WorldWideScience

Sample records for plate convergence zone

  1. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    Science.gov (United States)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  2. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua

    2017-09-01

    Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge

  3. Generalized Fibonacci zone plates

    CERN Document Server

    Ke, Jie; Zhu, Jianqiang

    2015-01-01

    We propose a family of zone plates which are produced by the generalized Fibonacci sequences and their axial focusing properties are analyzed in detail. Compared with traditional Fresnel zone plates, the generalized Fibonacci zone plates present two axial foci with equal intensity. Besides, we propose an approach to adjust the axial locations of the two foci by means of different optical path difference, and further give the deterministic ratio of the two focal distances which attributes to their own generalized Fibonacci sequences. The generalized Fibonacci zone plates may allow for new applications in micro and nanophotonics.

  4. Modelling of temperatures in continental convergence zones

    Energy Technology Data Exchange (ETDEWEB)

    Toksoz, M.N.; Bird, P.

    1977-08-03

    The thermal histories of continent-continent convergence zones are modelled by a finite-difference technique in an attempt to explain geologic observations of heating and melting in such zones. The suture zone between two converging continents divides a passively heated overriding plate from a quiet continental margin which is suddenly deformed in the collision. Both regions may be metamorphosed and intruded. On the continental-shelf side where mountains are formed by underthrusting within the crust, it was found that adiabatic and radioactive heating are negligible during the orogeny. Shear-strain heating may raise the fault zones to about 500/sup 0/C. At higher temperatures, dislocation creep of crustal rocks would be expected from laboratory results. Even high crustal radioactivity will not produce melting in less than 40 m.y. Thus any plutons in this zone (the granites of the Zagros, Urals, and Himalayas) probably result indirectly by melting of crust that is heated by deep asthenospheric intrusions, which may reach the crust at the time of detachment of the oceanic slab, combined with the effects of friction and water along the subduction plane. Across the suture, the thermal history begins before the collision during the oceanic subduction phase. The sinking slab creates asthenospheric circulations, which warm the passive plate from below and intrude it in an Andean-type arc along the suture (Zagros and Himalayan region). If total subduction exceeds about 3000 km the slow warming has time to weaken the plate and extensive crustal shortening may follow the collision. Crustal shortening and thickening is accompanied by differentiation and volcanism (Tibetan and Grenville orogenies). Thermal modelling of Tibet shows that volcanism cannot be produced in the available time by crustal thickening alone, but requires the initial warming phase as well.

  5. Thermal and mechanical modelling of convergent plate margins

    NARCIS (Netherlands)

    van den Beukel, P.J.

    1990-01-01

    In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate

  6. Thermal and mechanical modelling of convergent plate margins

    NARCIS (Netherlands)

    van den Beukel, P.J.

    1990-01-01

    In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate mar

  7. Thermal and mechanical modelling of convergent plate margins

    NARCIS (Netherlands)

    Beukel, P.J. van den

    1990-01-01

    In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate mar

  8. Evolution of the Mariana Convergent Plate Margin System

    Science.gov (United States)

    Fryer, Patricia

    1996-02-01

    The Mariana convergent plate margin system of the western Pacific provides opportunities for studying the tectonic and geochemical processes of intraoceanic plate subduction without the added complexities of continental geology. The system's relative geologic simplicity and the well-exposed sections of lithosphere in each of its tectonic provinces permit in situ examination of processes critical to understanding subduction tectonics. Its general history provides analogs to ancient convergent margin terranes exposed on land and helps to explain the chemical mass balance in convergent plate margins. The Mariana convergent margin's long history of sequential formation of volcanic arcs and extensional back arc basins has created a series of volcanic arcs at the eastern edge of the Philippine Sea plate. The trenchward edge of the overriding plate has a relatively sparse sediment cover. Rocks outcropping on the trench's inner slope are typical of the early formed suprasubduction zone's lithosphere and have been subjected to various processes related to its tectonic history. Pervasive forearc faulting has exposed crust and upper mantle lithosphere. Many large serpentinized peridotite seamounts are within 100 km of the trench axis. From these we can learn the history of regional metamorphism and observe and sample active venting of slab fluids. Ocean drilling recovered suprasubduction zone lava sequences erupted since the Eocene that suggest that the forearc region remains volcanologically dynamic. Seismic studies and seafloor mapping show evidence of deformation throughout forearc evolution. Large portions of uplifted southern forearc are exposed at the larger islands. Active volcanoes at the base of the eastern boundary fault of the Mariana Trough vary in size and composition along strike and record regional differences in source composition. Their locations along strike of the arc are controlled in part by cross-arc structures that also facilitate formation of submarine

  9. Wood zone plate fishnet metalens

    Directory of Open Access Journals (Sweden)

    Orazbayev Bakhtiyar

    2015-01-01

    Full Text Available Fresnel-zone plate lenses provide focusing performance while having low profile. Unfortunately, they usually display higher reflection losses than conventional dielectric lenses. Here, we demonstrate a low-profile Wood zone plate metalens based on the fishnet metamaterial working in a near-zero regime with an equivalent refractive index less than unity (nf = 0.51. The metalens is made of alternating dielectric and fishnet metamaterial concentric rings. The use of fishnet metamaterial allows reducing the reflections from the lens, while maintaining low profile, low cost and ease of manufacturing. The lens is designed to work at the W-band of the millimeter-waves range with a focal length FL = 22.8 mm (7.5 λ0 aiming at antenna or radar system applications. The focusing performance of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2.5 dB with respect to a fishnet Soret metalens.

  10. Relations between plate kinematics, slab geometry and overriding plate deformation in subduction zones: insights from statistical observations and laboratory modelling

    Science.gov (United States)

    Heuret, A.; Funiciello, F.; Faccenna, C.; Lallemand, S.

    2005-12-01

    3-D laboratory models have been performed in order to investigate the way plates kinematics (subducting and overriding plate absolute motions and the resulting plate convergence rate) influences the geometry of the slab and the overriding plate deformation in subduction zones. In the experiments a viscous plate of silicone (subducting plate) is pushed beneath another plate, which is itself pushed toward or pulled away from the trench (overriding plate), and sinks into a viscous layer of glucose syrup (upper mantle). The subducting and overriding plate velocities explored the variability field of natural subduction plates kinematics. The overriding plate motion exerts a primary role in the control of slab geometries and overriding plate deformation rates. The experiments have revealed two different subduction behaviours: (Style I) the overriding plate moves toward the trench and shortens at high rates, the slab is flat and deflected when reaching the bottom of the box in a forward direction; (Style II) the overriding plates moves away from the trench and shortens at low rates the slab is steep and deflected on the box bottom in a backward direction. To a lesser extent, increasing subducting plate motion is associated to increasing slab dips and overriding plate shortening. Slab geometry and overriding plate deformation are less sensitive to the overall plate convergence rate. These laboratory models behaviours are consistent with statistical analysis performed on natural subduction zones, and enlighten the first order control exerted by the overriding plate absolute motion, on the geometry adopted by the slab and the way the overriding plate deforms.

  11. A network convergence zone in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Bratislav Mišić

    2014-12-01

    Full Text Available The hippocampal formation is a key structure for memory function in the brain. The functional anatomy of the brain suggests that the hippocampus may be a convergence zone, as it receives polysensory input from distributed association areas throughout the neocortex. However, recent quantitative graph-theoretic analyses of the static large-scale connectome have failed to demonstrate the centrality of the hippocampus; in the context of the whole brain, the hippocampus is not among the most connected or reachable nodes. Here we show that when communication dynamics are taken into account, the hippocampus is a key hub in the connectome. Using a novel computational model, we demonstrate that large-scale brain network topology is organized to funnel and concentrate information flow in the hippocampus, supporting the long-standing hypothesis that this region acts as a critical convergence zone. Our results indicate that the functional capacity of the hippocampus is shaped by its embedding in the large-scale connectome.

  12. Fractal zone plates with variable lacunarity.

    Science.gov (United States)

    Monsoriu, Juan; Saavedra, Genaro; Furlan, Walter

    2004-09-06

    Fractal zone plates (FZPs), i.e., zone plates with fractal structure, have been recently introduced in optics. These zone plates are distinguished by the fractal focusing structure they provide along the optical axis. In this paper we study the effects on this axial response of an important descriptor of fractals: the lacunarity. It is shown that this parameter drastically affects the profile of the irradiance response along the optical axis. In spite of this fact, the axial behavior always has the self-similarity characteristics of the FZP itself.

  13. White Light Photorefractive Phase Zone Plates

    Institute of Scientific and Technical Information of China (English)

    GAO Yuan-Mei; LIU Si-Min

    2008-01-01

    Incoherent white light from an incandescent source is employed to Fabricate volume phase zone plates in LiNbO3:Fe,for the first time to our knowledge,which can guide and modulate the input white light or laser light.The diffractive efficiency of the white light volume phase zone plates fabricated can reach as high as 12%.In addition,we test the volume phase zone plates by a probe beam and find that the volume phase zone plate is present in the direction perpendicular to the c-axis and absent in the direction parallel to the c-axis.This directly proves the existence of photovoltalc photorefractive anisotropy of white light.

  14. Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin

    Science.gov (United States)

    Regalla, Christine; Fisher, Donald M.; Kirby, Eric; Furlong, Kevin P.

    2013-12-01

    Tectonic erosion along convergent plate boundaries, whereby removal of upper plate material along the subduction zone interface drives kilometer-scale outer forearc subsidence, has been purported to explain the evolution of nearly half the world's subduction margins, including part of the history of northeast Japan. Here, we evaluate the role of plate boundary dynamics in driving forearc subsidence in northeastern Japan. A synthesis of newly updated analyses of outer forearc subsidence, the timing and kinematics of upper plate deformation, and the history of plate convergence along the Japan trench demonstrate that the onset of rapid fore-arc tectonic subsidence is contemporaneous with upper plate extension during the opening of the Sea of Japan and with an acceleration in convergence rate at the trench. In Plio-Quaternary time, relative uplift of the outer forearc is contemporaneous with contraction across the arc and a decrease in plate convergence rate. The coincidence of these changes across the forearc, arc, backarc system appears to require an explanation at the scale of the entire plate boundary. Similar observations along other western Pacific margins suggest that correlations between forearc subsidence and major changes in plate kinematics are the rule, rather than the exception. We suggest that a significant component of forearc subsidence at the northeast Japan margin is not the consequence of basal tectonic erosion, but instead reflects dynamic changes in plate boundary geometry driven by temporal variations in plate kinematics. If correct, this model requires a reconsideration of the mass balance and crustal recycling of continental crust at nonaccretionary margins.

  15. A Novel Offset Fresnel Zone Plate Antenna

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel offset Fresnel Zone Plate reflector Antenna (FZPA) is proposed, the phase correcting zone of this FZPA is elliptic. Based on Physical Optics Method, the focusing characteristics of the reflector are analyzed. The comparison of this new FZPA with the circular FZPA and Mawzones FZPA is made.

  16. Vadose zone flow convergence test suite

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-05

    Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustrate these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.

  17. Strain Partitioning and the Geometry of Oblique Plate Convergence

    Science.gov (United States)

    Guzman-Speziale, M.

    2004-05-01

    Strain partitioning occurs at convergent margins where oblique subduction takes place, a fact that has been known for a number of years. The geometry of plate subduction controls strain-partitioning mode in the forearc region. Deformation in the forearc depends on the direction of relative plate convergence, earthquake slip vectors, and trench-normal direction. Two basic angles are derived from these vectors: obliquity of plate convergence, the angle of plate motion direction and trench normal, and slip partitioning which is the angle between the earthquake slip vector and trench normal. Traditionally, oblique convergence models consider the trench (convergent margin) a straight line on a flat Earth. This is correct for small-scale (in the order of a few kilometers) models. However, earthquakes along convergent margins often have fault lengths of tens and even hundreds (for magnitude 7 or greater) of kilometers. On the other hand, the direction normal to the trench is usually calculated averaging contiguous points along the deepest part of the digitized bathymetry, yielding the local trend of the trench. The direction normal to the trench thus calculated varies greatly along a specific trench. In this work we propose an alternate treatment of the geometry of the trench. On a spherical Earth, trench segments form arcs of small circles. Usually, a trench of interest will contain a few (three-five) such segments, which can be fitted (in a least-squares sense) with small circles with a known center of curvature (or pole) on the surface of the Earth. Also known are the initial and final points. Instead of the standard direction normal to the trench, we use the average azimuth from the segment of small circle to its corresponding pole. We use this direction instead of trench normal and calculate obliquity of plate convergence. We test our model along the western Sunda arc, from the eastern Himalayan sintaxis to Sumatra. Five contiguos small circles were fitted to the

  18. Strong plate coupling along the Nazca-South America convergent margin

    Science.gov (United States)

    Iaffaldano, Giampiero; Bunge, Hans-Peter

    2008-06-01

    The force balance in plate tectonics is fundamentally importantbut poorly known. Here, we show that two prominent and seeminglyunrelated observations—trench-parallel gravity anomaliesalong the Nazca-South America margin that coincide withthe rupture zones of great earthquakes, and a rapid slowdownof Nazca-South America convergence over the past 10 m.y.—providekey insights. Both result from rapid Miocene-Pliocene upliftof the Andes and provide quantitative measures of the magnitudeand distribution of plate coupling along the Nazca-SouthAmerica margin. We compute the plate-tectonic force budget usingglobal models of the faulted lithosphere coupled to high-resolutionmantle circulation models and find that Andean-related plate-marginforces are comparable to plate-driving forces from the mantle,and they have sufficient magnitude to account for pronouncedbathymetry variations along the trench. Our results suggestthat plate coupling, gravity anomalies, and bathymetry variationsalong a given trench are all controlled by long-term stressvariations in the upper portion of plate boundaries and thatan explicit budget of driving and resisting forces in platetectonics can be obtained. For the convergent margin consideredhere, spatial variations in the effective coefficient of frictionassociated with the distribution of lubricating sediments enteringthe trench are, by comparison, of minor importance.

  19. Improved Zone Plate Coded Imaging Technique by Using Four Special Designed Gabor Zone Plates

    Institute of Scientific and Technical Information of China (English)

    CAO Lei-Feng; SHEN Yu-Ji; ZHENG Zhi-Jian; DING Yong-Kun

    2005-01-01

    @@ Direct-current component, high-order artifacts, and side lobe distortion provide serious drawbacks in the application of Fresnel zone plate coded imaging (ZPCI).The presentation provided here proposes a novel way to resolve all the above-mentioned problems.Four different Gabor zone plates are suggested to substitute the one Fresnel zone plate used in the conventional ZPCI.Perfect reconstruction will be obtained when integrally analysing the four coded images.Primary numerical simulation provided here shows good result.

  20. The role of near-trench extension at convergent plate boundaries

    Science.gov (United States)

    Vannucchi, P.

    2009-04-01

    Knowledge of how convergent plate boundary coupling in the seismogenic zone controls the nucleation of subduction zone earthquakes is fundamental to assess seismic risks. Increased data at convergent margins has revealed the complexity of the earthquake cycle through the detection of strain-release processes like episodic tremors and slip events, low frequency earthquakes, afterslip, slip heterogeneity along the fault plane. The processes controlling the earthquake cycle and their interactions are still far from being understood; improved understanding will require better characterization of the fault zone. Here we compare in-situ observations from two major subduction zones drilled by ODP and IODP (Costa Rica Trench and Nankai Trough) with a well-preserved fossil convergent plate boundary zone in the Northern Apennines of Italy. At all three sites, deformation in the region above and at the updip limit of the seismogenic zone is dominated by extension and normal faulting (i.e. maximum principal stress is oriented sub-vertically). Episodes of reverse shearing are also present, but occur with less intensity, alternating with extension. Ocean Drilling Program Legs 170 and 205 offshore Costa Rica provide structural observations of the frontal part of the upper plate and décollement at about 2 km from the trench. Analysis of drilled cores reveals the presence of normal faults cutting the frontal part of the upper plate. Normal faults are also seen from seismic reflection to develop along all the forearc (about 60 km from the trench). The décollement damage zone is a few tens of meters in width; it develops mainly within frontal prism material. A clear cm-thick fault core is observed 1.6 km from the trench. Both the upper plate and the décollement damage zone show the co-existence of two distinct fracturing processes in which extension fracturing is frequent in the upper part of the damage zone farthest from the fault core, while both extension and shear fracturing

  1. Fractal zone plate beam based optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  2. Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2016-04-01

    Key components in the current geodynamic setting of the central Mediterranean are continuous, slow Africa-Eurasia plate convergence (~5 mm/yr) and arc migration. This combination encompasses roll-back, tearing and detachment of slabs, and leads to back-arc opening and orogeny. Since ~30 Ma the Apennnines-Calabrian and Gibraltar subduction zones have shaped the western-central Mediterranean region. Lithospheric tearing near slab edges and the accompanying surface expressions (STEP faults) are key in explaining surface dynamics as observed in geologic, geophysical and geodetic data. In the central Mediterranean, both the narrow Calabrian subduction zone and the Sicily-Tyrrhenian offshore thrust front show convergence, with a transfer (shear) zone connecting the distinct SW edge of the former with the less distinct, eastern limit of the latter (similar, albeit on a smaller scale, to the situation in New Zealand with oppositely verging subduction zones and the Alpine fault as the transfer shear zone). The ~NNW-SSE oriented transfer zone (Aeolian-Sisifo-Tindari(-Ionian) fault system) shows transtensive-to-strike slip motion. Recent seismicity, geological data and GPS vectors in the central Mediterranean indicate that the region can be subdivided into several distinct domains, both on- and offshore, delineated by deformation zones and faults. However, there is discussion about the (relative) importance of some of these faults on the lithospheric scale. We focus on finding the best-fitting assembly of faults for the transfer zone connecting subduction beneath Calabria and convergence north of Sicily in the Sicily-Tyrrhenian offshore thrust front. This includes determining whether the Alfeo-Etna fault, Malta Escarpment and/or Ionian fault, which have all been suggested to represent the STEP fault of the Calabrian subduction zone, are key in describing the observed deformation patterns. We first focus on the present-day. We use geodynamic models to reproduce observed GPS

  3. Geodynamics along an increasingly curved convergent plate margin: Late Miocene-Pleistocene Rhodes, Greece

    Science.gov (United States)

    ten Veen, Johan H.; Kleinspehn, Karen L.

    2002-06-01

    Neogene-Holocene outward migration of the absolute position of the convergent Hellenic plate boundary produced simultaneous increased curvature of the plate boundary, changing obliquity of plate convergence vectors and boundary-parallel stretching of the forearc region. To study the effects of the plate boundary migration and curvature, a tectonostratigraphy is constructed from the middle Miocene-Pleistocene Apolakkia basin on Rhodes, whose easternmost location makes it a key island to assess the inner forearc's kinematic response to expansion of the overriding Aegean-Anatolian block and thus obliquity of convergence with the African plate. The basin fill provides temporal and paleogeographic control to interpret its syndepositional and postdepositional structural assemblages. Five fault populations in the Apolakkia basin record two neotectonic deformation phases separated by a kinematic change at ~4.5 Ma, both of which are consistent with outward expansion of the Aegean-Anatolian block. The Apolakkia basin originated as a late Miocene fault wedge basin in response to syndepositional southwest-northeast D1 extension with similar strain patterns in the adjacent offshore Hellenic inner forearc. The kinematic change at ~4-5 Ma is attributed to a threshold of obliquity whereby the inner forearc started to experience sinistral-oblique divergence. The Plio-Pleistocene D2 transtensional phase reoriented the basin and resulted in combined syndepositional west-northwest-east-southeast extension (283°) and 070° sinistral shear, orientations that are best attributed to simultaneous outward expansion of the Hellenic forearc, increasing curvature of the plate boundary and associated boundary-parallel stretching of the forearc. Principal shear zones offshore also occur consistently at ~070°, mimicking the D2 kinematic history of the Apolakkia basin and suggesting a consistent geodynamic regime throughout the inner eastern Hellenic forearc. Effects of sinistral-oblique plate

  4. Strong plate coupling along the Nazca/South America convergent margin

    Science.gov (United States)

    Iaffaldano, G.; Bunge, H.

    2007-12-01

    The force balance in plate tectonics is fundamentally important, but poorly known. Much information on the dynamics is embedded in the record of past and present plate velocities, featured with long- as well as short- term variations, but a precise budget, in particular of resistive coupling forces along convergent margins, is hard to come by. Building on substantial, yet separate progress in modeling lithosphere dynamics and mantle convection, we couple global lithosphere models with high-resolution (more than 100 million grid points) 3-D circulation models of Earth's mantle and demonstrate that an accurate budget of plate boundary forces can be obtained. We prove the effectiveness of our approach by computing a detailed force budget along the Nazca/South America subduction zone, showing that a large portion of it comes from the recent uplift of the Andes. We find that forces computed with our global, coupled models provide simultaneous explanations for three seemingly unrelated key observations along the South American margin: (1) trench parallel gravity anomalies, (2) pronounced bathymetry variations, as well as (3) a substantial reduction in Nazca/South America plate convergence recorded over the past 10 million years. All these observations can be explained from along- trench, lateral and temporal variations in plate coupling forces that are predicted from our simulations. Interestingly enough, the distribution of great earthquakes such as the recent M 8.0 event of Peru coincides with moderate to low coupling between subducting and overriding plates. For the same convergent margin we also show that frictional forcing due to trench sediment infill is, by comparison, of minor importance. Finally, we provide an intriguing explanation for the peculiar convex shape of the South American margin. Paleomagnetic and geodetic data indicate substantial rotation over the past m.y. and continuing at present day. We tie the bend of the margin to variations in plate coupling

  5. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  6. Energetic Constraints on the Width of the Intertropical Convergence Zone

    OpenAIRE

    2016-01-01

    The intertropical convergence zone (ITCZ) has been the focus of considerable research in recent years, with much of this work concerned with how the latitude of maximum tropical precipitation responds to natural climate variability and to radiative forcing. The width of the ITCZ, however, has received little attention despite its importance for regional climate and for understanding the general circulation of the atmosphere. This paper investigates the ITCZ width in simulations with an ideali...

  7. Understanding the South Pacific Convergence Zone and Its Impacts

    Science.gov (United States)

    Power, Scott

    2011-02-01

    International Workshop on the South Pacific Convergence Zone; Apia, Samoa, 24-26 August 2010 ; During the Southern Hemisphere summer the South Pacific Convergence Zone (SPCZ) in the southwestern Pacific Ocean produces the largest rainfall band in the world. The SPCZ tends to move northeast during southern winter and El Niño and move southwest during southern summer and La Niña. These changes in position have a profound influence on climate (e.g., rainfall, winds, and tropical cyclone frequencies) and life in most of the nations in the southwestern Pacific. Despite the importance of the SPCZ to the region and its prominence in the general circulation of the Southern Hemisphere, the SPCZ has been studied relatively little compared with convergence zones in the Northern Hemisphere. An international workshop on the SPCZ was held in Samoa and brought together 30 experts from Australia, the Cook Islands, Fiji, France, India, New Caledonia, New Zealand, Samoa, the Solomon Islands, Tonga, Tuvalu, the United Kingdom, the United States, and Vanuatu.

  8. Linear optical pulse compression based on temporal zone plates.

    Science.gov (United States)

    Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José

    2013-07-15

    We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.

  9. Spatial evolution of Zagros collision zone in Kurdistan - NW Iran, constraints for Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, S.; Yassaghi, A.

    2015-09-01

    Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj-Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia-Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.

  10. Application of Cosine Zone Plates to Image Encryption

    Institute of Scientific and Technical Information of China (English)

    GE Fan; CHEN Lin-Fei; ZHAO Dao-Mu

    2008-01-01

    @@ We analyse the diffraction result of optical field after Cosine zone plate, and theoretically deduce its transform matrix. Under some conditions, its diffraction distribution is a mixture of fractional Fourier spectra. Then we use Cosine zone plate and its diffraction result to image encryption. Possible optical image encryption and decryption implementations are proposed, and some numerical simulation results are also provided.

  11. Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate

    Institute of Scientific and Technical Information of China (English)

    高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康

    2002-01-01

    FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.

  12. Interplate coupling at oblique subduction zones: influence on upper plate erosion.

    Science.gov (United States)

    Malatesta, Cristina; Gerya, Taras; Crispini, Laura; Federico, Laura; Scambelluri, Marco; Capponi, Giovanni

    2014-05-01

    In active subduction zones, when the converging plates cannot slip freely past each other, "plate coupling" occurs. The moving subducting slab and therefore the coupling/decoupling relationship between plates control both short- and long-term deformation of the upper plate. Short-term deformation is dominantly elastic, occurs at human timescales and can be directly associated with earthquakes. Long-term deformation is cumulative, permanent and prevails at the geological timescale (Hoffman-Rothe et al., 2006, Springer Berlin Heidelberg). Here we used 3D numerical simulations to test oblique subduction zones and to investigate: 1) how long-term deformation and coupling relationship vary along the trench-axis; 2) how this relationship influences erosion and down-drag of upper plate material. Our models are based on thermo-mechanical equations solved with finite differences method and marker-in-cell techniques combined with a multigrid approach (Gerya, 2010, Cambridge Univ. Press). The reference model simulates an intraoceanic subduction close to the continental margin (Malatesta et al., 2013, Nature Communications, 4:2456 DOI:10.1038/ncomms3456). The oceanic crust is layered with a 5-km-thick layer of gabbro overlain by a 3-km-thick layer of basalt. The ocean floor is covered by 1-km-thick sediments. Plates move with a total velocity of 3.15 cm/yr; the oblique convergence is obtained using velocity vectors that form an angle of 45° with the initial starting point of subduction (weak zone in the lithosphere). After initiation of plate convergence, part of sediments on top of the incoming plate enters the subduction zone and is buried; another part is suddenly transferred along strike at shallow depths and along the subducting slab according to the direction of the along-trench velocity component of subduction. The lateral migration of sediment causes the evolution of the trench along its strike from sediment-poor to sediment-rich. As soon as subduction starts, where

  13. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    Science.gov (United States)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  14. Theoretical model of the helium zone plate microscope

    Science.gov (United States)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil

    2017-01-01

    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  15. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    Science.gov (United States)

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.

  16. Subducting an old subduction zone sideways provides insights into what controls plate coupling

    Science.gov (United States)

    Reyners, Martin; Eberhart-Phillips, Donna; Bannister, Stephen

    2017-05-01

    The Hikurangi Plateau has had two episodes of subduction beneath New Zealand - firstly at ca. 100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. As a result of this ninety-degree change in convergence direction, an old subduction zone is now being subducted sideways, and the tectonic history of the subducted plate varies dramatically along the strike of the Hikurangi Margin. Here we identify the location of the underplated Hikurangi Plateau along the shallow part of the Hikurangi Margin, using results from both relocated seismicity and seismic tomography. Next we decipher the tectonic history of the plateau along strike, particularly in terms of the hydration state of the plateau, and the nature of any sedimentary rock units capping the plateau. We then use this information to understand plate coupling at two scales: on the large scale, the southward transition from typical subduction in the North Island to continental collision in the South Island; and at a smaller scale, the strong lateral change from a high deficit in slip rate at the plate interface in the southern North Island to a low deficit in slip rate in the northeastern North Island. We find that the southward transition from subduction to continental collision is controlled by the plateau being more dehydrated to the south, as a result of being more deeply subducted at the Gondwana margin. The southward transition from localized slip at the plate interface to distributed upper plate deformation with no active plate interface occurs in Cook Strait and is relatively sharp. The high deficit in slip rate at the plate interface in the southern North Island is likely due to a relatively smooth plate interface from sedimentary rocks capping the Hikurangi Plateau, an impermeable terrane in the overlying plate, and the hydrated plateau acting in concert to produce an interseismically sealed plate interface. Further northeast

  17. Reorganization of convergent plate boundaries. Geologica Ultraiectina (340)

    NARCIS (Netherlands)

    Baes, M.|info:eu-repo/dai/nl/304824739

    2011-01-01

    It is still unclear where a subduction is initiated and what are the responsible mechanisms involved in subduction initiation process. Understanding of subduction initiation will advance our knowledge of how and when plate tectonics started on Earth. Another issue concerning the subduction process

  18. An objective criterion for determining the South Atlantic Convergence Zone

    Directory of Open Access Journals (Sweden)

    Tercio eAmbrizzi

    2015-04-01

    Full Text Available The South Atlantic Convergence Zone (SACZ is the dominant summertime cloudiness feature of subtropical South America and the western South Atlantic Ocean, having a significant influence on the precipitation regime of southeastern Brazil. This paper proposes an objective criterion based mainly on precipitation, as this variable is easily obtained on general circulation models simulating past, present and future climate. Usually most SACZ studies use emerging long wave radiation as a precipitation proxy. This is enough to describe event position at first, but using precipitation would allow for better quantification, especially for climate studies, where precipitation is indispensable. An assessment was carried out to find out if classical DJF period is ideal for determining the SACZ for the present climate and future scenarios. In general the SACZ event detection criterion showed quite satisfactory results when event dates were previously known. When it was applied to future climate scenario it identified a number of events compatible with the present climate. The SACZ was well defined for both the simulated and observed precipitation data.

  19. Why the South Pacific Convergence Zone is diagonal

    Science.gov (United States)

    van der Wiel, Karin; Matthews, Adrian J.; Joshi, Manoj M.; Stevens, David P.

    2016-03-01

    During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally asymmetric component of the sea surface temperature (SST) distribution. This leads to a strong subtropical anticyclone over the southeast Pacific that, on its western flank, transports warm moist air from the equator into the SPCZ region. This moisture then intensifies (diagonal) bands of convection that are initiated by regions of ascent and reduced static stability ahead of the cyclonic vorticity in Rossby waves that are refracted toward the westerly duct over the equatorial Pacific. The climatological SPCZ is comprised of the superposition of these diagonal bands of convection. When the zonally asymmetric SST component is reduced or removed, the subtropical anticyclone and its associated moisture source is weakened. Despite the presence of Rossby waves, significant moist convection is no longer triggered; the SPCZ disappears. The diagonal SPCZ is robust to large changes (up to ±6 °C) in absolute SST (i.e. where the SST asymmetry is preserved). Extreme cooling (change <-6 °C) results in a weaker and more zonal SPCZ, due to decreasing atmospheric temperature, moisture content and convective available potential energy.

  20. A computational study of gabor zone plate gamma ray holography

    CERN Document Server

    Jackson, C E

    2000-01-01

    Gamma ray zone plate holography is a new technique with applications to Nuclear Medicine. Unlike other tomographic techniques, three-dimensional images can be reconstructed from just one projection. The history of zone plate holography is reviewed, and the differences between this technique and conventional holography are outlined. Sources of error in the recorded hologram are reviewed and methods for the assessment of image quality are given. Three image reconstruction techniques are described and compared. These techniques are convolution, deconvolution and the CLEAN algorithm. Simulated diffraction is the main image reconstruction method which has previously been used to reconstruct images from zone plate holograms. This method is a form of convolution reconstruction. Several variations on this technique are introduced and compared. Matched filtering is also investigated and compared with the simulated diffraction based methods. An approximate Fourier Wiener filter is used to reconstruct the images by deco...

  1. A Fresnel zone plate collimator: potential and aberrations

    Science.gov (United States)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  2. Moessbauer-Fresnel zone plate as nuclear monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, T.M.; Alp, E.E.; Yun, W.B.

    1992-06-01

    Zone plates currently used in x-ray optics derive their focusing power from (a spatial variation of) the electronic refractive index -- that is, from the collective effect of electronic x-ray-scattering amplitudes. Nuclei also scatter x rays, and resonant nuclear-scattering amplitudes, particularly those associated with Moessbauer fluorescence, can dominate the refractive index for x-rays whose energies are very near the nuclear-resonance energy. A zone plate whose Fresnel zones are filled alternately with {sup 57}Fe and {sup 56}Fe ({sup 57}Fe has a nuclear resonance of natural width {Gamma} = 4.8 nano-eV at 14.413 keV; {sup 56}Fe has no such resonance) has a resonant focusing efficiency; it focuses only those x-rays whose energies are within several {Gamma} of resonance. When followed by an absorbing screen with a small pinhole, such a zone plate can function as a synchrotron-radiation monochromator with an energy resolution of a few parts in 10{sup 12}. The energy-dependent focusing efficiency and the resulting time-dependent response of a resonant zone plate are discussed.

  3. Seismogenic Coupling at Convergent Margins - Geophysical Observations from the South American Subduction Zone and the Alpine Rock Record

    Science.gov (United States)

    Oncken, O.

    2008-12-01

    Convergent continental margins are the Earth's principal locus of important earthquake hazards with nearly all interplate megathrust earthquakes (M>8) in the seismogenic coupling zone between the converging plates. Despite the key importance of this zone, the processes that shape it are poorly understood. This is underscored by a number of novel observations attributed to processes in the interface zone that are attracting increasing attention: silent slip events, non-volcanic tremors, afterslip, locked patches embedded in a creeping environment, etc. We here compare the rock record from a field study with recent results from two major geophysical experiments (ANCORP and TIPTEQ) that have imaged the South Chilean subduction zone at the site of the largest historically recorded earthquake (Valdivia, 1969; Mw = 9.5) and the plate boundary in Northern Chile, where a major seismic event is expected in the near future (Iquique segment). The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system. The rock record from the exhumed Early Tertiary seismogenic coupling zone of the European Alps provides indications for the mechanisms and processes responsible for the geophysical images. Fabric formation and metamorphism in a largely preserved subduction channel chiefly record the deformation conditions of the pre-collisional setting along the plate interface. We identify an unstable slip domain from pseudotachylytes occurring in the temperature range between 200-300°C. This zone coincides with a domain of intense veining in the subduction mélange with mineral growth into open cavities, indicating fast, possibly seismic, rupture. Evidence for transient near-lithostatic fluid pressure as well as brittle fractures competing with mylonitic shear

  4. Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case

    Science.gov (United States)

    Oncken, Onno

    2016-04-01

    On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.

  5. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    Science.gov (United States)

    Galgana, G. A.; Hamburger, M. W.; McCaffrey, R.; Bacolcol, T. C.; Aurelio, M. A.

    2007-12-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the Philippine Fault system. We develop a model of active plate boundary deformation in this region, using elastic block models constrained by known fault geometries, published GPS observations and focal mechanism solutions. We then present an estimate of block rotations, fault coupling, and intra-block deformation, based on the best-fit model that minimizes the misfit between observed and predicted geodetic vectors and earthquake slip vectors. Slip rates along the Philippine fault vary from ~22 - 36 mm/yr in the Central Visayas and about 10 to 40 mm/yr in Luzon, trending almost parallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Negros Trench and the Mindoro-Palawan collision zone. On the eastern side of Central Visayas, sinistral strike-slip faulting occurs along the NNW-SSE-trending Philippine Fault. Mindanao Island in southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning (strike- slip faulting with west-verging subduction) in eastern Mindanao along the southern Philippine Fault and Philippine Trench, respectively. Oblique active sinistral strike slip faults in Central and Eastern Mindanao that were hypothesized to be responsible for basin formation are obvious boundaries for tectonic blocks. Located south of Mindanao Island we define an adjoining oceanic block defined by the N-S trending complex dual subduction zone of Sangihe and Halmahera

  6. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  7. Use of fractal zone plates for transmission X-ray microscopy.

    Science.gov (United States)

    Ge, Xin; Wang, Zhili; Gao, Kun; Wang, Dajiang; Wu, Zhao; Chen, Jian; Pan, Zhiyun; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    In this contribution we discuss the possibility of designing a modified transmission X-ray microscope by using fractal zone plates (Fzps) as diffractive optical elements. In the modified transmission X-ray microscope optical layout, we first introduced a fractal zone plate as the microscope objective. Indeed, a fractal zone plate cannot only be used as an image-forming component but also as a condenser element to achieve an extended depth of field. Numerical analysis reveals that fractal zone plates and conventional Fresnel zone plates have similar imaging capabilities under different coherent illumination. Using a fractal zone plate as a condenser we also simulated axial irradiance. Results confirm that fractal zone plates can improve focusing capability with an extended depth of field. Although preliminary, these simulations clearly reveal that fractal zone plates, when available, will be of great help in microscope layouts, in particular for foreseen high-resolution applications in the "water window" as strongly required in biological research.

