate.Twenty embalmed cadaveric pelvises with a posterior column acetabular fractures were allocated to one of four groups: 1 a reconstruction plate, 2 a reconstruction plate with a posterior column lag screw, 3 double reconstruction plates, and 4 a W-shaped acetabular angular plate. These constructs were mechanically loaded on a testing machine, and construct stiffness values were measured. Strain gauges were utilized to measure the mechanical behavior in the condition of compressive force.Final stiffness was not different between the two reconstruction plates (445.81±98.30 N/mm and the W-shaped acetabular angular plate (447.43±98.45 N/mm, p = 0.524, both of which were superior to a single reconstruction plate (248.90±61.95 N/mm and a combined plate and lag screw (326.41±94.34 N/mm. Following the fixation of the W-shaped acetabular angular plate, the strain distribution was similar to the intact condition around the acetabulum. The parameters of the W-shaped acetabular angular plate that were observed at the superior region of the acetabulum were less than those of a single reconstruction plate (p<0.05, a single reconstruction plate with lag screw (p<0.05, and two reconstruction plates (p<0.05.The novel W-shaped acetabular angular plate fixation technique was able to provide the biomechanically stiffest construct for stabilization of a posterior column acetabular fracture; it also resulted in a partial restoration of joint loading parameters toward the intact state.

  15. Flexture plate motion-transfer mechanism, beam-splitter assembly, and interferometer incorporating the same

    Energy Technology Data Exchange (ETDEWEB)

    Carangelo, Robert M. (Glastonbury, CT); Dettori, Mark D. (Farmington, CT); Grigely, Lawrence J. (South Windsor, CT); Murray, Terence C. (Winchester, MA); Solomon, Peter R. (West Hartford, CT); Van Dine, C. Peter (Bolton, CT); Wright, David D. (Vershire, VT)

    1996-01-01

    A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor.

  16. Quantitative assessment of growth plate activity

    International Nuclear Information System (INIS)

    Harcke, H.T.; Macy, N.J.; Mandell, G.A.; MacEwen, G.D.

    1984-01-01

    In the immature skeleton the physis or growth plate is the area of bone least able to withstand external forces and is therefore prone to trauma. Such trauma often leads to premature closure of the plate and results in limb shortening and/or angular deformity (varus or valgus). Active localization of bone seeking tracers in the physis makes bone scintigraphy an excellent method for assessing growth plate physiology. To be most effective, however, physeal activity should be quantified so that serial evaluations are accurate and comparable. The authors have developed a quantitative method for assessing physeal activity and have applied it ot the hip and knee. Using computer acquired pinhole images of the abnormal and contralateral normal joints, ten regions of interest are placed at key locations around each joint and comparative ratios are generated to form a growth plate profile. The ratios compare segmental physeal activity to total growth plate activity on both ipsilateral and contralateral sides and to adjacent bone. In 25 patients, ages 2 to 15 years, with angular deformities of the legs secondary to trauma, Blount's disease, and Perthes disease, this technique is able to differentiate abnormal segmental physeal activity. This is important since plate closure does not usually occur uniformly across the physis. The technique may permit the use of scintigraphy in the prediction of early closure through the quantitative analysis of serial studies

  17. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  18. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state

    Science.gov (United States)

    Wang, Yan Qing

    2018-02-01

    To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.

  19. A theoretical response of the electrostatic parallel plate to constant and low-frequency accelerations

    International Nuclear Information System (INIS)

    Lee, Ki Bang

    2009-01-01

    A theoretical response of an electrostatic gap-closing actuator based on parallel plates to constant and low-frequency accelerations has been derived as a function of the applied acceleration and voltage. The nonlinear equation of motion is obtained in a dimensionless form from the fact that the inertial and damping forces are neglected at a frequency much less than the resonant frequency of the parallel plate, and thereafter the nonlinear equation is solved for the stable inter-plate gap at the acceleration and voltage. From the derived solution, the pull-in acceleration is obtained as a function of the applied voltage, and the pull-in voltage is also expressed as a function of the acceleration. The closed-form solution is validated by comparison with a numerical solution. The theoretical solution is in excellent agreement with the numerical results when the actuator is exposed to a constant acceleration as well as a low-frequency acceleration. The theoretical solution and pull-in acceleration and voltage thus provide guidance to prescribe operational constraints for devices that use the parallel plate actuator and to predict the response of the electrostatic gap-closing parallel plates to constant and low-frequency acceleration

  20. Steam generator of the forced circulation type

    International Nuclear Information System (INIS)

    Forestier, Jean; Leblanc, Bernard; Monteil, Marcel; Monteil, Pierre

    1977-01-01

    The steam generator described is of the forced circulation single passage type comprising an outer casing including a vertical generally cylindrical side ring, an internal skirt coaxial with the outer casing, the bottom of this skirt having a free edge separated from a bottom end closing the outer casing, a central tube plate extending horizontally near a top end, in opposition to the bottom end, a peripheral tube plate, parallel to the central plate and located in the annular space under this central plate, a bundle of J shaped tubes [fr

  1. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    Science.gov (United States)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  2. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  3. Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs

    NARCIS (Netherlands)

    Corbee, R.J.; Maas, H.; Doornenbal, A; Hazewinkel, H.A.W.

    2014-01-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and

  4. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  5. Gain stabilized microchannel plates and a treatment method for microchannel plates

    International Nuclear Information System (INIS)

    1979-01-01

    Microchannel plates having increased gain and significantly improved aging characteristics are provided by forming a thin film of a cesium compound on the channel walls. In an exemplary embodiment, a suface film of cesium hydroxide is applied to the interior wall surfaces of an MCP by saturating the plate with a solution of the compound, then allowing the solvent to evaporate. The cesium hydroxide residue on the walls subsequently is converted to cesium oxide by a high temperature bake. Microchannel plates are used in image amplifiers, radiation detectors and such like equipment. (Auth.)

  6. In situ cannulation, microgrid follow-up and low-density plating provide first passage endothelial cell masscultures for in vitro lining.

    Science.gov (United States)

    Zilla, P; Fasol, R; Dudeck, U; Siedler, S; Preiss, P; Fischlein, T; Müller-Glauser, W; Baitella, G; Sanan, D; Odell, J

    1990-08-01

    A rapid and reliable harvest and culture technique was developed to provide a sufficient number of autologous endothelial cells for the confluent in vitro lining of cardiovascular prostheses. Enzymatic endothelial cell detachment was achieved by the in situ application of collagenase to short vessel segments. This harvest technique resulted in a complete lack of contaminating smooth muscle cells in all of 124 cultures from nonhuman primates and 13 cultures from human adults. The use of a microgrid technique enabled the daily in situ quantification of available endothelial cells. To assess ideal plating densities after passage the population doubling time was continuously related to the cell density. Surprisingly, a low plating density of 1.5 X 10(3) endothelial cells/cm2 achieved 43% shorter cell cycles than the usual plating density of 1.0 X 10(4) endothelial cells/cm2. Moreover, low density plating enabled mass cultures after one single cell passage, thereby reducing the cell damaging effect of trypsin. When the growth characteristics of endothelial cells from five anatomically different vessel sites were compared, the external jugular vein--which would be easily accessible and dispensable in each patient--proved to be an excellent source for endothelial cell cultures. By applying in situ administration of collagenase, low density plating and microgrid follow-up to adult human saphenous vein endothelial cells, 14,000,000 first passage endothelial cells--sufficient for the in vitro lining of long vascular prostheses--were obtained 26.2 days after harvest. (95% confidence interval:22.3 to 32.2 days).

  7. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report

  8. Normal and abnormal growth plate

    International Nuclear Information System (INIS)

    Kumar, R.; Madewell, J.E.; Swischuk, L.E.

    1987-01-01

    Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities

  9. Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity

    NARCIS (Netherlands)

    Antezza, Mauro; Pitaevskii, Lev P.; Stringari, Sandro; Svetovoy, Vitaly

    2006-01-01

    We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et

  10. Influence of roughness on capillary forces between hydrophilic surfaces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range

  11. Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.

    1972-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.

  12. Determination of transfer parameters in corrugated plates exchangers

    International Nuclear Information System (INIS)

    Silva Lima Filho, S. da.

    1984-01-01

    In this work is presented a experimental study about the forced convenction problem in vee-corrugated exchangers, with flow in the transversal sense, and parallel plates exchangers in which the isotermal plate is equivalent to the absobing one and the other plate is adiabatic. Global values of the transfer coefficients were experimentally obtained by application of the Naphthalene Sublimation Technique in accordance with the analogy between heat and mass transfer. The results were expressed in terms of Sh sup(-) /Sc sup(0,4) that according to the analogy is equal the Nu sup(-) / Pr sup(0,4) in function of the Reynolds number. The ratio between the lenght of the channel and the average spacing between plates L/2a was ranged in all the exchangers. Parameters of transfer to angles of 45 0 and 31 0 were determined in the corrugated plates exchangers. The experimental results obtained were analyzed and compared among them. Finally practical applications of these results are presented to heat exchangers with similars geometric characteristics. (Author) [pt

  13. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  14. Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses

    Directory of Open Access Journals (Sweden)

    Ding Zhou

    2012-01-01

    Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.

  15. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    International Nuclear Information System (INIS)

    Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul

    2008-01-01

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment

  16. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  17. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  18. Image charge forces inside conducting boundaries

    International Nuclear Information System (INIS)

    Tinkle, Mark D.; Barlow, S. E.

    2001-01-01

    The common description of the electrostatic force, F(x)=-q∇φ(x), provides an incomplete description of the force on the charge q at a point x when the charge itself induces additional fields, e.g., image charges, polarizations, etc. The equation may be corrected through the introduction of a ''pseudopotential'' formalism. Exploration of some of the elementary properties of the pseudopotential demonstrates its essential simplicity. This simplicity allows it to be incorporated directly into dynamics calculations. We explicitly evaluate the pseudopotential in a number of simple but important cases including the sphere, parallel plates, the rectangular prism, and the cylindrical box. The pseudopotential formalism may be expanded to include extended charge distributions; in this latter form we are able to directly apply the results to experimental measurements

  19. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  20. Heat transfer analysis to investigate the core catcher plate assembly in SFR

    International Nuclear Information System (INIS)

    Patil, Swapnil; Sharma, Anil Kumar; Velusamy, K.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Severe accident scenario in Sodium Cooled Fast Reactor (SFR) is the major concern for public acceptance. After severe accident, the molten core continuously generates substantial decay heat. However, an in-vessel core catcher plate is provided to remove the decay heat passively. The numerical investigation of pool hydraulics phenomena in sodium pool of typical Indian SFR has been carried out. The debris may form a heap with different angle over the core catcher plate due to molten fuel density and interaction force. Therefore, the debris bed with different heap angle has been analyzed for steady and transient state conditions. The governing equation of fluid flow and heat transfer are solved by finite volume method based solver with the k-ε turbulent model. The time period Δ for which temperature is exceeding above safety limit with different debris heap angle have been established. (author)

  1. Comparison of the Resistance to Bending Forces of the 4.5 LCP Plate-rod Construct and of 4.5 LCP Alone Applied to Segmental Femoral Defects in Miniature Pigs

    Directory of Open Access Journals (Sweden)

    Lucie Urbanová

    2010-01-01

    Full Text Available The study deals with the determination of mechanical properties, namely resistance to bending forces, of flexible buttress osteosynthesis using two different bone-implant constructs stabilizing experimental segmental femoral bone defects (segmental ostectomy in a miniature pig ex vivo model using 4.5 mm titanium LCP and a 3 mm intramedullary pin (“plate and rod” construct (PR-LCP, versus the 4.5 mm titanium LCP alone (A-LCP. The “plate and rod” fixation (PR-LCP of the segmental femoral defect is significantly more resistant (p in vivo experiments in the miniature pig to investigate bone defect healing after transplantation of mesenchymal stem cells in combination with biocompatible scaffolds.

  2. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  3. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    Science.gov (United States)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    .6 to 1.0 Ma along the entire plate boundary, followed by a resumption of trench-normal subduction along the southern half of the Rivera-North America plate boundary after 1.0 Ma. Motion of the Rivera plate relative to the underlying mantle since 10 Ma has oscillated between periods of landward motion and seaward motion. The evidence suggests that the torque exerted by slab pull on this young and hot oceanic plate is either minimal or is effectively counterbalanced by forces that resist its motion.

  4. A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang

    2013-01-01

    A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.

  5. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    Science.gov (United States)

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  6. CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis.

    Science.gov (United States)

    Rendenbach, Carsten; Sellenschloh, Kay; Gerbig, Lucca; Morlock, Michael M; Beck-Broichsitter, Benedicta; Smeets, Ralf; Heiland, Max; Huber, Gerd; Hanken, Henning

    2017-11-01

    CAD/CAM reconstruction plates have become a viable option for mandible reconstruction. The aim of this study was to determine whether CAD/CAM plates provide higher fatigue strength compared with conventional fixation systems. 1.0 mm miniplates, 2.0 mm conventional locking plates (DePuy Synthes, Umkirch, Germany), and 2.0 mm CAD/CAM plates (Materialise, Leuven, Belgium/DePuy Synthes) were used to reconstruct a polyurethane mandible model (Synbone, Malans, CH) with cortical and cancellous bone equivalents. Mastication was simulated via cyclic dynamic testing using a universal testing machine (MTS, Bionix, Eden Prairie, MN, USA) until material failure reached a rate of 1 Hz with increasing loads on the left side. No significant difference was found between the groups until a load of 300 N. At higher loads, vertical displacement differed increasingly, with a poorer performance of miniplates (p = 0.04). Plate breakage occurred in miniplates and conventional locking plates. Screw breakage was recorded as the primary failure mechanism in CAD/CAM plates. Stiffness was significantly higher with the CAD/CAM plates (p = 0.04). CAD/CAM plates and reconstruction plates provide higher fatigue strength than miniplates, and stiffness is highest in CAD/CAM systems. All tested fixation methods seem sufficiently stable for mandible reconstruction. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Effects of Damping Plate and Taut Line System on Mooring Stability of Small Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2015-01-01

    Full Text Available Ocean wave energy can be used for electricity supply to ocean data acquisition buoys. A heaving buoy wave energy converter is designed and the damping plate and taut line system are used to provide the mooring stability for better operating conditions. The potential flow assumption is employed for wave generation and fluid structure interactions, which are processed by the commercial software AQWA. Effects of damping plate diameter and taut line linking style with clump and seabed weights on reduction of displacements in 6 degrees of freedom are numerically studied under different operating wave conditions. Tensile forces on taut lines of optimized mooring system are tested to satisfy the national code for wire rope utilization.

  8. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  9. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  10. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  11. Casimir force in the Goedel space-time and its possible induced cosmological inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, Sh. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)

    2017-07-15

    The Casimir force between two parallel plates in the Goedel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Goedel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied. (orig.)

  12. Divertor plate for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Sato, Keisuke; Nishio, Satoshi.

    1993-01-01

    In a divertor plate for a thermonuclear reactor, adjacent cooling pipes are electrically insulated from each other and pipes made of a gradient functional material prepared by compositing ceramics having an insulation property and metals are metallurgically joined to at least one portion of each of the cooling pipes. Electric current caused upon occurrence of plasma disruption is interrupted by the insulation portion, so that a large circuit is not formed and electromagnetic force is decreased to such a extent that the divertor plate is not ruptured. Since a header of the cooling pipes can be installed at any optional position, the installation space can be reduced. Further, since inlet and exit collection headers can be disposed on both ends of the cooling pipes, it is possible to shorten the length of the cooling pipe of the divertor plate corresponded to high heat fluxes and reduce the pressure loss on the side of coolants to about 1/2. Further, turn back portions of small radius of curvature of the cooling pipes are eliminated to reduce the cost and extend the lifetime and, in addition, protection tiles can be attached easily. (N.H.)

  13. Exertion of forces by children performing a free-style jump

    NARCIS (Netherlands)

    Moes, C.C.M.; Visser, R.J.

    1998-01-01

    This research project focuses on the force characteristics and force/time relationships of loads exerted by jumping children. The current study is an experimental research into children jumping on both hard and soft substrates. The hard substrate is obtained by using a force plate. For the soft

  14. Dilemma in pediatric mandible fractures: resorbable or metallic plates?

    Science.gov (United States)

    Taylan Filinte, Gaye; Akan, İsmail Mithat; Ayçiçek Çardak, Gülçin Nujen; Özkaya Mutlu, Özay; Aköz, Tayfun

    2015-12-01

    The aim of this study was to compare the efficiency of resorbable and metallic plates in open reduction and internal fixation of mandible fractures in children. Thirty-one patients (mean age, 8.05 years; range 20 months-14 years) were operated on various fractures of the mandible (26 [60.4%] symphysis- parasymphysis, 12 [27.9%] condylar-subcondylar fractures, 5 [11.6%] angulus and ramus fractures). Twelve patients were treated with resorbable plates and 19 patients with metallic plates. Mean follow-up time was 41 months (11-74 months) in the metallic hardware group and was 22 months (8-35 months) in the resorbable plate group. Both groups were investigated for primary bone healing, complications, number of operations, and mandibular growth. The results were discussed below. Both groups demonstrated primary bone healing. Minor complications were similar in both groups. The metallic group involved secondary operations for plate removal. Mandibular growth was satisfactory in both groups. Resorbable plates cost more than the metallic ones; however, when the secondary operations are included in the total cost, resorbable plates were favourable. As mandibular growth and complication parameters are similar in both groups, resorbable plates are favored due to avoidance of potential odontogenic injury, elimination of long-term foreign body retention and provision of adequate stability for rapid bone healing. However, learning curve and concerns for decreased stability against heavy forces of mastication accompanied with the resorbable plates when compared to the metallic ones should be kept in mind.

  15. Design of reinforced concrete plates and shells

    International Nuclear Information System (INIS)

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  16. Balance assessment during squatting exercise: A comparison between laboratory grade force plate and a commercial, low-cost device.

    Science.gov (United States)

    Mengarelli, Alessandro; Verdini, Federica; Cardarelli, Stefano; Di Nardo, Francesco; Burattini, Laura; Fioretti, Sandro

    2018-04-11

    Testing balance through squatting exercise is a central part of many rehabilitation programs and sports and plays also an important role in clinical evaluation of residual motor ability. The assessment of center of pressure (CoP) displacement and its parametrization is commonly used to describe and analyze squat movement and the laboratory-grade force plates (FP) are the gold standard for measuring balance performances from a dynamic view-point. However, the Nintendo Wii Balance Board (NWBB) has been recently proposed as an inexpensive and easily available device for measuring ground reaction force and CoP displacement in standing balance tasks. Thus, this study aimed to compare the NWBB-CoP data with those obtained from a laboratory FP during a dynamic motor task, such as the squat task. CoP data of forty-eight subjects were acquired simultaneously from a NWBB and a FP and the analyses were performed over the descending squatting phase. Outcomes showed a very high correlation (r) and limited root-mean-square differences between CoP trajectories in anterior-posterior (r > 0.99, 1.63 ± 1.27 mm) and medial-lateral (r > 0.98, 1.01 ± 0.75 mm) direction. Spatial parameters computed from CoP displacement and ground reaction force peak presented fixed biases between NWBB and FP. Errors showed a high consistency (standard deviation < 2.4% of the FP outcomes) and a random spread distribution around the mean difference. Mean velocity is the only parameter which exhibited a tendency towards proportional values. Findings of this study suggested the NWBB as a valid device for the assessment and parametrization of CoP displacement during squatting movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Damage initiation and growth in laminated polymer compsosite plates with fluid-structure interaction under impact loading

    Directory of Open Access Journals (Sweden)

    Y Kwon

    2016-09-01

    Full Text Available Damage initiation and growth as well as dynamic response of laminated polymer composite plates were investigated with the effect of Fluid-Structure Interaction (FSI when they were subjected to impact loading. The E-glass composite plates were clamped along the boundaries and impact loading was applied from a specially designed vertical drop-impact testing machine while the plates were surrounded by either water or air. The damage and transient responses such as force- and strain-time history were measured during the progressive impact tests, and the test data collected from either impact in air or under water were compared to determine the effect of FSI. The study showed that FSI was generally detrimental to composite plates because of the hydrodynamic mass effect so that damage occurred at a lower impact force for the composite plate submerged in water. The strain measure also suggested that the FSI effect varied from location to location of the plate surface. Additionally, the FSI effect yielded a significant change in the strain response in terms of both magnitude and shape in time history for the plate in water along with progressive damage. In summary, it is essential to include the FSI effect for design and analysis of composite structures when they are in contact with water.