  8. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge)

    Science.gov (United States)

    Garzanti, Eduardo; Limonta, Mara; Resentini, Alberto; Bandopadhyay, Pinaki C.; Najman, Yani; Andò, Sergio; Vezzoli, Giovanni

    2013-08-01

    Subduction complexes large enough to be exposed subaerially and become significant sources of terrigenous detritus are formed by tectonic accretion above trenches choked with thick sections of remnant-ocean turbidites. They thus need to be connected along strike to a major collision zone, where huge volumes of orogenic detritus are produced and conveyed via a major fluvio-deltaic system to the deep sea. In this article we investigate sediment generation and recycling in the archetype of such settings, the eastern prolongation of the Himalayan collisional system. We illustrate the petrographic and heavy-mineral suites of modern sands produced all along the Indo-Burman-Andaman-Nicobar subduction complex, which includes accreted abyssal-plain sediments overthrust by ophiolites and unconformably overlain by volcaniclastic forearc strata. "Subduction Complex Provenance" is thus composite, and overwhelmingly consists of detritus recycled from largely turbiditic parent rocks (Recycled Clastic Provenance), with local supply from obducted ultramafic and mafic rocks of forearc lithosphere (Ophiolite Provenance) or recycled paleovolcanic to neovolcanic sources (Volcanic Arc Provenance). In order to specifically investigate the effect of recycling, we characterize the diverse detrital signatures of Cenozoic sandstones originally deposited during subsequent stages of "soft" and "hard" Himalayan collision and presently exposed from Bangladesh to the Andaman Islands, and discuss the reasons for compositional discrepancies between parent sandstones and their recycled daughter sands. Long-distance, multistep and multicyclic sediment transfer along and across convergent plate boundaries follows complex trajectories in space and time, which must be resolved whenever we want to obtain a reasonably faithful paleogeographic reconstruction for the recent and less recent geological past.

  9. Optically inscribed surface-relief zone plates in azo polymer films

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Bin Guo; Douguo Zhang; Pei Wang; Hai Ming

    2007-01-01

    We describe a simple and cost-effective holographic method for the fabrication of surface-relief zone plates.The zone plate is inscribed by interference between the first- and second-order diffracted waves from an ionetched Fresnel zone plate. The inscribed surface-relief zone plates are observed by atomic force microscope (AFM). The formation process of the surface grating and the mass diffusion in azo polymer are analyzed.

  10. Effects of growth parameters on silicon molten zone formed by infrared convergent-heating floating zone method

    Science.gov (United States)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2017-02-01

    The effects of rotation rate, filament size, mirror shape, and crystal diameter on the shape of the silicon molten zones prepared using the infrared convergent-heating floating zone method were examined. The crystal rotation rate did not significantly affect the shape of the feed-melt or crystal-melt interfaces, gap between the crystal and feed, zone length, or lamp power required to form the molten zone. More efficient heating was achieved using lamps with smaller filaments and ellipsoidal mirrors with higher eccentricity. The convexity of both the feed and the crystal sides of the molten zone decreased with increasing crystal diameter. However, the required lamp power, gap, and zone length increased with increasing crystal diameter. The stability of the molten zone seemed to reduce with increasing crystal diameter. The minimum melt width divided by the crystal diameter was found to be a good parameter to describe the stability of the molten zone.

  11. Mod-ϕ convergence normality zones and precise deviations

    CERN Document Server

    Féray, Valentin; Nikeghbali, Ashkan

    2016-01-01

    The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-ϕ convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. .

  12. Design and analysis of a folded Fresnel Zone Plate antenna

    Science.gov (United States)

    Ji, Yu; Fujita, Masaharu

    1994-08-01

    Based on the Kirchhoff-Huygens diffraction theory, a simple analytical method of a planar folded Fresnel zone-plate (FZP), that is the case when a planar reflector is placed behind the zone plates, has been developed. According to the numerical calculation results, the design procedure of the FZP antenna has been presented, and its focusing characteristics and gain-optimized conditions have been discussed. The variations of the focal field distribution with the antenna parameters such as zone numbers, focal length and antenna diameter and the radiation power patterns of the FZP have been simulated numerically. To take a good balance of both receiving and transmitting antennas, at 60GHz operating frequency, the focal length should be designed as a half of the antenna diameter and the zone number should be from 10 to 15. The results in this work show that the folded FZP has good focal characteristics and off-axis performance, and its antenna gain can be optimized by the suitable antenna parameter design. The possibility of applying the folded FZP as a low cost and high gain antenna without strict manufacturing requirement for millimeter-wave communications has been shown.

  13. Late Miocene to recent plate tectonic history of the southern Central America convergent margin

    Science.gov (United States)

    Morell, Kristin D.

    2015-10-01

    New plate reconstructions constrain the tectonic evolution of the subducting Cocos and Nazca plates across the southern Central American subduction zone from late Miocene to recent. Because of the strong relationships between lower and upper (Caribbean) plate dynamics along this margin, these constraints have wide-ranging implications for the timing and growth of upper plate deformation and volcanism in southern Central America. The reconstructions outline three important events in the Neogene history of this margin: (1) the coeval development of the Panama Triple Junction with the initiation of oblique subduction of the Nazca plate at ˜8.5 Ma; (2) the initiation of seamount and rough crust subduction beginning at ˜3-4 Ma; and (3) Cocos Ridge subduction from ˜2 to 3 Ma. A comparison of these events with independent geologic, geomorphic, volcanic, and stratigraphic data sets reveals that the timing, rates, and origin of subducting crust directly impacted the Neogene growth of upper plate deformation and volcanism in southern Central America. These analyses constrain the timing, geometry, and causes of a number of significant tectonic and volcanic processes, including rapid Plio-Quaternary arc-fore arc contraction due to Cocos Ridge subduction, the detachment of the Panama microplate at ˜1-3 Ma, and the late Miocene cessation of mantle-wedge-derived volcanism across ˜300 km of the subduction zone.

  14. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-04-01

    The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used. The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle

  15. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  16. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Science.gov (United States)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  17. Hard-X-ray Zone Plates: Recent Progress

    Directory of Open Access Journals (Sweden)

    Syue-Ren Wu

    2012-09-01

    Full Text Available The technology to focus hard-X-rays (photon energy larger than 1–2 keV has made great progress in the past three years. The progress was particularly spectacular for lenses based on the Fresnel zone plate concept. The spatial resolution notably increased by a factor of three, opening up entirely new domains of application, specifically in biomedical research. As we shall see, this evolution is the result of a painstaking optimization of many different aspects rather than of a single technical breakthrough.

  18. Microfabrication of Fresnel zone plates by laser induced solid ablation

    Science.gov (United States)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  19. Local convergence zones or discontinuous lines in the Taklimakan Desert,Northwest China

    Institute of Scientific and Technical Information of China (English)

    Masatoshi; YOSHINO; Takashi; ISHIYAMA; Jun; SUZUKI

    2010-01-01

    In order to study convergence zones or discontinuous lines formed locally in the Taklimakan Desert,we analyzed available MODIS images onboad TERRA or AQUA satellite for ten cases:29 March 2002,14 April 2002;2 January 2003;21 April 2003;26 March 2004;28 April 2004;30 January 2005;25 June 2005;3 December 2005;and 26 July 2006.We used weather maps published by the Japan Mete-orological Agency for the Asia and Pacific region at 500 hPa,700 hPa and 850 hPa,at 00Z and 12Z to analyze the meteorological conditions occurring in each case.We estimated the positions of air streams,convergence zones or discontinuous lines between them,and thermal conditions on the maps and con-firmed the presence of cumulus and cumulonimbus clouds through satellite images in particular.After a review of previous studies,this paper introduced the results of the present study.Closed warm areas in the Taklimakan Desert and on the Tibetan Plateau and local convergence zones or discontinuous lines in the Taklimakan Desert were discussed together with their diurnal changes,using composite maps of the ten cases.Along the long axis of the desert the convergence zones or discontinuous lines normally extend 70-80 km in a west-east direction,but are suspected to exceed 100 km in extreme cases.On the other hand,the convergence zones or discontinuous lines extending in a north-south direction on the southern fringe of the desert have a length of 40-60 km.The closed warm areas show clear diurnal changes,but they were not detected at the 500 hPa level.An example of a clear convergence zone running in a north-south direction on 26 July 2006 was presented in detail with corresponding satellite images.

  20. Thin Fresnel zone plate lenses for focusing underwater sound

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N. [Acoustics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-07-06

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  1. Horizontal subduction zones, convergence velocity and the building of the Andes

    CERN Document Server

    Martinod, Joseph; Roperch, Pierrick; Guillaume, Benjamin; Espurt, Nicolas; 10.1016/j.epsl.2010.09.010

    2010-01-01

    We discuss the relationships between Andean shortening, plate velocities at the trench, and slab geometry beneath South America. Although some correlation exists between the convergence velocity and the westward motion of South America on the one hand, and the shortening of the continental plate on the other hand, plate kinematics neither gives a satisfactory explanation to the Andean segmentation in general, nor explains the development of the Bolivian orocline in Paleogene times. We discuss the Cenozoic history of horizontal slab segments below South America, arguing that they result from the subduction of oceanic plateaus whose effect is to switch the buoyancy of the young subducting plate to positive. We argue that the existence of horizontal slab segments, below the Central Andes during Eocene-Oligocene times, and below Peru and North-Central Chile since Pliocene, resulted (1) in the shortening of the continental plate interiors at a large distance from the trench, (2) in stronger interplate coupling and...

  2. Multilayer Bragg Fresnel zone plate for coherent HHG radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spaeth, Christian; Schmidt, Juergen [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Hofstetter, Michael [Max Planck Institut fuer Quantenoptik, Garching (Germany); Krausz, Ferenc; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Max Planck Institut fuer Quantenoptik, Garching (Germany)

    2010-07-01

    Coherent diffractive imaging in the (soft) X-ray regime is an emerging new lens-less X-ray microscopy technique with the future potential of molecular or even atomic resolution, because it is ultimately limited by the wavelength of the illuminating radiation and not by the imaging quality of the X-ray lens. However, this technique depends on the availability of coherent x-ray sources as well as optics for spectral filtering and focusing. We describe the development fabrication and testing of a reflective multilayer Bragg Fresnel phase zone plate for focusing coherent XUV radiation at 13 nm wavelength from a High Harmonic Generation source. This X-ray optical device serves for spectral filtering as well as sub-micron focusing of the HH spectrum in a single element for largely reduced losses. Large zone plate structures (conventional, spiral) matching the HH beam size are recorded by e-beam lithography in ultrathin HSQ e-beam resist and over-coated with a reflective Mo/Si multilayer by ion beam deposition. By accurately matching the groove depth of the diffractive structure to odd multiples of the quarter Bragg wavelength, the total diffraction efficiency can be improved by a factor of 4 theoretically compared to amplitude structures.

  3. Characterizing CMIP5 model spread in simulated rainfall in the Pacific Intertropical Convergence and South Pacific Convergence Zones

    Science.gov (United States)

    Lintner, Benjamin R.; Langenbrunner, Baird; Neelin, J. David; Anderson, Bruce T.; Niznik, Matthew J.; Li, Gen; Xie, Shang-Ping

    2016-10-01

    Current-generation climate models exhibit various errors or biases in both the spatial distribution and intensity of precipitation relative to observations. In this study, empirical orthogonal function analysis is applied to the space-model index domain of precipitation over the Pacific from Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations to explore systematic spread of simulated precipitation characteristics across the ensemble. Two significant modes of spread, generically termed principal uncertainty patterns (PUPs), are identified in the December-January-February precipitation climatology: the leading PUP is associated with the meridional width of deep convection, while the second is associated with tradeoffs in precipitation intensity along the South Pacific Convergence Zone, the Intertropical Convergence Zone (ITCZ), and the spurious Southern Hemisphere ITCZ. An important factor distinguishing PUPs from the analogy to time series analysis is that the modes can reflect either true systematic intermodel variance patterns or internal variability. In order to establish that the PUPS reflect the former, three complementary tests are performed by using preindustrial control simulations: a bootstrap significance test for reproducibility of the intermodel spatial patterns, a check for robustness over very long climatological averages, and a test on the loadings of these patterns relative to interdecadal sampling. Composite analysis based on these PUPs demonstrates physically plausible relationships to CMIP5 ensemble spread in simulated sea surface temperatures (SSTs), circulation, and moisture. Further analysis of atmosphere-only, prescribed SST simulations demonstrates decreased spread in the spatial distribution of precipitation, while substantial spread in intensity remains.

  4. The Intertropical Convergence Zone over the Middle East and North Africa: Detection and Trends

    KAUST Repository

    Scott, Anna A.

    2013-05-01

    This thesis provides an overview of identifying the Intertropical Convergence Zone (ITCZ) in the Middle East and North Africa (MENA) region. The ITCZ is a zone of wind convergence around the equator that coincides with an area of intense precipitation that is commonly termed a tropical rainbelt. In Africa, these two concepts are frequently confounded. This work studies the correlation between precipitation and commonly used ITCZ indicators. A further attempt is made to detect movement in the African ITCZ, based on earlier paleontological studies showing historical changes in precipitation. Zonally averaged wind convergence is found to be the most reliable indicator of the African ITCZ, one having a low correlation with zonally averaged precipitation. Precipitation is found only to be a reliable indicator for the African ITCZ in zones near the wind convergence, which reaches as far north as 20_N in the summer. No secular change in location of the African ITCZ is found for the time of available data. Finally, historical data shows that any increase in precipitation in the Sahel, a region where precipitation is driven by the ITCZ, is mildly negatively correlated with precipitation in the rainbelt area, suggesting that shifts in the ITCZ result in a widening of the precipitation profile as well as a shift of the entire zone.

  5. Convergence

    DEFF Research Database (Denmark)

    Madsen, Ole Brun; Nielsen, Jens Frederik Dalsgaard; Schiøler, Henrik

    2002-01-01

    Convergence trends between the WAN Internet area, characterized by best effort service provision, and the real time LAN domain, with requirements for guaranteed services, are identified and discussed. A bilateral evolution is identified, where typical bulk service applications from WAN...

  6. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  7. Convergence

    Science.gov (United States)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-09-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  8. Hidden Earthquake Potential in Plate Boundary Transition Zones

    Science.gov (United States)

    Furlong, Kevin P.; Herman, Matthew; Govers, Rob

    2017-04-01

    Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of

  9. Convergent margin structure and tectonics of the Java subduction zone (105°E-122°E)

    Science.gov (United States)

    Kopp, H.; Barckhausen, U.; Djajadihardja, Y.; Engels, M.; Flueh, E. R.; Hindle, D. A.; Lueschen, E.; Mueller, C.; Planert, L.; Reichert, C. J.; Shulgin, A. A.; Wittwer, A.

    2009-12-01

    The Java margin is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our results show a high variability in subduction zone processes along the Java margin, ranging from accretionary subduction to erosive processes to zero-budget mass transfer. These variations are closely linked to changes in character of the incoming plate. Off Western Java (105°E -109°E), near-full accretion of the trench sediment fill is associated with a well-developed accretionary prism fronting a 4 km deep forearc basin. The Central Java segment (109°E -115°E) experiences the collision of an oceanic plateau dotted with numerous seamounts, causing large-scale uplift of the forearc, coupled with erosion of the frontal prism and correlated mass wasting processes. Intense deformation of the forearc basin results from thrusting and compressional forces. In the neighbouring segment farther to the east (115°E-119°E), the lack of significant sediment input to the trench supports the notion that recycling of upper plate material in the forearc sustains the massive outer high observed here adjacent to a mature forearc basin. The incoming oceanic plate of the Argo Abyssal plain is devoid of a sediment drape and the original spreading fabric overprinted by bending-related faulting near the trench shape its morphology. The transition zone from the Java margin to the Banda Arc (119°E-122°E) experiences the early stages of continent-island arc collision associated with the convergence of the

  10. Structure and Local Seismicity From the Incoming Nazca Plate in the Southern Chile Subduction Zone

    Science.gov (United States)

    Scherwath, M.; Grevemeyer, I.; Flueh, E.; Contreras-Reyes, E.; Tilmann, F.; Kaul, N.; Weinrebe, W.

    2005-12-01

    Lithospheric deformation near the Chile Triple Junction is under investigation in the TIPTEQ (from The Incoming Plate to mega-Thrust EarthQuake processes) project. During R/V Sonne cruise SO181 (December 2004 to February 2005) various geophysical and geological data sets along several large transects across differently aged subducting oceanic lithosphere were acquired. TIPTEQ aims at studying the influence of the incoming plate on the seismogenic zone in the area of the 1960 great Chile earthquake (Mw=9.5), in particular the effects of the thermal regime (i.e., age).We compare structure and local seismicity on two of these transects, one where the incoming oceanic Nazca Plate was formed 6.5 Ma ago, the other 14.5 Ma in age at the trench, thus both of different thermal states. New magnetic data show that the older lithosphere was generated at a spreading rate of 40 mm/a compared to 25 mm/a for the younger one, yet the current convergence of both sections with the South American Plate is about the same (~80 mm/a). Bathymetric and vertical incidence seismic data show smooth and thicker sediments at the older transect whereas the rugged basement of the younger line is less covered, though the sedimentary thickness at the trench is ~2 km in both locations. The crust of the older transect is slightly thicker, shows a clear outer rise, and subducts at a slightly steeper angle than the younger line. On the latter, where the outer rise bulge has not yet been developed, the outer rise seismicity rate is higher and more concentrated in the crust. The local seismicity in the older region is less frequent and occurs predominantly in the upper mantle (see also Tilmann et al., this conference).

  11. THE EFFECTS OF MANUFACTURING INACCURACIES ON THE IMAGING PROPERTIES OF ZONE PLATES

    OpenAIRE

    Simpson, M.; Browne, M.; Burge, R.; Charalambous, P; Duke, P.; Michette, A.

    1984-01-01

    Any process for making soft X-ray zone plates will have associated manufacturing errors which will affect the imaging properties. The errors possible in a lithographic manufacturing technique using a scanning transmission electron microscope are discussed, and it is concluded that sufficiently accurate zone plates may readily be made.

  12. Novel procedure to compute a contact zone magnitude of vibrations of two-layered uncoupled plates

    Directory of Open Access Journals (Sweden)

    Awrejcewicz J.

    2005-01-01

    Full Text Available A novel iteration procedure for dynamical problems, where in each time step, a contacting plates' zone is improved, is proposed. Therefore, a zone and magnitude of a contact load are also improved. Investigations of boundary conditions' influence on externally driven vibrations of uncoupled two-layer plates, where for each of the layers, the Kirchhoff hypothesis holds, are carried out.

  13. Convergence

    DEFF Research Database (Denmark)

    Prasad, Ramjee

    2009-01-01

    This paper presents the main conclusions which can be drawn from the discussions on Future Communication Systems and lessons on Unpredictable Future of Wireless Communication Systems. Future systems beyond the third generation are already under discussions in international bodies, such as ITU, WW...... and R&D programmes worldwide. The incoming era is characterized by the convergence of networks and access technology and the divergence of applications. Future mobile communication systems should bring something more than only faster data or wireless internet access....

  14. Phase contrast soft x-ray microscopy using Zernike zone plates.

    Science.gov (United States)

    Sakdinawat, Anne; Liu, Yanwei

    2008-02-04

    Soft x-ray Zernike phase contrast microscopy was implemented using a "Zernike zone plate" (ZZP) without the use of a separate phase filter in the back focal plane. The ZZP is a single optic that integrates the appropriate +/-pi/2 radians phase shift through selective zone placement shifts in a Fresnel zone plate. Imaging using a regular zone plate, positive ZZP, and negative ZZP was performed at a wavelength of lambda = 2.163 nm. Contrast enhancement with the positive ZZP and contrast reversal with the negative ZZP were observed.

  15. Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone

    Science.gov (United States)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Rondenay, S.

    2013-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relationship to slab seismicity, and (2) the interplate coupled zone where the great 1964 earthquake (magnitude 9.3) exhibited the largest amount of rupture. The joint teleseismic migration of two array datasets based on teleseismic receiver functions (RFs) reveals a prominent, shallow-dipping low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of RF amplitudes suggests the existence of a thin (3-5 km) low-velocity layer (shear wave velocity of ~2.0-2.5 km/s) that is ~20-40% slower than underlying oceanic crustal velocities, and is sandwiched between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio of 1.9-2.3) may be due to a thick sediment input from the trench in combination with elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of ~15 km. Both velocities and thickness of the low-velocity channel abruptly increase downdip in central Alaska, which agrees with previously published results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of a geodetically locked patch with high slip deficit, and coincides with the boundary of

  16. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    Science.gov (United States)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2013-05-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio (Vp/Vs) exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-12 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of the geodetically locked patch with high slip deficit, and coincides with the boundary of aftershock events from the 1964 earthquake. It seems plausible that this sharp change in the nature of

  17. Determination of rainfall and condensational heating in the South Pacific convergence zone during FGGE SOP-1

    Science.gov (United States)

    Robertson, F. R.

    1984-01-01

    The role of cloud related diabatic processes in maintaining the structure of the South Pacific Convergence Zone is discussed. The method chosen to evaluate the condensational heating is a diagnostic cumulus mass flux technique which uses GOES digital IR data to characterize the cloud population. This method requires as input an estimate of time/area mean rainfall rate over the area in question. Since direct observation of rainfall in the South Pacific is not feasible, a technique using GOES IR data is being developed to estimate rainfall amounts for a 2.5 degree grid at 12h intervals.

  18. Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)

    Science.gov (United States)

    Wall-Palmer, Deborah; Burridge, Alice K.; Peijnenburg, Katja T.C.A.

    2016-01-01

    Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37–48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m3 water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region. PMID:27551204

  19. Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea).

    Science.gov (United States)

    Wall-Palmer, Deborah; Burridge, Alice K; Peijnenburg, Katja T C A

    2016-01-01

    The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37-48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m(3) water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region.

  20. Food Price Inflation Rates in the Euro Zone: Distribution Dynamics and Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Angelos Liontakis

    2012-01-01

    Full Text Available It is widely recognized that inflation as a monetary phenomenon is determined by money supply changes. In the short run, however, several factors may lead to inflation rate differentials among different regions in the same country or among different countries in a monetary union. This paper examines the mean reversion attitude of food price inflation rates in the Euro zone, borrowing the concepts and developments from the recent growth literature and using panel unit root tests. Additionally, in order to capture sufficiently the evolving distributional dynamics, nonparametric econometric methods are also implemented. Finally, the comovement of the inflation rates among different food subgroups is also explored. The data consist of monthly observations of the EU harmonized consumer price indices of food and three different food subgroups (meat, bread and cereals, and vegetables for the 12 older member states of the Euro zone, covering the period from 1997 to 2010. The results do not fully support the hypothesis of the food price inflation rates convergence for the whole period under investigation. Mean reversion shows up in different time periods and in different food categories. Moreover, the analysis of distribution dynamics sheds light to different aspects of convergence and highlights processes like club formation and polarization.

  1. Observations of SKS splitting beneath the Central and Southern External Dinarides in the Adria-Eurasia convergence zone

    Science.gov (United States)

    Subašić, Senad; Prevolnik, Snježan; Herak, Davorka; Herak, Marijan

    2017-05-01

    Seismic anisotropy beneath the greater region of the Central and Southern External Dinarides is estimated from observations of SKS splitting. The area is located in the broad and complex Africa-Eurasia convergent plate boundary zone, where the Adriatic microplate interacts with the Dinarides. We analyzed recordings of 12 broadband seismic stations located in the Croatian coastal region. Evidence of seismic anisotropy was found beneath all stations. Fast axis directions are oriented approximately in the NE-SW to NNE-SSW direction, perpendicularly to the strike of the Dinarides. Average delay times range between 0.6 and 1.0 s. A counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part with respect to the stations in the southern part of the studied area. Fast axis directions coincide with the assumed direction of asthenospheric flow through a slab-gap below the Northern and Central External Dinarides, with the maximum tectonic stress orientation in the crust, and with fast directions of Pg and Sg-waves in the crust. These observations suggest that the detected SKS birefringence is primarily caused by the preferred lattice orientation of mantle minerals generated by the asthenospheric flow directed SW-NE to SSW-NNE, with a possible contribution from the crust.

  2. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile

    Science.gov (United States)

    Marot, M.; Monfret, T.; Pardo, M.; Ranalli, G.; Nolet, G.

    2013-07-01

    The region of central Chile offers a unique opportunity to study the links between the subducting Juan Fernandez Ridge, the flat slab, the double seismic zone (DSZ), and the absence of modern volcanism. Here we report the presence and characteristics of the first observed DSZ within the intermediate-depth Nazca slab using two temporary seismic catalogs (Ovalle 1999 and Chile Argentina Seismological Measurement Experiment). The lower plane of seismicity (LP) is located 20-25 km below the upper plane, begins at 50 km depth, and merges with the lower plane at 120 km depth, where the slab becomes horizontal. Focal mechanism analysis and stress tensor calculations indicate that the slab's state of stress is dominantly controlled by plate convergence and overriding crust thickness: Above 60-70 km depth, the slab is in horizontal compression, and below, it is in horizontal extension, parallel to plate convergence, which can be accounted for by vertical loading of the overriding lithosphere. Focal mechanisms below 60-70 km depth are strongly correlated with offshore outer rise bend faults, suggesting the reactivation of preexisting faults below this depth. The large interplane distances for all Nazca DSZs can be related to the slab's unusually cold thermal structure with respect to its age. Since LPs globally seem to mimic mantle mineral dehydration paths, we suggest that fluid migration and dehydration embrittlement provide the mechanism necessary to weaken the rock and that the stress field determines the direction of rupture.

  3. Crustal motion studies in the southwest Pacific: Geodetic measurements of plate convergence in Tonga, Vanuatu and the Solomon Islands

    Science.gov (United States)

    Phillips, David A.

    The southwest Pacific is one of the most tectonically dynamic regions on Earth. This research focused on crustal motion studies in three regions of active Pacific-Australia plate convergence in the southwest Pacific: Tonga, the New Hebrides (Vanuatu) and the Solomons Islands. In Tonga, new and refined velocity estimates based on more than a decade of Global Positioning System (GPS) measurements and advanced analysis techniques are much more accurate than previously reported values. Convergence rates of 80 to 165 mm/yr at the Tonga trench represent the fastest plate motions observed on Earth. For the first time, rotation of the Fiji platform relative to the Australian plate is observed, and anomalous deformation of the Tonga ridge was also detected. In the New Hebrides, a combined GPS dataset with a total time series of more than ten years led to new and refined velocity estimates throughout the island arc. Impingement of large bathymetric features has led to arc fragmentation, and four distinct tectonic segments are identified. The central New Hebrides arc segment is being shoved eastward relative to the rest of the arc as convergence is partitioned between the forearc (Australian plate) and the backarc (North Fiji Basin) boundaries due to impingement of the d'Entrecasteaux Ridge and associated Bougainville seamount. The southern New Hebrides arc converges with the Australian plate more rapidly than predicted due to backarc extension. The first measurements of convergence in the northern and southernmost arc segments were also made. In the Solomon Islands, a four-year GPS time series was used to generate the first geodetic estimates of crustal velocity in the New Georgia Group, with 57--84 mm/yr of Australia-Solomon motion and 19--39 mm/yr of Pacific-Solomon motion being observed. These velocities are 20--40% lower than predicted Australia-Pacific velocities. Two-dimensional dislocation models suggest that most of this discrepancy can be attributed to locking of

  4. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence

    Science.gov (United States)

    Kroner, Uwe; Roscher, Marco; Romer, Rolf L.

    2016-06-01

    The formation and destruction of supercontinents requires prolonged convergent tectonics between particular plates, followed by intra-continental extension during subsequent breakup stages. A specific feature of the Late Paleozoic supercontinent Pangea is the prolonged and diachronous formation of the collisional belts of the Rheic suture zone coeval with recurrent continental breakup and subsequent formation of the mid-ocean ridge systems of the Paleo- and Neo-Tethys oceans at the Devonian and Permian margins of the Gondwana plate, respectively. To decide whether these processes are causally related or not, it is necessary to accurately reconstruct the plate motion of Gondwana relative to Laurussia. Here we propose that the strain pattern preserved in the continental crust can be used for the reconstruction of ancient plate kinematics. We present Euler pole locations for the three fundamental stages of the Late Paleozoic assembly of Pangea and closure of the Rheic Ocean: (I) Early Devonian (ca. 400 Ma) collisional tectonics affected Gondwana at the Armorican Spur north of western Africa and at the promontory of the South China block/Australia of eastern Gondwana, resulting in the Variscan and the Qinling orogenies, respectively. The Euler pole of the rotational axis between Gondwana and Laurussia is positioned east of Gondwana close to Australia. (II) Continued subduction of the western Rheic Ocean initiates the clockwise rotation of Gondwana that is responsible for the separation of the South China block from Gondwana and the opening of Paleo-Tethys during the Late Devonian. The position of the rotational axis north of Africa reveals a shift of the Euler pole to the west. (III) The terminal closure of the Rheic Ocean resulted in the final tectonics of the Alleghanides, the Mauritanides and the Ouachita-Sonora-Marathon belt, occurred after the cessation of the Variscan orogeny in Central Europe, and is coeval with the formation of the Central European Extensional

  5. A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate

    Science.gov (United States)

    Gouker, Mark A.; Smith, Glenn S.

    1992-05-01

    A moderate-gain, easily constructed, millimeter-wave IC antenna based on the Fresnel zone plate has been developed. The gain and beamwidth of the antenna can be varied by adjusting the diameter and focal length of the zone plate. A theory is developed which accurately predicts the on-axis gain, beamwidth, and sidelobe levels of antennas with zone-plate focal lengths greater than 8-9 lambda. Graphs are presented to aid in the design of other IC zone-plate antennas. The performance of the antenna without the reflector and lambda/4 spacer was investigated. The gain of the antenna with nothing behind the zone plate is found to approach that of the fully configured antenna with the lambda/4 spacer and reflector. The reflection from the open rings which is responsible for this phenomenon is enhanced as the dielectric constant of the substrate is increased. Thus, on substrates with high permittivity the reflector and lambda/4 spacer may not be necessary.

  6. Paleomagnetic constraints on Cenozoic deformation along the northwest margin of the Pacific-Australian plate boundary zone through New Zealand

    Science.gov (United States)

    Turner, Gillian M.; Michalk, Daniel M.; Little, Timothy A.

    2012-02-01

    New Zealand straddles the boundary between the Australian and Pacific plates, a zone of oblique continental convergence and transform motion. The actively deforming region offers a unique opportunity to study the dynamics of deformation, including vertical-axis rotation of rigid blocks within a transcurrent plate boundary zone. We present and interpret paleomagnetic data from three new and three previously published sites from the NW part of the South Island (NW Nelson region), where sedimentary strata dated between 36 and 10 Ma overlie the crystalline Paleozoic basement assemblages of the Gondwana margin. Compared with reference directions from the Australian apparent polar wander path, none of the results provide evidence of post-Eocene vertical-axis rotation. This suggests that for the past 36 Myr NW Nelson has remained a strong, coherent block that has moved as a contiguous part of the Australian plate. This is in marked contrast to the strongly rotated nature of more outboard accreted terranes to the east. For example, the Hikurangi Margin in the North Island (NW of the Alpine Fault) and the Marlborough region in the NE of the South Island (SE of the Alpine Fault), have both undergone diverse clockwise rotations of up to 140° since the early Paleogene. The NW tip of the South Island seems to have acted as a rigid backstop relative to these more complex oroclinal deformations. We infer that, because of its relatively stiff bulk rheology, it has not been drawn into the distributed plate boundary rotational deformation associated with the New Zealand Orocline.

  7. Dynamics and energetics of the South Pacific Convergence Zone during FGGE SOP-1

    Science.gov (United States)

    Vincent, D. G.

    1985-01-01

    The major research objectives are to diagnose the physical processes responsible for the maintenance of the South Pacific Convergence Zone (SPCZ) and to examine the role of the SPCZ in the large-scale circulation patterns of the Southern Hemisphere. To accomplish these objectives researchers used several data sources which include: a modified set of Level III-b upper air analyses, originally produced by ECMWF (Vincent, 1982); subjectively analyzed surface analyses for the South Pacific based on island station reports (Vincent, 1985); outgoing longwave radiation values supplied to us by NOAA/NESDIS; and equivalent black body temperatures and precipitation rates derived by Robertson. In the past year researchers found that wave number four plays an inportant role in the Southern Hemisphere tropics during the 15-day period when the sPCZ was a dominant feature, particularly with regard to the baroclinic conversion of potential to kinetic energy (Huang and Vincent, 1985). The convectively-active SPCZ area was found to make a significant contribution to this conversion process; thus, it appears that baroclinic effects and latent heating are important in maintaining the SPCZ. Recently efforts concentrated on two research tasks, an examination of cyclone activity within the SPCZ (Kann, 1985; Vincent, 1985; Vincent and Kann, 1985) and a study of the heat and moisture budgets in the South Pacific (Miller, et al., 1985). It was found that cyclonic disturbances occurred with regularity in the Zone from 10 to 17 January.

  8. Multilayer zone plates for X-ray focusing fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Eberl, Christian; Liese, Tobias; Krebs, Hans-Ulrich [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2012-07-01

    X-ray microscopy in the soft and hard regime is a highly useful technique for biological and materials sciences, polymer research, colloidal science and even earth science. One alternative approach for two-dimensional x-ray focusing is to prepare non-periodic multilayer structures. They can be designed in zone plate geometry by depositing high quality non-periodic multilayers on wires according to the Fresnel zone plate law. For this, ZrO{sub 2}/Ti and W/Si multilayers with high optical contrast in the soft and hard x-ray region, respectively, were pulsed laser deposited (PLD) at 248 nm. In this contribution, the growth of multilayers on flat and curved surfaces (studied by electron microscopy after focused ion beam preparation) is compared, and the fabrication steps of different zone plate structures are presented.

  9. Regional variations in the nature of the incoming plate and its implication to the subduction zone

    Science.gov (United States)

    Fujie, Gou; Kodaira, Shuichi; Obana, Koichiro; Kaiho, Yuka; Sato, Takeshi; Yamamoto, Yojiro; Takahashi, Tsutomu; Miura, Seiichi; Yamada, Tomoaki

    2017-04-01

    The megathrust earthquakes like the 2011 Tohoku earthquake are caused by the interaction between the overlying plate and the subducting oceanic plate, indicating that the properties of the subducing oceanic plate, such as their geometry, thermal state, lithology, and water content, have a potential to controll the megathrust earthquakes. Of these properties, water content (degree of hydration) is highly influential because water transported by the incoming plate lowers the temperature of the subduction zone, promotes forearc metamorphism. Moreover, the presence of water and hydrated materials like serpentine can affect interplate seismic coupling on the plate interface. Accordingly, the regional variations in the degree of the hydration within the incoming plate might have strong influences on the regional variations in the interplate earthquakes. To reveal the regional variations in the nature of the incoming oceanic plate and its evolution owing to bending-related faulting near the trench axis, we conducted extensive controlled-source seismic surveys in the trench-outer rise region off northeastern Japan arc. We confirmed the systematic changes in seismic velocities owing to the bending-realated faulting, suggesting the water content within the incoming oceanic plate increases toward the trench accompanied by the development of bending-related fractures. In addition, we found along-trench variations in the seismic structure of the incoming oceanic plate; lower seismic velocities and higher Vp/Vs ration around the ancient fracture zones associated with ridge propagation. This observation suggests that the ancient scar on the oceanic plate influences along-trench variations in the current water amount transported by the oceanic plate. If we extend the ancient fracture zone toward the forearc region, it corresponds to an area of weak interplate coupling, characterized by low Vp and high Vp/Vs ratio around the depth of the plate interface. Our observations suggest

  10. Bifractal focusing and imaging properties of Thue-Morse Zone Plates.

    Science.gov (United States)

    Ferrando, Vicente; Giménez, Fernando; Furlan, Walter D; Monsoriu, Juan A

    2015-07-27

    We present a new family of Zone Plates (ZPs) designed using the Thue-Morse sequence. The focusing and imaging properties of these aperiodic diffractive lenses coined Thue-Morse Zone Plates (TMZPs) are examined. It is demonstrated that TMZPs produce a pair of self-similar and equally intense foci along the optical axis. As a consequence of this property, under broadband illumination, a TMZP produces two foci with an extended depth of focus and a strong reduction of the chromatic aberration compared with conventional periodic ZPs. This distinctive optical characteristic is experimentally confirmed.

  11. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  12. Kinematics to dynamics in the New Zealand plate-boundary zone

    Science.gov (United States)

    Lamb, S. H.

    2013-12-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific oceanic lithosphere beneath North Island, to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Active deformation must be driven by a combination of plate-boundary forces and internal buoyancy forces. I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine regional crustal and mantle structure. Integration of the vertical normal stress to the base of the deforming layer yields the buoyancy stress. Horizontal gradients of this can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of deformation. Thus, if deformation is that of a Newtonian fluid, then appropriate combinations of the horizontal gradients of vorticity and dilatation are related to gradients of buoyancy stress by the fluid viscosity. However, the short term geodetic deformation is strongly biased by elastic strain accumulation related to locking on the plate interface, and cannot be used to determine the plate-boundary velocity field averaged over many seismic cycles (see Lamb & Smith 2013). Therefore, I derive here a velocity field for the plate-boundary zone, which is representative of deformation over tens of thousands of years. This is based on an inversion of fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions, solved in a network of triangles spanning the plate-boundary, using the method of Lamb (2000). A comparison of gradients of buoyancy stress with the appropriate combinations of gradients of vorticity and dilatation shows that deformation in

  13. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bull, J.M.; DeMets, C.; Krishna, K.S.; Sanderson, D.J.; Merkouriev, S.

    these 3 predictions with new shortening estimates from seismic reflection data that are based on rotations of reversely faulted blocks. UPDATED PLATE KINEMATIC ESTIMATE The new India-Capricorn-Somalia rotations (Tables 1-3, electronic supplement... in the accompanying electronic supplement. Interval spreading rates determined from the updated Capricorn-Somalia and India-Somalia rotations (Fig. 1 in the supplement) illustrate the primary kinematic evidence for a change in India and Capricorn plate motions...

  14. Massive barite deposits in the convergent margin off Peru: Implications for fluid circulation within subduction zones

    Science.gov (United States)

    Aquilina, L.; Dia, A. N.; Boulègue, J.; Bourgois, J.; Fouillac, A. M.

    1997-03-01

    The convergent margin of Peru, characterized by an extensional tectonic regime and the lack of a well-developed accretionary prism, has been investigated by a deep-sea submersible during the Nautiperc cruise (March-April, 1991). This allowed the collection of fluid samples, soft sediments, and barite concretions in the vicinity of biological communities associated with fluid steps. Major and trace element contents as well as strontium, oxygen, hydrogen, and sulfur isotopic compositions have been measured on fluid and/or solid samples to constrain the nature and origin of fluid circulating in this extensional tectonic context. Chemical variations with respect to bottom seawater composition have been recorded in the fluid samples and suggest the presence of a nonlocal component in the fluid expelled at the seafloor. The major variations correspond to elevations of the Cl, Na, and the Ba contents as well as the 87Sr /86Sr ratios. This is interpreted as the expulsion of a radiogenic, continent-related (basinal brine and/or meteoric water) fluid. Massive barite concretions have been collected at the seafloor in two areas of major fluid venting. The radiogenic signature (strontium isotopic composition) of the barite concretions implies that they are related to the nonlocal deep fluid component identified in the fluid samples. Furthermore, it is shown that these barite deposits testify to a hot, short, and intensive fluid circulation event. Compared to subduction zones that exhibit venting fluid with a strong oceanic water signature, the nature and origin of venting fluid along the subduction zone of Peru are different. The extensional tectonic regime of the Peru continental margin, locally associated with a dense E-W trending fault network, is an agent which may help to drain continent-related fluid as deep as the subduction scarp at the trench-slope boundary.

  15. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  16. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall

    Science.gov (United States)

    Boos, William R.; Korty, Robert L.

    2016-12-01

    Shifts in the latitude of the intertropical convergence zone--a region of intense tropical rainfall--have often been explained through changes in the atmospheric energy budget, specifically through theories that tie rainfall to meridional energy fluxes. These quantitative theories can explain shifts in the zonal mean, but often have limited relevance for regional climate shifts, such as a period of enhanced precipitation over Saharan Africa during the mid-Holocene. Here we present a theory for regional tropical rainfall shifts that utilizes both zonal and meridional energy fluxes. We first identify a qualitative link between zonal and meridional energy fluxes and rainfall variations associated with the seasonal cycle and the El Niño/Southern Oscillation. We then develop a quantitative theory based on these fluxes that relates atmospheric energy transport to tropical rainfall. When applied to the orbital configuration of the mid-Holocene, our theory predicts continental rainfall shifts over Africa and Southeast Asia that are consistent with complex model simulations. However, the predicted rainfall over the Sahara is not sufficient to sustain vegetation at a level seen in the palaeo-record, which instead requires an additional large energy source such as that due to reductions in Saharan surface albedo. We thus conclude that additional feedbacks, such as those involving changes in vegetation or soil type, are required to explain changes in rainfall over Africa during the mid-Holocene.

  17. Seasonal prediction of the South Pacific Convergence Zone in the austral wet season

    Science.gov (United States)

    Charles, A. N.; Brown, J. R.; Cottrill, A.; Shelton, K. L.; Nakaegawa, T.; Kuleshov, Y.

    2014-11-01

    The position and orientation of the South Pacific Convergence Zone (SPCZ), modulated by the El Niño-Southern Oscillation (ENSO), determine many of the potentially predictable interannual variations in rainfall in the South Pacific region. In this study, the predictability of the SPCZ in austral summer is assessed using two coupled (ocean-atmosphere) global circulation model (CGCM)-based seasonal prediction systems: the Japan Meteorological Agency's Meteorological Research Institute Coupled Ocean-Atmosphere General Circulation Model (JMA/MRI-CGCM) and the Australian Bureau of Meteorology's Predictive Ocean-Atmosphere Model for Australia (POAMA-M24). Forecasts of austral summer rainfall, initialized in November are assessed over the period 1980-2010. The climatology of CGCM precipitation in the SPCZ region compares favorably to rainfall analyses over subsets of years characterizing different phases of ENSO. While the CGCMs display biases in the mean SPCZ latitudes, they reproduce interannual variability in austral summer SPCZ position indices for forecasts out to 4 months, with temporal correlations greater than 0.6. The summer latitude of the western branch of the SPCZ is predictable with correlations of the order of 0.6 for forecasts initialized as early as September, while the correlation for the eastern branch only exceeds 0.6 for forecasts initialized in November. Encouragingly, the models are able to simulate the large displacement of the SPCZ during zonal SPCZ years 1982-1983, 1991-1992, and 1997-1998.

  18. Diabatic heating profiles over the continental convergence zone during the monsoon active spells

    Science.gov (United States)

    Chattopadhyay, Rajib; Sur, Sharmila; Joseph, Susmitha; Sahai, A. K.

    2013-07-01

    The present paper aims to bring out the robust common aspects of spatio-temporal evolution of diabatic heating during the monsoon intraseasonal active phases over the continental tropical convergence zone (CTCZ). The robustness of spatio-temporal features is determined by comparing the two state-of-the art reanalyses: NCEP Climate Forecast System reanalysis and Modern ERA Retrospective Analysis. The inter-comparison is based on a study period of 26 years (1984-2009). The study confirms the development of deep heating over the CTCZ region during the active phase and is consistent between the two datasets. However, the detailed temporal evolution of the vertical structure (e.g., vertical tilts) of heating differs at times. The most important common feature from both the datasets is the significant vertical redistribution of heating with the development of shallow (low level) heating and circulation over the CTCZ region 3-7 days after the peak active phase. The shallow circulation is found to be associated with increased vertical shear and relative vorticity over certain regions in the subcontinent. This increased vertical shear and relative vorticity in the lower levels could be crucial in the sustenance of rainfall after the peak active phase. Model experiments with linear dynamics affirm the role of shallow convection in increasing the lower level circulation as observed.

  19. The ocean's role in setting the mean position of the Inter-Tropical Convergence Zone

    Science.gov (United States)

    Marshall, J.; Donohoe, A.; Ferreira, D.; McGee, D.

    2014-04-01

    Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean's meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere-ocean-ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.

  20. Subduction Zone Geometry and Pre-seismic Tectonic Constraints From the Andaman Micro- plate Region.

    Science.gov (United States)

    Earnest, A.; Freymueller, J. T.; Rajendran, K.; C. P, R.

    2007-12-01

    The 2004 Sumatra-Andaman mega-thrust rupture broke along the narrow fore-arc sliver boundary of the Indo- Burmese collision. Earlier events of 1679 (M~7.5), 1941 (M 7.7), 1881 (M~7.9) and 2002 (Mw 7.3) generated spatially restricted ruptures along this margin. Spatio-temporal analysis of the pre-seismic earthquakes showed dense seismicity in the back-arc region but negligible activity towards the trench. The hypocentral distribution highlights the shallow subduction at the northern segment, which becomes steeper and deeper to the south. The pre-earthquake stress distribution, inferred from the P and T-axes of earthquake faulting mechanisms, represents the compressional fore-arc and extensional back-arc stress regimes. Shallow NNE-SSW under- thrusting and NNW-SSE opening up of the marginal sea basin stresses were observed and this trend changes to NE-SW to N-S at intermediate depths. We collected three epochs of campaign mode GPS data along the arc from May 2002 to September 2004. These observations show nearly pure convergence along the Andaman trench prior to the earthquake. During this period the GPS sites moved westward relative to India at ~5.5 mm/yr, consistent with the earlier results. Along arc GPS velocity vectors suggest that the Andaman trench is part of a purely slip partitioned boundary, with the strike- slip component of the India-Sunda relative plate motion being taken up on the transform fault in the Andaman Sea or on the West Andaman Fault, and the convergent component on the Andaman trench. Although near normal convergence was observed, it sampled only a fraction of a possible full Andaman microplate convergence velocity, because elastic deformation from the locked shallow megathrust caused displacements toward the overriding plate, that is, away from India. Based on the Indian plate velocity and Andaman spreading rates, this component amounts to ~85% of the pre-seismic convergence. These geodetic velocities represent the present day geologic

  1. The proportionality between relative plate velocity and seismicity in subduction zones

    Science.gov (United States)

    Ide, S.

    2013-12-01

    Seismic activity differs among subduction zones due to various factors such as relative plate velocity, temperature, stress, and subducting materials. Relative plate velocity has a direct control on tectonic deformation and an overall correlation with seismicity has been suggested, as a global average or for large regions. Here I show a positive correlation between relative plate velocity and seismicity by estimating the background seismicity rate for 117 sections of subduction zones worldwide using the epidemic type aftershock sequence (ETAS) model. The background rate is stably estimated even for the period following M9-class earthquakes in Chile and Japan. A prominent proportional relationship is evident in the southwestern Pacific Ocean. Given that M9-class earthquakes occur independently of one another, the lack of M9 earthquakes in the southwestern Pacific Ocean over the last century is difficult to explain by chance. On the other hand, some subduction zones have extremely low background seismicity, and have experienced very large earthquakes. Slow earthquakes have been discovered in many of these quiet zones. Thus, this proportionality relation may be useful in assessing the seismic risk in subduction zones worldwide between two apparently confusing end members: 'active and moderate' and 'quiet and extreme'.

  2. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  3. Continental Subduction and Subduction Initiation Leading to Extensional Exhumation of Ultra-High Pressure Rocks During Ongoing Plate Convergence in Papua New Guinea

    Science.gov (United States)

    Buck, W. R.; Petersen, K. D.

    2014-12-01

    Subduction of continental rocks is necessary to produce ultra-high pressure (UHP) rocks but the mechanism bringing them to the surface is disputed. A major question is whether this involves fairly small diapirs of crust that move up through the mantle or it involves an entire subducted plate that undergoes coherent 'reverse subduction' (sometimes called 'eduction'). Both mechanisms have been invoked to explain the only known region of on-going exhumation of UHP rocks, on the D'Entrecasteaux Islands of Papua New Guinea. Ductile flow fabrics in the island rocks have been used to argue for a diapiric model while constraints on the plate kinematics of the region require relatively large (>100 km) amounts of recent (>6 Myr) extension, supporting eduction as a primary mechanism. A self-consistent thermo-mechanical model of continental subduction shows that eduction can be accompanied by some ductile flow within the crust. Also we show, that subduction and stacking of continental crust can cause a subduction zone to lock up and lead to subduction initiation elsewhere. When this happens the region of earlier continental subduction can reverse direction causing exhumation of rocks from depth of ~100 km followed by localized extension and plate spreading. This can occur even if a region is in overall convergence. Applied to New Guinea our results are consistent with earlier suggestions that extension of the Woodlark Basin was caused by the initiation of the New Britain Trench, as indicated on the attached figure. We suggest that this subduction initiation event triggered eduction that led to exposure of the D'Entrcasteaux Islands and exhumation of the UHP rocks there. Our numerical results are broadly consistent with the recently refined seismic structure of the region around the islands. The model implies that the present-day basement of the ~70 km wide Goodenough Bay, south of the islands, was subducted then exhumed. This can be tested by drilling.

  4. Precipitation Changes Throughout the South Pacific Convergence Zone During the Last 2000 Years

    Science.gov (United States)

    Maloney, A. E.; Nelson, D. B.; Sachs, J. P.

    2016-12-01

    The South Pacific Convergence Zone (SPCZ) is the southern hemisphere's most prominent precipitation feature extending 3000km southeastwards from Papua New Guinea to French Polynesia. Seasonal and interannual variability in SPCZ rainfall is well characterized by satellite data, however an understanding of this feature prior to the instrumental record is lacking. Rainfall in the western tropical Pacific is difficult to reconstruct due to a dearth of archives that are both high-resolution and continuous. Here we present molecular fossil hydroclimate reconstructions from the last 2000 years. The hydrogen isotopic composition of the algal lipid biomarker dinosterol was measured in 10 freshwater lake sediment cores from 7 lakes on 4 islands in Vanuatu, the Solomon Islands, and Wallis and Futuna. Coretop δ2Hdinosterol values were well correlated with satellite-derived rainfall rates, providing a transfer function for deriving precipitation rates from sedimentary δ2Hdinosterol values. The Vanuatu and Wallis records indicate that the south-western portion of the SPCZ was driest during the transition from the Medieval Warm Period (MWP) to the Little Ice Age (LIA) (1200-1400 CE) with rainfall rates as low as 2mm/day compare to more typical values of 4mm/day. Conversely, the central SPCZ (Solomon Islands) experienced the driest conditions ( 5mm/day) during the MWP (600-1200 CE) and has maintained high ( 9mm/day) rainfall rates since the LIA. The tropical water cycle influences global climate and these quantitative precipitation records are important for understanding SPCZ natural variability.

  5. Assessment of seasonal prediction of South Pacific Convergence Zone using APCC multi-model ensembles

    Science.gov (United States)

    Kim, Ok-Yeon

    2017-07-01

    We have quantified and examined the South Pacific convergence zone (SPCZ) characteristics for the purpose of its seasonal prediction, by defining two orientation indices, strength and area. The multi-model ensemble (MME) tends to simulate the ENSO-associated shift of SPCZ orientation, especially for the 1-month forecast lead. The migration of the SPCZ orientation indices associated with ENSO phases is clear in the observation and the MME. The variation of the SPCZ strength and area associated with ENSO phases is not as clear as in the SPCZ orientation. In spite of marginal changes in the SPCZ strength and area related to ENSO phases, the SPCZ strength becomes a bit stronger during El Niño and weaker during La Niña, which is represented in individual models and MME. The performance of the MME in simulating the variability of the SPCZ orientation, strength and area is also examined. We found that the MME reasonably predicts the observed interannual variability of the western portion of the SPCZ, with systematic and marginal shift southward. Compared to the western part of the SPCZ, the MME seems to have a limitation in predicting the variability of the eastern part. In comparison to the SPCZ orientation, the MME is not capable of predicting the strength and area of the SPCZ. The interannual variability of the SPCZ strength in the MME is systematically weaker compared to that in the analysis. By comparison with SPCZ orientation and strength, the SPCZ area is not resolved in the MME. The SPCZ is a main source of precipitation in the South Pacific, and the SPCZ predictability also influences high impact weather prediction such as tropical cyclones. Therefore, skillful predictions of seasonal variability of the SPCZ could benefit users who utilize the seasonal forecasting information for their decision making in many applicable sectors.

  6. Seismic evidence for deep fluid circulation in the overriding plate of subduction zones

    Science.gov (United States)

    Tauzin, B.; Reynard, B.; Bodin, T.; Perrillat, J. P.; Debayle, E.

    2015-12-01

    In subduction zones, non-volcanic tremors are associated with fluid circulations (Obara, 2002). Their sources are often located on the interplate boundary (Rogers and Dragert, 2003; Shelly et al, 2006; La Rocca, 2009), consistent with fluids released by the dehydration of subducted plates (Hacker et al., 2003). Reports of tremors in the overriding continental crust of several subduction zones in the world (Kao et al., 2005; Payero et al., 2008; Ide, 2012) suggest fluid circulation at shallower depths but potential fluid paths are poorly documented. Here we obtained seismic observations from receiver functions that evidence the close association between the shallow tremor zone, electrical conductivity, and tectonic features of the Cascadia overriding plate. A seismic discontinuity near 15 km depth in the crust of the overriding North American plate is attributed to the Conrad discontinuity. This interface is segmented, and its interruption is spatially correlated with conductive regions and shallow swarms of seismicity and non-volcanic tremors. These observations suggest that shallow fluid circulation, tremors and seismicity are controlled by fault zones limiting blocks of accreted terranes in the overriding plate (Brudzinski and Allen, 2007). These zones constitute fluid "escape" routes that may contribute unloading fluid pressure on the megathrust. Obara, K. (2002). Science, 296, 1679-1681. Rogers, G., & Dragert, H. (2003). Science, 300, 1942-1943. Shelly, D. R., et al. (2006). Nature, 442, 188-191. La Rocca, M., et al. (2009). Science, 323, 620-623. Kao, H., et al. (2005). Nature, 436, 841-844. Payero, J. S., et al. (2008). Geophysical Research Letters, 35. Ide, S. (2012). Journal of Geophysical Research: Solid Earth, 117. Brudzinski, M. R., & Allen, R. M. (2007). Geology, 35, 907-910.

  7. Interaction of Rupture Zones of Adjacent Anchor Plates in an Analogical Medium

    Directory of Open Access Journals (Sweden)

    H. Abbad

    2013-12-01

    Full Text Available In this paper, an experimental study which required the design and implementation of a model containing plastic granules powder to simulate a natural environment, is presented. The latter is subjected to the removal of "anchor plates." For each test, several digital photographs are taken to materialize different deformed configurations during the pullout process. These photos processed in couples by the 7D software (image correlation giving the evolution of the displacement field and plane strain analogical environment. Particular attention is paid to the discussion of the interference of rupture zones of neighboring anchors by reducing the axis between plates.

  8. Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone

    Science.gov (United States)

    Kim, YoungHee; Abers, Geoffrey A.; Li, Jiyao; Christensen, Douglas; Calkins, Josh; Rondenay, Stéphane

    2014-03-01

    We image the slab underneath a 450 km long transect of the Alaska subduction zone to investigate (1) the geometry and velocity structure of the downgoing plate and their relationship to slab seismicity and (2) the interplate coupled zone where the great 1964 earthquake (Mw 9.2) exhibited the largest amount of rupture. The joint teleseismic migration of two array data sets based on receiver functions (RFs) reveals a prominent, shallow-dipping low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of RF amplitudes suggests the existence of a thin layer (Vs of ~2.1-2.6 km/s) that is ~20-40% slower than underlying oceanic crustal velocities, and is sandwiched between the subducted slab and the overriding plate. The observed megathrust layer (with Vp/Vs of 1.9-2.3) may be due to a thick sediment input from the trench in combination with elevated pore fluid pressure in the channel. Our image also includes an unusually thick low-velocity crust subducting with a ~20° dip down to 130 km depth at ~200 km inland beneath central Alaska. The unusual nature of this subducted segment results from the subduction of the Yakutat terrane crust. Our imaged western edge of the Yakutat terrane aligns with the western end of a geodetically locked patch with high slip deficit, and coincides with the boundary of aftershock events from the 1964 earthquake. It appears that this sharp change in the nature of the downgoing plate could control the slip distribution of great earthquakes on this plate interface.

  9. Towards multi-order hard X-ray imaging with multilayer zone plates.

    Science.gov (United States)

    Osterhoff, Markus; Eberl, Christian; Döring, Florian; Wilke, Robin N; Wallentin, Jesper; Krebs, Hans-Ulrich; Sprung, Michael; Salditt, Tim

    2015-02-01

    This article describes holographic imaging experiments using a hard X-ray multilayer zone plate (MZP) with an outermost zone width of 10 nm at a photon energy of 18 keV. An order-sorting aperture (OSA) is omitted and emulated during data analysis by a 'software OSA'. Scanning transmission X-ray microscopy usually carried out in the focal plane is generalized to the holographic regime. The MZP focus is characterized by a three-plane phase-retrieval algorithm to an FWHM of 10 nm.

  10. Scanning transmission X-ray microscopy with Fresnel Zone Plate beyond the expected resolution

    CERN Document Server

    Keskinbora, Kahraman; Weigand, Markus; Nadzeyka, Achim; Peto, Llyod; Schneider, Gerd; Vila-Comamala, Joan; Schütz, Gisela

    2012-01-01

    In X-ray microscopy the highest spatial resolutions to date are achieved by employing diffraction based elements called Fresnel Zone Plates (FZPs) as focusing optics. They allow potential resolutions which are determined by the width of their outermost zone period {\\Lambda} according to the Rayleigh criterion . Here, we present a FZP with an outermost period {\\Lambda} of 200 nm which possess a particular design and has been fabricated by ion beam lithography (IBL). Unexpectedly, the measured resolution is strongly dependent on the photon energy and at 450 eV the FZP is able to resolve features of 31 nm. This is approximately twice as high as the expected Rayleigh resolution.

  11. Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates.

    Science.gov (United States)

    Metje, Jan; Borgwardt, Mario; Moguilevski, Alexandre; Kothe, Alexander; Engel, Nicholas; Wilke, Martin; Al-Obaidi, Ruba; Tolksdorf, Daniel; Firsov, Alexander; Brzhezinskaya, Maria; Erko, Alexei; Kiyan, Igor Yu; Aziz, Emad F

    2014-05-05

    We report on a newly built laser-based tabletop setup which enables generation of femtosecond light pulses in the XUV range employing the process of high-order harmonic generation (HHG) in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work. Off-center reflection zone plates are shown to be advantageous when selection of a desired harmonic is carried out with the use of a single optical element. A cross correlation technique was applied to characterize the performance of the zone plates in the time domain. By using laser pulses of 25 fs length to pump the HHG process, a pulse duration of 45 fs for monochromatized harmonics was achieved in the present setup.

  12. Development of laser deposited multilayer zone plate structures for soft X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Tobias; Radisch, Volker; Knorr, Inga [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Reese, Michael; Grossmann, Peter; Mann, Klaus [Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Goettingen (Germany); Krebs, Hans-Ulrich, E-mail: krebs@ump.gwdg.de [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-04-01

    As a novel approach, the combination of pulsed laser deposition and focused ion beam was applied to fabricate different types of multilayer zone plate structures for soft X-ray applications. For this purpose, high quality non-periodic ZrO{sub 2}/Ti multilayers were deposited by pulsed laser deposition on planar Si substrates and on rotating steel wires with layer thicknesses according to the Fresnel zone plate law. Linear focusing optics were fabricated by cutting slices out of the multilayers by focused ion beam and placing them directly over pinholes within Si{sub 3}N{sub 4} substrates. Additionally, it was shown that laser deposition of depth-graded multilayers on a wire is also a promising way for building up multilayer zone plates with point focus. First experiments using a table-top X-ray source based on a laser-induced plasma show that the determined focal length and spatial resolution of the fabricated multilayer Laue lens corresponds to the designed optic.

  13. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones

    Science.gov (United States)

    Heuret, A.; Funiciello, F.; Faccenna, C.; Lallemand, S.

    2007-04-01

    A combination of statistical studies on present-day subduction zones and three-dimensional (3D) laboratory models is performed with the aim to clarify the way that plate kinematics control the geometry of the slab and the overriding plate deformation in subduction zones. In 3D laboratory models, the analogue of a two layer linearly viscous lithosphere-upper mantle system is achieved by means of silicon putty glucose syrup tank experiment. The subducting and overriding plate velocities are systematically changed by exploring the variability field of natural plate kinematics. Both statistical and modelling approaches recognize the importance of overriding plate motion on subduction process behavior: (1) trenches migrate at a rate close to the overriding plate motion, but always move slower than the overriding plates. The mechanism at work is a direct consequence of "slab anchoring" opposed by both lithosphere and mantle viscous resistance and is responsible for overriding plate deformation and slab geometry variability. (2) An overriding plate shortens when the overriding plate moves toward the trench and conditions that are favourable for overriding plate extension are created when the overriding plate moves away from the trench. (3) Shallow and steep dips are found if the overriding plate moves toward and away from the trench, respectively.

  14. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); UPMC, LOCEAN/IPSL, Paris Cedex 05 (France); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, Goa (India); Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); Institut de Recherche pour le Developpement, Noumea (New Caledonia); Jourdain, Nicolas C. [Institut de Recherche pour le Developpement, Noumea (New Caledonia); Marchesiello, Patrick [Institut de Recherche pour le Developpement, Noumea (New Caledonia); CNES/CNRS/UPS/IRD, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), Toulouse (France); Madec, Gurvan [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Oceanographic Centre, Southampton (United Kingdom)

    2011-05-15

    The interannual variability of the South Pacific Convergence Zone (SPCZ) and its influence on tropical cyclone (TC) genesis in the South Pacific are investigated using observations and ERA40 reanalysis over the 1979-2002 period. In austral summer, the SPCZ displays four typical structures at interannual timescales. The first three are characterized by a diagonal orientation of the SPCZ and account for 85% of the summer seasons. One is close to climatology and the other two exhibit a 3 northward or southward departure from the SPCZ climatological position. In contrast, the fourth one, that only encompasses three austral summer seasons (the extreme 1982/1983 and 1997/1998 El Nino events and the moderate 1991/1992 El Nino event), displays very peculiar behaviour where the SPCZ largely departs from its climatological position and is zonally oriented. Variability of the western/central Pacific equatorial sea surface temperature (SST) is shown to modulate moisture transport south of the equator, thereby strongly constraining the location of the SPCZ. The SPCZ location is also shown to strongly modulate the atmospheric circulation variability in the South Pacific with specific patterns for each class. However, independently of its wide year-to-year excursions, the SPCZ is always collocated with the zero relative vorticity at low levels while the maximum vorticity axis lies 6 to the south of the SPCZ position. This coherent atmospheric organisation in the SPCZ region is shown to constrain tropical cyclogenesis to occur preferentially within 10 south of the SPCZ location as this region combines all the large-scale atmospheric conditions that favour the breeding of TCs. This analysis also reveals that cyclogenesis in the central Pacific (in the vicinity of French Polynesia) only occurs when the SPCZ displays a zonal orientation while this observation was previously attributed to El Nino years in general. Different characteristics of El Nino Southern Oscillation (ENSO

  15. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary

    Science.gov (United States)

    Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramirez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S.

    2012-12-01

    A Paleogene conglomeratic-sandy succession preserves the complex record of arc-continent collision, orogen collapse and basin opening, followed by inversion related to renewed oblique convergence. This record is unique because both arc and continental margin are now severely fragmented and only partially exposed along the southern Caribbean-South American boundary in northern Colombia. We studied these clastic sequences in the San Jacinto deformed belt using an integrated provenance study that includes conglomerate clast counting, geochemistry and U-Pb and Hf isotopic analysis in magmatic clasts, together with sandstone petrography, heavy mineral analysis and detrital zircon U-Pb geochronology. The record of events extracted from these coarse clastic rocks includes the formation and approach of an allochthonous Upper Cretaceous intra-oceanic arc active from 88 Ma until 73 Ma. This arc collides against the upper Paleozoic to Triassic continental margin after 73 Ma, but before late Paleocene times. Poorly exposed remnants of serpentinized peridotites and middle pressure metamorphic detritus are related to closure of an intervening oceanic basin between the continent and the colliding arc. This orogen was emerged in late Maastrichtian-early Paleocene, and then collapsed as recorded by the thick upper Paleocene and younger succession of the San Jacinto deformed belt where the coarse clastics, subject of this study, are exposed. Orogenic collapse may have been the result of subduction zone flip, with incipient subduction of the buoyant Caribbean Plate under South America.

  16. Neotectonics and seismicity of a slowly deforming segment of the Adria-Europe convergence zone - the northern Dinarides fold-and-thrust belt

    Science.gov (United States)

    Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka

    2014-05-01

    With GPS-derived shortening rates of c. 3-5 mm/a, the Adria-Europe convergence zone across the fold-and-thrust belt of the Dinarides (Balkan Peninsula) is a slowly deforming plate boundary by global standards. We have analysed the active tectonics and instrumental seismicity of the northernmost segment of this fold-and-thrust belt at its border to the Pannonian Basin. This area hosts a Maastrichtian collisional suture formed by closure of Mesozoic fragments of the Neotethys, overprinted by Miocene back-arc extension, which led to the exhumation of greenschist- to amphibolite-grade rocks in several core complexes. Geological, geomorphological and reflection seismic data provide evidence for a compressive or transpressive reactivation of extensional faults after about 5 Ma. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the area around Zagreb. The strongest instrumentally recorded earthquake (27 October 1969) affected the city of Banja Luka (northern Bosnia and Herzegovina). Fault plane solutions for the main shock (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Our results therefore imply that current Adria-Europe convergence is widely distributed across c. 300 km, rendering the entire Dinarides fold-and-thrust belt a slowly deforming plate boundary.

  17. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling

    Science.gov (United States)

    Dorbath, Catherine; Gerbault, Muriel; Carlier, Gabriel; Guiraud, Michel

    2008-07-01

    could be blocked in their ascension by the compressive zone above this plane, thus producing a sheeted layer of free fluids, or a serpentinized layer. Therefore earthquakes may present either downdip compression and downdip tensile characteristics. Numerical tests indicate that the slab's thermal structure is not the only factor that controls the occurrence of inner slab compression. (1) A weak ductile subduction channel and (2) a cold mantle fore arc both favor inner slab compression by facilitating transmission of compressional stresses from the continental lithosphere into the slab. (3) Decreasing the radius of curvature of the slab broadens the depth of inner slab compression, whereas (4) decreasing upper plate convergence diminishes its intensity. All these factors indicate that if DSZs indeed contour inner slab compression, they cannot be linked only to slab unbending, but also to the transmission of high compressional stresses from the upper plate into the slab.

  18. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    Science.gov (United States)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  19. Upgrading multilayer zone plate technology for hard x-ray focusing

    Energy Technology Data Exchange (ETDEWEB)

    Hirotomo, Toshiki; Konishi, Shigeki [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); SPring-8 Service Co., Ltd (Japan); Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Sumida, Kazuhiro; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Koyama, Takahisa [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) (Japan); Ichimaru, Satoshi; Ohchi, Tadayuki [NTT Advanced Technology Corporation (Japan); Takenaka, Hisataka [NTT Advanced Technology Corporation (Japan); TOYAMA Corporation (Japan)

    2016-01-28

    Multilayer zone plate (MZP) technology for hard X-ray focusing was upgraded and its focusing performance was evaluated using 20-keV X-rays at the synchrotron beamline (BL24XU) of SPring-8. The MZP consists of MoSi{sub 2} and Si layers alternately deposited on a glass fiber by magnetron sputtering so that all zone boundaries satisfy the Fresnel zone configuration. The focused beam was evaluated using knife-edge scanning in which the measured intensity distribution is identical to the line spread function (LSF) in the focal plane. The focused beamsize of about 30 nm was estimated by oscillation peaks observed in the measured LSF according to Rayleigh’s criterion.

  20. Teleconnection between the South Atlantic convergence zone and the southern Indian Ocean: Implications for tropical cyclone activity

    Science.gov (United States)

    DeBlander, Evan; Shaman, Jeffrey

    2017-01-01

    A link between anomalous austral summer convection over the South Atlantic convergence zone (SACZ) and atmospheric conditions over the South Indian Ocean is investigated. Interannual north-south shifts in the SACZ produce a dipole of anomalous convection and precipitation over South America. The South Atlantic convergence zone index (SACZI) capturing this variability is presented and associated with a midlatitude Rossby wave train that propagates from South America eastward and south of Africa before curving north into the tropical Indian Ocean. This wave train is reproduced using Rossby wave ray tracing and simulations with a linearized barotropic vorticity equation model forced with divergence and convergence consistent with the observed dipole of anomalous convection. The wave train acts to excite anomalies in wind shear and relative humidity over the tropical south Indian Ocean, which in turn impact tropical cyclone (TC) genesis and distribution over this region. We find that changes in the wind shear and relative humidity associated with the SACZI effect changes in TC genesis, which result in a change in observed TC days over portions of the South Indian Ocean.

  1. Rheology of the Indian and Tarim plates in the Karakoram continent-to-continent collision zone

    Directory of Open Access Journals (Sweden)

    A. Caporali

    1997-06-01

    Full Text Available Bouguer gravity anomalies in the region of Western Himalayas, Karakoram and Tien Shan show large negative values, but classical isostatic models are insufficient to account for the detailed pattern of the observed anomalies. In the past years the gravimetric surveys in the Karakoram done by Marussi, Caputo and others in 1954 have been extended and intensified. The full body of available gravimetric data, including the pendulum observations by De Filippi and Hedin at the beginning of this century, have been re-analyzed. Terrain corrections have been computed systematically for all available data using a unique algorithm and Digital Terrain Model. The isostatic anomalies along a profile from the Indo-Gangetic foredeep, across the Karakoram range and terminating in the Tarim basin show the oscillating values already noted by Marussi. It is here proposed that this oscillatory pattern can be explained by a model in which the convergent boundaries of the Indian and Tarim plates deform by elastic flexure, besides isostasy. The gravity data constrain the numerical values of the model parameters, particularly the flexural rigidity of the plates. For the Indian plate the best fitting value of the flexural rigidity is D = 5 1024 N m, a value very similar to those reported in Central Himalaya. The flexural rigidity of the Tarim plate turns out to be considerably larger D = 7 1025 N m, which makes the Tarim more rigid than the neighboring Central Tibet. Both plates are loaded by an estimated shear stress of 7 1012 N m-1 located in a region corresponding to the Nanga Parbat Haramosh syntaxis. It is concluded that the Indo-Asian continental collision in the Western Himalaya and Karakoram resulted in the development of flexural basins on both sides, unlike the Central Himalaya where the collision produced a flexural basin, the Ganga basin, to the south and, to the north, the indentation of an isostatically supported Tibetan block with possible rheological

  2. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  3. Lost in Iceland? Fracture Zone Complications Along the Mid-Atlantic Plate Boundary

    Science.gov (United States)

    Brandsdóttir, B.; Einarsson, P.; Detrick, R. S.; Mayer, L.; Calder, B.; Driscoll, N.; Richter, B.