  18. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    Science.gov (United States)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  19. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    sliding plate system, consisting of two flat surfaces, one of which has a recessed channel. A fluid flow is produced by axially sliding one plate past another, where the fluid has mechanical shear forces imposed at each point along the channel length. The shear-induced flow rates are very reproducible, and do not have pressure or voltage gradient limitations. SDC opens up a new range of enhanced separation kinetics by permitting the sample confinement with submicron dimensions. Small, highly confined liquid is advantageous for chromatographic separation because the separation rate is known to scale according to the square of the confined sample diameter. In addition, because shear-driven flows are not limited by fluid velocity, shear-driven liquid chromatography may provide up to 100,000 plate efficiency.

  20. Numerical and experimental study of bistable plates for morphing structures

    Science.gov (United States)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  1. A mechanism of thrust enhancement on a heaving plate due to flexibility at moderately low Reynolds numbers

    Science.gov (United States)

    Lin, Yung-Sheng; Tzeng, Yau-Ting; Chang, Chien-Cheng; Chu, Chin-Chou

    2017-11-01

    A numerical study is conducted to investigate the force mechanisms for a 3D heaving flexible plate from the perspective of a diagnostic force element analysis (Chang 1992). The problem is relevant to a simplified flapping fish-tail with the front edge held fixed in space. The flow is assumed to be laminar with the Reynolds numbers fixed at Re =200 or 500, and the Strouhal number St ranging from 0.1 to 0.6, and the flexure amplitude of the plate a0 for 0.1 to 0.25 (dimensionless). It is shown that heaving, whilst increasing thrust generation, also reduces the frictional drag, yet the flexibility promotes thrust generation at the expense of accruing more frictional drag. In the literature, the thrust exerted on the tail-mimicking plate is largely credited to the vortices in the wake. However, this study performs a regional force analysis to show that the vorticity in the wake region supplies approximately 20-30% of the total thrust, especially in the cases of strong thrust generation. Comparable contributions come also from the regions direct above and below the heaving plate (mainly including the attached vortices) as well as from the two side regions (mainly including the tip vortices) next to the flapping plate. In addition, the potential motion associated with the unsteady flapping and the contribution from the surface vorticity are non-negligible constituent force components. MOST, TAIWAN under Contacts NO. 105-2221-E-002-097-MY3 and NO. 105-2221-E-002 -105 -MY3.

  2. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  3. Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis

    International Nuclear Information System (INIS)

    Lee, Handol; Yook, Sejin; Han, Seogyoung

    2012-01-01

    The deposition velocity is used to assess the degree of particulate contamination of wafers or photomasks. A numerical model was developed to predict the deposition velocity under the combined influences of thermophoresis and electrophoresis. The deposition velocity onto a face-up flat plate in parallel airflow was simulated by varying the temperature difference between the plate's surface and ambient air or by changing the strength of the electric field established above the plate. Both attraction and repulsion by thermophoresis or electrophoresis were considered. When the plate's surface was colder than ambient air, the surface of the face-up plate could be at risk of contamination by charged particles even with a repulsive applied electric force. When the temperature of the plate's surface was higher than the ambient temperature, the degree of particulate contamination on the surface of the face-up plate could be remarkably reduced in the presence of an electric field. The effect of repulsive thermophoresis, however, is expected to be reduced for very fine particles of high electric mobility or for micrometer-sized particles with large gravitational settling speed when the charged particles are influenced by an attractive electric force.

  4. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  5. Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates

    Directory of Open Access Journals (Sweden)

    Young-Ho Park

    2015-01-01

    Full Text Available : In this paper, an Energy Flow Analysis (EFA for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.

  6. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    Science.gov (United States)

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  7. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  8. Pre-Stressing Timber-Based Plate Tensegrity Structures

    DEFF Research Database (Denmark)

    Falk, Andreas; Kirkegaard, Poul Henning

    2012-01-01

    Tensile structures occur in numerous varieties utilising combinations of tension and compression. Introducing structural plates in the basic tensegrity unit and tensegric assemblies varies the range of feasible topologies and provides the structural system with an integrated surface. The present...... paper considers the concept of plate tensegrity based on CLT plates (cross-laminated timber). It combines the principles of tensegrity with the principles of plate shells and is characterised by a plate shell stabilised by struts and cables. The paper deals with material aspects and robustness of timber...

  9. An Asymptotic Approach for the Elastodynamic Problem of a Plate under Impact Loading

    Directory of Open Access Journals (Sweden)

    Penelope Michalopoulou

    2010-01-01

    Full Text Available An approach is presented for analyzing the transient elastodynamic problem of a plate under an impact loading. The plate is considered to be in the form of a long strip under plane strain conditions. The loading is taken as a concentrated line force applied normal to the plate surface. It is assumed that this line force is suddenly applied and maintained thereafter (i.e., it is a Heaviside step function of time. Inertia effects are taken into consideration and the problem is treated exactly within the framework of elastodynamic theory. The approach is based on multiple Laplace transforms and on certain asymptotic arguments. In particular, the one-sided Laplace transform is applied to suppress time dependence and the two-sided Laplace transform to suppress the dependence upon a spatial variable (along the extent of the infinite strip. Exact inversions are then followed by invoking the asymptotic Tauber theorem and the Cagniard-deHoop technique. Various extensions of this basic analysis are also discussed.

  10. Low velocity impact on polymer composite plates in contact with water

    Directory of Open Access Journals (Sweden)

    Y Kwon

    2016-09-01

    Full Text Available In this study, composite materials were tested in two different environments to determine the role of Fluid Structure Interaction with composites under a low velocity impact. This was done using a low velocity impact machine and polymer composite plates. The composite is made of laminated symmetrical plain weave E-glass fabrics. The test area of the composite plates is 30.5 cm by 30.5 cm with clamped boundary conditions. The testing was done using a drop weight system to impact the center of the test area. One testing was performed with composite plates in air, called dry impact. The other testing was conducted while composite plates were submerged in water, called wet impact. A Plexiglas box in conjunction with the impact machine was used to keep the top of the composite sample dry while it was submerged in an anechoic water tank, so called water-backed air impact. Output from the tests was recorded using strain gauges and a force impact sensor. The results show that an added mass effect from the water plays a large role in the Fluid Structure Interaction with composites due to the similar densities of water and the composites. The wet impact results in a larger impact force and damage than the dry impact under the same impact condition, i.e., the same impact mass and drop height.

  11. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  12. Vibration control of an elastic strip by a singular force

    Indian Academy of Sciences (India)

    strip are changed by applying a lateral concentrated force to the plate. ... Predicting resonance frequency of plates is an important technological and scientific ... Ritz methods in a number of studies pertaining to control of flutter in aerospace ..... Bingham B, Atalla M J, Hagood N W 2001 Comparison of structural-acoustic ...

  13. BAO Plate Archive Project

    Science.gov (United States)

    Mickaelian, A. M.; Gigoyan, K. S.; Gyulzadyan, M. V.; Paronyan, G. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Kostandyan, G. R.; Samsonyan, A. L.; Mikayelyan, G. A.; Farmanyan, S. V.; Harutyunyan, V. L.

    2017-12-01

    We present the Byurakan Astrophysical Observatory (BAO) Plate Archive Project that is aimed at digitization, extraction and analysis of archival data and building an electronic database and interactive sky map. BAO Plate Archive consists of 37,500 photographic plates and films, obtained with 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. The famous Markarian Survey (or the First Byurakan Survey, FBS) 2000 plates were digitized in 2002-2005 and the Digitized FBS (DFBS, www.aras.am/Dfbs/dfbs.html) was created. New science projects have been conducted based on this low-dispersion spectroscopic material. Several other smaller digitization projects have been carried out as well, such as part of Second Byurakan Survey (SBS) plates, photographic chain plates in Coma, where the blazar ON 231 is located and 2.6m film spectra of FBS Blue Stellar Objects. However, most of the plates and films are not digitized. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. Armenian Virtual Observatory (ArVO, www.aras.am/Arvo/arvo.htm) database will accommodate all new data. The project runs in collaboration with the Armenian Institute of Informatics and Automation Problems (IIAP) and will continues during 4 years in 2015-2018. The final result will be an Electronic Database and online Interactive Sky map to be used for further research projects. ArVO will provide all standards and tools for efficient usage of the scientific output and its integration in international databases.

  14. A reciprocating pin-on-plate test-rig for studying friction materials for holding brakes

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Drago, Nicola; Klit, Peder

    2014-01-01

    -on-plate test-rig for studying the evolution of wear by monitoring the pin height reduction using Eddy-current proximity sensors is presented. Moreover, a new mechanism for recording the friction force is suggested. Apart from the design of the test-rig, friction force and wear rate measurements for two...

  15. Shear Resistance Capacity of Interface of Plate-Studs Connection between CFST Column and RC Beam

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2017-01-01

    Full Text Available The combination of a concrete-filled steel tube (CFST column and reinforced concrete (RC beam produces a composite structural system that affords good structural performance, functionality, and workability. The effective transmission of moments and shear forces from the beam to the column is key to the full exploitation of the structural performance. The studs of the composite beam transfer the interfacial shear force between the steel beam and the concrete slab, with the web bearing most of the vertical shear force of the steel beam. In this study, the studs and vertical steel plate were welded to facilitate the transfer of the interfacial shear force between the RC beam and CFST column. Six groups of a total of 18 specimens were used to investigate the shear transfer mechanism and failure mode of the plate-studs connection, which was confirmed to effectively transmit the shear forces between the beam and column. The results of theoretical calculations were also observed to be in good agreement with the experimental measurements.

  16. General Observations of the Time-Dependent Flow Field Around Flat Plates in Free Fall

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Jensen, Anna Lyhne; Pedersen, Marie Cecilie

    2015-01-01

    a six degrees of freedom (6DOF) solver and a dynamic mesh. To validate the simulation, the trajectories of aluminium plates falling in water are recorded by digital camera recordings and compared to the simulation. The simulation is able to calculate the motion of the plate within each time step...... with high accuracy, and thereby allowing the whole trajectory to be predicted with fair accuracy. With the numerical model able to predict the free fall and the complex plate fluid interactions, fluids forces can be extracted for model development in future studies....

  17. Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates

    OpenAIRE

    Zirakian, Tadeh

    2013-01-01

    Steel plate shear walls (SPSWs) have been frequently used as the primary or part of the primary lateral force-resisting system in design of low-, medium-, and high-rise buildings. Their application has been based on two different design philosophies as well as detailing strategies. Stiffened and/or stocky-web SPSWs with improved buckling stability and high seismic performance have been mostly used in Japan, which is one of the pioneering countries in design and application of these systems. U...

  18. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    Science.gov (United States)

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  19. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation

    Science.gov (United States)

    Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.

    2018-01-01

    The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.

  20. The effect on the multipolar electromagnet for the levitation of thin iron plate

    Energy Technology Data Exchange (ETDEWEB)

    Osabe, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)

    1996-12-31

    The thin iron plate is needed to be transported without the degradation of the quality of surface, and magnetic levitation technology is one of the solutions to satisfy these requirements. Magnetic saturation in the objective, however, is a severe problem for the levitation of the thin iron plate. Design and evaluation method of the electromagnet is studied to avoid the saturation. In this paper, the shape of the electromagnet is studied to obtain the maximum attractive force without the saturation in the thin iron plate. The magnetic saturation position is investigated first, and it is proved that the saturation occurs in the iron plate especially when it is very thin. Therefore, the preferable shape of electromagnet should be investigated to secure the large cross sectional area of flux path in the plate. The authors propose the Multipolar electromagnet to solve this problem. The relationship between the electromagnet shape and the cross sectional area of flux path in the plate is studied. (orig.)

  1. Preserving and Archiving Astronomical Photographic Plates

    Science.gov (United States)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  2. Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2018-01-01

    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.

  3. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.

    2011-01-01

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  4. Advanced Modelling of Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter; Nielsen, Jacob

    Most of the finite element programs for design of timber trusses with punched metal fasteners are based on models using beam and fictitious elements. Different models have been used for different types of joints. Common problems for all the models are how to calculate the forces in the nail groups...... and the plates and furthermore, how big 'the deformations in the joints are. By developing an advanced model that includes all parts of the joint, i.e. plate, nail groups and contact it is possible to give a better description of the joint. An advanced model with these properties is presented. The advanced model...

  5. Effects of the partially movable control fin with end plate of underwater vehicle

    Directory of Open Access Journals (Sweden)

    Chul-Min Jung

    2017-01-01

    Full Text Available Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

  6. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    Science.gov (United States)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  7. The passive control of three-dimensional flow over a square cylinder by a vertical plate at a moderate Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, S; Mirzaee, I; Pourmahmoud, N [Department of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Shirvani, H, E-mail: s.malekzadeh.d@gmail.com [Department of Computing Science, Faculty of Science and Technology, Anglia Ruskin University, Chelmsford (United Kingdom)

    2017-04-15

    This paper presents three-dimensional simulation results to investigate the reduction of fluid forces acting on a square cylinder by a passive control method, i.e. placing a vertical control plate upstream of the cylinder. The simulations were carried out for Re{sub W}  = 500, based on the width of the square cylinder (W) and the inlet flow velocity. The width of the control plate (h) varied between 0.1 W and 0.9 W and the distance between the control plate and cylinder (S) was set in the range of 1.1 W –5 W. The flow patterns, vortex shedding frequency, and wake vorticity structures were studied to determine the flow instabilities that existed over the square cylinder and control plate. In addition, the reduction of mean and fluctuating fluid forces acting on the square cylinder in the presence of a control plate was studied, and compared with the single square cylinder in order to identify optimum conditions. The results indicated that the case with h  = 0.7 W and 2.5 W  ≤  S  ≤ 3 W emerged as optimal, offering the highest reduction in the fluid forces that occurred over the square cylinder. (paper)

  8. Dynamic Analysis of Thick Plates Including Deep Beams on Elastic Foundations Using Modified Vlasov Model

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2013-01-01

    Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.

  9. New devices for measuring forces on the kayak foot bar and on the seat during flat-water kayak paddling: a technical report.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2014-03-01

    The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.

  10. Research on Continuous Injection Direct Rolling Process for PMMA Optical Plate

    Directory of Open Access Journals (Sweden)

    HaiXiong Wang

    2014-06-01

    Full Text Available Continuous injection direct rolling (CIDR combined intermittent injection and rolling process is a new technology for molding optical polymer plates with microstructured patterns; research on forming PMMA optical plates is an aspect of it in this paper. The equipment of CIDR process consists of plastic injection module, precision rolling module, and automatic coiling module. Based on the establishing mathematical CIDR models, numerical analysis was used to explode the distribution of velocity, temperature, and pressure in injection-rolling zone. The simulation results show that it is feasible to control the temperature, velocity, and injection-rolling force, so it can form polymer plate under certain process condition. CIDR experiment equipment has been designed and produced. PMMA optical plate was obtained by CIDR experiments, longitudinal thickness difference is 0.005 mm/200 mm, horizontal thickness difference is 0.02/200 mm, transmittance is 86.3%, Haze is 0.61%, and the difference is little compared with optical glasses. So it can be confirmed that CIDR process is practical to produce PMMA optical plates.

  11. Numerical investigation of the effects of compressibility on the flutter of a cantilevered plate in an inviscid, subsonic, open flow

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2018-06-01

    We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.

  12. The solution of certain loss of contact between a plate and unilateral supports

    Directory of Open Access Journals (Sweden)

    Sompornjaroensuk Yos

    2007-01-01

    Full Text Available This paper examines the loss of contact between a square plate and the unilateral supports under uniformly distributed load. Since the plate is rested on the unilateral supports, it will have the regions of lost contact between a plate and the supports due to the absence of restraining corner force at the plate corners. This leads to the mixed boundary conditions and these conditions are then written in the form of dual-series equations which can further be reduced to a Fredholm integral equation by taking advantage of finite Hankel transform technique. Numerical results are given for the deflections of free edge and deflections along the middle line of the plate with deferent values of the Poisson’s ratio. In addition, the deflection surface is also presented. From the investigation, it can be indicated that the loss of contact is decreased upon the increasing Poisson’s ratio.

  13. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  14. Performance of the PBX-M passive plate stabilization system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, R.; Bernabei, S.

    1994-02-01

    The PBX-M passive plate stabilization system provides significant stabilization of long-wavelength external kink modes, the slowing of vertical instability growth rates, and the amelioration of disruption characteristics. The passive plate stabilization system has allowed the use of LHCD and IBW to induce current density and pressure profile modifications, and m = 1 divertor biasing for modifying edge plasma transport. Improvements in the passive plate system insulators and support structures have provided reliable operation. Impurity influxes with the close-fitting passive plates are low. Solid target boronization is applied routinely to reduce conditioning time and maintain clean conditions

  15. Biomechanical and biological aspects of defect treatment in fractures using helical plates.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A D

    2014-01-01

    The clinical case of figure 1 through figure 11 shows a series of impressive failures of plate fixation. The plates were repeatedly applied bridging a comminuted bone segment in a heavy patient. The biomechanical analysis elaborates why this happened and proposes an unconventional procedure to prevent this failure with a minimally invasive procedure. A plate bridging an open gap or a defect in a long bone diaphysis is exposed to full functional load. According to clinical observations such plate application often fails even without external load such as weight bearing. The plate risks to break through fatigue when exposed during a long time to cyclic loading. This type of failure has been observed even with broad plates as well in femoral as in tibiae. The first option to avoid such failure consists in protecting the plate by installing load sharing between plate and either bone or an additional implant. This reduces the load carried by the plate to a safe level. Load sharing with bone may be installed at surgery by establishing solid mechanical bridge between the two main fragments of the fractured bone. The optimal load sharing relies on a solid compressed contact between the main fragments. It can be established because the bone is able to take a large load which results in optimal protection of the plate. In the case of an extended comminuted bone segment it may be very difficult, traumatizing and inefficient to reconstruct the bone. In the present case it was impossible to establish load sharing through the bone. The second option protecting the plate is provided by callus bridging of the gap or defect. The formation of a solid callus bridge takes time but the fatigue failure of the plate also takes time. Therefore, the callus bridge may prevent a late fatigue failure. The surgeon may select one of several options: - Replacing the lack of bone support using a second plate which immediately alleviates plate loading. The drawback of application of a second

  16. A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.

    Science.gov (United States)

    Lalkov, Vasko; Qasaimeh, Mohammad A

    2017-07-01

    This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.

  17. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  18. NRC test results and operations experience provide insights for a new gate valve stem force correlation

    International Nuclear Information System (INIS)

    Watkins, John C.; Steele, Robert Jr.; DeWall, Kevin G.; Weidenhamer, G.H.; Rothberg, O.O.

    1994-01-01

    This paper presents the results of testing sponsored by the NRC to assess valve and motor operator performance under varying pressure and fluid conditions. This effort included an examination of the methods used by the industry to predict the required stem force of a valve, and research to provide guidelines for the extrapolation of in situ test results to design basis conditions.Years ago, when most of these valves were originally installed, the industry used a set of equations to determine analytically that the valves' motor-operators were large enough and the control switches were set high enough to close the valves at their design basis conditions. Our research has identified several inconsistencies with the industry's existing gate valve stem force equation and has challenged the overly simplistic assumptions inherent in its use. This paper discusses the development of the INEL correlation, which serves as the basis for a method to bound the stem force necessary to close flexwedge gate valves whose operational characteristics have been shown to be predictable. As utilities undertake to provide assurance of their valves' operability, this ability to predict analytically the required stem force is especially important for valves that cannot be tested at design basis conditions. For such valves, the results of tests conducted at less severe conditions can be used with the INEL correlation to make the necessary prediction. ((orig.))

  19. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  20. Method for regeneration of electroless nickel plating solution

    Science.gov (United States)

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  1. Reconstructing plate-motion changes in the presence of finite-rotations noise.

    Science.gov (United States)

    Iaffaldano, Giampiero; Bodin, Thomas; Sambridge, Malcolm

    2012-01-01

    Understanding lithospheric plate motions is of paramount importance to geodynamicists. Much effort is going into kinematic reconstructions featuring progressively finer temporal resolution. However, the challenge of precisely identifying ocean-floor magnetic lineations, and uncertainties in geomagnetic reversal timescales result in substantial finite-rotations noise. Unless some type of temporal smoothing is applied, the scenario arising at the native temporal resolution is puzzling, as plate motions vary erratically and significantly over short periods (<1 Myr). This undermines our ability to make geodynamic inferences, as the rates at which forces need to be built upon plates to explain these kinematics far exceed the most optimistic estimates. Here we show that the largest kinematic changes reconstructed across the Atlantic, Indian and South Pacific ridges arise from data noise. We overcome this limitation using a trans-dimensional hierarchical Bayesian framework. We find that plate-motion changes occur on timescales no shorter than a few million years, yielding simpler kinematic patterns and more plausible dynamics.

  2. Pull-out test of stud bolts embedded in concrete under an in-plane force

    International Nuclear Information System (INIS)

    Inada, Y.; Saito, H.; Torita, H.; Takiguchi, K.; Ibe, Y.; Taira, T.

    1995-01-01

    There are many steel plates with stud bolts embedded in the R C walls of a nuclear reactor building to support equipment and piping. Under a earthquake, the steel plates are submitted to an out-of-plane force due to the inertia force acting upon equipment and piping. Furthermore, the walls are submitted to an in-plane force, and cracks may occur. A large number of experimental studies have been carried out on the pull-out strength of stud bolts embedded in concrete. Few studies have been performed to understand the strength of stud bolts embedded in concrete under an in-plane force and, further, not any one on the strength for concrete under in-plane force simultaneously to stud bolts under out-of-plane force. This paper describes a test performed to understand the pull-out strength determined by this interaction of in-plane and out-of-plane forces. (author). 5 refs., 9 figs., 5 tabs

  3. Pyrolysis and Boundary Layer Combustion of a Non-Charring Solid Plate Under Forced Flow

    National Research Council Canada - National Science Library

    Ananth, Ramagopal

    2003-01-01

    Solutions of Navier-Stokes (NS) equations were obtained for burning rate Nu and temperature distributions for a flat PMMA plate using an iterative method to impose steady-state, pyrolysis kinetics at the surface...

  4. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  5. Air Force Health Care Providers Incidence of Performing Testicular Exams and Instruction of Testicular Self-Exam

    National Research Council Canada - National Science Library

    Adams, Nicola

    1999-01-01

    ...) within an Air Force healthcare setting. The study is also designed to determine any significant differences among providers, Family Practice Physicians, Nurse Practitioners, and Physicians Assistants, regarding the incidence of performing...

  6. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  7. DESI focal plate mechanical integration and cooling

    Science.gov (United States)

    Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier

  8. Modal radiation patterns of baffled circular plates and membranes.

    Science.gov (United States)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2014-05-01

    The far field velocity potential and radiation pattern of baffled circular plates and membranes are found analytically using the full set of modal velocity profiles derived from the corresponding equation of motion. The derivation is valid for a plate or membrane subjected to an external excitation force, which is used as a sound receiver in any medium or as a sound transmitter in a gaseous medium. A general, concise expression is given for the radiation pattern of any mode of the membrane and the plate with arbitrary boundary conditions. Specific solutions are given for the four special cases of a plate with clamped, simply supported, and free edge boundary conditions as well as for the membrane. For all non-axisymmetric modes, the velocity potential along the axis of the radiator is found to be strictly zero. In the long wavelength limit, the radiation pattern of all axisymmetric modes approaches that of a monopole, while the non-axisymmetric modes exhibit multipole behavior. Numerical results are also given, demonstrating the implications of having non-axisymmetric excitation using both a point excitation with varying eccentricity and a homogeneous excitation acting on half of the circular radiator.

  9. Investigation of Redistribution of Pile Foundation Forces Under Successive Loading of Its Elements

    Science.gov (United States)

    Sedin, Vladimir; Bikus, Kateryna; Kovba, Vladislav

    2017-12-01

    Redistribution of pile foundation forces under successive loading of its elements was investigated under laboratory conditions. A segment of pile foundation model was taken for use in the case study. Load tests on the pile foundation model segment, without joining its elements (pile and plate, which turns into grillage) and based on different combinations of static loadings were conducted. This proved that the loading of a plate causes skin friction on some length of the pile side surface as well as providing additional loading and settlement. Test results have shown that application of successive elements enables the foundation to carry loads up to 13% higher than in the case of a standard pile foundation loading with the same settlement rates.

  10. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  11. Waveguiding in supported phononic crystal plates

    International Nuclear Information System (INIS)

    Vasseur, J; Hladky-Hennion, A-C; Deymier, P; Djafari-Rouhani, B; Duval, F; Dubus, B; Pennec, Y

    2007-01-01

    We investigate, with the help of the finite element method, the existence of absolute band gaps in the band structure of a free-standing phononic crystal plate and of a phononic crystal slab deposited on a substrate. The two-dimensional phononic crystal is constituted by a square array of holes drilled in an active piezoelectric (PZT5A or AlN) matrix. For both matrix materials, an absolute band gap occurs in the band structure of the free-standing plate provided the thickness of the plate is on the order of magnitude of the lattice parameter. When the plate is deposited on a Si substrate, the absolute band gap still remains when the matrix of the phononic crystal is made of PZT5A. The AlN phononic crystal plate losses its gap when supported by the Si substrate. In the case of the PZT5A matrix, we also study the possibility of localized modes associated with a linear defect created by removing one row of air holes in the deposited phononic crystal plate

  12. Oscillations of oblate drop between heterogeneous plates under uniform electric field

    Science.gov (United States)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-01-01

    The forced oscillations of the incompressible fluid drop under the action of the uniform electric field are considered. In equilibrium, the drop has the form of a circular cylinder bounded axially by the parallel solid planes; the contact angle is right. An incompressible fluid of different density surrounds the drop. The external electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion, the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, whose frequency is proportional to twice the frequency of the electric field. The case of heterogeneous plates is investigated. We assume that the Hocking parameter depends on the polar angle in this case. The function describing the change in the coefficient of the interaction between the plate and the fluid (the contact line) is expanded in a series of the Laplace operator eigenfunctions.

  13. Improved nickel plating of Inconel X-750

    Science.gov (United States)

    Farmer, M. E.; Feeney, J. E.; Kuster, C. A.

    1969-01-01

    Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.

  14. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    Science.gov (United States)

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Forced and free convection flow with viscous dissipation effects: The method of parametric differentiation

    International Nuclear Information System (INIS)

    Hossain, M.A.; Arbad, O.

    1988-07-01

    Effect of buoyancy force in a laminar uniform forced convection flow past a semi-infinite vertical plate has been analyzed near the leading edge, taking into account the viscous dissipation. The coupled non-linear locally similar equations, which govern the flow, are solved by the method of parametric differentiation. Effects of the buoyancy force and the heat due to viscous dissipation on the flow and the temperature fields as well as on the wall shear-stress and the heat transfer at the surface of the plate are shown graphically for the values of the Prandtl number σ ranging from 10 -1 to 1.0. (author). 20 refs, 3 figs, 2 tabs

  16. Acoustic impact on the laminated plates placed between barriers

    Science.gov (United States)

    Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.

    2016-11-01

    On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.

  17. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Science.gov (United States)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  18. Crack-arrest behavior in SEN wide plates of low-upper-shelf base metal tested under nonisothermal conditions: WP-2 series

    International Nuclear Information System (INIS)

    Naus, D.J.; Keeney-Walker, J.; Bass, B.R.; Robinson, G.C. Jr.; Iskander, S.K.; Alexander, D.J.; Fields, R.J.; deWit, R.; Low, S.R.; Schwartz, C.W.

    1990-08-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory under the sponsorship of the Nuclear Regulatory Commission is conducting analytical and experimental studies aimed at understanding the circumstances that would initiate the growth of an existing crack in a reactor pressure vessel (RPV) and the conditions leading to arrest of a propagating crack. Objectives of these studies are to determine (1) if the material will exhibit crack-arrest behavior when the driving force on a crack exceeds the ASME limit, (2) the relationship between K Ia and temperature, and (3) the interaction of fracture modes (arrest, stable crack growth, unstable crack growth, and tensile instability) when arrest occurs at high temperatures. In meeting these objectives, crack-arrest data are being developed over an expanded temperature range through tests involving large thermally shocked cylinders, pressurized thermally shocked vessels, and wide-plate specimens. The wide-plate specimens provide the opportunity for a significant number of data points to be obtained at relatively affordable costs. These tests are designed to provide fracture-toughness measurements approaching or above the onset of the Charpy upper-shelf regime in a rising toughness region and with an increasing driving force. This document discusses test methodology and results. 23 refs., 92 figs., 25 tabs

  19. Quality control in manufacture of lead boron polyethylene plate

    International Nuclear Information System (INIS)

    Wu Ying

    2008-01-01

    For the quality assurance management in the manufacture of lead boron polyethylene plate,target shall be defined and planning shall be conducted first; personnel shall be trained to improve the execution force; institutional system shall be continuously upgraded and environment protection shall be strengthened.Quality management has achieved excellent result, with qualification rate for contracts reaches 100%, to ensure successful production. (author)

  20. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    Science.gov (United States)

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Connection between end plates and rods in a BWR fuel element

    International Nuclear Information System (INIS)

    Cali', G.P.

    1975-01-01

    The problem of the connection between the end plates and the rods of a BWR fuel element is analytically formulated. The behaviour of the springs coupling the rods with the upper plate is analyzed with particular detail since the deformation of these springs affects the forces at the interface of the fuel element structure components. A tool is given to design the springs according to some considerations regarding the mechanical strength of the interacting components as well as the influence of the possible geometrical unevennes of the system that can arise during the fuel element lifetime. (Cali', G.P.)

  2. Waveguide module comprising a first plate with a waveguide channel and a second plate with a raised portion in which a sealing layer is forced into the waveguide channel by the raised portion

    Science.gov (United States)

    Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah; Halligan, Matthew

    2018-04-17

    The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deforms a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.

  3. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  4. Instrumented figure skating blade for measuring on-ice skating forces

    Science.gov (United States)

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  5. Optical properties of gold films and the Casimir force

    International Nuclear Information System (INIS)

    Svetovoy, V. B.; Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2008-01-01

    Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 μm. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%-14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range

  6. Method of nickel-plating large components

    International Nuclear Information System (INIS)

    Wilbuer, K.

    1997-01-01

    The invention concerns a method of nickel-plating components, according to which even large components can be provided with an adequate layer of nickel which is pore- and stress-free and such that water is not lost. According to the invention, the component is heated and, after heating, is pickled, rinsed, scoured, plated in an electrolysis process, and rinsed again. (author)

  7. Knowledge, attitudes, and beliefs about HIV pre-exposure prophylaxis among US Air Force Health Care Providers

    OpenAIRE

    Hakre, Shilpa; Blaylock, Jason M; Dawson, Peter; Beckett, Charmagne; Garges, Eric C; Michael, Nelson L; Danaher, Patrick J; Scott, Paul T; Okulicz, Jason F

    2016-01-01

    Abstract Providers are central to effective implementation of HIV pre-exposure prophylaxis (PrEP). Primary care providers (PCP) and infectious disease physicians (ID) in the US Air Force (USAF) participated in a cross-sectional survey regarding knowledge, attitudes, and beliefs toward HIV PrEP. Characteristics associated with PrEP knowledge were assessed in univariate and multivariate analyses. Among 403 (40% of 1015 providers) participants, 9% (PCP 383, ID 20) ever prescribed PrEP. In univar...

  8. Numerical Investigation of an Oscillating Flat Plate Airfoil

    Science.gov (United States)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  9. MHD forced and free convection boundary layer flow near the leading edge

    International Nuclear Information System (INIS)

    Hossain, M.A.; Ahmed, M.

    1988-07-01

    Magnetohydrodynamic forced and free convection flow of an electrically conducting viscous incompressible fluid past a vertical flat plate with uniform heat flux in the presence of a magnetic field acting normal to the plate that moves with the fluid has been studied near the leading edge of the plate. The coupled non-linear equations are solved by the method of superposition for the values of the Prandtl number ranges from 0.01 to 10.0. The velocity and the temperature profiles are presented graphically and the values of the wall shear-stress as well as the heat transfer rate are presented in tabular form showing the effect of the buoyancy force and the applied magnetic field. To show the accuracy of the present method some typical values are compared with the available one. (author). 17 refs, 3 figs, 2 tabs

  10. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  11. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  12. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  13. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  14. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    Science.gov (United States)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  15. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  16. Biomechanical analysis of clavicle hook plate implantation with different hook angles in the acromioclavicular joint.

    Science.gov (United States)

    Hung, Li-Kun; Su, Kuo-Chih; Lu, Wen-Hsien; Lee, Cheng-Hung

    2017-08-01

    A clavicle hook plate is a simple and effective method for treating acromioclavicular dislocation and distal clavicle fractures. However, subacromial osteolysis and peri-implant fractures are complicated for surgeons to manage. This study uses finite element analysis (FEA) to investigate the post-implantation biomechanics of clavicle hook plates with different hook angles. This FEA study constructed a model with a clavicle, acromion, clavicle hook plate, and screws to simulate the implantation of clavicle hook plates at different hook angles (90°, 95°, 100°, 105°, and 110°) for treating acromioclavicular joint dislocations. This study investigated the biomechanics of the acromion, clavicle, hook plate, and screws. A smaller hook angle increases the stress on the middle third of the clavicle. A larger hook angle increases the force exerted by the clavicle hook plate on the acromion. The screw at the most medial position on the plate generated the highest stress. The highest stress on the implanted clavicle hook plate was on the turning corner of the hook. A clavicle hook plate with different hook angles may induce different biomechanical behaviors in the clavicle and acromion. Orthopedic surgeons must select a suitable clavicle hook plate based on the anatomical structure of each patient.

  17. Plating on difficult-to-plate metals: what's new

    International Nuclear Information System (INIS)

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  18. Equivalent properties for perforated plates. An analytical approach

    International Nuclear Information System (INIS)

    Cepkauskas, M.M.; Yang Jianfeng

    2005-01-01

    Structures that contain perforated plates have been a subject of interest in the Nuclear Industry. Steam generators, condensers and reactor internals utilize plates containing holes which act as flow holes or separate structures from flow by using a 'tube bank' design. The equivalent plate method has been beneficial in analyzing perforate plates. Details are found in various papers found in the bibliography. In addition the ASME code addresses perforated plates in Appendix A-8000, but is limited to a triangular hole pattern. This early work performed in this field utilized test data and analytical approaches. This paper is an examination of an analytical approach for determining equivalent plate mechanical and thermal properties. First a patch of the real plate is identified that provides a model for the necessary physical behavior of the plate. The average strain of this patch is obtained by first applying simplified one dimensional mechanical load to the patch, determining stress as a function of position, converting the stress to strain and then integrating the strain over the patch length. This average strain is then equated to the average strain of an equivalent fictitious rectangular patch. This results in obtaining equivalent Young's Modulus and Poison's Ratio for the equivalent plate in all three orthogonal directions. The corresponding equivalent shear modulus in all three directions is then determined. An orthotropic material stress strain matrix relationship is provided for the fictitious properties. By equating the real average strain with the fictitious average strain in matrix form, a stress multiplier is found to convert average fictitious stress to average real stress. This same type of process is repeated for heat conduction coefficients and coefficients of thermal expansion. Results are provided for both a square and triangular hole pattern. Reasonable results are obtained when comparing the effective Young's Modulus and Poison's Ratio with ASME

  19. Plating on Zircaloy-2

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  20. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  1. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  2. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  3. Sound Power Minimization of Circular Plates Through Damping Layer Placement

    Science.gov (United States)

    Wodtke, H.-W.; Lamancusa, J. S.

    1998-09-01

    Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.

  4. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  5. Physical properties and collapse force of according to the z-position of poly-Si pattern using nano-tribology.

    Science.gov (United States)

    Kim, Soo In; Lee, Chang Woo

    2011-02-01

    Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.

  6. Distributed sensing signal analysis of deformable plate/membrane mirrors

    Science.gov (United States)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  7. Structure of colloidal sphere-plate mixtures

    International Nuclear Information System (INIS)

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I

    2011-01-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  8. Structure of colloidal sphere-plate mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)

    2011-05-18

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  9. Evaluation of Thin Plate Hydrodynamic Stability through a Combined Numerical Modeling and Experimental Effort

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Solbrekken, G [Univ. of Missouri, Columbia, MO (United States); Jesse, C. [Univ. of Missouri, Columbia, MO (United States); Kennedy, J. [Univ. of Missouri, Columbia, MO (United States); Rivers, J. [Univ. of Missouri, Columbia, MO (United States); Schnieders, G. [Univ. of Missouri, Columbia, MO (United States)

    2017-05-01

    An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the other represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.

  10. The Golosyiv plate archive digitisation

    Science.gov (United States)

    Sergeeva, T. P.; Sergeev, A. V.; Pakuliak, L. K.; Yatsenko, A. I.

    2007-08-01

    The plate archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosyiv, Kyiv) includes about 85 000 plates which have been taken in various observational projects during 1950-2005. Among them are about 25 000 of direct northern sky area plates and more than 600 000 plates containing stellar, planetary and active solar formations spectra. Direct plates have a limiting magnitude of 14.0-16.0 mag. Since 2002 we have been organising the storage, safeguarding, cataloguing and digitization of the plate archive. The very initial task was to create the automated system for detection of astronomical objects and phenomena, search of optical counterparts in the directions of gamma-ray bursts, research of long period, flare and other variable stars, search and rediscovery of asteroids, comets and other Solar System bodies to improve the elements of their orbits, informational support of CCD observations and space projects, etc. To provide higher efficiency of this work we have prepared computer readable catalogues and database for 250 000 direct wide field plates. Now the catalogues have been adapted to Wide Field Plate Database (WFPDB) format and integrated into this world database. The next step will be adaptation of our catalogues, database and images to standards of the IVOA. Some magnitude and positional accuracy estimations for Golosyiv archive plates have been done. The photometric characteristics of the images of NGC 6913 cluster stars on two plates of the Golosyiv's double wide angle astrograph have been determined. Very good conformity of the photometric characteristics obtained with external accuracies of 0.13 and 0.15 mag. has been found. The investigation of positional accuracy have been made with A3± format fixed bed scanner (Microtek ScanMaker 9800XL TMA). It shows that the scanner has non-detectable systematic errors on the X-axis, and errors of ± 15 μm on the Y-axis. The final positional errors are about ± 2 μm (

  11. Present status of controversies regarding the thermal Casimir force

    International Nuclear Information System (INIS)

    Mostepanenko, V M; Bezerra, V B; Decca, R S; Geyer, B; Fischbach, E; Klimchitskaya, G L; Krause, D E; Lopez, D; Romero, C

    2006-01-01

    It is well known that, beginning in 2000, the behaviour of the thermal correction to the Casimir force between real metals has been hotly debated. As was shown by several research groups, the Lifshitz theory, which provides the theoretical foundation for the calculation of both the van der Waals and Casimir forces, leads to different results depending on the model of metal conductivity used. To resolve these controversies, theoretical considerations based on the principles of thermodynamics and new experimental tests were invoked. We analyse the present status of the problem (in particular, the advantages and disadvantages of the approaches based on the surface impedance and on the Drude model dielectric function) using rigorous analytical calculations of the entropy of a fluctuating field. We also discuss the results of a new precise experiment on the determination of the Casimir pressure between two parallel plates by means of a micromechanical torsional oscillator

  12. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Directory of Open Access Journals (Sweden)

    Liu Qimao

    2018-02-01

    Full Text Available This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  13. Static and Monoharmonic Acoustic Impact on a Laminated Plate

    Science.gov (United States)

    Paimushin, V. N.; Gazizullin, R. K.