    2003-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. Two transform zones, the South Iceland Seismic Zone (SISZ) and the Tjörnes Fracture Zone (TFZ) separate the on land rift zones from the Reykjanes Ridge (RR), and the Kolbeinsey Ridge (KR), offshore N-Iceland. Both are markedly different from fracture zones elsewhere along the plate boundary. The 80 km E-W and 10--15 km N-S SISZ is made up of more than 20 N-S aligned, right-lateral, strike-slip faults whereas the TFZ consists of a broad zone of deformation, roughly 150 km E-W and 75 km N-S. The over-all left-lateral transform motion within the SISZ is accommodated by bookshelf faulting whereas the right-lateral transform motion within the TFZ is incorporated within two WNW-trending seismic zones, spaced ˜40 km apart, the Grímsey Seismic Zone (GSZ) and the Húsavík-Flatey fault (HFF). Recently collected EM300 and RESON8101 multibeam bathymetric data along with CHIRP subbottom data has unveiled some tectonic details within the TFZ. The GSZ runs along the offshore extension of the Northern Volcanic Rift Zone (NVRZ) and is made up of four left-stepping, en-echelon, NS-striking rift segments akin to those on land. Large GSZ earthquakes seem to be associated with lateral strike-slip faulting along ESE-striking fault planes. Fissure swarms transecting the offshore volcanic systems have also been subjected to right-lateral transformation along the spreading direction. As the Reykjanes Peninsula, the on land extension of the RR, the GSZ bears the characteristics of an oblique rift zone. The plate boundary segments connecting to the RR and KR are thus symmetrical with respect to the plate separation vector (105° ) and orientation of individual volcanic systems. The HFF has an overall strike of N65° W and can be traced continuously along its 75--80 km length, between the Theistareykir volcanic system within the NVRZ, across the central TFZ-graben, the Skjálfandi bay, and into the largest

  4. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Lim, H.; Kim, Y.; Clayton, R. W.

    2015-12-01

    We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).

  5. The margin between Senja and Spitsbergen fracture zones: Implications from plate tectonics

    Science.gov (United States)

    Myhre, Annik M.; Eldholm, Olav; Sundvor, Eirik

    1982-10-01

    Analysis of multichannel seismic data from the continental margin off Svalbard between the Senja and Spitsbergen fracture zones suggests that the transition between continental and oceanic crust is located at or close to the Hornsund Fault Zone. In the Late Paleocene/Early Eoeene (57 m.y.) the region between Svalbard and Northeast-Greenland was subjected to regional shear movements associated with a transform system between the young Lofoten-Greenland Basin and the Arctic Ocean. Approximately 50 m.y. ago the spreading axis migrated to the northeast creating a deep basin north of the Greenland-Senja Fracture Zone forming the passive margin between Bear Island and 76.5°N. North of 76.5°N the regional transform was maintained. At the time of the main reorganization of relative plate motion (36 m.y.) the northern margin evolved. A continental fragment was possibly cut off from the Svalbard margin forming a small microcontinent. The microcontinent appears as the submarine ridge which has been associated with the Hovgaard Fracture Zone. It is suggested that the sediments west of the Hornsund Fault Zone are not older than Eocene in the south and mid-Oligocene in the north. The position of the spreading axis has greatly influenced the margin sedimentation.

  6. A convergence zone triggering deep convection over complex terrain: COSMO simulations of a case study from COPS

    Science.gov (United States)

    Barthlott, Ch.; Schipper, J. W.; Kalthoff, N.; Adler, B.; Kottmeier, Ch.

    2009-04-01

    A case study of an isolated deep convective cell from the Convective and Orographically induced Precipitation Study (COPS) is analysed with respect to its representation in the numerical weather prediction model of the Deutscher Wetterdienst COSMO-DE. The international field campaign COPS was performed in southwestern Germany and eastern France in summer 2007 as part of the Priority Programme SPP 1167 of the Deutsche Forschungsgemeinschaft (DFG). The overall goal of COPS was to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. On July 15, deep convection developed in an area east of the Black Forest crest although convective available potential energy (CAPE) was only moderate and convective inhibition (CIN) was high. Data analysis revealed that convection was triggered by the superposition of a synoptically generated eastward moving mesoscale convergence zone and a thermally induced convergence zone along the mountain crests in the northern Black Forest. More in the south, radar observations also showed a convergence line hours before a single cell was initiated. The question if these convergence lines are connected can not be answered by measurements only. In the standard configuration (2.8 km grid resolution), COSMO simulations reveal a near-surface convergence line and the evolution of a line of low clouds northeast of Freiburg in good agreement with radar and satellite observations. In addition, model-derived values of CAPE were high (> 2000 J/kg) accompanied by almost vanishing CIN. However, no deep convective cell developed out of this line of clouds. For an improved representation of orographic effects, simulations with 1 km grid resolution were performed and compared to the results of the standard configuration. Although both simulations did not initiate deep convection, the results suggest hat in a situation with air mass convection without mid

  7. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    Science.gov (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    collisional orogens. The UHT metamorphic rocks have occurred since the Archean, suggesting that the hot underplating has operated very early in the Earth's history. In contrast, the UHP metamorphic rocks primarily occur in the Phanerozoic, indicating that the thermal regime of many subduction zones has changed since the Neoproterozoic for the cold subduction.

  8. Crustal Structure of the Caribbean-South American Diffuse Plate Boundary: Subduction Zone Migration and Polarity Reversal Along BOLIVAR Profile 64W

    Science.gov (United States)

    Clark, S. A.; Levander, A.; Magnani, M.; Zelt, C. A.; Sawyer, D. S.; Ave Lallemant, H. G.

    2005-12-01

    The BOLIVAR (Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region) project is an NSF funded, collaborative seismic experiment in the southeast Caribbean region. The purpose of the project is to understand the diffuse plate boundary created by the oblique collision between the Caribbean and South American plates. Profile 64W of the BOLIVAR experiment, a 450 km-long, N-S transect onshore and offshore Venezuela located at ~64°W longitude, images the deep crustal structures formed by this collision. The active source components of profile 64W include 300 km of MCS reflection data, 33 coincident OBSs, and 344 land seismic stations which recorded 7500 offshore airgun shots and 2 explosive land shots. Results from the reflection and refraction seismic data along 64W show complex crustal structure across the entire span of the diffuse plate boundary. The onshore portion of 64W crosses the fold and thrust belt of the Serrania del Interior, which formed at ~16 Ma by collision of the Caribbean forearc with the northern South American passive margin. Underlying the Serrania del Interior is a south-vergent, remnant Lesser Antillean subduction zone. As this Lesser Antilles subduction impinged on continental crust, it caused a polarity reversal and jump offshore to the north. Convergence was initially localized in the closure and inversion of the Grenada Basin. However, subduction could not develop because of the ~20-km-thick crust of the Aves Ridge; instead, north-vergent subduction initiated further to the north, where ~12-km-thick Caribbean oceanic crust of the Venezuela Basin began to subduct beneath the Aves Ridge in the Pliocene (~4 Ma) and appears to continue subducting today. Between the remnant subduction zone and the modern one, the El Pilar and Coche dextral strike-slip faults accommodate most of the transform motion of the plate boundary. From the Serrania del Interior to the Aves Ridge, ~260 km of accreted orogenic float comprises the diffuse

  9. Recent developments in Fresnel zone plate antennas at microwave/millimeter wave

    Science.gov (United States)

    Wiltse, James C.

    1998-10-01

    The Fresnel zone plate antenna is an example of an optical analogy that has been transferred to microwave/millimeter wavelength use. The latter case has seen extensive research and application, and in the past dozen years more than seventy relevant papers have been published on a worldwide basis. These studies have dealt with either lens or reflector designs, and have quantified many parameters, such as gain, antenna patterns, efficiency, bandwidth, and structural options. The most recent designs have dealt with high efficiency or dual band configurations. This report will summarize the many advances of the past few years, and will provide some parametric design tradeoffs.

  10. Micro-buried spiral zone plate in a lithium niobate crystal

    Science.gov (United States)

    Tian, Zhen-Nan; Hua, Jian-Guan; Hao, Juan; Yu, Yan-Hao; Chen, Qi-Dai; Sun, Hong-Bo

    2017-01-01

    We present a micro-buried spiral zone plate (MBSZP) in the lithium niobate crystal fabricated with femtosecond laser direct writing technology. The microstructures of the MBSZP are buried under the surface of the crystal, which ensures the stability of the optical performance in various refractive index environments. The optical performances of imaging and focusing capabilities were demonstrated. In addition, the experiment showed good agreement with simulation results based on the optical wave propagation method. This novel optical element will have important applications in multistate information encoding, optical manipulation, quantum communication, and computation, especially in high integration, contact coupling, and variable refractive index environments.

  11. X-ray imaging microscopy at 25 keV with Fresnel zone plate optics

    CERN Document Server

    Awaji, M; Takeuchi, A; Takano, H; Kamijo, N; Tamura, S; Yasumoto, M

    2001-01-01

    X-ray imaging microscopy with a sputtered-sliced Fresnel zone plate (SS-FZP) has been developed at an X-ray energy of 25 keV. Objects were imaged in transmission with the SS-FZP as an objective with a magnification of 10.2 times, and detected with a X-ray image sensor. The performance of the imaging microscope has been tested with a gold mesh and a resolution test pattern at an undulator beamline 47XU of SPring-8. The resolution test patterns up to 0.5 mu m line-and-space structures have been resolved.

  12. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  13. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    Science.gov (United States)

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  14. The influence of distance between heat sources in hybrid welded plate on fusion zone geometry

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2011-04-01

    Full Text Available Results of numerical analysis into temperature field in hybrid laser-arc welding process with motion of liquid material taken intoaccount are presented in this study. On the basis of obtained results the influence of the distance between the arc foot point and the laserbeam focal point on the shape and size of fusion zone in hybrid butt welded plate. Temperature field was calculated on the basis ofsolution of transient heat transfer equation. The solution of Navier-Stokes equation allowed for simulation of fluid flow in the fusion zone.Fuzzy solidification front was assumed in calculations with linear approximation of solid fraction in solid-liquid region where liquidmaterial flow through porous medium is taken into consideration. Numerical solution algorithms were developed for three-dimensionalproblem. Established numerical model of hybrid welding process takes into account different electric arc and laser beam heat sourcespower distributions.

  15. The Ionian and Alfeo-Etna fault zones : New segments of an evolving plate boundary in the central Mediterranean Sea?

    NARCIS (Netherlands)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.

    2016-01-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW

  16. The Ionian and Alfeo-Etna fault zones : New segments of an evolving plate boundary in the central Mediterranean Sea?

    NARCIS (Netherlands)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.|info:eu-repo/dai/nl/108173836; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.|info:eu-repo/dai/nl/068439202

    2016-01-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW

  17. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value `bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the

  18. CONVERGENCE PROGRAM AND MACROECONOMIC POLICIES FOR ROMANIA JOINING THE EURO-ZONE

    Directory of Open Access Journals (Sweden)

    Magdalena R DULESCU

    2009-10-01

    Full Text Available Romania submitted a new update of its convergence program on 5 December 2007, covering the period 2007-2010. The budgetary strategy outlined in the program is not in line with the prudent fiscal policy necessary to contain the growing external deficit and inflationary pressures which put the convergence process at risk. In view of the Commission assessment and the need to ensure sustainable convergence, Romania is invited to: (i significantly strengthen the pace of adjustment towards the MTO by aiming for substantially more demanding budgetary targets in 2008 and subsequent years in order to contain the risk of an excessive deficit, foster macroeconomic stability and rein in widening external imbalances and address the risks to the long-term sustainability of public finances; (ii restrain the envisaged high increase in public spending, review its expenditure composition so as to enhance the economy’s growth potential and improve the planning and execution of expenditure within a binding medium-term framework; (iii adopt policies to contain inflationary pressures, complementing the recommended tighter fiscal stance, with appropriate public wage policy and further structural reforms.

  19. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  20. Fresnel zone plate telescope for condenser alignment in water-window microscope

    Science.gov (United States)

    Wachulak, Przemyslaw W.; Torrisi, Alfio; Bartnik, Andrzej; Węgrzyński, Łukasz; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Fiedorowicz, Henryk

    2015-05-01

    Microscopes operating at short wavelengths, in the extreme ultraviolet and soft x-ray spectral region, require careful condenser positioning to avoid possible artifacts related to enhancing or diminishing certain spatial frequencies in the image plane. Various methods are often used to visualize the condenser illumination pattern, including direct visualization on a CCD camera; however, these are not always straightforward to use. We present and discuss a novel and convenient method to image a condenser illumination pattern upstream the sample plane, using two zone plates with matched numerical apertures. This imaging system, operating herein in the water-window spectral range in telescope configuration, allows us to change the distance between the conjugated planes, thus overcoming limitations related to the geometry of the vacuum system. This geometry, which is optimized for the highest possible spatial resolution allowed by the zone-plate objective, is not necessarily particularly good for visualization of the condenser illumination pattern. The presented method was demonstrated with a compact, gas puff target source based soft x-ray microscope, which is capable of resolving 60 nm features (half-pitch resolution), requires a few seconds exposure time, and is debris-free due to the gaseous nature of the target for soft x-ray generation. The method, presented herein, may solve mentioned vacuum system geometry limitations. Also, it can easily be extended to other systems and other wavelengths, provided a proper optic is used. Modes of operation and the results are presented and discussed.

  1. Low-Stress Upper Plate Near Subduction Zones and Implications for Temporal Changes in Loading Forces

    Science.gov (United States)

    Wang, K.; Hu, Y.; Yoshida, K.

    2016-12-01

    Subduction megathrusts are weak, often with effective friction coefficients as low as 0.03. Consequently, differential stress (S1 - S3) in the nearby upper plate is low. Compression due to plate coupling and tension due to gravity are in a subtle balance that can be tipped by small perturbations. For example, the 2011 M=9 Tohoku-oki earthquake, which has a rupture-zone-average stress drop of only a few MPa, switched offshore margin-normal stress from compression to tension and affected seismicity pattern and stress directions of various parts of the land area. The low differential stress is also reflected in spatial variations of stresses, such as with changes in topography. In the Andes, crustal earthquake focal mechanisms change from thrust-faulting in low-elevation areas to normal-faulting in high-elevation areas. Given the lack of evidence for a pervasively weak crust, the low differential stress may indicate that in general the crust near subduction zones is not critically stressed. If so, crustal earthquakes do not represent pervasive failure but only local failure due to stress, material, and fluid pressure heterogeneity. If distributed permanent deformation that creates topography is not the norm, it either happens in brief episodes or took place in the past. The outer wedge may enter a compressively or extensionally critical state due to coseismic strengthening or weakening, respectively, of the shallow megathrust in largest interplate earthquakes. Temporal changes in loading forces must occur also at much larger temporal and spatial scales in response to changes in the nature of the subducting plate and other tectonic conditions. We propose that submarine wedges and high topography in the upper plate attain their geometry in geologically brief episodes of high differential stress. They normally stay in a low-stress stable state, but their geometry often reflects high-stress episodes of critical states in the past. In other words, rocks have a sustained

  2. A Bayesian Approach for Apparent Inter-plate Coupling in the Central Andes Subduction Zone

    Science.gov (United States)

    Ortega Culaciati, F. H.; Simons, M.; Genrich, J. F.; Galetzka, J.; Comte, D.; Glass, B.; Leiva, C.; Gonzalez, G.; Norabuena, E. O.

    2010-12-01

    We aim to characterize the extent of apparent plate coupling on the subduction zone megathrust with the eventual goal of understanding spatial variations of fault zone rheology, inferring relationships between apparent coupling and the rupture zone of big earthquakes, as well as the implications for earthquake and tsunami hazard. Unlike previous studies, we approach the problem from a Bayesian perspective, allowing us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models instead of seeking a single optimum model. Two important features of the Bayesian approach are the possibility to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization, other than that imposed by the way in which we parameterize the forward model. Adopting a simple kinematic back-slip model and a 3D geometry of the inter-plate contact zone, we can estimate the probability of apparent coupling (Pc) along the plate interface that is consistent with a priori information (e.g., approximate rake of back-slip) and available geodetic measurements. More generally, the Bayesian approach adopted here is applicable to any region and eventually would allow one to evaluate the spatial relationship between various inferred distributions of fault behavior (e.g., seismic rupture, postseismic creep, and apparent interseismic coupling) in a quantifiable manner. We apply this methodology to evaluate the state of apparent inter-seismic coupling in the Chilean-Peruvian subduction margin (12 S - 25 S). As observational constraints, we use previously published horizontal velocities from campaign GPS [Kendrick et al., 2001, 2006] as well as 3 component velocities from a recently established continuous GPS network in the region (CAnTO). We compare results from both joint and independent use of these data sets. We obtain patch like features for Pc with higher values located above 60 km

  3. Geophysical characteristics of the Ninetyeast Ridge–Andaman island arc/trench convergent zone

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, C.; Gireesh, R.; Chand, S.; KameshRaju, K.A.; Rao, D.G.

    of subduction is oblique. Thick buoyant roots underlying the basement highs tend to flatten the subducting plate and thereby inhibit the subducting process. Subduction of such bathymetric highs may also have its own effect in the spreading processes... are Bengal fan sediments, Ninetyeast Ridge, Andaman Nicobar Ridge, a sharp bathymetric depression forming the Nicobar deep east of the Andaman Nicobar Ridge, forearc basin, inner volcanic arc and the Andaman backarc basin (see Fig.1). NER is a major...

  4. Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador

    Science.gov (United States)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Jaillard, E.; Mothes, P.; Jarrín, P.; Segovia, M.; Rolandone, F.; Cisneros, D.

    2016-05-01

    Along the Ecuadorian margin, oblique subduction induces deformation of the overriding continental plate. For the last 15 Ma, both exhumation and tectonic history of Ecuador suggest that the northeastward motion of the North Andean Sliver (NAS) was accompanied by an eastward migration of its eastern boundary and successive progressively narrowing restraining bends. Here we present geologic data, earthquake epicenters, focal mechanisms, GPS results, and a revised active fault map consistent with this new kinematic model. All data sets concur to demonstrate that active continental deformation is presently localized along a single major fault system, connecting fault segments from the Gulf of Guayaquil to the eastern Andean Cordillera. Although secondary faults are recognized within the Cordillera, they accommodate a negligible fraction of relative motion compared to the main fault system. The eastern limit is then concentrated rather than distributed as first proposed, marking a sharp boundary between the NAS, the Inca sliver, and the Subandean domain overthrusting the South American craton. The NAS limit follows a northeast striking right-lateral transpressional strike-slip system from the Gulf of Guayaquil (Isla Puná) to the Andean Cordillera and with the north-south striking transpressive faults along the eastern Andes. Eastward migration of the restraining belt since the Pliocene, abandonment of the sutures and reactivation of north-south striking ancient fault zones lead to the final development of a major tectonic boundary south and east of the NAS, favoring its extrusion as a continental sliver, accommodating the oblique convergence of the Nazca oceanic plate toward South America.

  5. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone

    Science.gov (United States)

    van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego

    2010-01-01

    Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.

  6. The Relationships of Upper Plate Ridge-Trench-Trench and Ridge-Trench-Transform Triple Junction Evolution to Arc Lengthening, Subduction Zone initiation and Ophiolitic Forearc Obduction

    Science.gov (United States)

    Casey, J.; Dewey, J. F.

    2013-12-01

    The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overriding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallel split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in an obduction-ready settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages

  7. Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere

    Science.gov (United States)

    Morishige, M.; Honda, S.; Tackley, P. J.

    2010-09-01

    We present a semi-dynamic subduction zone model in a three-dimensional spherical shell. In this model, velocity is imposed on the top surface and in a small three-dimensional region around the shallow plate boundary while below this region, the slab is able to subduct under its own weight. Surface plate velocities are given by Euler's theorem of rigid plate rotation on a sphere. The velocity imposed in the region around the plate boundary is determined so that mass conservation inside the region is satisfied. A kinematic trench migration can be easily incorporated in this model. As an application of this model, mantle flow around slab edges is considered, and we find that the effect of Earth curvature is small by comparing our model with a similar one in a rectangular box, at least for the parameters used in this study. As a second application of the model, mantle flow around a plate junction is studied, and we find the existence of mantle return flow perpendicular to the plate boundary. Since this model can naturally incorporate the spherical geometry and plate movement on the sphere, it is useful for studying a specific subduction zone where the plate kinematics is well constrained.

  8. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    Science.gov (United States)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  9. Comparison of earthquake source parameters and interseismic plate coupling variations in global subduction zones (Invited)

    Science.gov (United States)

    Bilek, S. L.; Moyer, P. A.; Stankova-Pursley, J.

    2010-12-01

    Geodetically determined interseismic coupling variations have been found in subduction zones worldwide. These coupling variations have been linked to heterogeneities in interplate fault frictional conditions. These connections to fault friction imply that observed coupling variations are also important in influencing details in earthquake rupture behavior. Because of the wealth of newly available geodetic models along many subduction zones, it is now possible to examine detailed variations in coupling and compare to seismicity characteristics. Here we use a large catalog of earthquake source time functions and slip models for moderate to large magnitude earthquakes to explore these connections, comparing earthquake source parameters with available models of geodetic coupling along segments of the Japan, Kurile, Kamchatka, Peru, Chile, and Alaska subduction zones. In addition, we use published geodetic results along the Costa Rica margin to compare with source parameters of small magnitude earthquakes recorded with an onshore-offshore network of seismometers. For the moderate to large magnitude earthquakes, preliminary results suggest a complex relationship between earthquake parameters and estimates of strongly and weakly coupled segments of the plate interface. For example, along the Kamchatka subduction zone, these earthquakes occur primarily along the transition between strong and weak coupling, with significant heterogeneity in the pattern of moment scaled duration with respect to the coupling estimates. The longest scaled duration event in this catalog occurred in a region of strong coupling. Earthquakes along the transition between strong and weakly coupled exhibited the most complexity in the source time functions. Use of small magnitude (0.5 Osa Peninsula relative to the Nicoya Peninsula, mimicking the along-strike variations in calculated interplate coupling.

  10. Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods

    DEFF Research Database (Denmark)

    Andersen, Nikolaj G.; Nielsen, Torkel Gissel; Jakobsen, Hans Henrik

    2011-01-01

    larvae and ostracods. Most of the recorded metazoan groups responded numerically to the frontal features (i.e. the surfacing of the isotherms) with high abundance in the STCZ compared with areas north and south of this. Juvenile copepod growth and egg production peaked in the STCZ, with a weight......The oligotrophic Sargasso Sea in the western part of the North Atlantic Ocean is influenced by a complex set of oceanographic features that might introduce nutrients and enhance productivity in certain areas. To increase our understanding of the variability in plankton communities and to determine...... the potential reasons why Atlantic eels Anguilla spp. use this area for spawning, we investigated the distribution and productivity of the zooplankton community across the Subtropical Convergence Zone (STCZ) in the Sargasso Sea in March and April 2007. The vertical and horizontal distributions of protozoans...

  11. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    Science.gov (United States)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  12. Elimination of the Background Noise of the Decoded Image in Fresnel Zone Plate Scanning Holography

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.

  13. High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing

    Science.gov (United States)

    Niu, Li-Gang; Wang, Dian; Jiang, Tong; Wu, Si-Zhu; Li, Ai-Wu; Song, Jun-Feng

    2011-02-01

    Fresnel zone plate arrays (FZPAs), as a kind of an important integrated micro-optical device, have attracted great attention. However, the fill factor of present FZPAs by femtosecond technology is a little low, which leads to serious light loss and low signal-to-noise. Here we reported high fill-factor square and hexagonal FZPAs by femtosecond laser two-photon polymerization of the resin SU-8. Their optical focusing and imaging properties showed the high uniformity and high fidelity of these FZPAs. Moreover, 100% fill-factor FZPAs were demonstrated by optimal theoretical design and experimental parameters. With this high quality FZPAs, clear imaging "F" was obtained. At last, high-level phase type FZPAs were prepared to further enhance the diffractive efficiency to as much as 75%.

  14. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  15. From zone plate to microcalorimeter . 50 years of cosmic X-ray spectroscopy at SRON

    Science.gov (United States)

    Bleeker, J.; Verbunt, F.

    The first method used by the SRON Laboratory for Space Research at Utrecht to spectroscopically image the Sun in X-rays employed Fresnel zone plates. Four Fresnel plates, covering four specific wavelengths, were flown on an Aerobee rocket in 1967 and gave a first useful X-ray image of the Sun in the Si-X line at 51 Å. The technique developed for the solar X-ray images enabled SRON to become the Lead Investigator for the grating spectrographs on several major X-ray satellites, i.e. on the Einstein and EXOSAT satellites, launched in November 1978 and May 1983 respectively, and on the Chandra and XMM-Newton observatories both launched in 1999. Since then, a considerable effort was put into the development of cryogenically cooled, non-dispersive X-ray spectrometers as model payload elements for the XEUS, IXO and Athena mission studies. This paper briefly reviews these developments, highlights some of the resulting scientific insights and offers a few thoughts on the present outlook for a next generation X-ray observatory. The biggest challenge for the realization of such a mission is not primarily technical: global coordination and collaboration, both among scientists and the major space agencies, is a prerequisite for a successful next major leap in this discipline.

  16. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...... a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously....... Interpretation of sonobuoy data and revised modeling of existing OBS data across Segment B indicate a continental composition of the segment. This interpretation is supported by magnetic anomaly data. The Segments A and B are bounded by portions of the Greenland Fracture Zone with a distinct similar to 10...

  17. Pore Fluid Pressure and State of Stress Above the Plate Interface from Observations in a 3 Kilometer Deep Borehole: IODP Site C0002, Nankai Trough Subduction Zone

    Science.gov (United States)

    Tobin, H. J.; Saffer, D. M.; Hirose, T.; Castillo, D. A.; Kitajima, H.; Sone, H.

    2014-12-01

    During IODP Expedition 348 from October 2013 to January 2014, Site C0002 was drilled to more than 3000 meters' depth into the inner accretionary wedge at the Nankai Trough, setting a new depth record for scientific ocean drilling. It is the first hole to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE project off the Kii-Kumano region of Japan, designed to shed light on plate boundary fault zone processes near the up-dip edge of seismogenic locking and slip. The zone from 865 - 3056 meters below the sea floor was sampled via logging-while-drilling measurements, continuous sampling of drill cuttings, and limited coring. This interval was composed of lithified middle to late Miocene hemipelagic sediments and turbidites that are markedly deformed and dip steeply. P-wave speeds from sonic logs increase with depth to ~ 1600 meters, but are constant to slightly decreasing with depth from 1600 to 3050 meters. We hypothesize that this change in trend indicates the onset of elevated pore fluid pressure, but structural and lithologic factors may also play a role. We explore several methods for quantitative estimation of sonic-derived fluid pressure conditions in the inner wedge. A borehole leak-off test (LOT) and a series of borehole pressurization and injection tests were also performed, which we synthesize to estimate the least principal stress, or Shmin. Furthermore, downhole pressure while drilling (PWD) measurements recorded during borehole packoff events provide information on the maximum principal stress, SHmax. Taken together, the LOT and PWD observations suggest that the inner wedge at ~ 2000 meters depth is currently in a strike-slip stress regime, despite its position as the hanging wall of a main plate boundary thrust. This may be a transitional stress regime between shallow normal and deep thrust, controlled by depth-dependent magnitude of the tectonic convergence-related principal stress. Our results document for

  18. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  19. Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone

    Directory of Open Access Journals (Sweden)

    Grey Jonathan

    2009-10-01

    Full Text Available Abstract Background The invasive Chondrostoma nasus nasus has colonized part of the distribution area of the protected endemic species Chondrostoma toxostoma toxostoma. This hybrid zone is a complex system where multiple effects such as inter-species competition, bi-directional introgression, strong environmental pressure and so on are combined. Why do sympatric Chondrostoma fish present a unidirectional change in body shape? Is this the result of inter-species interactions and/or a response to environmental effects or the result of trade-offs? Studies focusing on the understanding of a trade-off between multiple parameters are still rare. Although this has previously been done for Cichlid species flock and for Darwin finches, where mouth or beak morphology were coupled to diet and genetic identification, no similar studies have been done for a fish hybrid zone in a river. We tested the correlation between morphology (body and mouth morphology, diet (stable carbon and nitrogen isotopes and genomic combinations in different allopatric and sympatric populations for a global data set of 1330 specimens. To separate the species interaction effect from the environmental effect in sympatry, we distinguished two data sets: the first one was obtained from a highly regulated part of the river and the second was obtained from specimens coming from the less regulated part. Results The distribution of the hybrid combinations was different in the two part of the sympatric zone, whereas all the specimens presented similar overall changes in body shape and in mouth morphology. Sympatric specimens were also characterized by a larger diet behavior variance than reference populations, characteristic of an opportunistic diet. No correlation was established between the body shape (or mouth deformation and the stable isotope signature. Conclusion The Durance River is an untamed Mediterranean river despite the presence of numerous dams that split the river from

  20. Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone.

    Science.gov (United States)

    Corse, Emmanuel; Costedoat, Caroline; Pech, Nicolas; Chappaz, Rémi; Grey, Jonathan; Gilles, André

    2009-10-27

    The invasive Chondrostoma nasus nasus has colonized part of the distribution area of the protected endemic species Chondrostoma toxostoma toxostoma. This hybrid zone is a complex system where multiple effects such as inter-species competition, bi-directional introgression, strong environmental pressure and so on are combined. Why do sympatric Chondrostoma fish present a unidirectional change in body shape? Is this the result of inter-species interactions and/or a response to environmental effects or the result of trade-offs? Studies focusing on the understanding of a trade-off between multiple parameters are still rare. Although this has previously been done for Cichlid species flock and for Darwin finches, where mouth or beak morphology were coupled to diet and genetic identification, no similar studies have been done for a fish hybrid zone in a river. We tested the correlation between morphology (body and mouth morphology), diet (stable carbon and nitrogen isotopes) and genomic combinations in different allopatric and sympatric populations for a global data set of 1330 specimens. To separate the species interaction effect from the environmental effect in sympatry, we distinguished two data sets: the first one was obtained from a highly regulated part of the river and the second was obtained from specimens coming from the less regulated part. The distribution of the hybrid combinations was different in the two part of the sympatric zone, whereas all the specimens presented similar overall changes in body shape and in mouth morphology. Sympatric specimens were also characterized by a larger diet behavior variance than reference populations, characteristic of an opportunistic diet. No correlation was established between the body shape (or mouth deformation) and the stable isotope signature. The Durance River is an untamed Mediterranean river despite the presence of numerous dams that split the river from upstream to downstream. The sympatric effect on morphology and

  1. Tremor Hypocenters Form a Narrow Zone at the Plate Interface in Two Areas of SW Japan

    Science.gov (United States)

    Armbruster, J. G.

    2015-12-01

    The tremor detectors developed for accurately locating tectonic tremor in Cascadia [Armbruster et al., JGR 2014] have been applied to data from the HINET seismic network in Japan. In the overview by Obara [Science 2002] there are three strong sources of tectonic tremor in southwest Japan: Shikoku, Kii Pen. and Tokai. The daily epicentral distributions of tremor on the HINET web site allow the identification of days when tremor in each source is active. The worst results were obtained in Shikoku, in spite of the high level of tremor activity observed there by others. This method requires a clear direct arrival of the S and P waves at the stations for coherence to be seen, so scattering and shear wave splitting are possible reasons for poor results there. Relatively wide station spacing, 19-30 km, is another possible reason. The best results were obtained in Tokai with stations STR, HRY and TYE spacing 18-19 km, and Kii Pen. with stations KRT, HYS and KAW spacing 15-22 km. In both of those areas the three station detectors see strong episodes of tremor. If detections with three stations are located by constraining them to the plate interface, a pattern of persistent sources is seen, with some intense sources. This is similar to what was seen in Cascadia. Detections with four stations give S and P arrival times of high accuracy. In Tokai the hypocenters form a narrow, 2-3 km thick, zone dipping to the north, consistent with the plate interface there. In Kii Pen. the hypocenters dip to the northwest in a thin, 2-3 km thick, zone but approximately 5 km shallower than a plate interface model for this area [Yoshioka and Murakami, GJI 2007]. The overlap of tremor sources in the 12 years analyzed here suggests relative hypocentral location errors as small as 2-3 km. We conclude that the methods developed in Cascadia will work in Japan but the typical spacing of HINET stations, ~20 km, is greater than the optimum distance found in analysis of data from Cascadia, 8 to 15 km.

  2. Direct-write X-ray lithography using a hard X-ray Fresnel zone plate.

    Science.gov (United States)

    Lee, Su Yong; Noh, Do Young; Lee, Hae Cheol; Yu, Chung-Jong; Hwu, Yeukuang; Kang, Hyon Chol

    2015-05-01

    Results are reported of direct-write X-ray lithography using a hard X-ray beam focused by a Fresnel zone plate with an outermost zone width of 40 nm. An X-ray beam at 7.5 keV focused to a nano-spot was employed to write arbitrary patterns on a photoresist thin film with a resolution better than 25 nm. The resulting pattern dimension depended significantly on the kind of underlying substrate, which was attributed to the lateral spread of electrons generated during X-ray irradiation. The proximity effect originated from the diffuse scattering near the focus and electron blur was also observed, which led to an increase in pattern dimension. Since focusing hard X-rays to below a 10 nm spot is currently available, the direct-write hard X-ray lithography developed in this work has the potential to be a promising future lithographic method.

  3. Investigating the deformation of upper crustal faults at the N-Chilean convergent plate boundary at different scales using high-resolution topography datasets and creepmeter measurements

    Science.gov (United States)

    Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.

    2012-04-01

    The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated

  4. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    Science.gov (United States)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  5. Linking geological evidence from the Eurasian suture zones to a regional Indian Ocean plate tectonic model

    Science.gov (United States)

    Gibbons, A.; Aitchison, J.; Müller, R.; Whittaker, J.

    2012-12-01

    We present a revised regional plate tectonic model for the Indian Ocean from the Late Jurassic to present, which assimilates both marine geophysical data constraining the seafloor spreading history as well as a variety of geological observations from the Eurasian collision zone. This model includes relative motion between Greater India, Sri Lanka, West Australia, East Antarctica, East Madagascar, the Seychelles and Argoland, a continental sliver which began migrating towards Eurasia in the Late Jurassic, forming the northern margins of Greater India and western Australia. Recently collected data offshore northwest Australia suggest that the majority of Greater India reached only halfway along the West Australian margin in an Early Mesozoic reconstruction, bounded by the Wallaby-Zenith Fracture Zone. The revised geometries and relative motion histories redefine the timing and nature of collisional events, as well as the history of back-arc basins and intra-oceanic arcs, such as the Kohistan-Ladakh intra-oceanic arc in northwest India and Pakistan. Abundant ophiolites have been identified throughout the Yarlung-Tsangpo Suture Zone, between the Indian-Himalaya and Tibet, several have boninitic compositions and almost all date to either the Mid Jurassic or late Early Cretaceous. Further evidence suggests that an intra-oceanic arc collided with Greater India before colliding with Eurasia. Our model features a transform boundary running north of East Africa, which initiated an oceanic arc following short-lived compression between the western and central Mesotethys in the Late Jurassic, coinciding with the initial motion of Argoland. The arc developed through extension and ophiolite generation until at least the mid-Cretaceous and consumed a narrow thinned sliver of West Argoland between ~120-65 Ma. The arc remained active in the same position until its eventual collision with Greater India ~55 Ma. The eastern portion of the intra-oceanic arc accreted to eastern Eurasia

  6. Sapphirine granulites from Panasapattu, Eastern Ghats belt, India: Ultrahigh-temperature metamorphism in a Proterozoic convergent plate margin

    Directory of Open Access Journals (Sweden)

    C.V. Dharma Rao

    2012-01-01

    of garnet compositions in the domains where some melt was retained. The post-peak evolution is constrained by a succession of melt-present reactions that occur at p < 10 kbar, inferred from micro-structural relations among various minerals. After high-temperature decompression from the metamorphic peak, the p–T path followed a near isobaric cooling stage to T < 900 °C. The UHT rocks investigated in this study occur within a continental collision suture which witnessed prolonged subduction–accretion history prior to the final collision. We correlate the extreme metamorphism and the stabilization of UHT mineral assemblages to heat and volatile input from an upwelled asthenosphere during subduction–collision tectonics in a Proterozoic convergent plate margin.

  7. Fabrication of laser deposited high-quality multilayer zone plates for hard X-ray nanofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Eberl, Christian; Döring, Florian; Liese, Tobias; Schlenkrich, Felix; Roos, Burkhard; Hahn, Matthias [Institut für Materialphysik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hoinkes, Thomas; Rauschenbeutel, Arno [Vienna Center for Quantum Science and Technology, TU Wien – Atominstitut, Stadionallee 2, 1020 Wien (Austria); Osterhoff, Markus; Salditt, Tim [Institut für Röntgenphysik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Krebs, Hans-Ulrich, E-mail: krebs@ump.gwdg.de [Institut für Materialphysik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-07-01

    Recently, we demonstrated unprecedented sub-5 nm point focusing of hard X-rays (at 7.9 keV) based on the combination of a high gain Kirkpatrick–Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP). This MZP was prepared by the combination of pulsed laser deposition (PLD) and focused ion beam (FIB). Despite the small focus size, the MZP's quality suffered from sufficient but comparatively low efficiency (2%). In this paper we discuss how to overcome limitations of MZP fabrication by PLD by investigating the material systems W/Si, W/ZrO{sub 2}, and Ta{sub 2}O{sub 5}/ZrO{sub 2}. We give a detailed description on the optimization processes for the deposition of smooth multilayers with highly precise layer thicknesses on a rotating wire. Furthermore, we present our latest results regarding a Ta{sub 2}O{sub 5}/ZrO{sub 2} MZP, which has been proven already to be a system of high potential in the very first experiments as the efficiency reached 6.9% (at 18 keV).

  8. Combined obliquity and precession pacing of western Pacific Intertropical Convergence Zone over the past 282,000 years

    Science.gov (United States)

    Shen, C. C.; Yi, L.; Lo, L.; Shi, Z.; Wei, K. Y.; Chou, C. J.; Chen, Y. C.; Chuang, C. K.; WU, C. C.; Mii, H. S.; Amakawa, H.; Burr, G.; Lee, S. Y.; DeLong, K. L.; Elderfield, H.

    2015-12-01

    The Intertropical convergence Zone (ITCZ) encompasses the heaviest rain belt on Earth. Few direct long-term records, especially in the Pacific, limit our understanding of long-term natural variability necessary to predict future ITCZ changes. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred from of rare earth elements (REEs) to Ca ratios in the planktonic foraminifer Globigerinoides ruber shell calcite, of a marine sedimentary core MD05-2925 (9o20.60'S, 151o27.54'E; water depth 1661 m), collected off the eastern coast of Papua New Guinea. Unlike the precession paradigm expressed in its East Asian counterpart, our record shows that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. This obliquity forcing could be primarily delivered by a cross-hemispherical thermal/pressure contrast, resulting from the asymmetric continental configuration between Asia and Australia in a coupled East Asian-Australian circulation system, supported by model simulations. Our finding suggests that the obliquity forcing may play a more important role in global hydroclimate cycles than previously thought.

  9. Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries

    Directory of Open Access Journals (Sweden)

    C. R. Maupin

    2013-10-01

    Full Text Available Observations and reconstructions of decadal-scale climate variability are necessary to place predictions of future global climate change into temporal context (Goddard et al., 2012. This is especially true for decadal-scale climate variability that originates in the Pacific Ocean (Deser et al., 2004; Dong and Lu, 2013. We focus here on the western tropical Pacific (Solomon Islands; ~ 9.5° S, ~ 160° E, a region directly influenced by: the South Pacific Convergence Zone (SPCZ, the West Pacific Warm Pool (WPWP, the Pacific Walker Circulation (PWC, and the Hadley Circulation. We calibrate δ18O variations in a fast growing stalagmite to local rainfall amount and produce a 600 yr record of rainfall variability from the zonally oriented, tropical portion of the SPCZ. We present evidence for large (~ 1.5 m, persistent and decade(s-long shifts in total annual rainfall amount in the Solomon Islands since 1416 ± 5 CE. The timing of the decadal changes in rainfall inferred from the 20th century portion of the stalagmite δ18O record coincide with previously identified decadal shifts in Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004. The 600 yr Solomons stalagmite δ18O record indicates that decadal oscillations in rainfall are a robust characteristic of SPCZ-related climate variability, which has important implications to water resource management in this region.

  10. High-Resolution P'P' Precursor Imaging of Nazca-South America Plate Boundary Zones and Inferences for Transition Zone Temperature and Composition

    Science.gov (United States)

    Gu, Y. J.; Schultz, R.

    2013-12-01

    Knowledge of upper mantle transition zone stratification and composition is highly dependent on our ability to efficiently extract and properly interpret small seismic arrivals. A promising high-frequency seismic phase group particularly suitable for a global analysis is P'P' precursors, which are capable of resolving mantle structures at vertical and lateral resolution of approximately 5 and 200 km, respectively, owing to their shallow incidence angle and small, quasi-symmetric Fresnel zones. This study presents a simultaneous analysis of SS and P'P' precursors based on deconvolution, Radon transform and depth migration. Our multi-resolution survey of the mantle near Nazca-South America subduction zone reveals both olivine and garnet related transitions at depth below 400 km. We attribute a depressed 660 to thermal variations, whereas compositional variations atop the upper-mantle transition zone are needed to explain the diminished or highly complex reflected/scattered signals from the 410 km discontinuity. We also observe prominent P'P' reflections within the transition zone, especially near the plate boundary zone where anomalously high reflection amplitudes result from a sharp (~10 km thick) mineral phase change resonant with the dominant frequency of the P'P' precursors. Near the base of the upper mantle, the migration of SS precursors shows no evidence of split reflections near the 660-km discontinuity, but potential majorite-ilmenite (590-640 km) and ilmenite-perovskite transitions (740-750 km) are identified based on similarly processed high-frequency P'P' precursors. At nominal mantle temperatures these two phase changes may be seismically indistinguishable, but colder mantle conditions from the descending Nazca plate, the presence of water and variable Fe contents may cause sufficient separation for a reliable analysis. In addition, our preliminary results provide compelling evidence for multiple shallow lower-mantle reflections (at ~800 km) along the

  11. Development of a soft x-ray plasma camera with a Fresnel zone plate to image laser produced plasmas

    Science.gov (United States)

    Kado, M.; Mori, M.; Nishiuchi, M.; Ishino, M.; Kawachi, T.

    2009-09-01

    A soft x-ray plasma camera operated at 3.35nm in the water window x-ray region is developed and demonstrated imaging gas jet plasmas of several spices produced with a 10TW Ti: sapphire laser. The plasma camera consists of a 300nm thick Ag/Ti/Si3N4 x-ray band pass filter with bandwidth of 1.43nm to cut visible light and also to reduce colour aberration of the Fresnel zone plate, a Fresnel zone plate with diameter of 1mm and outermost zone width of 300nm, and a soft x-ray CCD camera. The magnification of the plasma camera is 10. The soft x-ray plasma camera powered by a Fresnel zone plate is a very powerful tool to observe laser produced plasmas since it is 1000 times brighter and has 5 times higher spatial resolution comparing ordinary x-ray pinhole camera. The soft x-ray images of helium, nitrogen, argon, krypton, and xenon gas jet plasmas are obtained changing gas pressure from 0.01MPa to 1MPa.

  12. Style of Plate Spreading Derived from the 2008-2014 Velocity Field Across the Northern Volcanic Zone of Iceland

    Science.gov (United States)

    Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.

    2015-12-01

    The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most

  13. Numerical Study of the Intertropical Convergence Zone Over the Indian Ocean During the 1997 and 1998 Northeast Monsoon Episodes

    Science.gov (United States)

    Roswintiarti, O.; Raman, S.; Mohanty, U. C.

    - The hydrostatic Naval Research Laboratory/North Carolina State University (NRL/NCSU) model was used to study the mesoscale dynamics and diurnal variability of the Intertropical Convergence Zone (ITCZ) over the Indian Ocean in the short-range period. To achieve this objective the initial conditions from two northeast monsoon episodes (29 January, 1997 and 29 January, 1998) were run for 48-hour simulations using a triple-nested grid version of the model with 1.5°×1.5°, 0.5°×0.5° and 0.17°×0.17° resolutions. The 1997 case represents a typical northeast monsoon episode, while the 1998 case depicts an abnormal monsoon episode during an El Niño event.Comparisons between the model-produced and analyzed mean circulation, wind speed, and associated rainfall for different spatial scales are presented. During the active northeast monsoon season in 1997, the major low-level westerly winds and associated high rainfall rates between 0° and 15°S were simulated reasonably well up to 24 hours. During the 1998 El Niño event, the model was capable of simulating weak anomalous easterly winds (between 0° and 15°S) with much lower rainfall rates up to 48 hours. In both simulations, the finest grid size resulted in largest rainfall rates consistent with Outgoing Longwave Radiation data.The model performance was further evaluated using the vertical profiles of the vertical velocity, the specific humidity and temperature differences between the model outputs and the analyses. It is found that during a typical northeast monsoon year, 1997, the water vapor content in the middle troposphere was largely controlled by the low-level convergence determined by strong oceanic heat flux gradient. In contrast, during the 1998 El Niño year moisture was present only in the lower troposphere. Due to strong subsidence associated with Walker circulation over the central and eastern Indian Ocean, deep convection was not present. Finally, the diurnal variations of the maximum rainfall

  14. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  15. Characteristics of plate-like and color-zoning cubic boron nitride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shuang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Hou, Lixin, E-mail: houlixin_2000@126.com [College of Information and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118 (China); Liu, Xiuhuan [College of Telecommunication Engineering, Jilin University, 5372 Nanhu Road, Changchun 130012 (China); Gao, Yanjun; Li, Xinlu; Wang, Qi [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Chen, Zhanguo, E-mail: czg@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Jia, Gang; Zheng, Jie [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-11-15

    The polarities of a kind of plate-like and color-zoning cubic boron nitride (cBN) crystal were extensively investigated by microscopy, chemical etching, XPS, Raman scattering, and current–voltage measurements. The {1 1 1}B faces and {1"¯1"¯1"¯}N faces of the cBN samples can be easily distinguished by optical microscope as there are a lot of defects incorporate in {1"¯1"¯1"¯}N sectors serving as the color centers, while the {1 1 1}B sectors have less defects and are nearly colorless. Both XPS and Raman spectra also revealed the uneven distributions of N vacancies and substitutional impurities in cBN crystals. The determination of {1 1 1}B faces and {1"¯1"¯1"¯}N faces can also be verified by the results of the chemical etching because the {1"¯1"¯1"¯}N faces have much faster etch rates than the {1 1 1}B faces. According to XPS, the {1 1 1}B faces have more C and O contaminations than the {1"¯1"¯1"¯}N faces, however the {1"¯1"¯1"¯}N faces have larger atomic ratio of B:N after surface cleaning by Ar{sup +} sputtering. In the Raman spectra of the {1"¯1"¯1"¯}N sectors of cBN, several small broad infrared-active phonon bands emerge nearby TO and LO modes because of the disorder-activated Raman scattering. As for the {1 1 1}B sectors, this phenomenon disappears. In addition, the {1 1 1}B faces have much smaller leakage current than the {1"¯1"¯1"¯}N faces, which indicates that the {1 1 1}B sectors have higher crystalline quality.

  16. Active flexural-slip faulting: A study from the Pamir-Tian Shan convergent zone, NW China

    Science.gov (United States)

    Li, Tao; Chen, Jie; Thompson, Jessica A.; Burbank, Douglas W.; Yang, Xiaodong

    2015-06-01

    The flexural-slip fault (FSF), a type of secondary fault generated by bed-parallel slip, occurs commonly and plays an important role in accommodating fold growth. Although the kinematics and mechanics of FSFs are well studied, relatively few field observations or geometric models explore its geomorphic expression. In the Pamir-Tian Shan convergent zone, NW China, suites of well-preserved FSF scarps displace fluvial terraces in the Mingyaole and Wulagen folds. Integrating interpretations of Google Earth images, detailed geologic and geomorphic mapping, and differential GPS measurements of terrace surfaces, we summarize geomorphic features that typify these faults and create kinematic models of active flexural-slip faulting. Our study indicates the following: (i) FSF scarps commonly occur near synclinal hinges, irrespective of whether (a) the dip direction of beds on either side of the hinge is unidirectional or in opposite directions, (b) the hinge is migrating or fixed, or (c) the hinge shape is narrow and angular or wide and curved. (ii) Active FSFs are likely to produce higher scarps on steeper beds, whereas lower or no topographic scarps typify gentler beds. (iii) Tilt angles of the terrace surface displaced above FSFs progressively decrease farther away from the hinge, with abrupt changes in slope coinciding with FSF scarps; the changes in tilt angle and scarp height have a predictable geometric relationship. (iv) Active FSFs can accommodate a significant fraction of total slip and play a significant role in folding deformation. (v) Active FSFs may be used to assess seismic hazards associated with active folds and associated blind thrusts.

  17. A Bayesian approach for Inter-seismic Inter-plate Coupling Probabilities for the Central Andes Subduction Zone

    Science.gov (United States)

    Ortega Culaciati, F. H.; Simons, M.

    2009-12-01

    We aim to characterize the apparent extent of plate coupling on subduction zone megathrusts with the eventual goal of understanding spatial variations of fault zone rheology. In this study we approach the problem from a Bayesian perspective, where we ask not for a single optimum model, but rather for a posteriori estimates of the range of allowable models, exploiting the full potential of Bayesian methods to completely characterize the model parameter space. Adopting a simple kinematic back-slip model and a 3D geometry of the inter-plate contact zone, we use the Bayesian approach to provide the inter-seismic inter-plate coupling probabilities that are consistent with physically plausible a-priori information and available geodetic measurements. We highlight the importance of using the vertical component of the velocity field to properly constrain the downdip limit of the coupled zone, and also we show how the chosen parameterization of the model plays an important role along with the a-priori, and a-posteriori information on the model parameters. We apply this methodology in the Chilean-Peruvian subduction zone (12S - 24S) with the desire to understand the state of inter-seismic coupling on that margin. We obtain patch like features for the probability of 100% apparent inter-seismic coupling with higher values located between 15km and 60km depth. The larger of these features are located in the regions associated with the rupture process of the 2001 (Mw 8.4) Arequipa and the 2007 (Mw 8.0) Pisco Earthquakes, both occurred after the time period where the measurements take place; and the region identified as the Arica bend seismic gap, which has not experienced a large earthquake since 1877.

  18. Plate boundary forces in the vicinity of Trinidad-the-transition from transpression to transtension in the Southern Caribbean plate boundary zones

    Energy Technology Data Exchange (ETDEWEB)

    Algar, S.T.; Pindell, J.L. (Dartmouth College, Hanover, NH (United States))

    1993-02-01

    Deformation in the southern Caribbean plate boundary zones as recorded in the Northern Range of Trinidad initiated in the Oligocene with northward vergent gravity sliding of Northern Range sediments due to uplift and oversteepening of the previously passive margin by the eastward migration of the Caribbean flexural forebulge. Progressive east-southeast transvergence of the Caribbean Plate with respect to South America overthrust incorporated the Northern Range sediments into the Caribbean accretionary prism, thrusting them south-southeast to produce a Middle Miocene transpressive foreland fold and thrust belt in southern Trinidad. Late Miocene deformation within Trinidad was increasingly dominated by right-lateral strike-slop (RLSS) faulting, at the expense of transpressive compressional features. Right-stepping of RLSS motion initiated the Gulf of Paria and Caroni pull-apart basins, Since Early Pliocene these basins and other areas to the north of Trinidad have undergone north-south extension in addition to east-west trending RLSS. Such extension caused the northward withdrawal of Caribbean terranes from atop of the Northern Range, Resulting in rapid isostatically induced uplift (approximately 0.5 mmyr[sup -1]). This change in deformation style may relate to a hitherto unrecognized shift in the relative motion of the eastern Caribbean Plate with respect to South America: from east-southeast-directed transpression to east-northeast-directed transtension.

  19. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  20. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  1. Astrometry with "Carte du Ciel" plates, San Fernando zone. I. Digitization and measurement using a flatbed scanner

    CERN Document Server

    Vicente, B; Garzón, F

    2007-01-01

    We present an original method of digitizing and astrometrically reducing "Carte du Ciel" plate material using an inexpensive flatbed scanner, to demonstrate that for this material there is an alternative to more specialized measuring machines that are very few in number and thus not readily available. The sample of plates chosen to develop this method are original "Carte du Ciel" plates of the San Fernando zone, photographic material with a mean epoch 1903.6, and a limiting photographic magnitude ~14.5, covering the declination range of -10 < dec < -2. Digitization has been made using a commercial flatbed scanner, demonstrating the internal precision that can be attained with such a device. A variety of post-scan corrections are shown to be necessary. In particular, the large distortion introduced by the non-uniform action of the scanner is modelled using multiple scans of each plate. We also tackle the specific problems associated with the triple-exposure images on some plates and the grid lines presen...

  2. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  3. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  4. Free Vibration Analysis of Patch Repaired Plates with a Through Crack by p-Convergent Layerwise Element

    Directory of Open Access Journals (Sweden)

    Jae S. Ahn

    2014-01-01

    Full Text Available The high-order layerwise element models have been used for damaged plates and shells in the presence of singularities such as crack, cutout, and delamination. In this study, the extension of a proposed finite element model has been tested for free vibration analysis of composite laminated systems. For the elements, three-dimensional displacement fields can be captured by layer-by-layer representation. For the elements, higher-order shape functions are derived by combination of one- and two-dimensional shape functions based on higher-order Lobatto shape functions, not using pure higher-order three-dimensional shape functions. The present model can relieve difficulty of aspect ratios in modeling very thin thickness of bonding layer. For verification of the model, natural frequencies and corresponding mode shapes are calculated and then compared with reference values for uncracked and cracked plates. Also, the vibration characteristics of one-sided patch repaired plates with a through internal crack are investigated with respect to variation of crack length, size and thickness of patch, and shear modulus of adhesive, respectively.

  5. Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission

    Science.gov (United States)

    Seely, John; Holland, Glenn; Bremer, James C.; Zukowski, Tim; Feser, Michael; Feng, Yan; Kjornrattanawanich, Benjawan; Goray, Leonid

    2006-08-01

    The diffraction efficiencies of a Fresnel zone plate (ZP), fabricated by Xradia Inc. using the electron-beam writing technique, were measured using polarized, monochromatic synchrotron radiation in the extreme ultraviolet wavelength range 3.4-22 nm. The ZP had 2 mm diameter, 3330 zones, 150 nm outer zone width, and a 1 mm central occulter. The ZP was supported by a 100 nm thick Si 3N 4 membrane. The diffraction patterns were recorded by CMOS imagers with phosphor coatings and with 5.2 μm or 48 μm pixels. The focused +n orders (n=1-4), the diverging -1 order, and the undiffracted 0 order were observed as functions of wavelength and off-axis tilt angle. Sub-pixel focusing of the +n orders was achieved. The measured efficiency in the +1 order was in the 5% to 30% range with the phase-shift enhanced efficiency occurring at 8.3 nm where the gold bars are partially transmitting. The +2 and higher order efficiencies were much lower than the +1 order efficiency. The efficiencies were constant when the zone plate was tilted by angles up to +/-1° from the incident radiation beam. This work indicates the feasibility and benefits of using zone plates to measure the absolute EUV spectral emissions from solar and laboratory sources: relatively high EUV efficiency in the focused +1 order, good out-of-band rejection resulting from the low higher-order efficiencies and the ZP focusing properties, insensitivity to (unfocused) visible light scattered by the ZP, flat response with off-axis angle, and insensitivity to the polarization of the radiation based on the ZP circular symmetry. EUV sensors with Fresnel zone plates potentially have many advantages over existing sensors intended to accurately measure absolute EUV emission levels, such as those implemented on the GOES N-P satellites that use transmission gratings which have off-axis sensitivity variations and poor out-of-band EUV and visible light rejection, and other solar and laboratory sensors using reflection gratings which

  6. Characteristics of plate-like and color-zoning cubic boron nitride crystals

    Science.gov (United States)

    Feng, Shuang; Hou, Lixin; Liu, Xiuhuan; Gao, Yanjun; Li, Xinlu; Wang, Qi; Chen, Zhanguo; Jia, Gang; Zheng, Jie

    2013-11-01

    The polarities of a kind of plate-like and color-zoning cubic boron nitride (cBN) crystal were extensively investigated by microscopy, chemical etching, XPS, Raman scattering, and current-voltage measurements. The {1 1 1}B faces and {1¯ 1¯ 1¯}N faces of the cBN samples can be easily distinguished by optical microscope as there are a lot of defects incorporate in {1¯ 1¯ 1¯}N sectors serving as the color centers, while the {1 1 1}B sectors have less defects and are nearly colorless. Both XPS and Raman spectra also revealed the uneven distributions of N vacancies and substitutional impurities in cBN crystals. The determination of {1 1 1}B faces and {1¯ 1¯ 1¯}N faces can also be verified by the results of the chemical etching because the {1¯ 1¯ 1¯}N faces have much faster etch rates than the {1 1 1}B faces. According to XPS, the {1 1 1}B faces have more C and O contaminations than the {1¯ 1¯ 1¯}N faces, however the {1¯ 1¯ 1¯}N faces have larger atomic ratio of B:N after surface cleaning by Ar+ sputtering. In the Raman spectra of the {1¯ 1¯ 1¯}N sectors of cBN, several small broad infrared-active phonon bands emerge nearby TO and LO modes because of the disorder-activated Raman scattering. As for the {1 1 1}B sectors, this phenomenon disappears. In addition, the {1 1 1}B faces have much smaller leakage current than the {1¯ 1¯ 1¯}N faces, which indicates that the {1 1 1}B sectors have higher crystalline quality.

  7. Along-Strike Electrical Conductivity Variations in the Incoming Plate and Shallow Forearc of the Cascadia Subduction Zone

    Science.gov (United States)

    Key, K.; Bedrosian, P.; Egbert, G. D.; Livelybrooks, D.; Parris, B. A.; Schultz, A.

    2015-12-01

    The Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment was carried out to study the nature of the seismogenic locked zone and the down-dip transition zone where episodic tremor and slip (ETS) originates. This amphibious magnetotelluric (MT) data set consists of 8 offshore and 15 onshore profiles crossing from just seaward of the trench to the western front of the Cascades, with a north-south extent spanning from central Oregon to central Washington. The 71 offshore stations and the 75 onshore stations (red triangles in the image below) fit into the broader context of the more sparsely sampled EarthScope MT transportable array (black triangles) and other previous and pending MT surveys (other symbols). These data allows us to image variations in electrical conductivity along distinct segments of the Cascadia subduction zone defined by ETS recurrence intervals. Since bulk conductivity in this setting depends primarily on porosity, fluid content and temperature, the conductivity images created from the MOCHA data offer unique insights on fluid processes in the crust and mantle, and how the distribution of fluid along the plate interface relates to observed variations in ETS behavior. This abstract explores the across- and along-strike variations in the incoming plate and the shallow offshore forearc. In particular we examine how conductivity variations, and the inferred fluid content and porosity variations, are related to tectonic segmentation, seismicity and deformation patterns, and arc magma variations along-strike. Porosity inferred in the forearc crust can be interpreted in conjunction with active and passive seismic imaging results and may provide new insights on the origin of recently observed extremely high heat flow values. A companion abstract (Parris et al.) examines the deeper conductivity structure of the locked and ETS zones along the plate interface in order to identify correlations between ETS occurrence rates and inferred

  8. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence

  9. The Asian Monsoon Links to Solar Changes and the Intertropical Convergence Zone and 1300 Years of Chinese Human Susceptibility

    Science.gov (United States)

    Yu, E.; Hsu, Y.; Lee, T.

    2011-12-01

    Here we present a new paleoclimatic record from a sediment core recovered in Lake Liyutan in central Taiwan over the last 1300 years. The age model is based on 2 AMS 14C dates. Adjustments of age were using the well-dated records from a near by lake sediment core. The Lake Liyutan sediments record the strength of the summer monsoon in two independent ways: (1) the magnetic parameters (ARM/χ, ARM, anhysteresis remenent magnetization; χ, Volume susceptibility) and magnetic susceptibility, and (2) total organic carbon content, organic C/N elemental ratio and δ13Corg of the sediments as a result of changes in different organic matter origins and terrigenous detritus dilution due to precipitation. All the proxy records are 10 to 30- year-resolution. Weaker summer monsoon phases reconstructed from the Lake Liyutan correlate with higher δ18O at Dongge and Hulu caves, which indicates lower summer precipitation rates. Moreover, it is interesting to find that the strong winter monsoon from the Lake Huguang Maar records show a synchronous relationship with weaker summer monsoon from the caves and the Lake Liyutan. From the coincidence in timing, these records were explained by migrations in the intertropical convergence zone. In addition, the weak Asian summer monsoon in the Lake Liyutan corresponds with lowering Northern Hemisphere summer insolation recorded at Dongge cave. Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. We note that, on the basis of our new lake record, major changes in Chinese dynasties occurred when the summer monsoon strength was weaker and rainfall was reduced. The Tang dynasty began to ebb in the eighth century, and it fully collapsed in AD907, then the dynastic transitions to the Five Dynasties and Ten Kingdoms period. The weak summer monsoon and reduced rainfall was indicated in the coincidence in timing of the sediment core LYT-3A from Lake Liyutan during 1100 - 1000BP. In

  10. STRUCTURE OF THE LITHOSPHERE AND SEISMOTECTONIC DEFORMATIONS IN CONTACT ZONE OF LITHOSPHERIC PLATES IN THE SUMATRA ISLAND REGION

    Directory of Open Access Journals (Sweden)

    O. A. Kuchay

    2015-09-01

    Full Text Available The inversion seismic tomography algorithm (ITS was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8 are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0 ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velo­city anomalies is abruptly changed. We calculated seismotectonic deformations (STD from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study. 

  11. Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles

    Science.gov (United States)

    Gailler, Audrey; Charvis, Philippe; Flueh, Ernst R.

    2007-08-01

    We describe the deep structure of the south Colombian-northern Ecuador convergent margin using travel time inversion of wide-angle seismic data recently collected offshore. The margin appears segmented into three contrasting zones. In the North Zone, affected by four great subduction earthquakes during the 20th century, normal oceanic crust subducts beneath the oceanic Cretaceous substratum of the margin underlined by seismic velocities as high as 6.0-6.5 km/s. In the Central Zone the subducting oceanic crust is over-thickened beneath the Carnegie Ridge. A steeper slope and a well-developed, high velocity, Cretaceous oceanic basement characterizes the margin wedge. This area coincides with a gap in significant subduction earthquake activity. In the South Zone, the subducting oceanic crust is normal. The fore-arc is characterized by large sedimentary basins suggesting significant subsidence. Velocities in the margin wedge are significantly lower and denote a different nature or a higher degree of fracturing. Even if the distance between the three profiles exceeds 150 km, the structural segmentation obtained along the Ecuadorian margin correlates well with the distribution of seismic activity and the neotectonic zonation.

  12. Sr isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy

    Science.gov (United States)

    Vollmer, R.; Johnston, Kate; Ghiara, M. R.; Lirer, L.; Munno, Rosalba

    1981-12-01

    Mineral phases of two-clinopyroxene alkaline lavas from continental rift and plate margin volcanism in South Italy have been analyzed for their Sr isotopic composition and concentration. Sr isotope disequilibria are observed between megacrysts and groundmass in all seven analysed Campanian potassic lavas, but not in a lava from Stromboli, a volcano in the Eolian arc. Variations in 87Sr/ 86Sr ratios for different phases in the lavas are likely to reflect primary Sr isotope variations in the primitive lavas (rather than crustal contamination effects). It is suggested that the observed mineral disequilibria point to the intimate association of a range of primary magmas and small-scale source heterogeneities for the Campanian volcanism. The lack of mineral disequilibria for Stromboli suggests that here source heterogeneities are absent or else exist on a very much larger scale. It is therefore unlikely that there is any genetic connection between these two types of alkaline volcanism in South Italy.

  13. Crustal Architecture at the Collision Zone Between Rivera and North American Plates at the Jalisco Block: Tsujal Project

    Science.gov (United States)

    Dañobeitia, Juanjo; Bartolomé, Rafael; Prada, Manel; Nuñez-Cornú, Francisco; Córdoba, Diego; Bandy, William L.; Estrada, F.; Cameselle, Alejandra L.; Nuñez, Diana; Castellón, Arturo; Alonso, José Luis; Mortera, Carlos; Ortiz, Modesto

    2016-09-01

    Processing and analysis of new multichannel seismic records, coincident with wide-angle seismic profiles, acquired in the framework of the TsuJal project allow us to investigate in detail the complex structure of the oceanic domain in the collision zone between Rivera Plate and Block Jalisco at its northern termination. The subducting Rivera Plate, which is overridden by the North American Plate-Jalisco Block, is clearly identified up to 21.5°N (just south of Maria Magdalena Island) as a two clear reflections that we interpret as the interplate and Moho discontinuities. North of the Tres Marias Islands the seismic images display a different tectonic scenario with structures that are consistent with large faulting and rifted margin. A two-dimensional velocity approach for the crustal geometry is achieved using joint refraction/reflection travel time tomography, the uncertainty of the results is assessed by means of Monte Carlo analysis. Our results show an average oceanic crustal thickness of 6-7 km with a moderate increase towards the Jalisco Block, an anomalous thick layers (~3.0 km) displaying a relatively low velocity (~5.5 km/s) underneath Maria Magdalena Rise, and an estimated Moho depth deeper than 15 km in the collision zone between Rivera Plate and Jalisco Block. We have also determined an anomalous crust on the western flank of the Tres Marias Islands, which may be related to the initial phases of continental breakup of the Baja California Peninsula and Mexico mainland. High-resolution bathymetry provides remarkable images of intensive slope instabilities marked by relatively large slides scars of more than 40 km2 extent, and mass-wasting deposits probably triggered by the intense seismicity in the area.

  14. Crustal Architecture at the Collision Zone Between Rivera and North American Plates at the Jalisco Block: Tsujal Project

    Science.gov (United States)

    Dañobeitia, Juanjo; Bartolomé, Rafael; Prada, Manel; Nuñez-Cornú, Francisco; Córdoba, Diego; Bandy, William L.; Estrada, F.; Cameselle, Alejandra L.; Nuñez, Diana; Castellón, Arturo; Alonso, José Luis; Mortera, Carlos; Ortiz, Modesto

    2016-10-01

    Processing and analysis of new multichannel seismic records, coincident with wide-angle seismic profiles, acquired in the framework of the TsuJal project allow us to investigate in detail the complex structure of the oceanic domain in the collision zone between Rivera Plate and Block Jalisco at its northern termination. The subducting Rivera Plate, which is overridden by the North American Plate-Jalisco Block, is clearly identified up to 21.5°N (just south of Maria Magdalena Island) as a two clear reflections that we interpret as the interplate and Moho discontinuities. North of the Tres Marias Islands the seismic images display a different tectonic scenario with structures that are consistent with large faulting and rifted margin. A two-dimensional velocity approach for the crustal geometry is achieved using joint refraction/reflection travel time tomography, the uncertainty of the results is assessed by means of Monte Carlo analysis. Our results show an average oceanic crustal thickness of 6-7 km with a moderate increase towards the Jalisco Block, an anomalous thick layers (~3.0 km) displaying a relatively low velocity (~5.5 km/s) underneath Maria Magdalena Rise, and an estimated Moho depth deeper than 15 km in the collision zone between Rivera Plate and Jalisco Block. We have also determined an anomalous crust on the western flank of the Tres Marias Islands, which may be related to the initial phases of continental breakup of the Baja California Peninsula and Mexico mainland. High-resolution bathymetry provides remarkable images of intensive slope instabilities marked by relatively large slides scars of more than 40 km2 extent, and mass-wasting deposits probably triggered by the intense seismicity in the area.

  15. Yes-associated protein 65 (YAP expands neural progenitors and regulates Pax3 expression in the neural plate border zone.

    Directory of Open Access Journals (Sweden)

    Stephen T Gee

    Full Text Available Yes-associated protein 65 (YAP contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2(+ and neural plate border zone (pax3(+, while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland, as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF at a highly conserved, previously undescribed, TEAD-binding site within the 5' regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the

  16. Wavelength agile nonmechanical laser beam steering from Fresnel zone plates imprinted on a liquid crystal spatial light modulator

    Science.gov (United States)

    Lindle, James R.; Watnik, Abbie T.; Cassella, Vincent A.

    2016-09-01

    Multibeam, multicolor, large-angle beam-steering is demonstrated in the visible spectral region by imprinting Fresnel zone plates (FZP) on a liquid crystal spatial light modulator. Spectral dispersion, both diffractive and refractive, is observed but does not prevent the use of this technology for beam steering applications. The experimental results show that while diffractive dispersion dominates over refractive dispersion, wavelength-specific FZPs can be rendered to direct those beams on target, either simultaneously or consecutively. Only a slight correction in the FZP positon is necessary to compensate for refractive dispersion. The position, intensity, and wavelength of each beam can be controlled independently.

  17. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    Science.gov (United States)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  18. Thinning and polishing of cross-section of depth-graded WSi2/Si multilayer for linear zone plate application

    Institute of Scientific and Technical Information of China (English)

    Qiushi Huang; Jingtao Zhu; Haochuan Li; Zhengxiang Shen; Xiaoqiang Wang; Zhanshan Wang; Yongjian Tang

    2012-01-01

    A linear zone plate named multilayer laue lens (MLL) is fabricated using a depth-graded multilayer structure.The lens shows considerable potential in focusing an X-ray beam into a nanometer scale with high efficiency.In this letter,a depth-graded multilayer consisting of 324 alternating WSi2 and Si layers with a total thickness of 7.9 μm is deposited based on the thickness sequence according to the demands of the zone plate law. Subsequently,the multilayer sample is sliced and thinned to an ideal depth along the cross-section direction using raw abrasives and diamond lapping.Finally,the cross-section is polished by a chemical mechanical polishing (CMP) technique to remove the damages and improve the surface smoothness. The final depth of the MLL is approximately 7 μm with an achieved aspect ratio greater than 400. Results of scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicate that interfaces are sharp,and the multilayer structure remains undamaged after the thinning and polishing processes.The surface roughness achieved is 0.33 nm.

  19. Astrometry with "Carte du Ciel" plates, San Fernando zone. II. CdC-SF: a precise proper motion catalogue

    CERN Document Server

    Vicente, Belen; Garzon, Francisco; Girard, Terrence M

    2009-01-01

    The historic plates of the "Carte du Ciel", an international cooperative project launched in 1887, offer valuable first-epoch material for the determination of absolute proper motions. We present the CdC-SF, an astrometric catalogue of positions and proper motions derived from the "Carte du Ciel" plates of the San Fernando zone, photographic material with a mean epoch of 1901.4 and a limiting magnitude of V~16, covering the declination range of -10deg < declination < -2deg. Digitization has been made using a conventional flatbed scanner. Special techniques have been developed to handle the combination of plate material and the large distortion introduced by the scanner. The equatorial coordinates are on the ICRS defined by Tycho-2, and proper motions are derived using UCAC2 as second-epoch positions. The result is a catalogue with positions and proper motions for 560000 stars, covering 1080 degrees squared. The mean positional uncertainty is 0.20" (0.12" for well-measured stars) and the proper-motion un...

  20. Space geodetic observations of nazca-south america convergence across the central andes

    Science.gov (United States)

    Norabuena; Leffler-Griffin; Mao; Dixon; Stein; Sacks; Ocola; Ellis

    1998-01-16

    Space geodetic data recorded rates and directions of motion across the convergent boundary zone between the oceanic Nazca and continental South American plates in Peru and Bolivia. Roughly half of the overall convergence, about 30 to 40 millimeters per year, accumulated on the locked plate interface and can be released in future earthquakes. About 10 to 15 millimeters per year of crustal shortening occurred inland at the sub-Andean foreland fold and thrust belt, indicating that the Andes are continuing to build. Little (5 to 10 millimeters per year) along-trench motion of coastal forearc slivers was observed, despite the oblique convergence.