    2017-07-01

    A discrete layered damping model of a multilayer plate at small displacements and deformations, with account of the internal damping of layers according to the Thompson-Kelvin-Voight model, is presented. Based on the equations derived, an analytical solution to the static deformation problem for single-layer rectangular plate hinge-supported along its contour and subjected of a uniformly distributed pressure applied to one of its boundary planes is obtained. Its convergence to the three-dimensional solution is analyzed in relation to the dimension of mesh in the thickness direction of the plate. It is found that, for thin plates, the dimension of the problem formulated can be reduced on the basis of simplified hypotheses applied to each layer. An analytical solutions is also constructed for the forced vibrations of two- and three-layer rectangular plates hinged in the opening of an absolutely stiff dividing wall upon transmission of a monoharmonic sound wave through them. It was assumed that the dividing wall is situated between two absolutely stiff barriers; one of them, owing to the harmonic vibration with a given displacement amplitude of the plate, forms an incident sound wave, and the other is stationary and is coated by a energy-absorbing material with high damping properties. Behavior of the acoustic media in spaces between the deformable plate and the barriers is described by the classical wave equations based on the model of an ideal compressible fluid. To describe the process of dynamic deformation of the energy-absorbing coating of the fixed barrier, two-dimensional equations of motion are derived based on the model of a transversely soft layer, a linear approximation of displacement fields in the thickness direction of the coating, and the account of damping properties of its material by using the hysteresis model. The effect of physical and mechanical parameters of the mechanical system considered and of frequency of the incident sound wave on the

  14. Time reversal focusing of elastic waves in plates for an educational demonstration.

    Science.gov (United States)

    Heaton, Christopher; Anderson, Brian E; Young, Sarah M

    2017-02-01

    The purpose of this research is to develop a visual demonstration of time reversal focusing of vibrations in a thin plate. Various plate materials are tested to provide optimal conditions for time reversal focusing. Specifically, the reverberation time in each plate and the vibration coupling efficiency from a shaker to the plate are quantified to illustrate why a given plate provides the best spatially confined focus as well as the highest focal amplitude possible. A single vibration speaker and a scanning laser Doppler vibrometer (SLDV) are used to provide the time reversal focusing. Table salt is sprinkled onto the plate surface to allow visualization of the high amplitude, spatially localized time reversal focus; the salt is thrown upward only at the focal position. Spatial mapping of the vibration focusing on the plate using the SLDV is correlated to the visual salt jumping demonstration. The time reversal focusing is also used to knock over an object when the object is placed at the focal position; some discussion of optimal objects to use for this demonstration are given.

  15. Casimir force in the presence of a medium

    International Nuclear Information System (INIS)

    Kheirandish, Fardin; Soltani, Morteza; Sarabadani, Jalal

    2010-01-01

    We investigate the Casimir effect in the presence of a medium by quantizing the electromagnetic field in the presence of a magnetodielectric medium using the path-integral technique. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained. The Lifshitz formula is recovered and in the absence of a medium the results tend to the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.

  16. Relationship between friction force and orthodontic force at the leveling stage using a coated wire.

    Science.gov (United States)

    Murayama, Masaki; Namura, Yasuhiro; Tamura, Takahiko; Iwai, Hiroaki; Shimizu, Noriyoshi

    2013-01-01

    The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  17. Paper microzone plates.

    Science.gov (United States)

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  18. Resorbable versus titanium plates for orthognathic surgery.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; Nasser, Mona; Gill, Karanjot S

    2017-10-04

    the other titanium with resorbable screws. Both studies were at high risk of bias and provided very limited data for the primary outcomes of this review. All participants in one trial suffered mild to moderate postoperative discomfort with no statistically significant difference between the two plating groups at different follow-up times. Mean scores of patient satisfaction were 7.43 to 8.63 (range 0 to 10) with no statistically significant difference between the two groups throughout follow-up. Adverse effects reported in one study were two plate exposures in each group occurring between the third and ninth months. Plate exposures occurred mainly in the posterior maxillary region, except for one titanium plate exposure in the mandibular premolar region. Known causes of infection were associated with loosened screws and wound dehiscence with no statistically significant difference in the infection rate between titanium (3/196), and resorbable (3/165) plates. We do not have sufficient evidence to determine if titanium plates or resorbable plates are superior for fixation of bones after orthognathic surgery. This review provides insufficient evidence to show any difference in postoperative pain and discomfort, level of patient satisfaction, plate exposure or infection for plate and screw fixation using either titanium or resorbable materials.

  19. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  20. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  1. Simultaneous laser cutting and welding of metal foil to edge of a plate

    Science.gov (United States)

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  2. On the contact interaction of two identical stringers with an elastic semi-infinite continuous or vertically cracked plate

    Science.gov (United States)

    Grigoryan, M. S.

    2018-04-01

    This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.

  3. On topology optimization of plates with prestress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2001-01-01

    of the sensitivities is complicated because of the initial stress stiffness matrix, but the computational cost can be kept low by using the adjoint method. The topology optimization problem is solved using the solid isotropic material with penalization (SIMP) method in combination with method of moving asymptotes (MMA......In this work, topology optimization is used to optimize the compliance or eigenvalues of prestressed plates. The prestress is accounted for by including the force equivalent to the prestressing and adding the initial stress stiffness matrix to the original stiffness matrix. The calculation...

  4. Chin force in violin playing.

    Science.gov (United States)

    Obata, Satoshi; Kinoshita, Hiroshi

    2012-06-01

    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars.

  5. Far-Field Power Transmissions in Orthotropic Plates: A New Approach

    Directory of Open Access Journals (Sweden)

    Nirmal K. Mandal

    2008-01-01

    Full Text Available The structural intensity (SI technique is an essential tool for locating and ranking vibration sources and sinks on structures. It can quantify vibration fields by plotting a vector map of energy transmission on the structures. In this paper, a different strategy, changing coordinate systems of plate equations, is used to develop an intensity equation from shear force components in both x and y directions. The formulation is carried out in the frequency domain considering flexural waves. Orthotropic plate theory, far-field conditions, Fourier transform, and finite difference approximation are considered. The same intensity definition is obtained using this different strategy. A dual-channel FFT analyser is essential for data acquisition to get an intensity vector in a particular direction for far-field conditions.

  6. Laboratory experiments inform iceberg-calving forces

    Science.gov (United States)

    Cathles, L. M.; Burton, J. C.

    2013-12-01

    Globally detected glacial earthquakes are produced during cubic-kilometer scale calving events. The mechanism producing these earthquakes and the dependence of the seismic moment on iceberg size and glacial calving front geometry are not well established. We use a laboratory-scale model of the post-fracture calving process to measure aspects of the calving process not observable in nature. In our experiments, buoyant plastic blocks rest against against a force plate (glacial terminus) which measures both the total force and the torque exerted during the calving process. The blocks are gravitationally unstable, so that they will spontaneously capsize and rotate away from the terminus. We find that hydrodynamics are crucial when considering the coupling between the calving process and the solid earth. There is both a pushing contact force and a simultaneous pulling hydrodynamic force created by a reduced pressure along the terminus face. This suggests that a single couple force mechanism is a more appropriate mode for glacial earthquakes than the commonly used centroid single force model.

  7. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  8. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  9. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  10. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  11. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  12. Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Stumpf, Waldo; Berg, Nic van der

    2009-01-01

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M s temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M s temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  13. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  14. Numerical Study on Ultimate Behaviour of Bolted End-Plate Steel Connections

    Directory of Open Access Journals (Sweden)

    R.E.S. Ismail

    Full Text Available Abstract Bolted end-plate steel connections have become more popular due to ease of fabrication. This paper presents a three dimension Finite Element Model (FEM, using the multi-purpose software ABAQUS, to study the effect of different geometrical parameters on the ultimate behavior of the connection. The proposed model takes into account material and geometrical non-linearities, initial imperfection, contact between adjacent surfaces and the pretension force in the bolts. The Finite Element results are calibrated with published experimental results ''briefly reviewed in this paper'' and verified that the numerical model can simulate and analyze the overall and detailed behavior of different types of bolted end-plate steel connections. Using verified FEM, parametric study is then carried out to study the ultimate behavior with variations in: bolt diameter, end-plate thickness, length of column stiffener, angle of rib stiffener. The results are examined with respect to the failure modes, the evolution of the resistance, the initial stiffness, and the rotation capacity. Finally, the ultimate behavior of the bolted end-plate steel connection is discussed in detail, and recommendations for the design purpose are made.

  15. Hydroelastic analysis of a very large floating plate with large deflections in stochastic seaway

    DEFF Research Database (Denmark)

    Chen, Xu-jun; Jensen, Jørgen Juncher; Cui, Wei-cheng

    2004-01-01

    The hydroelasticity of a very large floating plate with large deflections in multidirectional irregular waves is discussed. After a brief introduction on wave loads on a flexible structure, the paper derives the generalised fluid force acting on a floating structure in multidirectional irregular ...

  16. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    Directory of Open Access Journals (Sweden)

    Perović Bojan D.

    2017-01-01

    Full Text Available The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical correlations for vertical, inclined, and horizontal plates. Five additional correlations for the critical Grashof number are derived from the available data, three indicating the onset of transitional flow regime and two indicating the onset of flow separation. The proposed correlations cover the entire range of inclination angles and the entire range of Prandtl numbers. This paper also provides two worked examples, one for natural convection combined with radiation and one for natural convection combined with forced convection and radiation. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR33046

  17. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  18. Study on collapse behavior of a square plate subjected to water pressure; Suiatsu wo ukeru kukeiban no atsukai kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T; Fujikubo, M; Mizutani, K [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    Bottom plates of a hull are subjected to laterally distributing force due to in-plane compression force and water pressure in the ship`s length direction as a result of longitudinal bending in a hogging condition. Because buckling collapse of the hull bottom plates leads directly to longitudinal bending collapse of the hull bottom cross section, the hull bottom plates must have sufficient strength. The present study performs a static elastic large deflection analysis and an elasto-plastic large deflection analysis. It elucidates buckling collapse behavior of a square plate subjected to water pressure and in-plane compression load, and considers limits in application of conventional approximation analysis methods. In the case of a water pressure action, deflection components growing in excess of the buckling load do not necessarily correspond to buckling modes of the case where no water pressure is acting upon. Conventional approximation analysis methods may not be able often to pursue actual buckling phenomena. According the result of an analysis on hull bottom panels of an actual ship, the ultimate strength decreases when the water pressure is large. Compression force in the lateral direction as a result of water pressure acting on ship`s sides affected very little the ultimate strength. 3 refs., 7 figs.

  19. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  20. Force and flow at the onset of drag in plowed granular media.

    Science.gov (United States)

    Gravish, Nick; Umbanhowar, Paul B; Goldman, Daniel I

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.

  1. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  2. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.

    Science.gov (United States)

    Cabrera, María Sol; Oomens, Cees W J; Baaijens, Frank P T

    2017-04-01

    A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  4. Subduction Drive of Plate Tectonics

    Science.gov (United States)

    Hamilton, W. B.

    2003-12-01

    shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.

  5. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  6. Free vibration analysis of rectangular plates with central cutout

    Directory of Open Access Journals (Sweden)

    Kanak Kalita

    2016-12-01

    Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

  7. Gentilly-2 and Point Lepreau divider plate replacement

    International Nuclear Information System (INIS)

    Schneider, W.; McClellan, G.; Weston, S.

    1996-01-01

    The steam generators at Hydro Quebec's Gentilly-2 and New Brunswick Power's Point Lepreau Nuclear Plants have been in operation since 1983, and were built with primary divider plates of a bolted panel configuration. During a routine outage inspection at Gentilly-2, it was noted that two bolts had dislodged from the divider plate and were located lying in the primary head. Subsequent inspections revealed erosion damage to a a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. Upon evaluation of various options, it was decided that the panel type divider plates would be replaced with a single piece floating design. The divider plate itself was to be of one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat was was provided. To counteract erosion concerns, the new divider plate is fitted with erosion resistant inserts of weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider plate strength during loss of coolant accident (LOCA) conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider plate to a variety of small and large LOCA conditions. Subsequently, Point Lepreau decided to replace their divider plates to address LOCA concerns. The paper describes the diagnosis of the original divider plates and the design. manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  8. 3D printed flexible capacitive force sensor with a simple micro-controller based readout

    NARCIS (Netherlands)

    Schouten, Martijn G.; Sanders, Remco; Krijnen, Gijs

    2017-01-01

    This paper describes the development of a proof of principle of a flexible force sensor and the corresponding readout circuit. The flexible force sensor consists of a parallel plate capacitor that is 3D printed using regular and conductive thermoplastic poly-urethane (TPU). The capacitance change

  9. Can the Army Provide Bulk Petroleum Support to Joint Force 2020?

    Science.gov (United States)

    2013-03-01

    Petroleum Officer (JPO) and one or more Sub Area Petroleum Officers ( SAPO ). The JPO coordinates petroleum support to all forces in a theater on behalf...position is the SAPO , established by the Combatant Commander or a Joint Force Commander (JFC) to fulfill bulk petroleum planning and execution in a...section of the theater for which the JPO is responsible.7 A key duty of the SAPO is to advise the JFC and his/her staff on petroleum logistics

  10. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Directory of Open Access Journals (Sweden)

    Masaki MURAYAMA

    2013-12-01

    Full Text Available The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective: The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti wire. Material and Methods: Five esthetic wires (three coated and two plated and two small, plain Ni-Ti wires (0.012 and 0.014 inches were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm, and evaluated the relationship between them. Results: Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions: A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  11. Coupled oscillations of flow along a perforated plate

    International Nuclear Information System (INIS)

    Celik, E.; Rockwell, D.

    2004-01-01

    Turbulent shear flow past a perforated plate bounded by a closed cavity can give rise to highly coherent oscillations, which have a wavelength of the order of the plate length. The present investigation focuses on the coupling between unsteady events on either side of the plate when the oscillations are self-sustaining. A cinema technique of high-image-density particle image velocimetry, which provides a space-time representation of the unsteadiness at a large number of locations over entire planes, is employed to characterize the distinctively different patterns of flow structure on the back (low-speed) side of the plate relative to those on the front (high-speed) side. Global cross-spectral analysis leads to patterns of spectral peaks and phase variations, along and across the plate. This approach, along with complementary types of image evaluation, delineates the physics of the oscillations, which include downstream propagating disturbances along either side of the plate and a coherent region of unsteadiness at its trailing-edge. On the backside of the plate, a sequence of upstream-oriented, pulsatile jets are formed, and the time-averaged flow pattern is a counterflow wall jet

  12. Receptivity to free stream acoustic disturbances due to a roughness element on a flat plate

    OpenAIRE

    Ashour, Osama Naim

    1993-01-01

    The boundary-layer receptivity resulting from acoustic forcing over a flat plate with a surface irregularity is investigated. The unsteady free-stream disturbances couple with the steady perturbations resulting from the surface irregularity to form a traveling-wave mode. The resonance condition necessary for receptivity requires a forcing at a wave number equal to that of the Tollmien-Schlichting (TS) eigenmode and a frequency equal to that of the free-stream acoustic disturban...

  13. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  14. Gentilly 2 divider plate replacement

    International Nuclear Information System (INIS)

    Forest, J.; Klisel, E.; McClellan, G.; Schnelder, W.

    1995-01-01

    The steam generators at the Gentilly 2 Nuclear Plant in operation since 1983 were built with primary divider plates of a bolted panel configuration. During a routine outage inspection, it was noted that two bolts had dislodged from the divider and were located lying in the primary head. Subsequent inspections revealed erosion damage to a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. After evaluation of various options, it was decided that the panel type dividers would be replaced with a single piece floating design. The divider itself was to be of a one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat bar was provided. To counteract erosion concerns, the new divider is fitted with erosion resistant inserts or weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider strength during LOCA conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider to a variety of small and large LOCA conditions. The paper describes the diagnosis of the original divider plates and the design, manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  15. Dynamics of a flexible splitter plate in the wake of a circular cylinder

    Science.gov (United States)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2013-08-01

    Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of 1 cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K=EI/(0.5ρUL), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter

  16. Management of pediatric mandibular fractures using bioresorbable plating system - Efficacy, stability, and clinical outcomes: Our experiences and literature review.

    Science.gov (United States)

    Singh, Mahinder; Singh, R K; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2016-01-01

    The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients.

  17. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate

    Science.gov (United States)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  18. The impact of previous knee injury on force plate and field-based measures of balance.

    Science.gov (United States)

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  19. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Science.gov (United States)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-01

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  20. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-10-15

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  1. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Directory of Open Access Journals (Sweden)

    J. R. Rocha

    2013-10-01

    Full Text Available An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  2. A proposed experimental search for chameleons using asymmetric parallel plates

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James A.

    2016-01-01

    Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.

  3. A proposed experimental search for chameleons using asymmetric parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2016-08-01

    Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.

  4. Development of electromagnetic welding facility of flat plates for nuclear industry

    Science.gov (United States)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  5. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  6. Importance of Upper-Limb Inertia in Calculating Concentric Bench Press Force

    OpenAIRE

    RAMBAUD, O; RAHMANI, A; MOYEN, B; BOURDIN, M

    2008-01-01

    The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 6 4.1 years, 184.6 6 5.5 cm, 99.5 6 18.6 kg) ...

  7. Casimir forces in the time domain: Theory

    International Nuclear Information System (INIS)

    Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2009-01-01

    We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.

  8. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  9. Lighting system for the lower core plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Feuillet, P.; Bonin, J.P.

    1986-01-01

    The invention proposes a grazing lighting system for the lower core plate, creating an excellent contrast and offering a good estimation of the relief; it can stay at the same place during the whole or at least the greater part of the core refueling operation. This lighting system is proposed for a reactor of which the lower core plate has fuel assembly centering elements. It has a sealed vessel with a transparent side wall containing several lights independently controlled and each one illuminating a sector of its wall. The vessel has a bottom aimed at resting on the lower plate and provided with centering and holding means acting with several of the said centering means through the plate, and/or apertures for coolant through the plate, and an upper container provided with gripping and handling elements and sealed conduits for electrical cables feeding the lights [fr

  10. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  11. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Conclusions: It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study. Key words: Bone plates, bone screws, finite element analysis, jaw fixation techniques, mandible, mandibular osteotomy ...

  12. Experimental simulation of the bubble membrane radiator using a rotating flat plate

    International Nuclear Information System (INIS)

    Al-Baroudi, H.; Klein, A.C.; Pauley, K.A.

    1991-01-01

    The Bubble Membrane Radiator (BMR), to be used in space reactor systems, uses artificial gravity imposed on the working fluid by means of the centrifugal force to pump the fluid from the radiator. Experimental and analytical studies have been initiated to understand the nature of fluid and heat transport under the conditions of rotation. An experiment is described which measures the condensation of vapor on a rotating flat plate which is oriented normal to the earth's gravity vector to simulate the BMR physics. The relationship between vapor flow rates and rotation speed of the flat plate and a number of physical parameters including amount of condensate, overall heat transfer coefficient, and condensate film thickness are studied experimentally

  13. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2004-10-01

    We investigate the problem of falling paper by solving the two dimensional Navier-Stokes equations subject to the motion of a free-falling body at Reynolds numbers around 10(3). The aerodynamic lift on a tumbling plate is found to be dominated by the product of linear and angular velocities rather than velocity squared, as appropriate for an airfoil. This coupling between translation and rotation provides a mechanism for a brief elevation of center of mass near the cusplike turning points. The Navier-Stokes solutions further provide the missing quantity in the classical theory of lift, the instantaneous circulation, and suggest a revised model for the fluid forces.

  14. Predicting the onset of dynamic instability of a cylindrical plate under axial flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A semi-numerical flow induced vibration model is developed of a cylindrical plate. Black-Right-Pointing-Pointer Test case results are presented and agree well with previous studies data. Black-Right-Pointing-Pointer The model identifies a relationship between forces and the plate natural frequency. - Abstract: The dynamic mechanical stability of a single cylindrical plate under flow conditions is considered herein. Numerous plate-type research reactors such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) comprise fuel elements which contain arrays of concentrically aligned cylindrical plates. Several of these reactors are licensed to operate at extreme heat fluxes; as a corollary their hydraulic designs require large flow rates sufficient to remove this heat. These flow rates may reach superficial velocities upwards of 15 m/s through individual flow channels. Given that fuel plates typically found in such research reactors are relatively long ({approx}1.2573 m), wide ({approx}0.1397 m), and extremely thin ({approx}0.00127 m) concern is drawn toward the susceptibility of flow induced vibration (FIV). In an attempt to gain a more comprehensive understanding toward the dynamic mechanical limit of stability of cylindrical plates, a FIV model was developed using semi-numerical methods. The FIV model was developed in two separate modules; a plate stability module, and a flow module. These modules were then coupled together to produce a FIV model. In this study, a set of test cases are presented on the plate stability module under free vibration conditions, comparing well against known available information from previous studies. Results are similarly presented on the flow module and compared against a RELAP5-3D model. Lastly, results of these coupled modules are presented and discussion is given toward the relationship between plate natural frequency, geometry, and plate membrane pressures.

  15. Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate

    Science.gov (United States)

    Nowak, Zdzisław; Nowak, Marcin; Widłaszewski, Jacek; Kurp, Piotr

    2018-01-01

    The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate.

  16. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    Science.gov (United States)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  17. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  18. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  19. Design review report, 241-S-102 cover plate review; TOPICAL

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1998-01-01

    The design for the cover plate and lead plate for shielding on 241-S-102 was reviewed on 10/21/98. All Review Comment Record comments were resolved to the satisfaction of the reviewers. Additional comments were taken during the meeting and were also resolved. A design calculation for the Radiological Design Review Screening was presented as criteria for the use of 1 inch lead plate. The review concluded that the use of 2 inch steel plate and 1 inch lead plate provided the required safety function required by HNF-SD-WM-810-001, 5.3.2.20, Basis for Interim Operation. The design was approved with the incorporated comments as recorded on RCR's and meeting minutes

  20. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  1. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    Science.gov (United States)

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    International Nuclear Information System (INIS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  3. TOTAL FORCE INTEGRATION: PROVIDING STABILITY FOR CITIZEN SOLDIERS IN AN EVER CHANGING AIR FORCE

    Science.gov (United States)

    2016-10-01

    specifically called for achieving a better work - life balance and “leveraging the best talents of our Guard, Reserve, and civilian teams.”88 Taking...paper will offer unique scenarios (Let it Be, Nowhere Man, The Long and Winding Road, and We Can Work It Out) which balance mission readiness against...entire Air Force airlift mission, resulting in substantial stressors on civilian careers and family life , which has always been the cornerstone of

  4. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  5. Assessing the role of slab rheology in coupled plate-mantle convection models

    Science.gov (United States)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John

    2015-11-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.

  6. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  7. Indirect Manipulation of a Sphere on a Flat Disk Using Force Information

    Directory of Open Access Journals (Sweden)

    Masayuki Hara

    2009-12-01

    Full Text Available The objective of this study is to verify if only the use of robotic force feedback enables indirect and dynamic manipulations which are difficult for human beings to perform. Human beings usually control the trajectory of an object using visual feedback; force/tactile information are secondarily employed because they are further qualitative in comparison with visual information. However, it is supposed that robots have the potential to perform such the tasks without visual information because force/tactile information can be also used quantitatively in the control system. This paper especially focuses on an indirect manipulation of a sphere on a flat plate realized by employing only force information. In this paper, we propose a very simple method to estimate the position of the sphere on the plate which is put on a multi-fingered robot and try to control the trajectory by changing the fingertip heights based on the error between the desired and estimated positions. We also analyze the stability of the proposed control system with an approximate Lyapunov's stability criterion. Finally, this paper shows very attractive robotic demonstrations based on the proposed method.

  8. Finite element analysis of a solar collector plate using two plate geometries

    Directory of Open Access Journals (Sweden)

    Diego Manuel Medina Carril

    2016-09-01

    Full Text Available The thermal behavior of an absorber plate in a solar collector is investigated using finite element analysis. The thermal behavior and efficiency of two absorber plate geometries are studied, using a typical solar collector with a rectangular profile as reference, and a proposed absorber plate with curved geometry. An analysis of the most important parameters involved in the design of the absorber plate was carried out, indicating that the curved geometry of the absorber plate yields an average efficiency ~25% higher than the conventional rectangular geometry. The results suggest that a curved profile made of materials such as aluminum with thermal conductivity higher than 200W/m°C, plate thickness of the order of 2-3mm and with a large density of tubes per unit area of the collector´s plate greatly benefits the thermal efficiency of the solar collector.

  9. Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro

    2016-04-01

    The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.

  10. Benchmark for license plate character segmentation

    Science.gov (United States)

    Gonçalves, Gabriel Resende; da Silva, Sirlene Pio Gomes; Menotti, David; Shwartz, William Robson

    2016-09-01

    Automatic license plate recognition (ALPR) has been the focus of many researches in the past years. In general, ALPR is divided into the following problems: detection of on-track vehicles, license plate detection, segmentation of license plate characters, and optical character recognition (OCR). Even though commercial solutions are available for controlled acquisition conditions, e.g., the entrance of a parking lot, ALPR is still an open problem when dealing with data acquired from uncontrolled environments, such as roads and highways when relying only on imaging sensors. Due to the multiple orientations and scales of the license plates captured by the camera, a very challenging task of the ALPR is the license plate character segmentation (LPCS) step, because its effectiveness is required to be (near) optimal to achieve a high recognition rate by the OCR. To tackle the LPCS problem, this work proposes a benchmark composed of a dataset designed to focus specifically on the character segmentation step of the ALPR within an evaluation protocol. Furthermore, we propose the Jaccard-centroid coefficient, an evaluation measure more suitable than the Jaccard coefficient regarding the location of the bounding box within the ground-truth annotation. The dataset is composed of 2000 Brazilian license plates consisting of 14000 alphanumeric symbols and their corresponding bounding box annotations. We also present a straightforward approach to perform LPCS efficiently. Finally, we provide an experimental evaluation for the dataset based on five LPCS approaches and demonstrate the importance of character segmentation for achieving an accurate OCR.

  11. On the calculation of crack propagation behavior in disks and plates using a mixed finite method

    International Nuclear Information System (INIS)

    Fischer, W.

    1991-01-01

    According to the linear theory of elasticity, infinitely high stresses occur in the crack tips of cracked components. Plastic flow initiation or previous damage, however, will limit these stress singularities to an upper maximum stress for all real materials. To permit acquisition of this highly localized material behavior, while avoiding a very high physical nonlinear calculation effort for the evaluation of crack propagation behavior in disks and plates, models essentially based on Dugdale and Barenblatt are used. This involves determining the stress and displacement conditions required for the simulation of crack propagation by means of a mixed finite method introducing the disk cutting forces and plate curvatures or moments as unknown quantities. In addition to pure disk and plate problems, also coupled disk-plate problems are covered, where the coupling, on one hand, is due to the consideration of high deformations. (orig.) With 66 figs., 8 tabs [de

  12. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  13. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  14. Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films

    Science.gov (United States)

    Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.

    2011-06-01

    Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.

  15. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  16. Plate removal following orthognathic surgery.

    Science.gov (United States)

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. [Application of the anatomic plate and trapezoid plate in comminuted intertrochanteric fracture combined with trochanteric coronal position fracture: a controlled clinical trial].

    Science.gov (United States)

    Zhen, Ping; Liu, Xing-Yan; Gao, Ming-Xuan; Tian, Qi

    2010-05-01

    To investigate the therapeutic effect and operative characteristic of the anatomic plate and trapezoid plate for treament of the comminuted intertrochanteric fracture combined with trochanteric coronal position fracture. From Jan. 1998 to Mar. 2007, 57 patients suffered from comminuted intertrochanteric fracture combined with trochanteric coronal position fracture were randomly divided into two groups, 21 patients in trapezoid plate group were treated with the trapezoid compression plate, included 11 males and 10 females with an average age of 41.8 years; and 36 patients in anatomic plate group were treated with the anatomic plate, included 17 males and 19 females with an average age of 42.1 years. All of the 57 fractures were A3 type according to AO classification. The functions of hip joints were evaluated according to the Harris hip functional standard score. All 57 patients were followed-up for 5 months to 9 years and 3 months with an average of 4.8 years. The healing time of the fractures was from 8 to 20 weeks with an average of 12.8 weeks. The results of Harris scoring showed the pain scores of the anatomic plate group were higher than that of the trapezoid plate group (P 0.05). In unstable comminuted intertrochanteric fracture combined with trochanteric coronal position fracture, the lateral wall of trochanteric is often destroyed. The anatomic plate and the trapeziod compression plate can provide effective internal fixation, while many othere internal fixation methods were limited in this kind of fracture. As compared with the anatomic plate fixation, the trapezoid compression plate fixation of comminuted intertrochanteric fracture combined with trochanteric coronal position fracture have several advantages, such as fewer complications, faster union of fracture and earlier recovery of joint functions.

  18. Investigating the Optimum Efficiency of Acoustoelectric Conversion Plate Devices

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2014-04-01

    Full Text Available This study aims to develop the acoustoelectric conversion plate in terms of electromagnetic induction law to convert sound energy to electricity, where the developed apparatus is made of three parts, the thin film coil, the spring, and the high-intensity magnetic framework. In process, the thin film coil receives the injecting sound vibration in connection with the spring to cause the reciprocating motion between the coil and the high-intensity magnet, which yields the electromotive force (EMF. In this study, a pearl plate of length 95 mm, width 95 mm, and thickness 1.5 mm adhered with a PET film of thickness 0.08mm is built as the substrate plate due to it has good properties of light and elasticity. In connection with the substrate plate and the electric coil is the thin film coil. Experiments used the speaker with output frequencies of 30~156 Hz and sound power of 0.5 W (sound intensity 0.32 W/m2, sound pressure level 115 dB as the sound source. The sound energy is captured by the acoustoelectric conversion plate for working efficiency and optimization parameters analysis. The studied parameters content of diameter, turns, and width of electric coil as well as distance between high intensity magnet and coil. The results show that diameter 0.11 mm, turns 220, and width 3 mm of the electric coil, in connection with steel spring of diameter 0.2 mm while input sound is 30 Hz, receives the average output voltage of 0.57 V, the average output current of 5.46 mA, the average output power of 3.13 mW, and the sound electric conversion efficiency of 0.63%. This innovation device could be used in highway, near waterfalls, and some high noise factories to capture energy for immediately charging cell-phone to save human life.

  19. Theoretical and experimental studies on transient forced convection heat transfer of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto

    2008-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)

  20. Perforated plates for cryogenic regenerators and method of fabrication

    International Nuclear Information System (INIS)

    Hendricks, J.B.

    1994-01-01

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a open-quotes wire drawingclose quotes process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er 3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er 3 Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures

  1. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  2. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  3. Stability of midface fracture repair using absorbable plate and screw system pilot holes drilled and pin placement at angles other than 90°.

    Science.gov (United States)

    Carron, Michael A; Zuliani, Giancarlo; Pereira, Lucio; Abuhamdan, Maher; Thibault, Adrianna; Dau, Nathan; Bir, Cynthia

    2014-01-01

    Conventional plating systems use titanium plates for fixation of fractures, with benefits of strength and biocompatibility. However, titanium plates require that screws be placed at a 90° angle to the pilot holes. In the midface, this becomes extremely difficult. Today, a variety of craniomaxillofacial osteosynthesis systems are available, including resorbable plating systems. Specifically, the KLS Martin Sonic Weld system ultrasonically fuses the plate and the head of the pin when placed and will fill the pilot hole grooves completely even at less than 90° angles, which provides a tremendous advantage in midface fracture repair. To determine if the KLS Martin Sonic Weld system provides plate-screw construct stability in human heads even when placed at acute angles at the midface buttresses. DESIGN, SETTING, AND SPECIMENS: Twenty cadaveric head specimens with the mandible removed were prepared by creating osteotomies in the midface buttresses bilaterally. Specimens were defleshed and placed in a 2-part testing rig to hold and position the head for testing in a standard material testing system. Testing was performed at the Wayne State University Bioengineering test laboratories, Detroit, Michigan, using an Instron device and high-speed camera. Specimens were plated on one side of the midface using the KLS Martin Sonic Weld system with pilot holes and pins placed at 90° angles. On the contralateral side, the buttresses were plated with the KLS Martin Sonic Weld system at 60°, 45°, and 30° angles. Data were collected using the TDAS data acquisition system and were compared with matched pairs within each specimen. Ultrasonically vibrated pins placed into absorbable mini-plates at less than 90° angles with the KLS Martin Sonic Weld system were compared with the same amount of stress as the system placed at a 90° angle before demonstrating plate-screw construct failure. RESULTS Fifty-seven paired tests were collected, with 114 total tests. Twenty failures were

  4. Higher-order conductivity corrections to the Casimir force

    International Nuclear Information System (INIS)

    Bezerra, Valdir Barbosa; Klimchitskaya, Galina; Mostepanenko, Vladimir

    2000-01-01

    Full text follows: Considerable recent attention has been focused on the new experiments on measuring the Casimir force. To be confident that experimental data fit theory at a level of several percent, a variety of corrections to the ideal expression for the Casimir force should be taken into account. One of the main corrections at small separations between interacting bodies is the one due to finite conductivity of the boundary metal. This correction has its origin in non-zero penetration depth δ 0 of electromagnetic vacuum oscillations into the metal (for a perfect metal of infinitely large conductivity δ 0 = 0). The other quantity of the dimension of length is the space separation a between two plates or a plate and a sphere. Their relation δ 0 /a is the natural perturbation parameter in which powers the corrections to the Casimir force due to finite conductivity can be expanded. Such an expansion works good for all separations a >> δ 0 (i.e. for separations larger than 100-150 nm). The first-order term of this expansion was calculated almost forty years ago, and the second-order one in 1985 [1]. These two terms are not sufficient for the comparison of the theory with precision modern experiments. In this talk we report the results of paper [2] where the third- and fourth-order terms in δ 0 /a expansion of the Casimir force were calculated first. They gave the possibility to achieve an excellent agreement of a theory and experiment. (author)

  5. The Effect of Material Property on the Critical Velocity of Randomly Excited Nonlinear Axially Travelling Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    M. Abedi

    Full Text Available Abstract In this paper, the critical axial speeds of three types of sigmoid, power law and exponential law functionally graded plates for both isotropic and orthotropic cases are obtained via a completely analytic method. The plates are subjected to lateral white noise excitation and show evidence of large deformations. Due to randomness, the conventional deterministic methods fail and a statistical approach must be selected. Here, the probability density function is evaluated analytically for prescribed plates and used to investigate the critical axial velocity of them. Specifically the effect of in-plane forces, mean value of lateral load and the material property on the critical axial speed are studied and discussed for both isotropic and orthotropic functionally graded plates. Since the governing equation is transformed to a non dimensional format, the results can be used for a wide range of plate dimensions. It is shown that the material heterogeneity palys an essential and significant role in increasing or decreasing the critical speed of both isotropic and orthotropic functionally graded plates.

  6. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  7. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  8. Development of hold down plate of INGLE fuel assembly

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Kim, Kyu Tae

    1996-07-01

    Hold down plate for the INGLE fuel which has been designed for high performance in the standpoints of thermal margin and structural integrity compared to current fuel for YGN 3/4 and UCN 3/4 has been developed and its structural integrity has been verified based on the eh stress analysis. The design feature of the developed hold down plate has not only perfect compatibility with the reactor internals of Korea standard reactor, but also brand-new locking mechanism between upper tie plate and guide tubes. This locking mechanism introduced to the INGLE fuel provides very simple and reliable reconstitutability. In this report, finite element stress analysis with the aid of the ANSYS code as a solver and the MSC/PATRAN code as a pre and post processor were performed to verify structural integrity of the hold down plate considering various load cases which seem to be applied to the hold down plate during its lifetime. Based on the analysis results, the developed hold down plate for INGLE fuel sustains structural integrity under considered load conditions. 3 tabs., 16 figs., 9 refs. (Author)

  9. Evaluation of changes in vertical ground reaction forces as indicators of meniscal damage after transection of the cranial cruciate ligament in dogs.

    Science.gov (United States)

    Trumble, Troy N; Billinghurst, R Clark; Bendele, Alison M; McIlwraith, C Wayne

    2005-01-01

    To determine whether decreases in peak vertical force of the hind limb after transection of the cranial cruciate ligament (CrCL) would be indicative of medial meniscal damage in dogs. 39 purpose-bred adult male Walker Hounds. The right CrCL was transected arthroscopically. Force plate measurements of the right hind limb were made prior to and 2, 4, 10, and 18 weeks after transection of the CrCL. Only dogs with > or =10% decreases in peak vertical force after week 2 were considered to have potential meniscal damage. Dogs that did not have > or =10% decreases in peak vertical force at any time point after week 2 were assigned to group 1. Group 2 dogs had > or =10% decreases in peak vertical force from weeks 2 to 4 only. Group 3 and 4 dogs had > or =10% decreases in peak vertical force from weeks 4 to 10 only or from weeks 10 to 18 only, respectively. Damage to menisci and articular cartilage was graded at week 18, and grades for groups 2 to 4 were compared with those of group 1. The percentage change in peak vertical force and impulse area was significantly different in groups 2 (n = 4), 3 (4), and 4 (4) at the end of each measurement period (weeks 4, 10, and 18, respectively) than in group 1 (27). The meniscal grade for groups 2 to 4 was significantly higher than for group 1. A > or =10% decrease in peak vertical force had sensitivity of 52% and accuracy of 72% for identifying dogs with moderate to severe medial meniscal damage. In dogs with transected or ruptured CrCLs, force plate analysis can detect acute exacerbation of lameness, which may be the result of secondary meniscal damage, and provide an objective noninvasive technique that delineates the temporal pattern of medial meniscal injury.

  10. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  11. Magnetohydrodynamic flow of a rarefied gas near a time-varying accelerated plate

    International Nuclear Information System (INIS)

    Mishra, S.P.; Mohapatra, Priti

    1975-01-01

    The flow of an electrically conducting rarefied gas due to the time-varying motion of an infinite flat plate has been studied in the presence of a uniform magnetic field. The magnetic lines of force are taken to be fixed relative to the fluid. General expressions of the velocity and the skin friction have been compared by means of some qraphs and tables. (author)

  12. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  13. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  14. Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Science.gov (United States)

    Public Health Service (DHHS), Rockville, MD.

    This is the final report of National Black Health Providers Task Force (NBHPTF) on High Blood Pressure Education and Control. The first chapter of the report recounts the history of the NBHPTF and its objectives. In the second chapter epidemiological evidence is presented to demonstrate the need for a suggested 20 year plan aimed at controlling…

  15. Mathematical modeling and calculation of forced resonant vibrations of composite electromechanical system

    OpenAIRE

    Ластівка, Іван Олексійович

    2014-01-01

    Resonant vibrations of composite electromechanical symmetric three-element system “metal plate - piezoceramic cylindrical panels” are considered. Forced vibrations are made under the influence of external alternating electric field, supplied to the electrodes of piezoceramic segments of cylindrical panels, previously polarized in the tangential direction.Based on the improved theory, such as the S.P. Timoshenko’s, the system of differential equations of forced vibrations of the system, taking...

  16. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Noh, Y; Suh, T [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unit and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation

  17. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Noh, Y; Suh, T; Kim, S

    2016-01-01

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unit and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation

  18. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  19. Rectangular Gusset Plate Behaviour in Cold-Formed I-Type Steel Connections

    Directory of Open Access Journals (Sweden)

    Bučmys Ž.

    2017-06-01

    Full Text Available Cold-formed structure connections utilizing gusset plates are usually semi-rigid. This paper investigates the behaviours of rectangular gusset plates in cold-formed connections of elements whose columns and beams are made with lipped back-to-back C-sections. Methods of calculating strength and stiffness are necessary for such semi-rigid joints. The main task of this paper is to determine a method capable of calculating these characteristics. The proposed analytical method could then be easily adapted to the component method that is described in part 1993-1-8 of the Eurocode. This method allows us to calculate both the strength and stiffness of rectangular gusset plates, assuming that the joint deforms only in plane. This method of design moment resistance calculation was presented taking into account that an entire cross-section shall reach its yield stress. A technique of stiffness calculation was presented investigating the sum of deformations acquired at the bending moment and from shear forces which are transmitted from each beam bolt group. Calculation results according to the suggested method show good agreement of laboratory experimental results of specimens with numerical simulations. Two specimens of beam-to-column connections were tested in the laboratory. Lateral supports were used on the specimens to prevent lateral displacements in order to better investigate the behaviour of the rectangular gusset plate in plane. Experiments were simulated by modelling rectangular gusset plates using standard finite element software ANSYS Workbench 14.0. Three-dimensional solid elements were used for modelling and both geometric and material nonlinear analysis was performed.