  1. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic.

    Science.gov (United States)

    Døssing, Arne; Japsen, Peter; Watts, Anthony; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans

    2016-04-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone - East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of syn-rift deposition in the deep-sea basins and onset of: (i) thermo-mechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf-progradation on the NE Greenland margin. Given an estimated middle-to-late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the East and West Greenland margins. The correlation between margin uplift and plate-motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.

  2. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific

    Science.gov (United States)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)

    1984-01-01

    A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.

  3. Revisiting the Numerical Convergence of Cohesive-Zone Models in Simulating the Delamination of Composite Adhesive Joints by Using the Finite-Element Analysis

    Science.gov (United States)

    Liu, P. F.; Gu, Z. P.; Hu, Z. H.

    2016-11-01

    Delamination is the dominating failure mechanism in composite adhesive joints. A deep insight into the delamination failure mechanism requires advanced numerical methods. Currently, cohesive-zone models (CZMs), in combination with the finite-element analysis (FEA), have become powerful tools for modeling the initiation and growth of delaminations in composites. However, ensuring the numerical convergence in the CZMs used for a delamination analysis of three-dimensional (3D) composite structures is always a challenging issue due to the "snap-back" instability in the nonlinear implicit FEA, which arises mainly from the cohesive softening behavior. Based on the midplane interpolation technique, first numerical techniques for implementing 3D bilinear and exponential CZMs by using ABAQUS-UEL (user element subroutine) are developed in this paper. In particular, a viscous regularization by introducing the damping effect into the stiffness equation is used to improve the convergence. Two examples, a single-lap composite joint and a composite skin/stiffener panel under tension, demonstrate the numerical technique developed. Then, the effect of cohesion parameters on the numerical convergence based on the viscous regularization is studied.

  4. Age, tectonic evolution and origin of the Aswa Shear Zone in Uganda: Activation of an oblique ramp during convergence in the East African Orogen

    Science.gov (United States)

    Saalmann, K.; Mänttäri, I.; Nyakecho, C.; Isabirye, E.

    2016-05-01

    Shear Zone activation is linked to underthrusting of the Congo Craton and coeval high-grade metamorphism and intense deformation in the orogen interior. During E-W convergence between ca. 690 and 650 Ma, the NE-dipping ASZ was activated as an oblique ramp leading to deflection of the transport direction and concentration of non-coaxial strain and sinistral shear along the shear zone system. During progressive convergence, between ca. 645 and 620 Ma, sinistral shearing along ASZ changed to ductile-brittle deformation mechanisms, while thrusting took place in Pan-African belts in eastern and western Uganda. Late-orogenic brittle sinistral reactivation of the ASZ can be regarded as the result of continent collision and closure of the Mozambique ocean further to the east, that potentially caused lateral escape manifested in NW-SE striking sinistral shear zones in Kenya and the southern Arabina-Nubian Shield between 620 and 570 Ma.

  5. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  6. Relation of Isotope Geochemical Steep Zones with Geophysical Fields and Tectonics in the Junction Area of the Cathaysian, Yangtze and Indochina Plates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through lead isotope geochemical mapping in the Yunnan-Guizhou area geochemical steep zones (GSZ) have been established, which clearly reveal the junction relationship of the Cathaysian, Yangtze and Indo-China plates. GSZ are closey related to gravity Moho gradient zones and lithospheric thickness. The GSZ between the Yangtze and Cathaysian plates is consistent with the Shizong-Mile tectonic belt, where island arc basalts are well developed. The Yangtze-Indo-China GSZ is parallel to the Jingdong-Mojiang volcanic belt in rift-island arc environments. The evidence of geology, geophysics and geochemistry all indicates that Cathaysia was subducted towards the Yangtze plate and that the Yangtze plate was underthrust beneath the Indo-China, which took place from the Early Carboniferous to the Early Triassic.

  7. Fabrication of self-standing binary Gab or zone plate and its single order diffraction%自支撑二值化Beynon-Gab or波带片的制备及其单级聚焦特性∗

    Institute of Scientific and Technical Information of China (English)

    李兆国; 孟令彪; 周民杰; 刁凯迪; 易勇; 朱效立; 吴卫东; 张继成

    2016-01-01

    The Gabor zone plate is an ideal zone plate with single focus spot, which has the potential applications in spec-troscopy, X-ray imaging, etc. However, the Gabor zone plate is very difficult to prepare because of its sinusoidal transmission characteristic, thereby restricting its applications. Traditionally, the zone plate is prepared on the trans-parent substrate such as quartz glass, polyimide, etc. This restricts the applications of Gabor zone plates in the extreme ultraviolet and soft X-ray frequency band due to the strong absorption of quartz and polyimide in such bands. In this work, we report a method of preparing the self-standing binary Gabor zone plate by using the focused ion beam direct writing. By combining the techniques of focused ion beam and chemical wet etching, the binary Gabor zone plate with self-standing and curved structure is fabricated. The main characteristic parameters of the Gabor zone plate are as follows: the diameter of 1400 µm, the radius of the first zone 90 µm, the outset zone number of 60, and a gold absorber thickness of 500 nm. The focusing properties of the self-standing binary Gabor zone plate are measured at different transfer distances with a 355 nm laser. The experimental results show that the high-order focus is removed with only the first-order focus spot reserved, and the focal distance is 2.28 cm, which is in agreement with the theoretical value of 2.41 cm. The self-standing Gabor zone plate is free from the influence of the substrate. Therefore, this kind of binary Gabor zone plate has potential applications in ultraviolet and soft X-ray regions.

  8. High spatial resolution X-UV Fresnel zone plates imaging; Imagerie a haute resolution spatiale dans le domaine X-UV a l'aide de lentilles a zone de Fresnel

    Energy Technology Data Exchange (ETDEWEB)

    Pichet-Thomasset, M

    1999-07-01

    The goal of this work is to study the capabilities of imaging of Fresnel zone plates in the 1.5. and 2 keV X-ray range for the imaging of laser-produced plasmas. The diagnostic is composed of a Fresnel zone plate with good imaging capabilities and a multilayer mirror to select the spectral emission bandwidth of the plasma we want to study. This diagnostic was evaluated at the Centre d'Etudes de Limeil-Valenton experiments to study spatial resolution with this kind of X-ray source. The images we obtained showed that there is no geometric aberrations over an object field of several millimetre. Fresnen zone plates are often used for monochromatic biological objects imaging in the water window around 400 eV but they offer large prospects for laser produced plasma imaging. (author)

  9. Complete structural analysis of the Upper plate of Attica metamorphic core complex (Sub-Pelagonian Zone, Internal Hellenides, Central Greece)

    Science.gov (United States)

    Diamantopoulos, A.

    2009-04-01

    Two structural plates compose the Miocene Cordillera-type core complex of Attica, separated by a km-scale detachment fault (Diamantopoulos 2005, Diamantopoulos 2006). The Upper Plate contains rocks of the Sub-Pelagonian Zone and the Neogene basin of Athens. The Lower Plate includes Neogene basins developed onto Late Cenozoic a-type metamorphic domes. This work analyzes the geometry and the kinematic path of flow of rock masses of the Sub-Pelagonian rocks from the northern parts of Penteli mountain up to the Gulf of Alkyonides. The UP comprises Permo-Triassic rocks, Triassic-Jurassic carbonates and Late Jurassic melange, Mesozoic serpentinites containing Fe-Ni rocks, occurrences of carbonates and radiolarites, Cretaceous limestones as well as Paleocene flysch. A 3D structural analysis in all the scales concludes that: a) Multiple steep- and low-angle cataclastic shear zones define the boundaries among distinctive Permo-Triassic rocks, among Triassic-Jurassic rocks and Permo-Triassic rocks, among Permo-Triassic rocks and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and serpentinites, among serpentinites and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic mélange, among Jurassic mélange and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic radiolarites, among Cretaceous and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Fe-Ni rocks, among Cretaceous and Fe-Ni rocks, among Paleocene and Triassic-Jurassic rocks, among Paleocene and Permo-Triassic rocks as well as among Cretaceous and Paleocene rocks, b) Apparent omissions of intermediate lithologies throughout the entire nappe stack observed in multiple locations suggest intense non-coaxial thinning, c) A remarkable contrast in the distributed strain between the distinctive lithologies is well-recognized, dependent by the rheological and mechanical character of the rocks, d) Thrust-like geometries and macroscopic repetitions between competent and incompetent

  10. Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate.

    Science.gov (United States)

    Döring, F; Robisch, A L; Eberl, C; Osterhoff, M; Ruhlandt, A; Liese, T; Schlenkrich, F; Hoffmann, S; Bartels, M; Salditt, T; Krebs, H U

    2013-08-12

    Compound optics such as lens systems can overcome the limitations concerning resolution, efficiency, or aberrations which fabrication constraints would impose on any single optical element. In this work we demonstrate unprecedented sub-5 nm point focusing of hard x-rays, based on the combination of a high gain Kirkpatrick-Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP) for ultra-short focal length f. The pre-focusing allows limiting the MZP radius to below 2 μm, compatible with the required 5 nm structure width and essentially unlimited aspect ratios, provided by enabling fabrication technology based on pulsed laser deposition (PLD) and focused ion beam (FIB).

  11. High efficiency and flexible working distance digital in-line holographic microscopy based on Fresnel zone plate

    Science.gov (United States)

    Tian, Peng; Hua, Yilei; Yang, Fan; Li, Fanxing; Hu, Song; Yan, Wei

    2017-05-01

    Traditional digital in-line holography suffers from twin-image noise problems and extremely short working distances between the object and light source. Here, we propose lensless Fourier transform digital in-line holographic microscopy based on a single optical element. A Fresnel zone plate is used to split the incident light into two parts: one is scattered along the original direction, the other is gathered at a focal point and the sample is put behind the focus. The interference fringe pattern, formed by the two beams, is recorded digitally by a CCD camera. A novel reconstruction algorithm is proposed to present the object image. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem, improving the image contrast with high efficiency, and increasing the flexibility of the working distance. Furthermore, a wide field of view and no contact make it a promising tool for the study of materials science, biology and microelectronics.

  12. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    Science.gov (United States)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  13. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone – East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic...

  14. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    Science.gov (United States)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio

  15. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic `geothermometer'

    Science.gov (United States)

    Yang, Tao; Dekkers, Mark J.; Zhang, Bo

    2016-04-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum temperature a slip zone has experienced. The case study comprises sheared clay cored from the Japan Trench subduction plate-boundary fault zone (décollement), which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST). Heating signatures with estimated maximum temperatures ranging from ˜300 to over 500 °C are determined close to the multiple slip surfaces within the décollement. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This as yet preliminary rock magnetic `geothermometer' would be a useful tool to detect seismic heating along faults that experienced medium temperature rise, a range which is difficult to assess with other approaches.

  16. [Optimisation of the visualisation technique for optical paths through intraocular lenses for characterisation of multifocal imaging properties of Fresnel-zone plates].

    Science.gov (United States)

    Reiß, S; Forbrig, J; Guthoff, R F; Terwee, T; Stolz, H; Siewert, S; El-Tamer, A; Hinze, U; Chichkov, B N; Stachs, O

    2014-12-01

    The utilisation of the diffractive properties of Fresnel zone plates offers the possibility of intraocular lens designs with multiple foci. Such intraocular lenses can be manufactured by two-photon polymerisation (2PP). This paper explains the underlying concept and shows the principles for visualisation of the focus properties of such implants.

  17. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence bou

  18. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence bou

  19. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source

    Science.gov (United States)

    Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry

    2017-02-01

    The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.

  20. Summary of the stratigraphy and structural elements related to plate convergence of the Quetta-Muslim Bagh-Sibi region, Balochistan, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Mengal, Jan M.; Khan, Shahid H.; Warwick, Peter D.

    2011-01-01

    Obduction of an ophiolite complex onto the northwestern continental margin of the India plate occurred during the Late Cretaceous to early Paleocene, followed by collision of the ophiolitic complex of the India plate with the Eurasia plate in the Eocene. Lower Eocene marine strata overlie the ophiolitic complex suggesting that suturing was completed by early Eocene time.

  1. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador-southwest Colombia margin

    Science.gov (United States)

    Collot, Jean-Yves; Marcaillou, Boris; Sage, FrançOise; Michaud, FrançOis; Agudelo, William; Charvis, Philippe; Graindorge, David; Gutscher, Marc-André; Spence, George

    2004-11-01

    Subduction of the Nazca plate beneath the Ecuador-Colombia margin has produced four megathrust earthquakes during the last century. The 500-km-long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events, in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. Multichannel seismic reflection and bathymetric data acquired during the SISTEUR cruise show evidence that the margin wedge is segmented by transverse crustal faults that potentially correlate with the limits of the earthquake coseismic slip zones. The Paleogene-Neogene Jama Quininde and Esmeraldas crustal faults define a ˜200-km-long margin crustal block that coincides with the 1942 earthquake rupture zone. Subduction of the buoyant Carnegie Ridge is inferred to partially lock the plate interface along central Ecuador. However, coseismic slip during the 1942 and 1906 earthquakes may have terminated against the subducted northern flank of the ridge. We report on a newly identified Manglares crustal fault that cuts transversally through the margin wedge and correlates with the limit between the 1958 and 1979 rupture zones. During the earthquake cycle the fault is associated with high-stress concentration on the plate interface. An outer basement high, which bounds the margin seaward of the 1958 rupture zone, may act as a deformable buttress to seaward propagation of coseismic slip along a megathrust splay fault. Coseismic uplift of the basement high is interpreted as the cause for the 1958 tsunami. We propose a model of weak transverse faults which reduce coupling between adjacent margin segments, together with a splay fault and an asperity along the plate interface as controlling the seismogenic rupture of the 1958 earthquake.

  2. Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Pereira, M. F.; Bellido, F.; Chichorro, M.; Silva, J. B.; Valverde-Vaquero, P.; Pin, Ch.; Solá, A. R.

    2014-07-01

    Two distinct Cambrian magmatic pulses are recognized in the Ossa-Morena Zone (SW Iberia): an early rift-(ER) and a main rift-related event. This Cambrian magmatism is related to intra-continental rifting of North Gondwana that is thought to have culminated in the opening of the Rheic Ocean in Lower Ordovician times. New data of whole-rock geochemistry (19 samples), Sm-Nd-Sr isotopes (4 samples) and ID-TIMS U-Pb zircon geochronology (1 sample) of the Early Cambrian ER plutonic rocks of the Ossa-Morena Zone are presented in this contribution. The ER granitoids (Barreiros, Barquete, Calera, Salvatierra de los Barros and Tablada granitoid Massifs) are mostly peraluminous granites. The Sm-Nd isotopic data show moderate negative ɛNdt values ranging from -3.5 to +0.1 and TDM ages greatly in excess of emplacement ages. Most ER granitoids are crustal melts. However, a subset of samples shows a transitional anorogenic alkaline tendency, together with more primitive isotopic signatures, documenting the participation of lower crust or mantle-derived sources and suggesting a local transient advanced stage of rifting. The Barreiros granitoid is intrusive into the Ediacaran basement of the Ossa-Morena Zone (Série Negra succession) and has yielded a crystallization age of 524.7 ± 0.8 Ma consistent with other ages of ER magmatic pulse. This age: (1) constrains the age of the metamorphism developed in the Ediacaran back-arc basins before the intrusion of granites and (2) defines the time of the transition from the Ediacaran convergent setting to the Lower Cambrian intra-continental rifting in North Gondwana.

  3. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    Science.gov (United States)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  4. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    Science.gov (United States)

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  5. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    Science.gov (United States)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  6. Variabilidade da precipitação em tempo e espaço associada à Zona de Convergência Intertropical Variability of rainfall in time and space associated with Intertropical Convergence Zone

    Directory of Open Access Journals (Sweden)

    Maurício do Nascimento Moura

    2012-12-01

    Full Text Available Este estudo visa apresentar uma análise atmosférica da variabilidade espacial e temporal da Zona de Convergência Intertropical (ZCIT nas cidades de Belém, Jakarta e Nairóbi, que estão localizadas sobre os continentes da América do Sul, Ásia e África, respectivamente. Para isso, foram utilizados dados diários de precipitação observada e radiação de onda longa para o período de 1999 a 2008, e aplicadas as técnicas matemáticas e estatísticas, como a média aritmética e a transformada em ondeletas Morlet. Em geral, os resultados indicam que do ponto de vista espacial, a precipitação mensal varia consideravelmente, pois as três cidades estudadas localizam-se em diferentes continentes da faixa tropical. Isto ocorre principalmente, durante os meses de Janeiro a Maio, período de maior atuação da ZCIT no hemisfério sul. As variações atmosféricas observadas, a partir dos escalogramas de fase, - de ondeleta indicam que as escalas interdecadal, anual, interanual e intrassazonal são moduladoras da precipitação. Tais escalas podem ser representadas pelos mecanismos oceano-atmosfera dos fenômenos El Niño Oscilação Sul e da oscilação intrassazonal de Madden e Julian. A contribuição destes fenômenos na distribuição da chuva nessas regiões é evidente durante o período estudado, sendo que Nairóbi, apesar de estar localizada em latitude semelhante à de Belém, apresenta pouca evidência do ciclo anual e forte na escala interdecadal. No caso de Belém e de Jakarta as oscilações de múltiescala de precipitação concentram-se nas escalas dos mecanismos moduladores da chuva associados com o ciclo anual e intrassazonal, durante todo o período.This study aims to present an atmospheric analysis of spatial and temporal variability of the Intertropical Convergence Zone (ITCZ in Belem, Jakarta and Nairobi, which are located on the continents of South America, Asia and Africa, respectively. For this, daily precipitation and

  7. The 2014 Mw6.2 Eketahuna earthquake, Hikurangi subduction zone - normal faulting in the subducted Pacific Plate crust

    Science.gov (United States)

    Abercrombie, R. E.; Bannister, S. C.; Francois-Holden, C.; Hamling, I. J.; Ristau, J. P.

    2014-12-01

    The 2014 January 20th M6.2 Eketahuna earthquake occurred in the subducted crust of the Pacific plate at the Hikurangi subduction zone, beneath North Island, New Zealand. Moment tensor analysis together with aftershock relocations show that this event was an oblique-normal faulting intraplate event, with hypocentre depth ca.30 km, and with rupture on a northwest-dipping fault extending through the subducted crust up to the subduction megathrust at ca.18-20 km depth. More than 3500 aftershocks were subsequently recorded by the New Zealand GeoNet network, with only minor migration of the aftershocks away from the inferred mainshock rupture, and with very few aftershocks within +/- 1 km of the subduction megathrust. The megathrust in this particular region is inferred to be interseismically locked with no seismic or aseismic slip, although slow slip is occurring ca.15-30 km down-dip (Wallace et al, 2013). Similar oblique-normal faulting events have previously occurred along the Hikurangi subduction margin, including in 1985 (ML5.7) and 1990 (Mw6.2). Earlier earthquakes in 1942 (Mw6.8) and 1921 (Mw6.8) are also inferred to have occurred at a similar depth within the subducted crust. The 1990 earthquake sequence occurred ~40 km along-strike from the 2014 Eketahuna event, and involved a Mw6.2 oblique-normal faulting event in the subducted crust, which was quickly followed by a Mw6.4 event in the overlying crust, with both thrust and dextral strike-slip components, possibly responding to deeper aseismic slip. Deeper earthquakes of similar type at other subduction margins are thought to be high stress drop. We calculate the stress drops of the mainshock and larger aftershocks, using a direct wave, empirical Green's function (EGF) approach that includes measurement uncertainties and objective criteria for assessing the quality of each spectral ratio (Abercrombie, 2013). We compare the results to those for earthquakes in other tectonic regions of New Zealand, calculated using

  8. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition

    Science.gov (United States)

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A.

    2016-01-01

    Approximately 34 million years ago across the Eocene–Oligocene transition (EOT), Earth’s climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era. PMID:27507793

  9. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition.

    Science.gov (United States)

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A

    2016-08-10

    Approximately 34 million years ago across the Eocene-Oligocene transition (EOT), Earth's climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era.

  10. Interhemispheric Orbital-Scale Asymmetry of the Intertropical Convergence Zone Movement at the Asia-Pacific Realm over the Past 3 Glacial-Interglacial Cycles

    Science.gov (United States)

    Yi, L.; Shen, C. C.; Lo, L.; Shi, Z.; Wei, K. Y.; Chou, C. J.; WU, C. C.; Mii, H. S.; Chuang, C. K.; Amakawa, H.; Burr, G. S.; Chen, Y. C.

    2014-12-01

    The Intertropical convergence Zone (ITCZ) is the heaviest rain belt on earth and provides global water-resources for human populations around the world. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 284,000 years, inferred from a marine sedimentary sequence of planktonic foraminifera collected off the eastern coast of Papua New Guinea (PNG). The foraminiferal tests of Globigerinoides ruber were sampled from a marine sediment core MD05-2925 (9o20.60'S, 151o27.54'E; water depth 1661 m). Using inductively coupled plasma sector field mass spectrometric (ICP-SF-MS) techniques with 2s precision of 2-6%, we measured rare earth elements (REEs) to Ca ratios in the planktonic foraminifer to reconstruct precipitation and make inferences about the orbital-timescale evolution of the Pacific ITCZ. In addition to precessional feature, which is expressed in the East Asian counterpart, our record shows that the Pacific ITCZ migration was dominantly influenced by obliquity changes. Model simulations suggest that this obliquity forcing could be primarily delivered by a meridional thermal/pressure contrast, resulting from the asymmetric continental configuration between Asia and Australia in a coupled East Asian-Australian circulation system.

  11. Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models

    Science.gov (United States)

    Yim, Bo Young; Yeh, Sang-Wook; Kug, Jong-Seong

    2016-08-01

    Surface-based Arctic amplification (AA) has experienced a remarkable increase in recent decades. Therefore, it is important to understand how Arctic warming might change in response to global warming. By analyzing the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset, we examine how AA correlates with changes in tropical Pacific precipitation in response to global warming. It is found that that the changes in the latitudinal position of the Inter-tropical Convergence Zone (ITCZ) are associated to the simulated AA strength in the CMIP5 climate models. Specifically, AA tends to be stronger (weaker) in models where the ITCZ shifts relatively more northward (southward). Further analysis indicates that the inter-model diversity of AA strength in the CMIP5 climate models is related to the changes in large-scale atmospheric circulation associated with the meridional shift of the ITCZ. These results emphasize a close relationship between AA and changes in tropical Pacific precipitation in response to global warming.

  12. Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models

    Science.gov (United States)

    Yim, Bo Young; Yeh, Sang-Wook; Kug, Jong-Seong

    2017-06-01

    Surface-based Arctic amplification (AA) has experienced a remarkable increase in recent decades. Therefore, it is important to understand how Arctic warming might change in response to global warming. By analyzing the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset, we examine how AA correlates with changes in tropical Pacific precipitation in response to global warming. It is found that that the changes in the latitudinal position of the Inter-tropical Convergence Zone (ITCZ) are associated to the simulated AA strength in the CMIP5 climate models. Specifically, AA tends to be stronger (weaker) in models where the ITCZ shifts relatively more northward (southward). Further analysis indicates that the inter-model diversity of AA strength in the CMIP5 climate models is related to the changes in large-scale atmospheric circulation associated with the meridional shift of the ITCZ. These results emphasize a close relationship between AA and changes in tropical Pacific precipitation in response to global warming.

  13. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition

    Science.gov (United States)

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A.

    2016-08-01

    Approximately 34 million years ago across the Eocene–Oligocene transition (EOT), Earth’s climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era.

  14. Upper plate deformation and seismic barrier in front of Nazca subduction zone : the Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    OpenAIRE

    Audin, Laurence; Lacan, P.; Tavera, H.; Bondoux, Francis

    2008-01-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw=8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, ...

  15. Uppermost mantle Pn Velocity of the Arabian Plate, a Preliminary study

    Science.gov (United States)

    Al-Lazki, A. I.; Al-Damegh, K. S.; Al-Enizi, A.; Elhusain, I.; Al-Mahrooqi, I.

    2005-12-01

    The Arabian plate represents a unique tectonic setup. The uniqueness of this plate is its boundaries that constitute the three known types of plate boundaries. The Red Sea and the Gulf of Aden represent the south and southwest plate boundary with Africa plate. Farther north the Dead Sea Fault system represents the remainder of the northwestern boundary with Africa plate. Continent-continent collision along the Bitlis-Zagros Suture zones represents the northern and northeastern boundary with Eurasia plate. Farther south the convergent plate boundary is manifested by the Makran Subduction Zone. Finally, the Owen and Murray Transform Faults represent the southeast boundary of Arabia with India plate. The broad objective of this study is to map uppermost mantle Pn velocity and anisotropy within the Arabian plate and around its boundaries. Zones that are along the north and the northeast boundaries of Arabia plate historically and in recent years has been effected by devastating earthquakes, a recent example is the Bam earthquake on December, 2003. In this region, accurate earthquake location is essential to delineate seismically active zones, where, without proper velocity models for the region, located earthquake may have large location error. In this preliminary study we present uppermost mantle Pn velocity tomography results of the north and northeastern regions of Arabia plate. We used in this study Pn phase data from the bulletins of Oman Seismic Network, Saudi Seismic Network, Kuwait Seismic Network, International Seismological Center and the National Earthquake Information Center,USA.

  16. Formulation and Application of a Physically-Based Rupture Probability Model for Large Earthquakes on Subduction Zones: A Case Study of Earthquakes on Nazca Plate

    Science.gov (United States)

    Mahdyiar, M.; Galgana, G.; Shen-Tu, B.; Klein, E.; Pontbriand, C. W.

    2014-12-01

    -based rupture probability models for large earthquakes on subduction zones that is consistent with their true locking state and earthquake history. We will present the formulation of the proposed model and its application to the Nazca plate subduction zone.

  17. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  18. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    Science.gov (United States)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  19. Convergence Insufficiency

    Science.gov (United States)

    ... from convergence insufficiency? Symptoms of convergence insufficiency include diplopia (double vision) and headaches when reading. Many patients ... another time or simply watched for symptoms of diplopia or headaches with near work. A patient who ...

  20. The Teisseyre-Tornquist Zone - early Palaeozoic strike-slip plate boundary or Ediacaran rifted margin of Baltica?

    Science.gov (United States)

    Mazur, Stanislaw; Krzywiec, Piotr; Malinowski, Michal; Lewandowski, Marek; Buffenmeyer, Vinton; Green, Christopher

    2016-04-01

    The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the northwest to the Black Sea in the southeast. This tectonic feature defines a transition between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the southwest. Being a profound zone of crustal and lithospheric thickness perturbation, the TTZ has usually been considered a Caledonian tectonic suture formed due to the closure of the Tornquist Ocean. The suture was hypothesised to originate from the collision between Baltica and Avalonia or large-scale strike-slip displacement along strike of the Caledonian Orogen. However, some minority views postulated the continuation of Baltica crystalline basement farther to the southwest up to the Elbe Lineament and the margin of the Variscan Belt. We studied the ION Geophysical PolandSPAN survey that consists of 10 regional, seismic depth profiles covering the SW margin of the EEC and the TTZ in Poland. Since the PolandSPAN profiles image to ~30 km depth their interpretation was integrated with the potential fields data and earlier results of refraction sounding to better image the deep structure of the TTZ. Our data show that the NW and central sections of the TTZ correspond, at the Moho level, to a relatively narrow crustal keel and a significant Moho step at the transition from the EEC to the Palaeozoic Platform. However, top of basement above the TTZ is smooth and moderately sloping towards the southwest. In the central part of the TTZ, top of Precambrian is covered by undisturbed lower Palaeozoic sediments. In contrast, the lower Palaeozoic sediments are involved in a latest Silurian, thin-skinned fold-and-thrust belt along the NW section of the TTZ, where the sharply defined Caledonian Deformation Front adjoins a rigid basement buttress above the TTZ. Finally, the crustal keel is mostly missing from the SE section of the TTZ. Instead, this

  1. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    Science.gov (United States)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  2. Physical property and Textural transition across the Unconformity and Major Seismic Reflectors in the Upper plate of the Costa Rica Subduction zone offshore Osa Peninsula

    Science.gov (United States)

    Hamahashi, M.; Screaton, E.; Tanikawa, W.; Hashimoto, Y.; Martin, K. M.; Saito, S.; Kimura, G.

    2014-12-01

    At the Costa Rica subduction zone offshore Osa Peninsula, the Cocos plate and Cocos Ridge subduct under the Caribbean plate along the Middle America Trench, creating active seismicity. In this region, the Caribbean plate is characterized by a well-consolidated, high velocity framework material beneath the slope sediments, but the nature of the upper plate material is yet unknown. During Integrated Ocean Drilling Program (IODP) Expedition 334 and 344, the unconformity between the slope sediments (Unit 1) and upper plate material (Units 2 and 3) consisting of lithic sedimentary units was penetrated at mid-slope Site 1380. In the current study, to characterize the compaction behavior of the upper plate material, we investigate the physical properties, texture and composition of the sediments at Site 1380 by conducting microstructural observations, resistivity measurements, particle size analyses, X-ray fluorescence and X-ray diffraction analyses. The microstructures of sediments observed through the microscope tend to develop dense and cohesive textures in low porosity sediments, and particle size changes across several unconformities. In particular, the small particle-sized lithic fragments compose larger bodies and form cohesive structures. The cross correlation between measured particle size and shipboard porosity show negative correlation especially at Unit 2, indicating that larger sized particles form smaller or fewer pores. From the results of XRF and XRD analyses, we found that Al, K, Ti tend to concentrate in the higher porosity sediments of Unit 1, whereas Si, Ca, P, Mg, Na, and Mn concentrate in the lower porosity sediments of Unit 2 and 3. The higher concentration in Mg, Na, Mn, Si may be due to minerals such as chlorite, serpentine, amphibole, and sodium manganese. The crossplots between porosity and element concentration show negative correlations in Mg, Na, and Mn with porosity, suggesting that the minerals rich in these elements may relate with the

  3. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  4. The metallogenic role of east-west fracture zones in South America with regard to the motion of lithospheric plates (with an example from Brazil)

    Science.gov (United States)

    Kutina, J.; Carter, William D.; Lopez, F.X.

    1978-01-01

    The role of east-west fracture zones in South America is discussed with regard to global fracturing and the motion of lithospheric plates. A set of major NW-trending lineaments has been derived which show a tendency to be spaced equidistantly and may correspond to a set of east-west fractures in the "pre-drift" position of the South American plate. Statistical analysis of linears in the ERTS-mosaics shows that NW-fractures are also among the most important ones in the Andes region, suggesting that the above major lineaments extend into the basement of the Andes. Some of the old major fractures, trending east-west in the present orientation of South America, are discussed and their NE orientation in the pre-drift position of the plate is considered. An example of structural control of ore deposition in the Brazilian Shield is presented, using the maps of the RADAM Project. It is concluded that the small tin-bearing granitic bodies concentrated in the region of Sao Felix do Xingu in the state of Para represent upper parts of an unexposed granitoid massif which is controlled by the intersection of a major east-west fracture zone probably represents westward extension of the Patos Lineament of the easternmost part of Brazil, connected with the east-west fracture zone of the Para state through the basement of the Maranhao Basin (Sineclise do Maranhao-Piaui). It is expected that the proposed "Patos-Para Lineament" extends further westward and may similarly control, at intersections with fractures of other trends, some mineralization centers in the western part of the state of Para and in the state of Amazonas.

  5. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    Science.gov (United States)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  6. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  7. Refined Views of Strike-slip Fault Zones, Seismicity, and State of Stress Associated With the Pacific-North America Plate Boundary in Southern California

    Science.gov (United States)

    Hauksson, E.; Nicholson, C.; Shaw, J. H.; Plesch, A.; Shearer, P. M.; Sandwell, D. T.; Yang, W.

    2013-12-01

    The mostly strike-slip plate boundary in southern California is expressed as a system of late Quaternary faults or principal slip zones (PSZs), with numerous adjacent smaller slip surfaces. It is complex, even after large cumulative displacements, and consists of major fault systems with multi-stranded, non-planar fault geometry, including some in close proximity to each other. There are also secondary cross faults and low-angle detachments that interact with the PSZs accommodating main plate boundary motion. The loading of plate-tectonic strain causes the largest earthquakes along PSZs, moderate-sized events in their immediate vicinity, and small earthquakes across the whole region. We apply relocated earthquake and refined focal mechanism (1981-2013) catalogs, as well as other geophysical datasets to provide refined views of the 3D fault geometry of these active fault systems. To determine properties of individual fault zones, we measure the Euclidian distance from every hypocenter to the nearest PSZ. In addition, we assign crustal geophysical parameters such as heat flow value and shear or dilatation strain rates to each epicenter. We investigate seismogenic thickness and fault zone width as well as earthquake source processes. We find that the seismicity rate is a function of location, with the rate dying off exponentially with distance from the PSZ. About 80% of small earthquakes are located within 5 km of a PSZ. For small earthquakes, stress drops increase in size with distance away from the PSZs. The magnitude distribution near the PSZs suggests that large earthquakes are more common close to PSZs, and they are more likely to occur at greater depth than small earthquakes. In contrast, small quakes can occur at any geographical location. An optimal combination of heat flow and strain rate is required to concentrate the strain along rheologically weak fault zones, which accommodate the crustal deformation processes, causing seismicity. The regional trend of

  8. [The plate in the zone of oocyte and germinal epithelium contact in scyphomedusa Aurelia aurita binds antibodies to ZP-domain-containing protein mesoglein].

    Science.gov (United States)

    Adonin, L S; Podgornaia, O I; Matveev, I V; Shaposhnikova, T G

    2009-01-01

    Cnidaria are lower multicellular animals with the body consisting of two epithelial layers. An extracellular substance--mesoglea--is situated between epidermal and gastrodermal layers of these animals. Mesoglein is one of the major mesogleal proteins of adult medusa of Scyphozoan jellyfish Aurelia aurita. Search for the known domains in mesoglein amino acid sequence reveals prominent zona pellucida (ZP) domain (which was found at first in the mammal oocyte zona pellucida proteins), so the protein belongs to ZP family of extracellular matrix proteins and it is an early metazoan member of ZP-domain-containing protein family. However, nothing is known about oogenesis related ZP-domain proteins in the lower multicellular animals. Oogenesis in Scyphozoa is described poorly. In this work morphological features of the zone in contact area between the oocyte and the germinal epithelium were investigated in semi-fine sections: To make it more convenient we identified seven stages according to the oocyte size and the structure found in this area was named the plate. It was shown that the components of the plate bound specifically the antibodies against mesoglein. So it seems the plate material contains ZP-domain proteins. Electrophoresis and immunoblot results give evidence that the proteins immunologically related to mesoglein have a higher molecular mass. It might be due to either the posttranslational modifications of the precursors or that they represent other proteins of ZP-domain family in Cnidaria.

  9. Why does the convergence rate between Nazca and South America decrease since the Neogene?

    Science.gov (United States)

    Quinteros, J.; Sobolev, S. V.

    2012-12-01

    The classic example of the poorly understood rapid change of tectonic plates motion is the increase and then decrease of the convergence rate between the Nazca and South America plates during the last 25-20 Myr that has coincided with the growth of the Andes Mountains. Currently, the decrease in convergence rate is explained either by the increasing load of the Andes or by the appearance of flat slab segments beneath South America. Here, we present an alternative view derived from a thermomechanical self-consistent (gravity driven) model of Nazca plate subduction. Reconstructions of global plate velocities suggest that before some 25 Ma subduction of the Faralon/Nazca plate was almost perfectly parallel to the coastline of South America south of 20°S. After some 22 Ma direction of subduction became almost perpendicular to the trench. Based on these data as well as seismic tomographic images, we assume that the tip of the oceanic slab was still in the upper mantle under the central and southern parts of South America till 22 Ma. We run 2D thermomechanical models of gravity driven subduction starting at 22 Ma in the 1200 km deep mantle domain considering all the most important phase transformations. In all our numerical experiments we get a large increment in convergence velocity related to the penetration of the tip of the slab into the mantle transition zone. The subduction velocity is later reduced when the slab interacts with the spinel/perovskite phase transition and underlying more viscous lower mantle. Our models fit quite well the observed variations of convergence rate and are consistent with seismic tomographic images of the Nazca plate beneath South America. In a number of experiments we also added thick crust and high topography of Andes. These experiments demonstrate that presence of the Andes does not affect much the convergence rate between Nazca and South America plates. From our models we conclude that the variations in the convergence rate between

  10. A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics

    Science.gov (United States)

    Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.

    1987-01-01

    Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.

  11. Reconstruction of precipitation variability in the Strait of Yucatan associated with latitudinal shifts in the position of the Intertropical Convergence Zone since the Last Glacial Maximum

    Science.gov (United States)

    Staines-Urías, Francisca; Seidenkrantz, Marit-Solveig; Fischel, Andrea; Kuijpers, Antoon

    2017-04-01

    The elemental composition of sediments from gravity core HOLOVAR11-03 provides a ca. 40 ka record of past climate variability in the Strait of Yucatan, between the Caribbean Sea and the Gulf of Mexico, a region where precipitation variability is determined by the seasonal position of the Intertropical Convergence Zone (ITCZ). Within this region, sea level pressure decreases and rainfall increases as the ITCZ moves north of the equator in response to increased solar insolation in the Northern Hemisphere during boreal summer. In contrast, as the ITCZ retracts southward towards the equator during boreal winter, rainfall diminishes and the regional sea level pressure gradient strengthens. On interannual, multidecadal and millennial timescales, fluctuations in the average latitudinal position of the ITCZ in response to insolation forcing modulate the intensity and duration of the seasonal regimens, determining average regional precipitation and, ultimately, the elemental composition of the marine sedimentary record. Regionally, higher titanium and iron content in marine sediments reflect greater terrigenous input from inland runoff, indicating greater precipitation, hence a more northerly position of the ITCZ. Correspondingly, Ti and Fe concentration data were used to reconstruct regional rainfall variability since the Last Glacial Maxima (LGM ˜24 cal ka BP). HOLOVAR11-03 age model (based on 4 AMS 14C dates obtained from multi-specific samples of planktic foraminifera) shows stable sedimentation rates in the area throughout the cored period. Nonetheless, higher terrestrial mineral input is observed since the LGM and all through the last glacial termination (24 to 12 cal ka BP), indicating a period of increased precipitation. In contrast, lower Ti and Fe values are typical for the period between 12 and 8 cal ka BP, indicating reduced precipitation. A positive trend characterizes the following interval, showing a return to wetter conditions lasting until 5 cal ka BP

  12. Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia

    Science.gov (United States)

    Villagómez, Diego; Spikings, Richard; Mora, AndréS.; GuzmáN, Georgina; Ojeda, GermáN.; CortéS, Elizabeth; van der Lelij, Roelant

    2011-08-01

    The topographically prominent Sierra Nevada de Santa Marta forms part of a faulted block of continental crust located along the northern boundary of the South American Plate, hosts the highest elevation in the world (˜5.75 km) whose local base is at sea level, and juxtaposes oceanic plateau rocks of the Caribbean Plate. Quantification of the amount and timing of exhumation constrains interpretations of the history of the plate boundary, and the driving forces of rock uplift along the active margin. The Sierra Nevada Province of the southernmost Sierra Nevada de Santa Marta exhumed at elevated rates (≥0.2 Km/My) during 65-58 Ma in response to the collision of the Caribbean Plateau with northwestern South America. A second pulse of exhumation (≥0.32 Km/My) during 50-40 Ma was driven by underthrusting of the Caribbean Plate beneath northern South America. Subsequent exhumation at 40-25 Ma (≥0.15 Km/My) is recorded proximal to the Santa Marta-Bucaramanga Fault. More northerly regions of the Sierra Nevada Province exhumed rapidly during 26-29 Ma (˜0.7 Km/My). Further northward, the Santa Marta Province exhumed at elevated rates during 30-25 Ma and 25-16 Ma. The highest exhumation rates within the Sierra Nevada de Santa Marta progressed toward the northwest via the propagation of NW verging thrusts. Exhumation is not recorded after ˜16 Ma, which is unexpected given the high elevation and high erosive power of the climate, implying that rock and surface uplift that gave rise to the current topography was very recent (i.e., ≤1 Ma?), and there has been insufficient time to expose the fossil apatite partial annealing zone.

  13. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Sourthern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...

  14. Dextral strike-slip along the Kapıdağ shear zone (NW Turkey): evidence for Eocene westward translation of the Anatolian plate

    Science.gov (United States)

    Türkoğlu, Ercan; Zulauf, Gernold; Linckens, Jolien; Ustaömer, Timur

    2016-10-01

    The northern part of the Kapıdağ Peninsula (Marmara Sea, NW Turkey) is affected by the E-W trending Kapıdağ shear zone, which cuts through calc-alkaline granitoids of the Ocaklar pluton resulting in mylonitic orthogneiss. Macroscopic and microscopic shear-sense indicators, such as SC fabrics, shear bands, σ-clasts and mica fish, unequivocally suggest dextral strike-slip for the Kapıdağ shear zone. Based on petrographic data, deformation microfabrics of quartz and feldspar, and the slip systems in quartz, the dextral shearing should have been active at T = 500-300 °C and P < 5 kbar. Published K-Ar and 39Ar-40Ar cooling ages of hornblende and biotite suggest that cooling below 500-300 °C occurred during the Eocene (ca. 45-ca. 35 Ma), meaning that the Kapıdağ shear zone should have been active during Middle to Late Eocene times. The differential stress related to the shearing was <50 MPa as is indicated by the size of recrystallized quartz grains. Based on the new and published data, it is concluded that the westward movement of the Anatolian plate might have been active almost continuously from the Middle Eocene until recent times.

  15. Effect of glacial-interglacial sea-level changes on the displacement and stress field in the forearc and along the plate interface of subduction zones

    Directory of Open Access Journals (Sweden)

    T. Li

    2011-12-01

    Full Text Available Combined seismological, space-geodetic and numerical studies have shown that the seismicity at subduction zones may be modulated by tides and glacier fluctuations on timescales of 1–100 a, because these changes in loads on Earth's surface are able to alter the stress field in the upper plate and along the plate interface. Here we use a two-dimensional finite-element model of a subduction zone to investigate how glacial-interglacial sea-level changes affect the forearc region and the plate interface. The model results show that a sea-level fall by 125 m over 100 ka causes up to 0.7 m of vertical displacement, with the maximum uplift occurring between the trench and the coast. The uplift signal induced by the sea-level fall decreases to zero ~20 km landward of the coastline. A subsequent sea-level rise by 125 m over 20 ka causes subsidence, which is again most pronounced in the submarine part of the forearc. The sea-level changes cause horizontal displacements of up to 0.12 m, which are directed seaward during sea-level fall and landward during sea-level rise. With respect to the stress field, the sea-level changes lead to variations in the vertical stress and the shear stress of up to 1.23 MPa and 0.4 MPa, respectively. The shear stress variations are highest beneath the coast, i.e. in the area where the sea-level changes cause the strongest flexure. The resulting Coulomb stress changes on the plate interface are of the order of 0.2–0.5 MPa and indicate that earthquakes are promoted during sea-level fall and delayed during sea-level rise. Our findings imply that eustatic sea-level changes during glacial-interglacial periods may have induced displacements and stress changes that were large enough to affect the seismic cycle of subduction thrusts.

  16. Variation of b and p values from aftershocks sequences along the Mexican subduction zone and their relation to plate characteristics

    Science.gov (United States)

    Ávila-Barrientos, L.; Zúñiga, F. R.; Rodríguez-Pérez, Q.; Guzmán-Speziale, M.

    2015-11-01

    Aftershock sequences along the Mexican subduction margin (between coordinates 110ºW and 91ºW) were analyzed by means of the p value from the Omori-Utsu relation and the b value from the Gutenberg-Richter relation. We focused on recent medium to large (Mw > 5.6) events considered susceptible of generating aftershock sequences suitable for analysis. The main goal was to try to find a possible correlation between aftershock parameters and plate characteristics, such as displacement rate, age and segmentation. The subduction regime of Mexico is one of the most active regions of the world with a high frequency of occurrence of medium to large events and plate characteristics change along the subduction margin. Previous studies have observed differences in seismic source characteristics at the subduction regime, which may indicate a difference in rheology and possible segmentation. The results of the analysis of the aftershock sequences indicate a slight tendency for p values to decrease from west to east with increasing of plate age although a statistical significance is undermined by the small number of aftershocks in the sequences, a particular feature distinctive of the region as compared to other world subduction regimes. The b values show an opposite, increasing trend towards the east even though the statistical significance is not enough to warrant the validation of such a trend. A linear regression between both parameters provides additional support for the inverse relation. Moreover, we calculated the seismic coupling coefficient, showing a direct relation with the p and b values. While we cannot undoubtedly confirm the hypothesis that aftershock generation depends on certain tectonic characteristics (age, thickness, temperature), our results do not reject it thus encouraging further study into this question.

  17. Weak Convergence and Weak Convergence

    Directory of Open Access Journals (Sweden)

    Narita Keiko

    2015-09-01

    Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

  18. Instruments of RT-2 Experiment onboard CORONASPHOTON and their test and evaluation III: Coded Aperture Mask and Fresnel Zone Plates in RT-2/CZT Payload

    CERN Document Server

    Nandi, Anuj; Debnath, D; Chakrabarti, Sandip K; Kotoch, T B; Sarkar, R; Yadav, Vipin K; Girish, V; Rao, A R; Bhattacharya, D; 10.1007/s10686-010-9184-3

    2010-01-01

    Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.

  19. X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.

    Science.gov (United States)

    Gorniak, T; Heine, R; Mancuso, A P; Staier, F; Christophis, C; Pettitt, M E; Sakdinawat, A; Treusch, R; Guerassimova, N; Feldhaus, J; Gutt, C; Grübel, G; Eisebitt, S; Beyer, A; Gölzhäuser, A; Weckert, E; Grunze, M; Vartanyants, I A; Rosenhahn, A

    2011-06-06

    The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.

  20. Generation of an ultralong pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter

    Science.gov (United States)

    Yan, Weichao; Nie, Zhongquan; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2017-08-01

    Based on the vector diffraction theory and the inverse Faraday effect in the magneto-optic film, light-induced magnetization distributions, for a high numerical aperture focusing configuration with an azimuthally polarized beam modulated by an optimized pure multi-zone plate phase filter, are investigated. By making use of the compeletely destructive interference of its inter circle with the π phase shift between adjacent sub-annuli, and the capability to extend the constructive interference in the propagating direction through its narrow outer annulus modulated by three misplaced helical phases, an ultralong (107λ ) magnetization needle with both transverse super-resolution (0.37λ ) and uniform axial field strength is achieved in the focal region. The perfect magnetization needle and the accessible method give a guide for ultrahigh density magnetic storage, fabricating magnetic lattices for spin wave operation, as well as atomic trapping.

  1. GPS and Geologic Deformation Rates Agree to Within Uncertainties in the Arabia-Africa- Eurasia Zone of Plate Interaction

    Science.gov (United States)

    Reilinger, R. E.; McClusky, S.

    2008-12-01

    Geodetically-derived motions for Arabia and Nubia relative to Eurasia agree within 1 standard deviation with plate rates estimated from geologic observations (McQuarrie et al., GRL, 2003) for the past 11 Myr for Nubia and greater than 25 Myr for Arabia. Furthermore, fault slip rates derived from an elastic block model constrained by GPS agree within uncertainties (about +/- 15 percent) with geologically determined, long-term slip rates in this complex area of plate interaction. Detailed geomorphological studies of the central North Anatolian fault (NAF) constrained by quantitative dating (Kozaci et a al., Geology, 2007) indicate slip rates that agree within uncertainties, but appear to be systematically lower than geodetic rates. While real rate changes of a few mm/yr cannot be ruled out at present, we note that geodetic inversions for coseismic fault slip on the NAF, and most other faults well constrained by geodetic observations, indicate larger slip at depth than at the surface. If this difference persists throughout the earthquake deformation cycle, it would account for the small difference in geodetic and geologic rates. Extrapolating present-day geodetic motions for Arabia relative to Nubia and Somalia to the time of initiation of Red Sea and Gulf of Aden extension indicates that Arabia separated from Nubia and Somalia simultaneously along the full extent of both rifts at about 25 Myr BP, consistent with independent geologic estimates for the style, and age of initiation of Red Sea extension (Omar and Steckler, 1995, Science). In addition, structural offsets across the Gulf of Suez (GoS) and Gulf of Aqaba (GoA) are consistent with a transfer of strain form the GoS to the GoA at around 12 Ma BP, roughly consistent with the age on initiation of the Dead Sea fault system. We further show that the apparent discrepancy between geodetic deformation of the Aegean (plate-like motion with low internal deformation), and geologic deformation (extensive crustal thinning

  2. Were they all giants? Perspectives on late Holocene plate-boundary earthquakes at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Hutchinson, Ian; Clague, John

    2017-08-01

    The relative magnitude of plate-boundary earthquakes at the northern end of the Cascadia subduction zone was assessed from the temporal concordance between the ages of coseismically buried late Holocene soils in southwest Washington, their counterparts in central and southern Cascadia, offshore turbidites, and paleoseismic deposits on the west coast of Vancouver Island. Only three of the seven buried soils in southwest Washington that can be reliably traced as buried soils or paleotsunami deposits in the coastal lowlands of south-central and southern Cascadia have well-dated counterparts in northern Cascadia. The three wide-ranging events date from Cascadia earthquakes Y (∼250 cal BP), U (∼1260 cal BP), and N (∼2520 cal BP). All three likely ruptured the entire plate margin, and therefore potentially qualify as ;giants; (Mw ≥ 9). Deposits that may derive from tsunamis generated by earthquakes S (∼1570 cal BP), L (∼2870 cal BP) and J (∼3360 cal BP) can also be found in northern Cascadia, but the ages of these deposits are not yet well-enough constrained to determine whether they are coeval with their southern counterparts. Earthquake W (∼850 cal BP), appears to be present in the northern Cascadia paleoseismic record, but yields considerably older ages than in central Cascadia, and may be missing from southernmost Cascadia. The onshore record of an offshore turbidite (T2) displays a similar spatio-temporal pattern to that of earthquake W.

  3. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled...

  4. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  5. Seismicity of the Earth 1900-2007, Nazca Plate and South America

    Science.gov (United States)

    Rhea, Susan; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Tarr, Arthur C.; Benz, Harley

    2010-01-01

    The South American arc extends over 7,000 km, from the Chilean triple junction offshore of southern Chile to its intersection with the Panama fracture zone, offshore the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their decent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 mm/yr in the south to approximately 70mm/yr in the north.

  6. Accurate measurements of vadose zone fluxes using automated equilibrium tension plate lysimeters: A synopsis of results from the Spydia research facility, New Zealand.

    Science.gov (United States)

    Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet

    2014-05-01

    Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009

  7. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins...... on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins....... A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when...

  8. Convergent chaos

    Science.gov (United States)

    Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael

    2017-07-01

    Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.

  9. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific. [Satellite-to-Satellite Tracking

    Science.gov (United States)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G.

    1984-01-01

    Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the Seasat altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration is considered. Previously announced in STAR as N84-11559

  10. Geophysical characteristics of the suture zone between North China and Siberian plates%华北板块与西伯利亚板块缝合带之地球物理特征

    Institute of Scientific and Technical Information of China (English)

    苏美霞; 赵文涛; 张慧聪; 孙会玲; 李红威; 范亚丽

    2014-01-01

    内蒙古地域辽阔,全区跨越了西伯利亚、华北、哈萨克斯坦、塔里木四大板块。受多期构造运动影响,地质构造环境极其复杂。历年来关于华北板块、西伯利亚板块缝合带界限的位置,始终是地质工作者讨论的热点。笔者从地球物理学的角度,分析了华北板块与西伯利亚板块缝合带之地球物理场(重磁场)特征,认为西拉木伦河断裂带应是华北板块与西伯利亚板块的终极缝合带。%Inner Mongolia has vast territory and, according to the theory of plate tectonics, strides across Siberian, North China, Ka-zakhstan and Tarim plates. Its tectonic environment is extremely complex in that it has experienced multi-period structural movements in geological history. For years, the boundary between North China and Siberian plates has been a discussion hotspot among geologists. Based on an analysis of the geophysical gravity and magnetic field characteristics of the suture zone, the authors hold that Xar Moron River fault zone should be the ultimate suture zone between North China and Siberia plates. The results obtained by the authors provide geophysical evidence for the determination of the ultimate suture zone between the two large plates.

  11. Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift

    Science.gov (United States)

    Zirakparvar, N. A.; Baldwin, S. L.; Vervoort, J. D.

    2011-09-01

    High-pressure and ultra high-pressure (U)HP metamorphic rocks occur in many of the world's major orogenic belts, suggesting that subduction of continental lithosphere is a geologically important process. Despite the widespread occurrence of these rocks, relatively little is known about the timescales associated with (U)HP metamorphism. This is because most (U)HP terranes are tectonically overprinted and juxtaposed against rocks with a different history. An exception to this are the Late Miocene (U)HP metamorphic rocks found in active metamorphic core complexes (MCC) in the Woodlark Rift of southeastern Papua New Guinea. This region provides a rare opportunity to study the garnet Lu-Hf isotopic record of (U)HP metamorphism in a terrane that is not tectonically overprinted. In order to constrain the timing of garnet growth relative to the history of (U)HP metamorphism and the evolution of the Woodlark Rift, Lu-Hf ages were determined, in conjunction with measurements of Lu and major element zoning, for garnets from three metamorphic rocks. Garnets from the three samples yielded different ages that, instead of recording the spatial and temporal evolution associated with a single metamorphic event, provide information on the timing of three separate plate boundary events. The youngest Lu-Hf age determined was 7.1 ± 0.7 Ma for garnets in a Late Miocene coesite eclogite. The age is interpreted to record the time when a garnet-bearing partial melt of the mantle crystallized within subducted continental lithosphere at (U)HP conditions. The young Lu-Hf age from the coesite eclogite is in contrast to a 68 ± 3.6 Ma Lu-Hf age obtained on large (1-2 cm) garnet porphyroblasts, from within the Pleistocene amphibolite facies shear zone carapace bounding exposures of (U)HP rocks in the D'Entrecasteaux Islands. This older age records the growth of garnet in response to continental subduction and ophiolite obduction in the region north and east of Australia during late Mesozoic

  12. Seismic ACROSS Transmitter Installed at Morimachi above the Subducting Philippine Sea Plate for the Test Monitoring of the Seismogenic Zone of Tokai Earthquake not yet to Occur

    Science.gov (United States)

    Kunitomo, T.; Kumazawa, M.; Masuda, T.; Morita, N.; Torii, T.; Ishikawa, Y.; Yoshikawa, S.; Katsumata, A.; Yoshida, Y.

    2008-12-01

    Here we report the first seismic monitoring system in active and constant operation for the wave propagation characteristics in tectonic region just above the subducting plate driving the coming catastrophic earthquakes. Developmental works of such a system (ACROSS; acronym for Accurately Controlled, Routinely Operated, Signal System) have been started in 1994 at Nagoya University and since 1996 also at TGC (Tono Geoscience Center) of JAEA promoted by Hyogoken Nanbu Earthquakes (1995 Jan.17, Mj=7.3). The ACROSS is a technology system including theory of signal and data processing based on the brand new concept of measurement methodology of Green function between a signal source and observation site. The works done for first generation system are reported at IWAM04 and in JAEA report (Kumazawa et al.,2007). The Meteorological Research Institute of JMA has started a project of test monitoring of Tokai area in 2004 in corporation with Shizuoka University to realize the practical use of the seismic ACROSS for earthquake prediction researches. The first target was set to Tokai Earthquake not yet to take place. The seismic ACROSS transmitter was designed so as to be appropriate for the sensitive monitoring of the deep active fault zone on the basis of the previous technology elements accumulated so far. The ground coupler (antenna) is a large steel-reinforced concrete block (over 20m3) installed in the basement rocks in order to preserve the stability. Eccentric moment of the rotary transmitter is 82 kgm at maximum, 10 times larger than that of the first generation. Carrier frequency of FM signal for practical use can be from 3.5 to 15 Hz, and the signal phase is accurately controlled by a motor with vector inverter synchronized with GPS clock with a precision of 10-4 radian or better. By referring to the existing structure model in this area (Iidaka et al., 2003), the site of the transmitting station was chosen at Morimachi so as to be appropriate for detecting the

  13. A New Arabia-Africa-Eurasia GPS Velocity Field (1994-2014) and E Mediterranean Block Model: Implications for Continental Deformation in a Zone of Active Plate Interaction

    Science.gov (United States)

    Vernant, P.; Floyd, M.; Ozener, H.; Ergintav, S.; Karakhanian, A.; Kadirov, F. A.; Sokhadze, G.; ArRajehi, A.; Nankali, H. R.; Georgiev, I.; Ganas, A.; Paradissis, D.; McClusky, S.; Gomez, F. G.; Reilinger, R. E.

    2014-12-01

    We present new GPS velocities for the Arabia-Africa-Eurasia region determined with GAMIT/GLOBK (>830 velocities) spanning the period 1994-2014. Here we consider the E Mediterranean region of plate interaction. We use DEFNODE software to develop block models and estimate slip rates on major faults and strain of some blocks. The wrms of residual velocities from our new model is 1.3 mm/yr. We identify small E-W extension within the newly defined Anatolian block confined to a 100-200 km wide zone south of the North Anatolian Fault (NAF) reaching 2-3 mm/yr with rates increasing towards the west. Possible causes we consider include, un-modeled postseismic effects of the 1999 Izmit/Duzce earthquake sequence, continuing post-seismic effects of the 20th Century sequence of M>7 earthquakes, and/or toroidal sub-lithospheric flow towards the subducting Hellenic slab. The overall strain rate of the Marmara Sea block is dominantly N-S extension, and the Van block, N-S compression. Present slip rates along the NAF increase from E to W, 22-24 mm/yr along the E to E-central segment and 27-28 mm/yr along the W segment. We quantify extension in the G. of Corinth, central Greece, and G. of Evia; the W, central and E sections of the Hellenic Trench are shortening with extension in the back-arc. The W Hellenic Trench and W Peloponnese have right-lateral strike-slip and the E Hellenic Trench, left-lateral ss. N-S extension (2-4 mm/yr) in N Greece and the N Aegean Sea extends at least to 42°N. Arabia-Sinai left-lateral motion across the Dead Sea Fault is ~5 mm/yr along the S segment; significant residual velocities along the N and S segments indicate lower slip rates in the N and require fault segmentation to account for slip rate variations along strike. We identify E-W contraction of the Arabian (Persian) Gulf (~3-5 mm/yr) that extends into the E part of the Arabian Plate. We will quantify and present these and other observed deformation patterns and discuss their tectonic implications.

  14. The Record of Collision and Accretion in the History of a Convergent Margin

    Science.gov (United States)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Cayley, R. A.

    2014-12-01

    Convergent margins become congested when they try to swallow buoyant, exotic crust or an oceanic swell associated with anomalously buoyant plume material. Mountain belts (orogens) that form at these convergent plate margins are the sites of significant lateral continental growth. Modern examples of accretionary margins are the North American Cordillera and southwest Pacific. The geologic record is riddled with accretionary orogens, such as the Tasmanides along the eastern margin of the supercontinent Gondwana and the Altaides that formed on the southern margin of Laurasia. In modern and ancient examples of long lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back arc basin development, often related to subduction roll back and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. In previous work, (Mason et al, 2010), we found that buoyant material ingested by a subduction zone produces a relative advance of the local region of the trench (either reduced rollback or absolute advance) naturally leading to the characteristic indentation of the plate boundary by the plateau. Depending on the strength and buoyancy of the incoming anomaly relative to the oceanic lithosphere, it may be subducted or it may be accreted with the associated formation of a slab window. Extending this model to ocean-continent convergent zones (Moresi et al, 2014), we show how the indentation of buoyant exotic material also dominates terrane accretion. When large blocks of material congest a subduction zone, the subduction zone needs to undergo signficiant re-arrangement for convergence to continue. We have modelled this process and observe characteristic patterns in the deformation of the over-riding plate, in the timing of the escape of material from behind the indenter, and in the oroclinal geometry that remains once the collision has completed. References Mason, W. G., Moresi, L., Betts, P. G

  15. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England

    Science.gov (United States)

    Simons, B.; Shail, Robin K.; Andersen, Jens C. Ø.

    2016-09-01

    The Early Permian Cornubian Batholith was generated during an extensional regime following Variscan convergence within the Rhenohercynian Zone of SW England. Its component granites can be classified, using mineralogical, textural and geochemical criteria, into five main types, all of which are peraluminous (A/CNK > 1.1): G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz). G1 granites formed through up to 20% muscovite and minor biotite dehydration melting of a metagreywacke source at moderate temperatures and pressures (731-806 °C, > 5 kbar). Younger G3 granites formed through higher temperature, lower pressure (768-847 °C, < 4 kbar) biotite-dominated melting of a similar source. Partial melting was strongly influenced by the progressive lower-mid crustal emplacement of mafic igneous rocks during post-Variscan extension and a minor (< 5%-10%) mantle-derived component in the granites is possible. Two distinct fractionation series, G1-G2 and G3-G4, are defined using whole-rock geochemical and mineral chemical data. Variations in the major elements, Ba, Sr and Rb indicate that G1 and G3 granites underwent 15%-30% fractionation of an assemblage dominated by plagioclase, alkali feldspar and biotite to form more evolved G2 and G4 granites, respectively. Decreasing whole-rock abundances of Zr, Th and REE support the fractionation of zircon, monazite, apatite and allanite. Subsolidus alteration in G2 and G4 granites is indicated by non-primary muscovite and tourmaline and modification of major and trace element trends for G3-G4 granites, particularly for P2O5 and Rb. Topaz (G5) granites show low Zr, REE and extreme enrichment in Rb (up to 1530 ppm) and Nb (79 ppm) that cannot be related in a straightforward manner to continued differentiation of the G1-G2 or G3-G4 series. Instead, they are considered to represent partial melting, mediated by granulite facies fluids, of a biotite-rich restite following extraction of G1 and/or G3 magmas; they do

  16. Forearc kinematics in obliquely convergent margins: Examples from Nicaragua and the northern Lesser Antilles

    Science.gov (United States)

    Turner, Henry L., III

    In this study, I use surface velocities derived from GPS geodesy, elastic half-space dislocation models, and modeled Coulomb stress changes to investigate deformation in the over-riding plate at obliquely convergent margins at the leading and trailing edges of the Caribbean plate. The two principal study areas are western Nicaragua, where the Cocos plate subducts beneath the Caribbean plate, and the northern Lesser Antilles, where the North American plate subducts beneath the Caribbean plate. In Nicaragua, plate convergence is rapid at 84 mm yr1 with a small angle of obliquity of 10° along a slightly concave portion of the Middle America Trench. GPS velocities for the period from 2000 to 2004 from sites located in the Nicaraguan forearc confirmed forearc sliver motion on the order of ˜14 mm yr1 in close agreement with the value predicted by DeMets (2001). These results are presented here in Chapter 3 and were reported in Geophysical Research Letters (Turner et al., 2007). GPS observations made on sites located in the interior and on the eastern coast of Nicaragua during the same time period were combined with new data from eastern Honduras to help better constrain estimates of rigid Caribbean plate motion (DeMets et al., 2007). Slip approaching the plate convergence rate along the Nicaraguan and El Salvadoran sections of the Middle America Trench was quantitatively demonstrated by finite element modeling of this section of the plate interface using GPS velocities from our Nicaraguan network together with velocities from El Salvador and Honduras as model constraints (Correa-Mora, 2009). The MW 6.9 earthquake that ruptured the seismogenic zone offshore Nicaragua on October 9, 2004 resulted in coseismic displacements and post-seismic motion at GPS sites in the central part of the Nicaraguan forearc that currently prevent extension of interseismic time-series in this region. An elastic half-space dislocation model was used to estimate coseismic displacements at these

  17. The evolution of forearc structures along an oblique convergent margin, central Aleutian Arc

    Science.gov (United States)

    Ryan, H.F.; Scholl, D. W.

    1989-01-01

    Multichannel seismic reflection data were used to determine the evolutionary history of the forearc region of the central Aleutian Ridge. Since at least late Miocene time this sector of the ridge has been obliquely underthrust 30?? west of orthogonal convergence by the northwestward converging Pacific plate at a rate of 80-90 km/m.y. Our data indicate that prior to late Eocene time the forearc region was composed of rocks of the arc massif thinly mantled by slope deposits. Beginning in latest Miocene or earliest Pliocene time, a zone of outer-arc structural highs and a forearc basin began to form. Initial structures of the zone of outer-arc highs formed as the thickening wedge underran, compressively deformed, and uplifted the seaward edge of the arc massive above a landward dipping backstop thrust. Forearc basin strata ponded arcward of the elevating zone of outer-arc highs. However, most younger structures of the zone of outer-arc highs cannot be ascribed simply to the orthogonal effects of an underrunning wedge. Oblique convergence created a major right-lateral shear zone (the Hawley Ridge shear zone) that longitudinally disrupted the zone of outer-arc highs, truncating the seaward flank of the forearc basin and shearing the southern limb of Hawley Ridge, an exceptionally large antiformal outer-arc high structure. Uplift of Hawley Ridge may be related to the thickening of the arc massif by westward directed basement duplexes. Great structural complexity, including the close juxtaposition of coeval structures recording compression, extension, differential vertical movements, and strike-slip displacement, should be expected, even within areas of generally kindred tectonostratigraphic terranes. -from Authors

  18. Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial

    Science.gov (United States)

    Audemard M., Franck A.; Castilla, Raymi

    2016-11-01

    This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (

  19. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    Science.gov (United States)

    von Huene, Roland; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  20. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea.

    Science.gov (United States)

    Baldwin, Suzanne L; Monteleone, Brian D; Webb, Laura E; Fitzgerald, Paul G; Grove, Marty; Hill, E June

    2004-09-16

    As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent-daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 +/- 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of approximately 75 km was extremely rapid and occurred at plate tectonic rates (cm yr(-1)). The eclogite was exhumed within a portion of the obliquely convergent Australian-Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr(-1)) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence.

  1. The EU's Convergence Dilemma

    Directory of Open Access Journals (Sweden)

    Notermans Ton

    2015-02-01

    Full Text Available As economic stagnation continues to mark the EU in the fifth year of the euro zone crisis, political support for integration is waning. The European Parliament elections of 2014 returned a hitherto unparalleled number of Eurosceptic MEPs, with EU-critical parties becoming the largest ones in several Member States. Much of this Euroscepticism is driven by economic polarisation between core and peripheral countries. While an increasing number of voters in the northwestern creditor countries resent having to foot the bill for what they consider economic mismanagement in the periphery, voters in peripheral countries increasingly rebel against what they deem to be an economically catastrophic Diktat from Germany and its allies. Continued political support for European integration will hinge on successful income convergence in the EU but the current dilemma is that such policies might not be politically feasible. Periods of rapid convergence would seem to suggest that success depends on two main policy strategies. First, a monetary policy that promotes credit for productive purposes, leaves inflation control to other instruments, and employs selective credit rationing to prevent asset booms. Second, a vertical industrial policy prioritising selected industrial sectors. The first policy conflicts with the present framework of euro zone monetary policy, but that framework was only installed in the first place because many peripheral countries were desperately in search of an external constraint on domestic distributional conflict. Industrial policies, in turn, require a sufficient degree of state autonomy from business elites in order to be effective, but it is highly questionable whether most states in the EU possess such autonomy. Though there are, as yet hesitant, signs of a reorientation of both monetary and cohesion policy in the EU, the question of the institutional and political preconditions for their successful implementation has been largely

  2. Plate tectonics 2.5 billion years ago: evidence at kolar, South India.

    Science.gov (United States)

    Krogstad, E J; Balakrishnan, S; Mukhopadhyay, D K; Rajamani, V; Hanson, G N

    1989-03-10

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accrted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics sugesting that their volcanic protoliths were derived from dint mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on Earth by 2500 Ma.

  3. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    Science.gov (United States)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  4. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    Science.gov (United States)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  5. It Takes Two to Tango: The Timing of the India -Eurasia Collision and the Origin of the Super-Fast India-Eurasia Convergence Rates.

    Science.gov (United States)

    Jagoutz, O. E.; Royden, L.; Holt, A.; Becker, T. W.

    2014-12-01

    The pre-collisional convergence history of India and Eurasia displays highly variable convergence rates, including anomalously high rates of ~120-180 mm/a between ~70 and 50 Ma. As the subduction zone forces play a key role in driving plate tectonic understanding the subduction zone configuration in the Tethyan ocean is essential to understand the observed variation in convergence rates. It has long been established that two subduction systems existed between India and Eurasia since the break up of Gondwana: An intra oceanic subduction system (in the equatorial part of the ocean) and a continental subduction system on the southern Eurasian margin. As relicts of both subduction systems are now incorporated in the Himalayan and Tibetan collision zone, reconstruction of the pre-collisional geometry and the timing of the collision between India and the different subduction system is challenging. However, in recent years it has become increasingly more obvious that India likely originally collided with the intra oceanic subduction system first and only subsequently with the Eurasia margin (e.g., Aitchison et al., 2007 JGR, Bouilhol et al, 2013 EPSL). In this presentation, we summarize the geological evidence that allows us to reconstruct the configuration of the subduction system in the Tehtyan ocean and the timing of the India-Arc and India Eurasia collision. These constraints guide 3D subduction zone models that are used to evaluate the role of two subduction zones for the variable India-Eurasia Convergence rates. Model convergence rates of up to 140 mm/yr are in agreement with observed rates from 120 Ma to present, except for a short-lived spike in rate at ~62-66 Ma, which may be attributed to the Reunion plume. The end of anomalously fast convergence is due to the entry of buoyant Indian continental lithosphere into this intra-oceanic subduction zone at 50 Ma and not to the collision of India with Eurasia, which had little effect before 40 Ma.

  6. Localised Plate Motion on Venus

    Science.gov (United States)

    Ghail, R. C.

    1996-03-01

    The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.

  7. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens

    Science.gov (United States)

    Upton, Phaedra; Craw, Dave

    2016-12-01

    Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn

  8. Variations of upper plate mechanics, seismicity, and arc volcanism along the Middle America Trench

    Science.gov (United States)

    Ruh, J.; Sallares, V.; Ranero, C. R.; van Dinther, Y.

    2015-12-01

    The Middle America Trench (MAT) extends from the Riviera Fracture Zone offshore Mexico down to the Panama Fracture Zone. Along the MAT, the oceanic Cocos plate changes in character from the older, deeper and relatively smooth plate offshore Guatemala-Nicaragua to the ~20 km thick crust of Cocos Ridge off Costa Rica. These changes occur because the northern part of the the Cocos plate has been formed at the East Pacific Rise, while the southern part is formed at the Cocos-Nazca spreading center, which is in turn influenced by the Galapagos Hotspot, originating prominent submarine structures such as the Cocos Ridge. In contrast, the terrane forming the overriding plate in the Pacific convergent margin, which is mainly made by the Caribbean Igneous Province rocks, is relatively homogeneous. Thus, this region is an excellent natural example to study the effect of changes in the incoming plate on the tectonics and deformation of the overriding plate. The Nicaragua lake in the north is a result of upper plate extension related to rollback of the subducting slab, whereas in the south, the Talamanca Cordillera indicates compression of the Caribbean crust probably related with the subduction of the Cocos Ridge. We present numerical models that help to understand the long-term effects of variable subducting oceanic crust age and thickness on upper plate deformation and magmatism. Furthermore, we investigate the seismic behavior of these different convergent systems. The applied numerical model consists of a 2D seismo-thermo-mechanical finite difference scheme with visco-elasto-plastic rheology and a stick-slip frictional formulation to simulate spontaneous nucleation, propagation and arrest of earthquake-like ruptures on physically consistent faults.