  20. A distal femoral supra-condylar plate: biomechanical comparison with condylar plate and first clinical application for treatment of supracondylar fracture.

    Science.gov (United States)

    Liang, Bowei; Ding, Zhenqi; Shen, Junguo; Zhai, Wenliang; Kang, Liangqi; Zhou, Liang; Sha, Mo; Liang, Dongzhu

    2012-08-01

    An anatomical supra-condylar plate is designed and analysed by biomechanical testing. The biomechanical properties of the supra-condylar and condylar plate were compared in six matched pairs of cadaveric femurs. A transverse osteotomy gap was created to simulate an OTA/AO type A3 supracondylar fracture. The left and right specimens were fitted with supra-condylar and condylar plate, respectively. Nondestructive axial compression, three-point bending and torsion tests were performed, and the peak load of the bone-implant construction was measured. The fracture site suitable for supra-condylar plate application and its correlation with femoral length were calculated. The gender influence on it was also discussed. The difference of stiffness between the supra-condylar and condyle groups were not significant (P > 0.05) at 363.4 and 362.5 N/mm for compression, 229.5 and 237.6 N/mm in the sagittal plane and 195.5 and 188.4 N/mm in the coronal plane for three-point bending, and 7.5 and 7.9 Nm/deg for axial torsion, respectively. The peak load was 4438 ± 136.15 N and 5215 ± 174.33 N, respectively, for the two groups. The average extent of the fracture site suitable for the application of the supra-condylar plate was 70.86 ± 4.61 mm. The femoral length and gender showed no influence on it. Despite the limited bone contact area provided by the supra-condylar plate, its construct stiffness is comparable to the condylar plate. The supra-condylar plate can be used to treat carefully-selected extra-articular supracondylar fractures.

  1. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  2. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    Science.gov (United States)

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Use of a force-sensing automated open field apparatus in a longitudinal study of multiple behavioral deficits in CAG140 Huntington's disease model mice.

    Science.gov (United States)

    Fowler, Stephen C; Muma, Nancy A

    2015-11-01

    Behavioral testing of mouse models of Huntington's disease (HD) is a key component of preclinical assessment for potential pharmacological intervention. An open field with a force plate floor was used to quantify numerous spontaneous behaviors in a slowly progressing model of HD. CAG140 (+/+, +/-, -/-) male and female mice were compared in a longitudinal study from 6 to 65 weeks of age. Distance traveled, wall rears, wall rear duration, number of low mobility bouts, in-place movements, number of high velocity runs, and gait parameters (stride rate, stride length, and velocity) were extracted from the ground reaction forces recorded in 20-min actometer sessions. Beginning at 11 weeks, HD mice (both +/- and +/+) were consistently hypoactive throughout testing. Robust hypoactivity at 39 weeks of age was not accompanied by gait disturbances. By 52 and 65 weeks of age the duration of wall rears increased and in-place tremor-like movements emerged at 65 weeks of age in the +/+, but not in the +/- HD mice. Taken together, these results suggest that hypoactivity preceding frank motor dysfunction is a characteristic of CAG140 mice that may correspond to low motivation to move seen clinically in the premanifest/prediagnostic stage in human HD. The results also show that the force plate method provides a means for tracking the progression of behavioral dysfunction in HD mice beyond the stage when locomotion is lost while enabling quantification of tremor-like and similar in-place behaviors without a change in instrumentation. Use of force plate actometry also minimizes testing-induced enrichment effects when batteries of different tests are carried out longitudinally. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  5. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  6. Magnetic resonance imaging of the growth plate: pictorial essay

    International Nuclear Information System (INIS)

    Cairns, R.

    2003-01-01

    The approach to musculoskeletal magnetic resonance imaging (MRI) is very different in children than adults because of different disease processes, immature structures and the variable size and age of the patients. Use of routine adult musculoskeletal protocols and techniques may not provide sufficient information in children, and most pediatric examinations should be customized to specifically address the child's age and clinical problem. This pictorial essay will illustrate MRI of the growth plate - often an area of uncertainty or error for radiologists who infrequently perform musculoskeletal MRI on children. The growth plate or physis is a structure unique to the growing skeleton. It is a cartilaginous zone located between the epiphysis and the metaphysis that functions to provide longitudinal bone growth. Disturbance of physeal growth as a result of trauma, infection, tumour, ischemia or radiation can result in leg length discrepancy, angular deformity or altered joint mechanics and cause significant long-term disability. MRI can directly image cartilaginous structures and has thus become the imaging method of choice for evaluation of the growth plate. An understanding of the normal and abnormal appearance of growth cartilage and of MRI protocols optimized for imaging the growth plate, combined with an approach to risk assessment for the development of significant growth deformity, is needed to confidently image the growth plate and help direct the management of these patients. (author)

  7. History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates.

    Science.gov (United States)

    Hernigou, Philippe; Pariat, Jacques

    2017-07-01

    The first techniques of operative fracture with plates were developed in the 19th century. In fact, at the beginning these methods consisted of an open reduction of the fracture usually followed by a very unstable fixation. As a consequence, the fracture had to be opened with a real risk of (sometimes lethal) infection, and due to unstable fixation, protection with a cast was often necessary. During the period between World Wars I and II, plates for fracture fixation developed with great variety. It became increasingly recognised that, because a fracture of a long bone normally heals with minimal resorption at the bone ends, this may result in slight shortening and collapse, so a very rigid plate might prevent such collapse. However, as a consequence, delayed healing was observed unless the patient was lucky enough to have the plate break. One way of dealing with this was to use a slotted plate in which the screws could move axially, but the really important advance was recognition of the role of compression. After the first description of compression by Danis with a "coapteur", Bagby and Müller with the AO improved the technique of compression. The classic dynamic compression plates from the 1970s were the key to a very rigid fixation, leading to primary bone healing. Nevertheless, the use of strong plates resulted in delayed union and the osteoporosis, cancellous bone, comminution, and/or pathological bone resulted in some failures due to insufficient stability. Finally, new devices represented by locking plates increased the stability, contributing to the principles of a more biological osteosynthesis while giving enough stability to allow immediate full weight bearing in some patients.

  8. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields

    International Nuclear Information System (INIS)

    Zhou Youhe

    1995-01-01

    Ferritic stainless steel has been considered for structural components such as first walls and blankets of fusion power reactors because the material shows low rates of irradiation swelling. Since it is magnetizable, the magnetoelastic interaction between magnetic field and deformation of the structures in a fusion reactor is so strong that their safety is of concern due to the magnetoelastic bending, buckling and magnetic damping, etc. Basic research of the magnetoelastic characteristics of ferromagnetic plate has been paid special attention by researchers. In this paper, the magnetoelastic bending and snapping are studied for a ferromagnetic plate in an oblique magnetic field. The theoretical model is based on the variational principle where the functional is employed as real total energy in the system including external work. The obtained expression of magnetic force on the plate is the same as that derived from the dipole model when the total magnetic field in the ferromagnetic medium is considered. In order to effectively solve the nonlinearly coupled interaction problem between magnetic field and mechanical deformation, a numerical program combining the finite element method for analyzing the magnetic field with the finite difference technique for finding out the bending deformation of the plate is employed to obtain the solution of magnetoelastic bending of a soft ferromagnetic plate. The numerical calculations are carried out for the typical example of a ferromagnetic cantilevered beam-plate in an oblique magnetic field. From the bending curves, that is the tip deflection versus applied magnetic fields, the critical magnetic field for the magnetoelastic snapping is predicted by the Southwell plot. The theoretical predictions show that the critical magnetic field decreases with the increase in incident angle of the oblique magnetic field. By the effect of incident angle on the magnetic buckling, the discrepancy between theoretical and experimental data can

  9. Influence of inclined Lorentz force on micropolar fluids in a square cavity with uniform and nonuniform heated thin plate

    Energy Technology Data Exchange (ETDEWEB)

    Periyadurai, K. [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Muthtamilselvan, M., E-mail: muthtamill@yahoo.co.in [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Doh, Deog-Hee [Division of Mechanical Engineering, College of Engineering,Korea Maritime Ocean University, Busan 606781 (Korea, Republic of)

    2016-12-15

    In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid. - Highlights: • We investigate the effect of inclined magnetic field on micropolar fluid in a cavity. • The effects of uniform and non-uniform heated plate are studied. • The present numerical results are compared with the experimental results. • The addition of vortex viscosity parameter declines the heat transfer performance. • The high heat transfer rate occurs in the vertical plate compared to the horizontal one.

  10. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.

    2011-05-11

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  11. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.; Goriely, A.; Tabor, M.

    2011-01-01

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  12. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    Science.gov (United States)

    Zhou, Zhiyuan; Lin, Jian

    2018-06-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.

  13. Rheological and structural inheritance : key parameters for intra-plate deformation. A study based on analogue models

    NARCIS (Netherlands)

    Calignano, E.

    2015-01-01

    Mountain ranges are impressive tectonic features that characterize the Earth’s surface. Their formation is often associated with regions where two tectonic plates, making up the Earth surface, collide, as in the case of the Himalaya. While the surface is forced to uplift, the displacement of rocks

  14. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Porfiri, Maurizio [Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York 11201 (United States)

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  15. The use of microperforated plates to attenuate cavity resonances

    DEFF Research Database (Denmark)

    Fenech, Benjamin; Keith, Graeme; Jacobsen, Finn

    2006-01-01

    The use of microperforated plates to introduce damping in a closed cavity is examined. By placing a microperforated plate well inside the cavity instead of near a wall as traditionally done in room acoustics, high attenuation can be obtained for specific acoustic modes, compared with the lower...... attenuation that can be obtained in a broad frequency range with the conventional position of the plate. An analytical method for predicting the attenuation is presented. The method involves finding complex eigenvalues and eigenfunctions for the modified cavity and makes it possible to predict Green......'s functions. The results, which are validated experimentally, show that a microperforated plate can provide substantial attenuation of modes in a cavity. One possible application of these findings is the treatment of boiler tones in heat-exchanger cavities....

  16. Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface

    Directory of Open Access Journals (Sweden)

    Shuohui Yin

    2013-01-01

    Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.

  17. Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

    International Nuclear Information System (INIS)

    Esmaeilpour, M.; Ganji, D.D.

    2007-01-01

    In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations

  18. Management of pediatric mandibular fractures using bioresorbable plating system – Efficacy, stability, and clinical outcomes: Our experiences and literature review

    Science.gov (United States)

    Singh, Mahinder; Singh, R.K.; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2015-01-01

    Aims The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Methods Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Results Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). Conclusion 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients. PMID:27195206

  19. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  20. "Great Job Cleaning Your Plate Today!" Determinants of Child-Care Providers' Use of Controlling Feeding Practices: An Exploratory Examination.

    Science.gov (United States)

    Dev, Dipti A; McBride, Brent A; Speirs, Katherine E; Blitch, Kimberly A; Williams, Natalie A

    2016-11-01

    National early childhood obesity prevention policies recommend that child-care providers avoid controlling feeding practices (CFP) (eg, pressure-to-eat, food as reward, and praising children for cleaning their plates) with children to prevent unhealthy child eating behaviors and childhood obesity. However, evidence suggests that providers frequently use CFP during mealtimes. Using the Academy of Nutrition and Dietetics (2011) benchmarks for nutrition in child care as a framework, researchers assessed child-care providers' perspectives regarding their use of mealtime CFP with young children (aged 2 to 5 years). Using a qualitative design, individual, face-to-face, semi-structured interviews were conducted with providers until saturation was reached. Providers were selected using maximum variation purposive sampling from varying child-care contexts (Head Start, Child and Adult Care Food Program [CACFP]-funded centers, non-CACFP programs). All providers were employed full-time in Head Start or state-licensed center-based child-care programs, cared for children (aged 2 to 5 years), and were directly responsible for serving meals and snacks. Child-care providers' perspectives regarding CFP. Thematic analysis using NVivo (version 9, 2010, QSR International Pty Ltd) to derive themes. Providers' perspectives showed barriers, motivators, and facilitators regarding their use of mealtime CFP. Providers reported barriers to avoiding CFP such as CFP were effective for encouraging desired behaviors, misconceptions that providers were encouraging but not controlling children's eating, and fear of parents' negative reaction if their child did not eat. Providers who did not practice CFP were motivated to avoid CFP because they were unnecessary for encouraging children to eat, and they resulted in negative child outcomes and obesity. Facilitators as an alternative to CFP included practicing healthful feeding practices such as role modeling, peer modeling, and sensory exploration of

  1. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  2. Fully automated synthesis of (phosphopeptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization

    Directory of Open Access Journals (Sweden)

    Goldstein David J

    2005-01-01

    Full Text Available Abstract Background Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src. Results The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR autophosphorylation site (pY1173 antibody ELISA (9H2 was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phosphopeptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of

  3. Catalysts characteristics of Ni/YSZ core-shell according to plating conditions using electroless plating

    Science.gov (United States)

    Park, Hyun-Wook; Jang, Jae-Won; Lee, Young-Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Jong-Heun; Hwang, Hae-jin; Lee, Mi-Jai

    2017-11-01

    This study aims to develop an anode catalyst for a solid oxide fuel cell (SOFC) using electroless nickel plating. We have proposed a new method for electroless plating of Ni metal on yttria-stabilized zirconia (YSZ) particles. We examine the uniformity of the Ni layer on the plated core-shell powder, in addition to the content of Ni and the reproducibility of the plating. We have also evaluated the carbon deposition rate and characteristics of the SOFC anode catalyst. To synthesize Ni-plated YSZ particles, the plated powder is heat-treated at 1200 °C. The resultant particles, which have an average size of 50 μm, were subsequently used in the experiment. The size of the Ni particles and the Ni content both increase with increasing plating temperature and plating time. The X-ray diffraction pattern reveals the growth of Ni particles. After heat-treatment, Ni is oxidized to NiO, leading to the co-existence of Ni and NiO; Ni3P is also observed due to the presence of phosphorous in the plating solution. Following heat treatment for 1 h at 1200 °C, Ni is mostly oxidized to NiO. The carbon deposition rate of the reference YSZ powder is 135%, while that of the Ni-plated YSZ is 1%-6%.

  4. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  5. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  6. Digital Archive of the Astrograph Plates Stored at the Inasan Zvenigorod Observatory

    Directory of Open Access Journals (Sweden)

    Vereshchagin S. V.

    2012-09-01

    Full Text Available The plate collection of the Zvenigorod 40-cm Carl Zeiss astrograph, obtained in 1972-2003, contains direct photographs of star fields, comets, asteroids, Pluto, and Mars. The electronic library of images from photographic plates was created from scanning the astronomical negatives. We present information on programs scheduled at the telescope and the structure and maintenance of the plate stacks. We also list the plates with images of asteroids and comets. Access to all our plate lists is provided at the web sites of the Institute of Astronomy (INASAN and WFPDB. It is possible to select plates by the date of observation, by the coordinates of the sky area, by the object type. Preview images can be inspected.

  7. Transitions in low Re pumping by oscillating plate arrays of mayfly nymphs

    Science.gov (United States)

    Kiger, Ken; Sensenig, Andrew; Shultz, Jeffrey

    2008-11-01

    Mayfly nymphs are aquatic insects which alter behavior and metabolism to accommodate changes in ambient dissolved oxygen. Many species can generate a ventilation current to compensate for low oxygen levels by beating two linear arrays of plate-like gills that line the lateral edge of the abdomen. The oscillation Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontological changes in pumping mechanisms associated with transitions from a viscous- to inertia-dominated flow. Observation of the detailed 3-D kinematics of the gill motion of the species Centroptilum triangulifer reveal that the mayfly makes a marked transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Results of the time-resolved flow within the inter-gill space shows that for Re>12 the plate motion generates a complex array of bound and shed vortices, which interact to produce an intermittent dorsally directed jet. For the Re<5, distinct bound vortices are still observed, but increased diffusive effects creates vortices which simultaneously envelope several gills, forcing a new flow pattern to emerge. Details of the flow mechanism and its implications will be discussed. This work is supported by NSF under grant CBET-0730907.

  8. A radiophotoluminescent glass plate system for medium-sized field dosimetry

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Koyanagi, Hiroki; Shiraki, Takashi; Saegusa, Shigeki; Sasaki, Katsutake; Oritate, Takashi; Mima, Kazuo; Miyazawa, Masanori; Ishidoya, Tatsuyo; Ohtomo, Kuni; Yoda, Kiyoshi

    2005-01-01

    A two-dimensional radiophotoluminescent system for medium-sized field dosimetry has been developed using a silver-activated phosphate glass plate with a dimension of 120 mmx120 mmx1 mm and a readout unit comprising a UV excitation lamp and a CCD imager. A dose ranging from 0 to 400 cGy, provided by a 6 MV x-ray beam, was delivered to the glass plate oriented perpendicularly to the beam and positioned in a water phantom at a depth of 10 cm, where the center of the glass plate coincided with the linac isocenter. After the dose delivery, the glass plate was placed in the readout system. The CCD output intensity increased linearly with the applied dose. The angular dependence of response on the direction of radiation incidence was measured by rotating the glass plate in the water phantom, indicating that the output remained constant up to 75 deg. from perpendicular incident direction, followed by a steep reduction down to 85% at an angle of 90 deg. A lateral dose distribution resulting from a 60 mmx60 mm irradiation was compared between the glass plate and an x-ray film having had the same exposure, showing that the glass plate and the x-ray film led to identical dose distributions. The dose reproducibility for a glass plate and the sensitivity variation among different glass plates were also evaluated

  9. Modeling and analysis of proximal tibial growth plate fractures in adolescents: Theory and potential applications

    Directory of Open Access Journals (Sweden)

    Susan Basile

    2016-01-01

    Full Text Available Background: Overuse injuries in children and adolescents are becoming increasingly common, particularly in those who regularly participate in a single sport. As a result, prevention, early detection and treatment of these injuries is vital. However, existing research in adult populations cannot always be directly applied to analogous cases in younger populations. This study attempts to provide an example of how both mathematical and computer modeling can be utilized to predict alterations in load locations, directions, and magnitudes resulting from maturational changes in a way not possible in vivo. Methods: A 2D leg extension model was created and used to calculate relevant forces at the proximal knee joint. Individual aspects of the model, such as quadriceps force and leg length, were changed to quantify how increases in a growing adolescent’s force generation and limb length may affect the forces at the joint. The derived forces were input into a 3D finite element model incorporating a growing young adult’s relatively weaker epiphyseal plate material to calculate the stresses and strains on the tibia of an adolescent. Results: Findings indicated that a shortened patellar tendon and increased quadriceps muscle strength were potentially greater contributors to increased stress on the proximal tibia, as opposed to aspects such as height and weight changes. Conclusions: The theoretical and computational methods employed show promise in their ability to predict potential injury risks in populations for whom evidence-based research is lacking. Models incorporating the elbow and shoulder have high impact potential for young baseball pitchers.

  10. A novel approach to modeling plate deformations in fluid–structure interactions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.K., E-mail: howartre@onid.oregonstate.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Jones, W.F. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2015-11-15

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  11. A novel approach to modeling plate deformations in fluid–structure interactions

    International Nuclear Information System (INIS)

    Howard, T.K.; Marcum, W.R.; Jones, W.F.

    2015-01-01

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  12. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  13. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  14. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  15. Analysis of a Fluid-Loaded Thick Plate

    National Research Council Canada - National Science Library

    Hull, Andrew

    2002-01-01

    The physics of a thick plate with fluid loading on both sides provides the theoretical basis for insertion loss and echo reduction tests, both of which are typically used to determine how efficiently...

  16. Theroretical modelling of the plate-tubes coupling in the hydroelasticity of the perforated plates

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Manoach, E.S.

    1983-01-01

    In the previous investigations on the perforated plate hydroelasticity the problem of the plates-tubes-liquid interaction in the process of the general structural vibration is stated. But the interaction of the vibrating plates with the tubes, passing through them, is taken into account considering the tubes only as absolutely rigid supports. This is one of the possible technical realizations. In the present article the case when the tubes are taking part in the plate motion (vibration) is studied. Two circular perforated plates are supported by the absolutely rigid wall of the modelled roundcircular reactor barrel. The distance between the plates is given. They are connected by tubes, passing through, and clamped into the perforation holes. The plates and the tubes are made by any elastic HOOKIAN material. The volume between the two plates and outwardly to the tubes, but intrinsically of the barrel is filled by ideal, compressible and heavy liquid. Evidently the liquid volume is multiconnected one. The free vibration of the whole system is considered with the purposes: i) to give a theoretical model of the plates-tubes-liquid interaction including governing equations and boundary conditions; ii) to trace the solution of the eigen-value problem for the modelled structure; iii) to underline the engineering sides of the modelling process. (orig./GL)

  17. Modeling of parallel-plate regenerators with non-uniform plate distributions

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    plate spacing distributions are presented in order to understand the impact of spacing non-uniformity. Simulations of more realistic distributions where the plate spacings follow normal distributions are then discussed in order to describe the deviation of the performance of a regenerator relative...

  18. Ni-based amorphous alloy-coating for bipolar plate of PEM fuel cell by electrochemical plating

    International Nuclear Information System (INIS)

    Yamaura, S; Kim, S C; Inoue, A

    2013-01-01

    In this study, the Ni-Cr-P amorphous alloy-coated bipolar plates were produced by electro-plating on the Cu base plates with a flow field. The power generation tests of a single fuel cell with those Ni-Cr-P bipolar plates were conducted at 353 K. It was found that the single fuel cell with those Ni-Cr-P bipolar plates showed excellent I-V performance as well as that with the carbon graphite bipolar plates. It was also found that the single cell with those Ni-Cr-P bipolar plates showed better I-V performance than that with the Ni-P amorphous alloy-coated bipolar plates. Furthermore, the long-time operation test was conducted for 440 h with those Ni-Cr-P bipolar plates at the constant current density of 200 mA·cm −2 . As a result, it was found that the cell voltage gradually decreased at the beginning of the measurement before 300 h and then the voltage was kept constant after 300 h.

  19. Ceramic finned-plate recuperator for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.; Strumpf, H.; Kotchick, D.

    1985-01-01

    High-level recuperation of high-temperature industrial furnaces offers an economically effective means for improving both process and fuel utilization. A ceramic recuperator capable of operating in fuel gas temperatures of up to 1350/sup 0/C and providing a combustion air preheat temperature of 1100/sup 0/C can provide in excess of 50 percent savings in fuel comsumption over an unrecuperated furnace. This recuperator consists of an array of cast ceramic finned plates. The fin geometries are such that when the plates are stacked together, they form the heat transfer flow passages for both the flue gas and combustion air streams. A reference design for industrial recuperator system was created. The current development efforts conducted on this recuperator concept, as well as plans for future activities, are described.

  20. Plate waste of adults in the United States measured in free-living conditions.

    Directory of Open Access Journals (Sweden)

    Brian E Roe

    Full Text Available We analyze food-item level data collected from 50 adults from the United States using the Remote Food Photography Method® to provide the first estimates of plate waste gathered from adults across multiple consecutive meals and days in free-living conditions, and during laboratory-based meals with fixed food items and quantities. We find average plate waste in free-living conditions is 5.6 grams (7.7 kcals per item and that 3.3% of all food selected is returned as plate waste, where the percent waste figure is substantially lower than previously published plate waste estimates gathered primarily from dine-out settings in the United States such as buffets and institutional settings with limited-choice meals (e.g., school cafeterias. Plate waste from the same participants during the laboratory-based meals is significantly higher with an average of 203.2 grams of solid plate waste per meal (531.3 kcals or 39.1% of the food provided, which is similar to the plate waste percentages found reported in some school cafeteria settings. The amount of plate waste generated in free-living conditions is significantly positively associated with portion size selected for an item. In a multivariate analysis that controls for macronutrient profile, items selected from the vegetables, fats/oils/dressings, and grains categories are associated with significantly greater amounts of plate waste per item. We find no significant associations between free-living plate waste and gender, age, race or body mass index but find that women leave more plate waste in the lab meal where portion sizes are pre-determined by the researcher and similar for all respondents. We discuss possible implications of these findings for programs focused on reducing plate waste and food waste among consumers.

  1. Plate waste of adults in the United States measured in free-living conditions

    Science.gov (United States)

    Allen, H. Raymond

    2018-01-01

    We analyze food-item level data collected from 50 adults from the United States using the Remote Food Photography Method® to provide the first estimates of plate waste gathered from adults across multiple consecutive meals and days in free-living conditions, and during laboratory-based meals with fixed food items and quantities. We find average plate waste in free-living conditions is 5.6 grams (7.7 kcals) per item and that 3.3% of all food selected is returned as plate waste, where the percent waste figure is substantially lower than previously published plate waste estimates gathered primarily from dine-out settings in the United States such as buffets and institutional settings with limited-choice meals (e.g., school cafeterias). Plate waste from the same participants during the laboratory-based meals is significantly higher with an average of 203.2 grams of solid plate waste per meal (531.3 kcals) or 39.1% of the food provided, which is similar to the plate waste percentages found reported in some school cafeteria settings. The amount of plate waste generated in free-living conditions is significantly positively associated with portion size selected for an item. In a multivariate analysis that controls for macronutrient profile, items selected from the vegetables, fats/oils/dressings, and grains categories are associated with significantly greater amounts of plate waste per item. We find no significant associations between free-living plate waste and gender, age, race or body mass index but find that women leave more plate waste in the lab meal where portion sizes are pre-determined by the researcher and similar for all respondents. We discuss possible implications of these findings for programs focused on reducing plate waste and food waste among consumers. PMID:29444094

  2. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  3. A theoretical model and experiments on the nonlinear dynamics of parallel plates subjected to laminar/turbulent squeeze-film forces

    International Nuclear Information System (INIS)

    Piteau, Philippe; Antunes, Jose

    2012-01-01

    Squeeze film dynamical effects are relevant in many industrial contexts, bearings and seals being the most conspicuous applications, but also in other industrial contexts, for instance when dealing with the seismic excitation of spent fuel racks. The significant nonlinearity of the squeeze-film forces which arise prevents the use of linearized flow models, and a fully nonlinear formulation must be used for adequate computational predictions. Because it can easily accommodate both laminar and turbulence flow effects, a simplified bulk-flow model based on gap-averaged Navier-Stokes equations, incorporating all relevant inertial and dissipative terms was previously developed by the authors, assuming a constant skin-friction coefficient. In this paper we develop an improved theoretical formulation, where the dependence of the friction coefficient on the local flow velocity is explicitly accounted for, such that it can be applied to laminar, turbulent and mixed flows. Numerical solutions for both the basic and improved nonlinear one-dimensional time-domain formulations are presented in the paper. Furthermore, we present and discuss the results of an extensive series of experiments performed at CEA/Saclay, which were performed on a test rig consisting on a long gravity-driven instrumented plate of rectangular shape colliding with a planar surface. Theoretical results stemming from both theoretical flow models are confronted with the experimental measurements, in order to assert the strengths and drawbacks of the simpler original model, as well as the improvements brought by the new but more involved flow formulation. (authors)

  4. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  5. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  6. Vertical steam generator with slab-type tube-plate with even tube bundle washing

    International Nuclear Information System (INIS)

    Manek, O.; Masek, V.; Motejl, V.; Quitta, R.

    1980-01-01

    A shielding plate supporting the tubes attached to the tube plate of a vertical steam generator is mounted above the tube plate. Tube sleeves are designed with a dimensional tolerance relative to the heat transfer tubes and the sleeve end and the tube plate end. A separate space is thus formed above the tube plate in which circulation or feed water is introduced to flow between the branch and the heat transfer tube. This provides intensive washing of heat transfer tubes at a critical point and prevents deposit formation, thus excluding heat transfer tube failures. (J.B.)

  7. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    Science.gov (United States)

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  8. Design of the Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plate provides flow holes to direct the heated coolant into/out of the fuel assembly and structural intensity to insure that the fuel rod is axially restrained within the spacer grids. So, flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape. Because the flow holes' area of a flow plate affects pressure drop, the flow holes' area must be larger than/equal to that of conventional flow plates. And design criterion of the TEP/BEP says that the flow plate should withstand a 22.241 kN axial load during handling lest a calculated stress intensity should exceed the Condition I allowable stress. In this paper, newly designed flow plates of a TEP/BEP are suggested and stress analysis is conducted to evaluate strength robustness of the flow plates for the dual cooled fuel assembly

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... foods you want, but changes the portion sizes so you are getting larger portions of non-starchy ... plate. Then on one side, cut it again so you will have three sections on your plate. ...

  14. Comparison of two temperature control techniques in a forced water heater solar system

    Science.gov (United States)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  15. Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2016-02-01

    Full Text Available In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly quality and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading pressing force is an effective method to control interlayer burr formation.

  16. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  17. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  18. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  19. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  20. Numeric Simulation on the Performance of an Undulating Fin in the Wake of a Periodic Oscillating Plate

    Directory of Open Access Journals (Sweden)

    Zhang Yong-Hua

    2013-10-01

    Full Text Available A two-dimensional unsteady computational fluid dynamics (CFD method using an unstructured, grid-based and unsteady Navier-Stokes solver with automatic adaptive re-meshing to compute the unsteady flow was adopted to study the hydrodynamic interaction between a periodic oscillating plate and a rigid undulating fin in tandem arrangement. The user-defined function (UDF program was compiled to define the undulating and oscillating motion. First, the influence of the distance between the anterior oscillating plate and the posterior undulating fin on the non-dimensional drag coefficient of the fin was investigated. Ten different distances, D=0.2L, 0.4L, 0.6L, 0.8L, 1.0L, 1.2L, 1.4L, 1.6L, 1.8L and 2.0L, were considered. The performance of the fin for different distances (D is different. Second, the plate oscillating angle (5.7°, 10°, 20°, 30°, 40°, 45°, 50° and frequency (0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz, 2.5 Hz, 3.0 Hz, 3.5 Hz, 4.0 Hz effects on the non-dimensional drag coefficient of the fin were also implemented. The pressure distribution on the fin was computed and integrated to provide fin forces, which were decomposed into lift and thrust. Meanwhile, the flow field was demonstrated and analysed. Based on the flow structures, the reasons for different undulating performances were discussed. It shows that the results largely depend on the distance between the two objects. The plate oscillating angle and frequency also make a certain contribution to the performance of the posterior undulating fin. The results are similar to the interaction between two undulating objects in tandem arrangement and they may provide a physical insight into the understanding of fin interaction in fishes or bio-robotic underwater propulsors that are propelled by multi fins.

  1. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  2. Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer.

    Science.gov (United States)

    Yang, Jiashi; Liu, Jinjin; Li, Jiangyu

    2007-04-01

    A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.

  3. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  4. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  5. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  6. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  8. The target preparation of "2"3"2Th plated on the nickel with copper as substrate and "2"3"0Pa generation

    International Nuclear Information System (INIS)

    Shen Hua; Geng Junxia; Gao Size; Zhang Guoxin; Zhang Lan; Li Wenxin; Li Qingnuan; Wu Guozhong

    2014-01-01

    The electrochemical parameters on nickel plating on the copper have been studied using aqueous electroplating technique. And thorium is plated on the nickel flake using molecular plating technique. The better experimental parameters are obtained. According to these optimized parameters, the "2"3"2Th target which is suitable for Cyclone-30 accelerator is prepared. The proton beam with energy of 21 MeV bombed the "2"3"2Th target (total beam time 20 μAh). The results showed that the better range of plating current density of nickel plated on copper is l.30∼1.68 A/dm"2. The thickness of nickel plating layer can reach more than 10 μm. The current density is 3∼5 mA/cm"2, and the thickness of plated thorium layer is up to micrometer scale. The binding force of as-prepared "2"3"2Th target is very well. There is "2"3"0Pa appeared after the target is bombed by the proton beam. (authors)

  9. THE EFFECTS OF DIFFERENT TRUNK INCLINATIONS ON BILATERAL TRUNK MUSCULAR ACTIVITIES, CENTRE OF PRESSURE AND FORCE EXERTIONS IN STATIC PUSHING POSTURES.

    Science.gov (United States)

    Sanjaya, Kadek Heri; Lee, Soomin; Sriwarno, Andar Bagus; Shimomura, Yoshihito; Katsuura, Tetsuo

    2014-06-01

    In order to reconcile contradictory results from previous studies on manual pushing, a study was conducted to examine the effect of trunk inclination on muscular activities, centre of pressure (COP) and force exertion during static pushing. Ten subjects pushed at 0 degrees, 15 degrees, 30 degrees, and 45 degrees body inclinations in parallel and staggered feet stances. Wall and ground force plates measured pushing force, wall COP, vertical ground reaction force (GRF) and ground COP. Electromyogram data were recorded at 10 trunk muscle sites. Pushing force was found to increase with body inclination. GRF peaked at 15 degrees and reached its lowest level at the 45 degrees inclination. The lowest wall force plate standard deviation of COP displacement was found at the 30 degrees inclination. The lowest low back muscular activity was found at the 15 degrees and 30 degrees inclinations. Based on force exertion, muscular load, and stability, the 30 degrees body inclination was found to be the best posture for static pushing. This study also showed asymmetry in muscular activity and force exertion which has been received less attention in manual pushing studies. These findings will require further study.

  10. Using EarthScope Construction of the Plate Boundary Observatory to Provide Locally Based Experiential Education and Outreach

    Science.gov (United States)

    Jackson, M.; Eriksson, S.; Barbour, K.; Venator, S.; Mencin, D.; Prescott, W.

    2006-12-01

    EarthScope is an NSF-funded, national science initiative to explore the structure and evolution of the North American continent and to understand the physical processes controlling earthquakes and volcanoes. This large-scale experiment provides locally based opportunities for education and outreach which engage students at various levels and the public. UNAVCO is responsible for the Plate Boundary Observatory (PBO) component of EarthScope. PBO includes the installation and operations and maintenance of large networks of Global Positioning Satellite (GPS), strainmeter, seismometer, and tiltmeter instruments and the acquisition of satellite radar imagery, all of which will be used to measure and map the smallest movements across faults, the magma movement inside active volcanoes and the very wide areas of deformation associated with plate tectonic motion. UNAVCO, through its own education and outreach activities and in collaboration with the EarthScope E&O Program, uses the PBO construction activities to increase the understanding and public appreciation of geodynamics, earth deformation processes, and their relevance to society. These include programs for public outreach via various media, events associated with local installations, a program to employ students in the construction of PBO, and development of curricular materials by use in local schools associated with the EarthScope geographic areas of focus. PBO provides information to the media to serve the needs of various groups and localities, including interpretive centers at national parks and forests, such as Mt. St. Helens. UNAVCO staff contributed to a television special with the Spanish language network Univision Aquí y Ahora program focused on the San Andreas Fault and volcanoes in Alaska. PBO participated in an Education Day at the Pathfinder Ranch Science and Outdoor Education School in Mountain Center, California. Pathfinder Ranch hosts two of the eight EarthScope borehole strainmeters in the Anza

  11. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  12. Numerical Study on the Structural Performance of Steel Beams with Slant End-plate Connections

    Directory of Open Access Journals (Sweden)

    Farshad Zahmatkesh

    Full Text Available Abstract Thermal effects can be one of the most harmful conditions that any steel structure should expect throughout its service life. To counteract this effect, a new beam, with a capability to dissipate thermally induced axial force by slanting of end-plate connection at both ends, is proposed. The beam was examined in terms of its elastic mechanical behavior under symmetric transverse load in presence of an elevated temperature by means of direct stiffness finite element model. The performance of such connection is defined under two resisting mechanisms; by friction force dissipation between faces of slant connection and by small upward crawling on slant plane. The presented numerical method is relatively easy and useful to evaluate the behavior of the proposed beam of various dimensions at different temperatures. Its applicability is evident through satisfactory results verification with those from experimental, analytical and commercially available finite element software. Based on the good agreement between theoretical and experimental methods, a series of design curves were developed as a safe-practical range for the slant end-plate connections which are depend on the conditions of the connection.

  13. Oil prospection using the tectonic plate model

    Science.gov (United States)

    Pointu, Agnès

    2015-04-01

    sedimentation rate is necessary to bury organic matter and to restrict the mineralization. Consequences of crustal extension are also studied by using an experimental sand box model. The creation of faults is related to the subsidence of the margin. This subsidence allows the crossing of the oil window, leading to pyrolysis of organic matter and its transformation into oil. Afterwards, students compare the structures obtained after extension in their sand box to the actual organization of the Ghawar oil accumulation (seismic line). They can see that faults created by extension forces have not been preserved and can assume that compression forces have caused formation of the traps. An animation of paleo-location of continents during the upper Jurassic helps them to think that compression forces are linked to the closure of the Tethys Sea. A model using gravel and clay is used to show the principle of oil trapping. This way, students understand how the tectonic plate models explain the actual location of oil deposits and then how it can be used to look for new deposits.

  14. Morphological analysis of acromion and hook plate for the fixation of acromioclavicular joint dislocation.

    Science.gov (United States)

    Yoon, Jong Pil; Lee, Yeon Soo; Song, Geun Soo; Oh, Joo Han

    2017-03-01

    Acromioclavicular (AC) joint dislocation is a common sports injury. Hook plate fixation is currently widely used to treat this injury, as it can promote the natural healing of the ligament with good clinical outcomes. However, subacromial erosion and impingement are frequently observed post-operatively. It was hypothesized that the morphology and the contact characteristics between the hook portion and the acromion are the main causes of complications after hook plate fixation with the currently available commercial designs. Three-dimensional reconstructed models of the AC joint obtained from the computed tomographic scans of 23 male and 23 female patients (mean age, 61.1 ± 6.3 years) were evaluated, and multiple anatomical parameters were measured. For the subacromial positioning of the hook plate, an actual hook plate (Synthes Inc., West Chester, PA, USA) was scanned, and the contact between the hook plate and the acromion was estimated. The thicknesses of the acromion and distal clavicle were 9.7 ± 1.5 mm (10.7 mm in men; 8.6 mm in women) and 11.3 ± 1.6 mm (11.6 mm in men; 10.0 mm in women), respectively. The width of the acromion was 28.5 ± 3.6 mm. The mean inclination angle between the hook plate and the acromion was 29.3° ± 9.7° (27.9° in men; 30.6° in women). The hook plate made a point contact with the acromion at 9.2 ± 3.3 mm (31.5 %) from the lateral end of the acromion. The results revealed that the hook made a pinpoint contact with the undersurface of the acromion, and this might explain why complications commonly occur after hook plate fixation. The force concentration phenomenon associated with the hook plate of existing designs results from cases of morphological mismatch, such as excessive inclination and improper occupation of the subacromial space.

  15. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  16. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Science.gov (United States)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  17. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2002-12-01

    key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  19. A micro-fabricated force sensor using an all thin film piezoelectric active sensor.

    Science.gov (United States)

    Lee, Junwoo; Choi, Wook; Yoo, Yong Kyoung; Hwang, Kyo Seon; Lee, Sang-Myung; Kang, Sungchul; Kim, Jinseok; Lee, Jeong Hoon

    2014-11-25

    The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS) and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor.

  20. A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor

    Directory of Open Access Journals (Sweden)

    Junwoo Lee

    2014-11-01

    Full Text Available The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor.

  1. Bottom nozzle for nuclear reactor fuel assembly having an adaptor plate and a coupled filtration plate

    International Nuclear Information System (INIS)

    Verdier, M.; Mortgat, R.

    1992-01-01

    The bottom nozzle includes an adaptor plate with openings to allow the passage of water and a filtration plate with small holes. The openings in the adaptor plate are symmetrical with regard to medians and diagonals. Within each zone, some of the openings are rectangular and some may be circular. The small holes in the filtration plate coincide with the rectangular openings in the adaptor plate

  2. Influence of boundary conditions on the response of multilayered plates with cohesive interfaces and delaminations using a homogenized approach

    Directory of Open Access Journals (Sweden)

    R. Massabò

    2014-07-01

    Full Text Available Stress and displacement fields in multilayered composites with interfacial imperfections, such as imperfect bonding of the layers or delaminations, or where the plies are separated by thin interlayers allowing relative motion, have large variations in the thickness, with characteristic zigzag patterns and jumps at the layer interfaces. These effects are well captured by a model recently formulated by the author for multilayered plates with imperfect interfaces and affine interfacial traction laws (Massabò & Campi, Meccanica, 2014, in press; Compos Struct, 2014, 116, 311-324. The model defines a homogenized displacement field, which satisfies interfacial continuity, and uses a variational technique to derive equilibrium equations depending on only six generalized displacement functions, for any arbitrary numbers of layers and interfaces. The model accurately predicts stresses and displacements in simply supported, highly anisotropic, thick plates with continuous, sliding interfaces. In this paper the model is applied to wide plates with clamped edges and some inconsistencies, which have been noted in the literature for models based on similar approaches and have limited their utilization, are explained. A generalized transverse shear force is introduced as the gross stress resultant which is directly related to the bending moment in the equilibrium equations of multilayered structures with imperfect interfaces and substitutes for the shear force of single-layer theory. An application to a delaminated wide plate highlights the potential and limitations of the proposed model for the solution of fracture mechanics problems.

  3. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV push-off distance, and jump height are known.

  4. Impact of The N - S Fracture Zone Along The Indo-Australia Plate Analyzed from Local Seismic Data In The Western Offshore of Sumatra, Indonesia

    Science.gov (United States)

    Haridhi, H. A.; Klingelhoefer, F.; Huang, B. S.; Lee, C. S.

    2015-12-01

    Large subduction earthquake have repeatedly occurred along the Sumatra and Andaman subduction zones where the Indo-Australia plate is subducting beneath the Eurasian plate. We have analyzed earthquake data from local seismic network along the Sumatra region that provided by the Meteorology Climatology Geophysical Agencies of Indonesia (MCGAI), giving a reliable P-wave velocity model by using joint inversion of picked P-wave travel time using VELEST and a re-scanned single channel seismic reflection of Sumatra cruise I and II. As much as 1,503 events are being analyzed, that is from two years and three months of data recording (2009/04 - 2011/07). The VELEST and DD technique are used to relocate all events by forcing the obtained velocity model. It is found that the surface deformation and earthquake cluster are strongly influenced by the impact of an N - S subparalel fracture zone along the Indo-Australia plate. This also explains the seismic gaps along the Sumatra and Andaman subduction zones. So far, the intriguing seismogenic behaviour and forearc structure are not well explained by the existing models. Therefore, the planned IODP Expedition 362 is trying to ground truth the scientific questions. The aftershock earthquake data are huge, but they will provide a gateway to help the understanding of this shallow megathrust slip and reduce its devastated harzards.

  5. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  6. A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

    International Nuclear Information System (INIS)

    Santos, Sergio; Guang Li; Souier, Tewfik; Gadelrab, Karim; Chiesa, Matteo; Thomson, Neil H.

    2012-01-01

    We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

  7. Active damping of multiferroic composite plates using 1-3 piezoelectric composites

    Science.gov (United States)

    Kattimani, S. C.

    2017-12-01

    A layer-wise shear deformation theory is used to analyze the smart damping of multiferroic composite or magneto-electro-elastic (MEE) plates. The intent of this analysis is to investigate the need for incorporating additional smart elements for controlling the vibrations of multiferroic composite plates. Active constrained layer damping (ACLD) treatment has been incorporated to alleviate the vibration of MEE plate. A layer of viscoelastic material is used as constrained layer for the ACLD treatment. The coupled constitutive equations of multiferroic (ferroelectric and ferromagnetic) composite materials along with the total potential energy principle are used to derive the finite element formulation for the overall multiferroic or MEE plate. Maxwell’s electrostatic and electromagnetic relations are used to compute the electric and magnetic potential distribution. Influence of obliquely reinforced piezoelectric fibers in the piezoelectric layer of the ACLD treatment has also been investigated. In order to investigate the importance of using ACLD treatment for an active damping of multiferroic or MEE plate, an active control of MEE plate has also been analyzed by providing the control voltage directly to the piezoelectric layers of the MEE substrate plate without using the ACLD treatment. The present study suggests that for an optimal control of MEE plates, the smartness element such as the ACLD treatment is essentially required.

  8. Plate-type metamaterials for extremely broadband low-frequency sound insulation

    Science.gov (United States)

    Wang, Xiaopeng; Guo, Xinwei; Chen, Tianning; Yao, Ge

    2018-01-01

    A novel plate-type acoustic metamaterial with a high sound transmission loss (STL) in the low-frequency range ( ≤1000 Hz) is designed, theoretically proven and then experimentally verified. The thin plates with large modulus used in this paper mean that we do not need to apply tension to the plates, which is more applicable to practical engineering, the achievement of noise reduction is better and the installation of plates is more user-friendly than that of the membranes. The effects of different structural parameters of the plates on the sound-proofed performance at low-frequencies were also investigated by experiment and finite element method (FEM). The results showed that the STL can be modulated effectively and predictably using vibration theory by changing the structural parameters, such as the radius and thickness of the plate. Furthermore, using unit cells of different geometric sizes which are responsible for different frequency regions, the stacked panels with thickness ≤16 mm and weight ≤5 kg/m2 showed high STL below 2000 Hz. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  9. Simplified design of flexible expansion anchored plates for nuclear structures

    International Nuclear Information System (INIS)

    Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)

    1984-01-01

    In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions

  10. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    International Nuclear Information System (INIS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-01-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration

  11. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  12. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  13. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  14. Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet

    International Nuclear Information System (INIS)

    Ahn, Dae Hwan; Kim, Dong Sik

    2009-01-01

    Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number

  15. Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1980-01-01

    Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)

  16. Development of Optimum Manufacturing Technologies of Radial Plates for the ITER Toroidal Field Coils

    International Nuclear Information System (INIS)

    Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Kakui, H.; Yamaoka, H.; Maruyama, N.

    2006-01-01

    A stainless steel structure called a radial plate is used in the toroidal field (TF) coils of the International Thermonuclear Experimental Reactor (ITER) in order to support large electromagnetic force generated in the conductors. It is a 13.7 m x 8.7 m D-shaped plate having 11 grooves on each side in which conductors are wound. Although severe dimensional accuracy, for example flatness within 2 mm, and tight schedule that all radial plates for 9 TF coils (63 plates) have to be manufactured in about 4 years are required in manufacture of the radial plates, there are no industries in the world who have manufactured a large complicated structure like the radial plate with high accuracy. Japan Atomic Energy Agency (JAEA) has been studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates in order to satisfy the above requirements in collaboration with the Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). Several trial manufactures of radial plates have been performed to clarify the following key points: · Effect of nitrogen content in material on machinability · Effect of cutting direction of a piece on deformation caused by machining · Effect of machining shape (curve or straight) on machining condition · Effect of laser welding technique on penetration and welding deformation Three different 316LN materials having nitrogen content of 0.12 %, 0.17%, and 0.20% were used to investigate nitrogen content effect on machinability. Machinability of lower nitrogen content material was slightly better than that of higher nitrogen content material. Three sectoral pieces were cut by plasma cutting technique from a hot rolled plate without any difficulties and one of them was machined to a curved segment of the radial plate having the same size as actual one. However, unacceptable large deformation over 5 mm flatness was found during machining which would be caused by curved shape of grooves and/or cutting direction

  17. Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force

    Directory of Open Access Journals (Sweden)

    Murakami Chisato

    2012-11-01

    Full Text Available Abstract Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10 and 20 mm×20 mm×5 mm (20 were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10 and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20 in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz when displacements corresponding to four degrees of freedom (DOF forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only. Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10. The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10 and 16.4% (20, respectively. The standard normal forces were approximately 1.5 (10 and 9.4 N (20 when pressure displacements were 3 (10 and 2 mm (20, respectively. The estimated normal forces were approximately 1.5 (10 and 8.6 N (10 in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had

  18. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  19. Vibration and Acoustic Response of Rectangular Sandwich Plate under Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available In this paper, we focus on the vibration and acoustic response of a rectangular sandwich plate which is subjected to a concentrated harmonic force under thermal environment. The critical buckling temperature is obtained to decide the thermal load. The natural frequencies and modes as well as dynamic responses are acquired by using the analytical formulations based on equivalent non-classical theory, in which the effects of shear deformation and rotational inertia are taken into account. The rise of thermal load decreases the natural frequencies and moves response peaks to the low-frequency range. The specific features of sandwich plates with different formations are discussed subsequently. As the thickness ratio of facing to core increases, the natural frequencies are enlarged, and the response peaks float to the high-frequency region. Raising the Young's modulus of the core can cause the similar trends. The accuracy of the theoretical method is verified by comparing its results with those computed by the FEM/BEM.

  20. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel, E-mail: haded.ikbel@yahoo.fr; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-05-15

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  1. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    International Nuclear Information System (INIS)

    Haddadi, Ikbel; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  2. Plate Waste in School Lunch Programs in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-12-01

    Full Text Available School plate waste is of particular concern worldwide due to its adverse impacts not only on resource use and the environment, but also on students’ health, physical maturation, and academic achievement in the long term. Previous studies on school plate waste have all been conducted in industrialized countries, and more studies are badly needed in developing countries. In this paper, we report a pilot study on the patterns and causes of plate waste in school lunch programs in Beijing, China, by a combination of physical weighing, questionnaire survey, and semi-structured interview approaches. Our results show that the average amount of food waste generated by school students in Beijing in 2014 was 130 g/cap/meal, accounting for 21% of total food served. Staple food (43% and vegetables (42% were the dominant proportions. Buffet meals resulted in less plate waste than packed meals and set meals. Food supply patterns, the quality of canteen service, and the dietary habit and students’ knowledge of food production were the main influencing factors behind plate waste. To our best knowledge, our pilot study provides a first understanding of the overlooked plate waste in school lunch programs in China, and a good basis for further analysis in this field, and will be helpful in informing policy-making in relevant nutrition and education programs in schools in China.

  3. Crustal Structure of the Tengchong Intra-plate Volcanic Area

    Science.gov (United States)

    Qian, Rongyi; Tong, Vincent C. H.

    2015-09-01

    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  4. Corrosion resistance of zinc-nickel plated U-O.75 Ti

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1979-09-01

    As part of a program for the US Army directed at improving the corrosion performance of U-0.75 Ti, specimens were coated with Zn-10 Ni alloy electroplate and then subjected to various corrosion tests. This work revealed that the Zn-Ni coatings provided good protection for U-0.75 Ti in salt fog and in non-sealed moist-nitrogen systems. In sealed, moist-nitrogen environments the Zn-Ni coatings deteriorated quickly and provided no protection. Some plating with Zn alone, using some of the new non-cyanide plating solutions, was also attempted, but the results were inconsistent

  5. The scintigraphic diagnosis and follow-up of injuries to the epiphyseal plates

    International Nuclear Information System (INIS)

    Walter, E.; Feine, U.; Anger, K.; Schweizer, P.; Neugebauer, W.; Tuebingen Univ.; Tuebingen Univ.

    1980-01-01

    Injuries to the epiphysel plates without involvement of the epiphyses or metaphyses, such as crush fractures or pure epiphysiolysis may be difficult to diagnose radiologically. Thirteen bone scans after damage to the growth plate have been performed on eight children. These indicate that these scans are able to diagnose lesions of the epiphyseal plates at an early stage and with certainty. The scintigrams also provide information concerning the healing process of the plate; they indicate when healing has been completed and when the extremity can be used for weight-bearing again. Radiation exposure of the children during scintigraphy with sub(99m)Tc-polyphosphate is within acceptable limits. (orig.) [de

  6. Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.

    2018-04-01

    The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.

  7. Comparison of skeletal stability after sagittal split ramus osteotomy among mono-cortical plate fixation, bi-cortical plate fixation, and hybrid fixation using absorbable plates and screws.

    Science.gov (United States)

    Ueki, Koichiro; Moroi, Akinori; Yoshizawa, Kunio; Hotta, Asami; Tsutsui, Takamitsu; Fukaya, Kenichi; Hiraide, Ryota; Takayama, Akihiro; Tsunoda, Tatsuta; Saito, Yuki

    2017-02-01

    The purpose of this study was to examine skeletal stability and plate breakage after sagittal split ramus osteotomy (SSRO) with the mono-cortical plate fixation, bi-cortical plate fixation, and hybrid fixation techniques using absorbable plates and screws. A total of 76 Japanese patients diagnosed with mandibular prognathism with and without maxillary deformity were divided into 3 groups randomly. A total of 28 patients underwent SSRO with mono-cortical plate fixation, 23 underwent SSRO with bi-cortical plate fixation, and 25 underwent SSRO with hybrid fixation. Skeletal stability and horizontal condylar angle were analyzed by axial, frontal, and lateral cephalograms from before the operation to 1 year postoperatively. Breakage of the plate and screws was observed by 3-dimensional computed tomography (3DCT) immediately after surgery and after 1 year. Although there was a significant difference between the mono-cortical plate fixation group and hybrid fixation group regarding right MeAg in T1 (P = 0.0488) and occlusal plane in T1 (P = 0.0346), there were no significant differences between the groups for the other measurements in each time interval. In 2 cases, namely, 6 sides in the mono-cortical plate fixation group, breakage of the absorbable plate was found by 3DCT. However, there was no breakage in the bi-cortical plate fixation group and hybrid fixation group. This study results suggested that there were no significant differences in the postoperative skeletal stability among the 3 groups, and bi-cortical fixation as well as hybrid fixation was a reliable and useful method to prevent plate breakage even if an absorbable material was used. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Influence of the wavelet order on proper damage location in plate structures

    Science.gov (United States)

    Pawlak, Zdzisław; Knitter-Piątkowska, Anna

    2018-01-01

    The rectangular thin plates were analyzed in the paper. The static response in plate structure subjected to the uniform load was derived by applying the finite element method. In the dynamic, experimental tests the accelerations were obtained with the use of modal hammer and DEWEsoft® software. Next, the analysis of the signal was carried out with the use of Discrete Wavelet Transform (DWT), provided that damage exists in the considered plate structure. It was assumed, that in the middle of the structure a certain area of the plate is thinner or there is a crack across the entire plate thickness. The aim of this work was to choose the appropriate wavelet order to reveal the localization of defect. The results of selected numerical example proved the efficiency of proposed approach.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... ready, you can try new foods within each food category. Try these seven steps to get started: Using your dinner plate, put a line down the middle of the plate. Then on one side, cut it ... and starchy foods. See this list of grains and starchy foods . ...

  10. Flow induced deformation and collapse of a thin rectangular plate with application to the Engineering Test Reactor nuclear fuel elements

    International Nuclear Information System (INIS)

    Davis, C.D.

    1981-01-01

    This work examines a single flat fuel plate bounded by two channels and determines static plate deflections, resultant forces and bending stresses due to pressure differential and hydrodynamic loadings. The classical then reactangular plate equations are used to model the fuel plate. These equations contain as an input the hydrodynamic loading function for modeling the fluid-structural interaction. Two models of the channel flow are developed. One assumes the accelerating potential core flow is laminar with developing two-dimensional laminar boundary layers being formed on the channel walls. The Schlichting entry length solution for developing laminar flow is found to be valid the entire length of the channel. The second model assumes the core flow is fully-developed turbulent the entire length of the channel. Hydrodynamic loading functions are developed for both flow models containing parameters for fluid density, fluid velocity, Reynolds number and channel and plate dimensions. Hence the effects of each parameter can be examined independently. A criterion is developed for predicting ETR fuel plate collapse at high channel flow velocities, 1067 cm/s (420 in/sec) (R/sub e/ = 60,000). The criterion predicts that in order to prevent ETR plate collapse the inlet velocities between channels must not differ by more than 2%

  11. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  12. Application of a Brittle Damage Model to Normal Plate-on-Plate Impact

    National Research Council Canada - National Science Library

    Raftenberg, Martin N

    2005-01-01

    A brittle damage model presented by Grinfeld and Wright of the U.S. Army Research Laboratory was implemented in the LS-DYNA finite element code and applied to the simulation of normal plate-on-plate impact...

  13. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  14. Extended plate and beam demonstration home

    Science.gov (United States)

    Patricia Gunderson; Vladimir Kochkin; Xiping Wang

    2018-01-01

    An extended plate and beam (EP&B) design was developed at Home Innovation Research Labs (Upper Marlboro, Maryland) in an effort to provide traditional light-frame wall construction details that are compatible with continuous insulating sheathing. This would encourage wide-spread adoption of high-R walls and promote greater energy efficiency in new houses. The...

  15. Evaluation of Using Triangular Plates as Continuity Plates in Box Column Section in Prequalified Welded Connections under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Kafi

    2017-02-01

    Full Text Available Welding of Continuity plates in box columns are not easily possible, therefore some researches has been done for substitution of external continuity plates.In this study first discussed about effects of continuity plate in I beam to Box column with top and bottom plate (WFP and welded unreinforced flange-welded web connection (WUF-W and reduced beam section connection (RBS. Then, triangular plates use to in connection beam to box column as continuity plates and to consider under cyclic loading. Studies have shown that existence of continuity plates in connections mentioned above have averagely increased loading capacity, rigidity and energy absorption 63, 86 and 75 percent respectively. The results also showed that using of triangular plates as continuity plates of box columns causing plastic strain in column flange in the area that concentration of materials is not much in triangular plates and increased the probability of failure in weld of plates to the column flange. Also using of triangular plates as continuity plates have not affected on plastic hinge location.

  16. Fundamental processes in ion plating

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  17. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  18. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  19. Parametric Studies of Flat Plate Trajectories Using VIC and Penalization

    Directory of Open Access Journals (Sweden)

    François Morency

    2018-01-01

    Full Text Available Flying debris is generated in several situations: when a roof is exposed to a storm, when ice accretes on rotating wind turbines, or during inflight aircraft deicing. Four dimensionless parameters play a role in the motion of flying debris. The goal of the present paper is to investigate the relative importance of four dimensionless parameters: the Reynolds number, the Froude number, the Tachikawa number, and the mass moment of inertia parameters. Flying debris trajectories are computed with a fluid-solid interaction model formulated for an incompressible 2D laminar flow. The rigid moving solid effects are modelled in the Navier-Stokes equations using penalization. A VIC scheme is used to solve the flow equations. The aerodynamic forces and moments are used to compute the acceleration and the velocity of the solid. A database of 64 trajectories is built using a two-level full factorial design for the four factors. The dispersion of the plate position at a given horizontal position decreases with the Froude number. Moreover, the Tachikawa number has a significant effect on the median plate position.

  20. Mandibular reconstruction using a titanium plate: the impact of radiation therapy on plate preservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Janice K; Stern, Robin L; Robinson, Marilyn G; Bowers, Michael K; Kubo, Hideo D; Donald, Paul J; Rosenthal, Seth A; Fu, Karen K

    1995-06-15

    Purpose: To evaluate the soft tissue and bone tolerance of radiation therapy (RT) in patients undergoing radical composite resection and mandibular reconstruction using a bridging titanium plate with myocutaneous flap closure. Methods and Materials: From 1990 to 1994, 47 patients with primary or recurrent oral cavity or oropharyngeal carcinomas were treated with radical composite resection and mandibular reconstruction using a bridging titanium plate with myocutaneous flap closure. Eleven patients received no RT (no RT), 10 patients received RT greater than 10 months from the time of surgery (remote RT), and 26 patients received RT within 12 weeks of surgery (perioperative RT). The radiation dose to the reconstructed mandible ranged from 45 to 75 Gy (median 63 Gy). The effect of the titanium plate on the radiation dose was measured using film dosimetry and soft tissue and bone-equivalent materials. The median follow-up was 17 months (range: 3-50 months). Results: Late complications included four patients with osteomyelitis or necrosis, two plate exposures requiring flap revision, one chronic infection, two cases of chronic pain, two fistulae, and one case of trismus and malocclusion. The crude incidence of late complications by treatment was: (a) no RT: 3 of 11 patients (27%); (b) remote RT: 2 of 10 patients (20%); and (c) perioperative RT: 9 of 26 patients (35%). One patient in the no-RT group lost the plate due to chronic pain. Five patients in the perioperative RT group also had plate loss, four due to osteomyelitis and/or necrosis, and one due to pain related to a recurrent tumor. No patients in the remote RT group had plate loss. The actuarial prosthesis preservation rate at 2 years was 88% for the no RT, 100% for the remote RT, and 57% for the perioperative RT groups (p = 0.05). Phantom dose measurements showed that for parallel opposed 6 MV photon beams, there was no significant increase in the dose proximal or distal to the plate in either a soft tissue- or