  9. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  10. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2016-03-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  11. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of compression, mainly from the Alpine orogen. Here we show that the main phases differed both in structural style and cause. The Cretaceous phase was characterized by narrow uplift zones, reverse activation of faults, crustal shortening, and the formation of asymmetric marginal troughs. In contrast, the Middle...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...... of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe....

  12. Three-dimensional velocity structure of the outer fore arc of the Colombia-Ecuador subduction zone and implications for the 1958 megathrust earthquake rupture zone

    Science.gov (United States)

    García Cano, Lina Constanza; Galve, Audrey; Charvis, Philippe; Marcaillou, Boris

    2014-02-01

    In 2005, an onshore, offshore 3-D refraction and wide-angle reflection seismic experiment was conducted along the convergent margin at the border between Colombia and Ecuador, over the rupture zone of the 1958, Mw 7.6 subduction earthquake. A well-defined Vp velocity model of the plate boundary and upper and lower plates was constructed, down to 25 km depth, using first arrival traveltimes inversion. The model reveals a several kilometers thick, low-velocity zone in the upper plate, located immediately above the interplate contact. This low-velocity zone might be related to alteration and fracturing of the mafic and ultramafic rocks, which composed the upper plate in this area by fluids released by the lower plate with possible contributions from sediment underplating. Near the toe of the margin, the model shows a low-velocity gradient in the outer wedge, which is interpreted as highly faulted and fractured rocks. This low-velocity/low-gradient region appears to limit the oceanward extension of the rupture zones of the 1958 and 1979 earthquakes, possibly because coseismic deformation and uplift of the outer margin wedge dissipates most of the seismic energy.

  13. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    Science.gov (United States)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  14. Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk Convergence in the western margin of South America during the Cenozoic: Subduction of Nazca, Farallon and Aluk plates

    Directory of Open Access Journals (Sweden)

    R. Somoza

    2005-12-01

    Full Text Available En este trabajo se presentan nuevos parámetros de la convergencia cretácica tardía - reciente en el margen occidental de América del Sur. La historia de la convergencia puede describirse en tres etapas: 26-0 Ma, con subducción dominante de la placa Nazca; 47-28 Ma, con subducción dominante de la placa Farallón; y 72-47 Ma, cuando habrían entrado en subducción Farallón (parte norte de la trinchera y Aluk (parte sur. Las reconstrucciones para la etapa 72-47 Ma son compatibles con una migración de la triple unión Farallón-Sudamérica-Aluk desde el norte de Chile (¿sur de Perú? hasta los Andes Patagónicos. Eventos de deformación y magmatismo en la placa superior pueden ser relacionados con la subducción de la dorsal Farallón-Aluk durante esta etapa. La etapa 47-28 Ma muestra mayor velocidad y menor oblicuidad en la convergencia que la etapa anterior, sin mostrar variaciones profundas en estos parámetros durante su transcurso. El rasgo más distintivo de la etapa más joven son la variaciones en la velocidad de convergencia, con un fuerte incremento al inicio de la etapa y una disminución importante en los últimos diez millones de años. Estas variaciones pueden ser relacionadas con eventos tectónicos registrados en la placa superior y con el ascenso de los Andes Centrales.New Late Cretaceous to Recent reconstructions between South America and the oceanic plates in the Pacific basin allow the division of the corresponding convergence history into three stages. The convergence parameters for the 72-47 Ma time span suggest the migration of the Farallón-South America-Aluk triple junction from northern Chile (southern Perú? up to the southern Patagonian Andes. Some deformational and magmatic events in the upper plate could be attributed to subduction of the Farallón-Aluk ridge by those times. The 47-28 Ma stage is characterized by subduction of Farallón plate in most (all? of the margin. The convergence rate and direction

  15. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn

  16. Crustal structure and evolution of the southern Juan de Fuca plate from wide-angle seismic data: Insights into the hydration state of the incoming plate off Cascadia subduction zone

    Science.gov (United States)

    Horning, G.; Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2014-12-01

    A multi-channel seismic reflection and wide-angle refraction seismic experiment was conducted on the Juan de Fuca (JdF) plate to investigate the evolution of the plate from accretion to its subduction at the Cascadia margin. Hydration of the upper crust (UC) of the JdF Plate is well documented, but the state of hydration of the lower crust (LC) and upper mantle (UM] remains to be investigated. A 2D P-wave velocity model of the plate is derived from a joint reflection-refraction travel-time inversion of wide-angle seismic data. Stacked MCS reflection images together with modeled sedimentary velocities define an increasing thickness of sedimentary cover of up to 2.7km. Evidence for bending-related faulting is identified in coincident MCS images both indirectly as faulting in the sedimentary layer [Gibson, et al., this meeting] and directly as dipping crustal reflectors [Han et al., this meeting]. Three first order features are evident in the patterns of crustal velocity variations along the profile. 1: Crustal velocities at 150-250 km landward of the spreading ridge (~5 Ma age) show reduced velocities up to -0.20 km/s in comparison to velocities in younger crust (~3 Ma) 100-150 km from the ridge. This decrease in velocities is coincident with a propagator wake. 2: Upper crustal velocities begin to increase at 170km from the deformation front (DF), which coincides with the first evidence of faulting from sedimentary offsets. Crustal velocities start a decreasing trend at 80km from the DF where fault throws are seen to begin increasing trend landward. 3: UC velocities in the region of directly imaged crustal faulting (40km from trench) increase ~0.5km/s at the DF, while LC velocities decrease ~0.3km/s. The contrasting behavior in the upper and lower crust may indicate that bending promotes hydrothermal circulation in the outer rise. Circulation may be vigorous enough within the sediments/UC so that any residual shallow porosity is clogged with alteration products

  17. Strong path convergence from Loewner driving convergence

    CERN Document Server

    Sheffield, Scott

    2010-01-01

    We show that, under mild assumptions on the limiting curve, a sequence of simple chordal planar curves converges uniformly whenever certain Loewner driving functions converge. We extend this result to random curves. The random version applies in particular to random lattice paths that have chordal SLE as a scaling limit, with kappa less than 8 (non-space-filling). Existing SLE convergence proofs often begin by showing that the Loewner driving functions of these paths (viewed from infinity) converge to Brownian motion. Unfortunately, this is not sufficient, and additional arguments are required to complete the proofs. We show that driving function convergence is sufficient if it can be established for both parametrization directions and a generic target.

  18. Using paleomagnetism to expand the observation time window of plate locking along subduction zones: evidence from the Chilean fore-arc sliver (38°S - 42°S)

    Science.gov (United States)

    Hernandez-Moreno, Catalina; Speranza, Fabio; Di Chiara, Anita

    2017-04-01

    Fore-arc crustal motion has been usually addressed by the analysis of earthquake slip vectors and, since the last twenty years, by velocity fields derived from Global Positioning System (GPS) data. Yet this observation time window (few decades) can be significantly shorter than a complete seismic cycle or constrained to interseismic periods where the postseismic deformation release, the vicinity of other important faults, and the slip partitioning in oblique subduction may hinder the finite deformation pattern. Paleomagnetic data may yield finite rotations occurring since rock formation, thus provide a much longer observation time span in the order of millions or tens of millions of years. The cumulative permanent or nonreversing deformation in function of the considered geological formation age can represent the average over many seismic cycles, thus significantly complement "instantaneous" information derived from seismic and GPS data. With the aim of evaluate the strike-variation and evolution of the plate coupling along the Chilean subduction zone, here we report on the paleomagnetism of 43 Oligocene-Pleistocene volcanic sites from the fore-arc sliver between 38°S and 42°S. Sites were gathered west of the 1000 km long Liquiñe-Ofqui dextral fault zone (LOFZ) that represents the eastern fore-arc sliver boundary. Nineteen reliable sites reveal that the fore arc is characterized by counterclockwise (CCW) rotations of variable magnitude, except at 40°S - 41°S, where ultrafast (>50°/Myr) clockwise (CW) rotations occur within a 30 km wide zone adjacent to the LOFZ. CCW rotation variability (even at close sites) and rapidity (>10°/Myr) suggest that the observed block rotation pattern is related to NW-SE seismically active sinistral faults crosscutting the whole fore arc. According to previously published data, CW rotations up to 170° also occur east of the LOFZ and have been related to ongoing LOFZ shear. We suggest that the occurrence and width of the eastern

  19. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    Science.gov (United States)

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan

  20. Seismicity of the Earth 1900-2013, seismotectonics of South America (Nazca Plate Region)

    Science.gov (United States)

    Hayes, Gavin P.; Smoczyk, Gregory M.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2015-01-01

    The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their descent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate, the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 millimeters/year (mm/yr) in the south, to approximately 65 mm/yr in the north. Although the rate of subduction varies little along the entire arc, there are complex changes in the geologic processes along the subduction zone that dramatically influence volcanic activity, crustal deformation, earthquake generation and occurrence all along the western edge of South America.

  1. Vehicle License Plate Recognition Syst

    Directory of Open Access Journals (Sweden)

    Meenakshi,R. B. Dubey

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  2. Numerical Simulation of Effect of Disc Plate's Openings on Shell Side Properties of Coiled Heat Exchanger with Convergent-Divergent Tubes%圆盘板开孔对缩放管盘环式换热器壳程性能影响的数值研究

    Institute of Scientific and Technical Information of China (English)

    吴秋华

    2013-01-01

    利用CFD技术对圆盘板上开不同直径孔的缩放管盘环式换热器壳程进行了数值模拟.结果表明,田盘板开孔能在一定程度上改善圆盘板后侧流体的流动状况,且开孔后圆盘与圆环折流板之间的流体压力分布较均匀;开孔直径越大,挟热器的壳程传热系数和压降均越小,综合性能越好;开孔直径不宜过小,适当地开孔才能有效地提高换热器的综合性能.%Making use of CFD,the shell side properties of coiled heat exchanger with convergent — divergent tubes were simulated.The results show that,the disc plate' s opening can improve fluid' s flow condition at disc plate' s rear side and can bring a well-distributed fluid pressure between disc and baffle plate ; and the openings'larger diameter can bring smaller shell side heat transfer coefficient and pressure drop.The opening's proper diameter can benefit the improvement of comprehensive properties of heat exchangers.

  3. There is poverty convergence

    OpenAIRE

    Crespo Cuaresma, Jesus; Klasen, Stephan; Wacker, Konstantin M.

    2016-01-01

    Martin Ravallion ("Why Don't We See Poverty Convergence?" American Economic Review, 102(1): 504-23; 2012) presents evidence against the existence of convergence in global poverty rates despite convergence in household mean income levels and the close linkage between income growth and poverty reduction. We show that this finding is driven by a specification that demands more than simple convergence in poverty headcount rates and assumes a growth elasticity of poverty reduction, which is well-k...

  4. Plate tectonics, damage and inheritance.

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  5. Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis

    Science.gov (United States)

    Kameda, Jun; Inoue, Sayako; Tanikawa, Wataru; Yamaguchi, Asuka; Hamada, Yohei; Hashimoto, Yoshitaka; Kimura, Gaku

    2017-04-01

    The alteration and dehydration of predominantly basaltic subducting oceanic crustal material are thought to be important controls on the mechanical and hydrological properties of the seismogenic plate interface below accretionary prisms. This study focuses on pillow basalts exposed in an ancient accretionary complex within the Shimanto Belt of southwest Japan and provides new quantitative data that provide insight into clay mineral reactions and the associated dehydration of underthrust basalts. Whole-rock and clay-fraction X-ray diffraction analyses indicate that the progressive conversion of saponite to chlorite proceeds under an almost constant bulk-rock mineral assemblage. These clay mineral reactions may persist to deep crustal levels ( 320 °C), possibly contributing to the bulk dehydration of the basalt and supplying fluid to plate-boundary fault systems. This dehydration can also cause fluid pressurization at certain horizons within hydrous basalt sequences, eventually leading to fracturing and subsequent underplating of upper basement rock into the overriding accretionary prism. This dehydration-induced breakage of the basalt can explain variations in the thickness of accreted basalt fragments within accretionary prisms as well as the reported geochemical compositions of mineralized veins associated with exposed basalts in onland locations. This fracturing of intact basalt can also nucleate seismic rupturing that would subsequently propagate along seismogenic plate interfaces.[Figure not available: see fulltext.

  6. Convergence S-compactifications

    Directory of Open Access Journals (Sweden)

    Bernd Losert

    2014-07-01

    Full Text Available Properties of continuous actions on convergence spaces are investigated. The primary focus is the characterization as to when a continuous action on a convergence space can be continuously extended to an action on a compactification of the convergence space. The largest and smallest such compactifications are studied.

  7. Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence

    Science.gov (United States)

    Chen, Lin; Capitanio, Fabio A.; Liu, Lijun; Gerya, Taras V.

    2017-07-01

    The formation of the Tibetan plateau during the India-Asia collision remains an outstanding issue. Proposed models mostly focus on the different styles of Tibetan crustal deformation, yet these do not readily explain the observed variation of deformation and deep structures along the collisional zone. Here we use three-dimensional numerical models to evaluate the effects of crustal rheology on the formation of the Himalayan-Tibetan orogenic system. During convergence, a weaker Asian crust allows strain far north within the upper plate, where a wide continental plateau forms behind the orogeny. In contrast, a stronger Asian crust suppresses the plateau formation, while the orogeny accommodates most of the shortening. The stronger Asian lithosphere is also forced beneath the Indian lithosphere, forming a reversed-polarity underthrusting. Our results demonstrate that the observed variations in lithosphere deformation and structures along the India-Asia collision zone are primarily controlled by the strength heterogeneity of the Asian continental crust.

  8. The 2 March 2016 Wharton Basin Mw 7.8 earthquake: High stress drop north-south strike-slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates

    Science.gov (United States)

    Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Dunham, Audrey; Koper, Keith D.

    2016-08-01

    The diffuse deformation zone between the Indian and Australian plates has hosted numerous major and great earthquakes during the seismological record, including the 11 April 2012 Mw 8.6 event, the largest recorded intraplate earthquake. On 2 March 2016, an Mw 7.8 strike-slip faulting earthquake occurred in the northwestern Wharton Basin, in a region bracketed by north-south trending fracture zones with no previously recorded large event nearby. Despite the large magnitude, only minor source finiteness is evident in aftershock locations or resolvable from seismic wave processing including high-frequency P wave backprojections and Love wave directivity analysis. Our analyses indicate that the event ruptured bilaterally on a north-south trending fault over a length of up to 70 km, with rupture speed of ≤ 2 km/s, and a total duration of 35 s. The estimated stress drop, 20 MPa, is high, comparable to estimates for other large events in this broad intraplate oceanic deformation zone.

  9. BOLIVAR & GEODINOS: Investigations of the Southern Caribbean Plate Boundary

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Working Groups, B.

    2006-12-01

    The southern Caribbean-South American plate boundary has many similarities to California's San Andreas system: 1) The CAR-SA system consists of a series of strands of active right lateral strike-slip faults extending >1000 km from the Antilles subduction zone. This system has several names and includes the El Pilar, Coche, San Sebastian, Moron, and Oca faults. 2) The CAR-SA relative velocity has been about 20 mm/yr of mostly right lateral motion since about 55 Ma, giving a total displacement on the CAR-SA plate boundary similar to that of the San Andreas system. 3) The plate boundary has about 10% convergence in western SA, with less as one moves eastward due to relative convergence between North and South America. 4) The CAR-SA system has fold and thrust belts best developed continentward of the strike-slip faults, similar to the San Andreas. 5) There is a big bend in the CAR plate boundary at approximately the same distance from the Antilles trench as the big bend in Southern California is from the Cascadia subduction zone. The tectonic origins of the CAR-SA plate boundary and the San Andreas are very different, however, despite the similarities between the systems. Rather than impingement of a ridge on a trench, the CAR-SA system is thought to have resulted from a continuous oblique collision of the southern end of a Cretaceous island arc system with the northern edge of South America. During this process the CAR island arc and the modern CAR plate overrode a proto-Caribbean plate and destroyed a Mesozoic passive margin on the northern edge of SA. BOLIVAR and GEODINOS are multi-disciplinary investigations of the lithosphere and deeper structures associated with the diffuse CAR-SA plate boundary zone. We review a number of observations regarding the plate boundary obtained or confirmed from these studies: 1) The Caribbean Large Igneous Province, being overridden by the Maracaibo block in western Venezuela, can be identified beneath Aruba and coastal Venezuela

  10. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging

    Science.gov (United States)

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.

    2017-01-01

    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  11. Active faulting south of the Himalayan Front: Establishing a new plate boundary

    Science.gov (United States)

    Yeats, Robert S.; Thakur, V. C.

    2008-06-01

    New tectonic uplifts south of the Salt Range Thrust and Himalayan Front Thrust (HFT) represent an outward step of the plate boundary from the principal tectonic displacement zone into the Indo-Gangetic Plain. In Pakistan, the Lilla Anticline deforms fine-grained overbank deposits of the Jhelum River floodplain 15 km south of the Salt Range. The anticline is overpressured in Eocambrian non-marine strata. In northwest India south of Dehra Dun, the Piedmont Fault (PF) lies 15 km south of the HFT. Coalescing fans derived from the Himalaya form a piedmont (Old Piedmont Zone) 15-20 km wide east of the Yamuna River. This zone is uplifted as much as 15-20 m near the PF, and bedding is tilted 5-7° northeast. Holocene thermoluminescence-optically-stimulated luminescence dates for sediments in the Old Piedmont Zone suggest that the uplift rate might be as high as several mm/a. The Old Piedmont Zone is traced northwest 200 km and southeast another 200 km to the Nepal border. These structures, analogous to protothrusts in subduction zones, indicate that the Himalayan plate boundary is not a single structure but a series of structures across strike, including reactivated parts of the Main Boundary Thrust north of the range front, the HFT sensu stricto, and stepout structures on the Indo-Gangetic Plain. Displacement rates on all these structures must be added to determine the local India-Himalaya convergence rate.

  12. Geological record of fluid flow and seismogenesis along an erosive subducting plate boundary.

    Science.gov (United States)

    Vannucchi, Paola; Remitti, Francesca; Bettelli, Giuseppe

    2008-02-07

    Tectonic erosion of the overriding plate by the downgoing slab is believed to occur at half the Earth's subduction zones. In situ investigation of the geological processes at active erosive margins is extremely difficult owing to the deep marine environment and the net loss of forearc crust to deeper levels in the subduction zone. Until now, a fossil erosive subduction channel-the shear zone marking the plate boundary-has not been recognized in the field, so that seismic observations have provided the only information on plate boundary processes at erosive margins. Here we show that a fossil erosive margin is preserved in the Northern Apennines of Italy. It formed during the Tertiary transition from oceanic subduction to continental collision, and was preserved by the late deactivation and fossilization of the plate boundary. The outcropping erosive subduction channel is approximately 500 m thick. It is representative of the first 5 km of depth, with its deeper portions reaching approximately 150 degrees C. The fossil zone records several surprises. Two décollements were simultaneously active at the top and base of the subduction channel. Both deeper basal erosion and near-surface frontal erosion occurred. At shallow depths extension was a key deformation component within this erosive convergent plate boundary, and slip occurred without an observable fluid pressure cycle. At depths greater than about 3 km a fluid cycle is clearly shown by the development of veins and the alternation of fast (co-seismic) and slow (inter-seismic) slip. In the deepest portions of the outcropping subduction channel, extension is finally overprinted by compressional structures. In modern subduction zones the onset of seismic activity is believed to occur at approximately 150 degrees C, but in the fossil channel the onset occurred at cooler palaeo-temperatures.

  13. 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] controls growth plate development by inhibiting apoptosis in the reserve zone and stimulating response to 1alpha,25(OH)2D3 in hypertrophic cells.

    Science.gov (United States)

    Boyan, B D; Hurst-Kennedy, J; Denison, T A; Schwartz, Z

    2010-07-01

    Previously we showed that costochondral growth plate resting zone (RC) chondrocytes response primarily to 24R,25(OH)2D3 whereas prehypertrophic and hypertrophic (GC) cells respond to 1alpha,25(OH)2D3. 24R,25(OH)2D3 increases RC cell proliferation and inhibits activity of matrix processing enzymes, suggesting it stabilizes cells in the reserve zone, possibly by inhibiting the matrix degradation characteristic of apoptotic hypertrophic GC cells. To test this, apoptosis was induced in rat RC cells by treatment with exogenous inorganic phosphate (Pi). 24R,25(OH)2D3 blocked apoptotic effects in a dose-dependent manner. Similarly, apoptosis was induced in ATDC5 cell cultures and 24R,25(OH)2D3 blocked this effect. Further studies indicated that 24R,25(OH)2D3 acts via at least two independent pathways. 24R,25(OH)2D3 increases LPA receptor-1 (LPA R1) expression and production of lysophosphatidic acid (LPA), and subsequent LPA R1/3-dependent signaling, thereby decreasing p53 abundance. LPA also increases the Bcl-2/Bax ratio. In addition, 24R,25(OH)2D3 acts by increasing PKC activity. 24R,25(OH)2D3 stimulates 1-hydroxylase activity, resulting in increased levels of 1,25(OH)2D3, and it increases levels of phospholipase A2 activating protein, which is required for rapid 1alpha,25(OH)2D3-dependent activation of PKC in GC cells. These results suggest that 24R,25(OH)2D3 modulates growth plate development by controlling the rate and extent of RC chondrocyte transition to a GC chondrocyte phenotype.

  14. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  15. Development of the Scale for "Convergence Thinking" in Engineering

    Science.gov (United States)

    Park, Sungmi

    2016-01-01

    Purpose: The purpose of this paper is to define the concept of "convergence thinking" as a trading zone for knowledge fusion in the engineering field, and develops its measuring scale. Design/ Methodology/Approach: Based on results from literature review, this study clarifies a theoretical ground for "convergence thinking."…

  16. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    OpenAIRE

    Hindle, D; Fujita, K.; Mackey, K

    2009-01-01

    The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...

  17. Converged Registries Solution (CRS)

    Data.gov (United States)

    Department of Veterans Affairs — The Converged Registries platform is a hardware and software architecture designed to host individual patient registries and eliminate duplicative development effort...

  18. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    features, and fracture zones (and wedge-shaped sites of seafloor spreading are adjustment zones that accommodate strains in the lithosphere. Further, the interlocked pattern of the Australian and Pacific plates the past 42 Million years (with their absolute plate motions near 90° to each other is taken as strong evidence that large thermally driven "roller" convection cells previously inferred as the driving mechanism in earlier interpretations of continental drift and plate tectonics, have not been active in the Earth's mantle the past 42 Million years, if ever. This report also presents estimates of the changes in location and magnitude of the Earth's axis of total plate tectonic angular momentum for the past 62 million years.

  19. Miocene to Quaternary tectonostratigraphic evolution of the middle section of the Burdur-Fethiye Shear Zone, south-western Turkey: Implications for the wide inter-plate shear zones

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk

    2016-10-01

    The Burdur-Fethiye Shear Zone (BFSZ) is a 75- to 90- km wide and 300-km-long transtensional left-lateral shear zone which is located in one of the most tectonically active regions in south-western Turkey. A considerable number of studies suggested contradictory models of the evolution and Neogene stratigraphy of the BFSZ and in most cases, the local river and alluvial fan deposits were mapped together with the lacustrine sediments and assigned a Pliocene age. We present new field data, fault kinematic analyses, and DEM and earthquake data to characterize the tectonic controls and extent of the middle section of the BFSZ including Acıpayam, Çameli and Gölhisar basins. Our field observations revealed two distinct sedimentary sequences that unconformably overlie the pre-Neogene basement. The first sequence begins with middle-upper Miocene meandering- and braided-river sediments of the Gölhisar Formation, which transition upward into lacustrine sediments of the upper Miocene-lower Pliocene İbecik Formation. This sequence is overlain by upper Pliocene-lower Quaternary alluvial fan conglomerates, mudstones and claystones of the Dirmil Formation. The basin deposits located in the middle section of the BFSZ consist of lacustrine sediments of a late Miocene lake that likely evaporated due to the Messinian salinity crisis. Fault kinematic analysis and DEM and earthquake data indicate that the middle BFSZ can be characterized as a heterogeneous left-lateral transtensional shear zone rather than a major fault system. Our findings suggest that the middle section of the BFSZ developed under the influence of progressive counter clockwise rotation of south-western Turkey, the Aegean graben system and the Cyprus and Hellenic arcs since the middle Miocene.

  20. The Break-up and Drifting of the Continental Plates in 2D Models of Convecting Mantle

    Science.gov (United States)

    Dal Zilio, L.; Faccenda, M.; Capitanio, F. A.

    2014-12-01

    Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2D numerical modelling of the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with convection patterns. Subduction of the oceanic plate and induced mantle flow propagate basal tractions to the upper plate. This mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximised, however the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone, avalanching through or subduction in the lower mantle. We found good correspondence between our models and the evolution of convergent margins on Earth, giving precious insights into the break-up and drifting mechanisms of some continental plates, such as the North and South American plates, Calabria and the Japan Arc.

  1. Spontaneous Nucleation of Subduction Zones in the Western Pacific During Middle Eocene Time: Evidence From the IBM Forearc Ophiolite

    Science.gov (United States)

    Stern, R. J.

    2001-12-01

    Subduction zones nucleate in two fundamentally different ways. Induced nucleation is a response to continuing plate convergence following a collision event and requires the lithosphere to fail under compression; no change in plate motion is expected. Spontaneous nucleation of a subduction zone (SNSZ) manifests failure of old lithosphere due to gravitation instability. SNSZ doesn't require plate convergence to occur but major changes in plate motion are expected. SNSZ is possible where old oceanic lithosphere is unusually dense (old continental margins) or weak (along fracture zones). The western edge of the Pacific plate spontaneously reorganized as a convergent margin during Middle Eocene time ( ~50-42 Ma) and is the best known example of SNSZ. The unusual nature of this episode is preserved in the Izu-Bonin-Mariana (IBM) forearc, where pillow basalts, dyke complexes, gabbro, and harzburgitic mantle define an in situ ophiolite. The IBM forearc ophiolite requires that SNSZ was accompanied by a strongly magmatic episode of seafloor spreading. Spreading so close to the present trench requires asthenospheric upwelling where strong mantle downwelling now occurs. Abundant boninite, formed by melting harzburgite, in IBM forearc sections further demonstrates the unique nature of the IBM subduction initiation event. IBM SNSZ spans the period from beginning of magmatic construction of the IBM `forearc ophiolite' about 50 Ma to the change in Pacific Plate motion at 43 Ma marking the start of true subduction. Events during this stage are very poorly understood but can only be explained by subsidence of part of the lithosphere to a depth such that asthenosphere flowed over it. Stern and Bloomer (1992 BGSA 104, 1621-1636) argue that this occurred along a zone of weakness associated with a N-S fracture zone but this has been criticized on the basis of paleomagnetic models requiring ~90 o CW rotation of the Philippine Sea Plate (PSP) since 43Ma. The youngest parts of the

  2. Intermediate-Depth Intraplate Strike-Slip Earthquake Along the Subducted Nazca Plate: Stress Conditions Related to Flat-Slab Transition Zone?

    Science.gov (United States)

    Carrizo, D.; Peyrat, S.; Comte, D.; Boroschek, R.

    2013-05-01

    On October 11th, 2012 an strike-slip intraplate earthquake Mw=5.6 occurred at about 15 km NE of Santiago-Chile, at 107 km depth. This earthquake had a distribution of intensities of about VI MM, around Santiago region. In the past only few similar seismic events had been occurred, the majority of them without reported intensities. The location, the focal mechanism, and the depth of this earthquake, make it particularly interesting because the processes responsible for this kind of ruptures is still an open question. Moreover, it was also recorded by a local strong motion networks, allowing for the first time the possibility to study this kind of earthquakes using seismic and accelerographic data. We study the nature of this event using the aftershocks recorded by the Chilean Seismological Network and with a joint inversion of local strong-motion and teleseimic data, to understand the kinematic of rupture. Preliminary results suggest a singular stress condition in the subducted plate related to the transition from flat to normal subduction, which could be accommodated by strike-slip faulting. The strong motion analysis reveals high horizontal accelerations in agreement with high angle fault planes. Understand the tectonic setting associated to this type of earthquakes represents a relevant goal for seismic risk evaluation in the most populated Chilean region.

  3. Convergence of DFP algorithm

    Institute of Scientific and Technical Information of China (English)

    袁亚湘

    1995-01-01

    The DFP method is one of the most famous numerical algorithms for unconstrained optimization. For uniformly convex objective functions convergence properties of the DFP method are studied. Several conditions that can ensure the global convergence of the DFP method are given.

  4. Continent-scale strike-slip on a low-angle fault beneath New Zealand's Southern Alps: Implications for crustal thickening in oblique collision zones

    Science.gov (United States)

    Lamb, Simon; Smith, Euan; Stern, Tim; Warren-Smith, Emily

    2015-09-01

    New Zealand's Southern Alps lie adjacent to the continent-scale dextral strike-slip Alpine Fault, on the boundary between the Pacific and Australian plates. We show with a simple 2-D model of crustal balancing that the observed crustal root and erosion (expressed as equivalent crustal shortening) is up to twice that predicted by the orthogonal plate convergence since ˜11 Ma, and even since ˜23 Ma when the Alpine Fault formed. We consider two explanations for this, involving a strong component of motion along the length of the plate-boundary zone. Geophysical data indicate that the Alpine Fault has a listric geometry, flattening at mid crustal levels, and has accommodated sideways underthrusting of Australian plate crust beneath Pacific plate crust. The geometry of the crustal root, together with plate reconstructions, requires the underthrust crust to be the hyperextended part of an asymmetric rift system which formed over 500 km farther south during the Eocene—the narrow remnant part today forms the western margin of the Campbell Plateau. At ˜10 Ma, the hyperextended margin underwent shallow subduction in the Puysegur subduction zone, and then was dragged over 300 km along the length of the Southern Alps beneath a low-angle (plate boundary zone, providing a mechanism for clockwise rotation of the Hikurangi margin.

  5. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    Science.gov (United States)

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  6. Nazca - South America Convergence and Motion of the North Andes Block

    Science.gov (United States)

    La Femina, P. C.; Mora-paez, H.; Mothes, P. A.; Ruiz, G.

    2012-12-01

    The North Andes block (NAB) is a hypothesized tectonic block that moves (escapes) north-northeast relative to a stable South American reference frame. The motion of this block is thought to be derived by the collision of the Carnegie Ridge in southern Ecuador and/or by oblique convergence and high degrees of interplate coupling north of the ridge (i.e., strain partitioning). We investigate the kinematics of NAB motion utilizing a velocity field based on new continuous GPS networks and existing episodic GPS data in Ecuador and Colombia. The new velocity field and published earthquake slip vectors are inverted to solve for the Euler vector of the NAB and interseismic elastic strain accumulation on block-bounding faults using a block modeling approach. At the latitude of Ecuador, the NAB is rigid with transpressional deformation accommodating northeastward motion along its boundary with South America. In central to northern Colombia, the NAB is dissected by several prominent shear zones. We test a suite of block models to investigate the tectonic nature of the NAB and the style of faulting in the upper plate accommodating block motion. Through the estimation of elastic strain accumulation on all block-bounding faults, we improve the understanding of interseismic coupling along a convergent margin capable of producing M>8 earthquakes and upper plate faults capable of generating M>6 earthquakes.

  7. Shear wave reflectivity imaging of the Nazca-South America subduction zone: Stagnant slab in the mantle transition zone?

    Science.gov (United States)

    Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.

    2012-01-01

    In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.

  8. Convergence of Fuzzy Set Sequences

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2002-01-01

    There are more than one mode of convergence with respect to the fuzzy set sequences. In this paper,common six modes of convergence and their relationships are discussed. These six modes are convergence in uniform metric D, convergence in separable metric Dp or D*p, 1 ≤ p <∞, convergence in level set, strong convergence in level set and weak convergence. Suitable counterexamples are given. The necessary and sufficient conditions of convergence in uniform metric D are described. Some comme nts on the convergence of LRfuzzy number sequences are represented.

  9. The crustal structure, deformation from GPS, and seismicity related to oblique convergence along the Queen Charlotte margin, British Columbia

    Science.gov (United States)

    Bustin, Amanda M. M.

    Tectonic processes and seismic hazard along the west coast of British Columbia result from oblique convergence between the continental North America plate and the oceanic Pacific and Juan de Fuca plates. This dissertation integrates seismic and geodetic techniques to examine the tectonic interaction along these plate boundaries. The Queen Charlotte Fault zone is the transpressive boundary between the North America and Pacific plates along the northwestern margin of British Columbia. Two models have been suggested for the accommodation of the ˜20 mm/yr of convergence along the fault boundary: (1) underthrusting; (2) internal crustal deformation. Strong evidence supporting an underthrusting model is provided in this dissertation by a teleseismic receiver function analysis that defines the underthrusting slab. Forward and inverse modelling techniques were applied to receiver function data calculated at two permanent and six temporary seismic stations within the Islands. The modelling reveals a ˜10 km thick low-velocity zone dipping eastward at 28° interpreted to be underthrusting oceanic crust. The oceanic crust, which may be anisotropic, is located beneath a thin (28 km) westward shallowing (10°) continental margin. The majority of seismicity along the Queen Charlotte Fault zone plots within the modelled underthrusting crust, suggesting that these earthquakes are occurring on faults that extend down into the slab or they might be intraslab events. None of the earthquakes within the Queen Charlotte Basin have occurred deep enough to be intraslab earthquakes. The Wadati-Benioff seismicity may be inhibited beneath the basin by the hot young oceanic crust or by the short distance of underthrusting. GPS measurements have been recorded within the Queen Charlotte Islands during 8 years of campaign surveys. The crustal velocity field derived from the GPS data indicates northward margin-oblique motion of 10--15 mm/yr. Comparisons of the observed velocities with elastic

  10. The implications of revised Quaternary palaeoshoreline chronologies for the rates of active extension and uplift in the upper plate of subduction zones

    Science.gov (United States)

    Roberts, G. P.; Meschis, M.; Houghton, S.; Underwood, C.; Briant, R. M.

    2013-10-01

    fault are due to interaction between “regional” uplift and subsidence associated with the local active normal faulting. We discuss (a) how our synchronous correlation technique should trigger a re-appraisal of palaeoshoreline chronologies worldwide, and (b) the implications for the tectonics and seismic hazard of Calabria, suggesting that perturbations in the uplift-rate field are a key criterion to map the locations of active faults, their deformation rates, and hence seismic hazard above subduction zones.

  11. Nonaccommodative convergence excess.

    Science.gov (United States)

    von Noorden, G K; Avilla, C W

    1986-01-15

    Nonaccommodative convergence excess is a condition in which a patient has orthotropia or a small-angle esophoria or esotropia at distance and a large-angle esotropia at near, not significantly reduced by the addition of spherical plus lenses. The AC/A ratio, determined with the gradient method, is normal or subnormal. Tonic convergence is suspected of causing the convergence excess in these patients. Nonaccommodative convergence excess must be distinguished from esotropia with a high AC/A ratio and from hypoaccommodative esotropia. In 24 patients treated with recession of both medial recti muscles with and without posterior fixation or by posterior fixation alone, the mean correction of esotropia was 7.4 prism diopters at distance and 17 prism diopters at near.

  12. Convergent Aeronautics Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Convergent Aeronautics Solutions (CAS) Project uses short-duration activities to establish early-stage concept and technology feasibility for high-potential...

  13. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U

  14. Fixed mobile convergence handbook

    CERN Document Server

    Ahson, Syed A

    2010-01-01

    From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo

  15. Subsequential Convergence Conditions

    Directory of Open Access Journals (Sweden)

    Dik Mehmet

    2007-01-01

    Full Text Available Let be a sequence of real numbers and let be any regular limitable method. We prove that, under some assumptions, if a sequence or its generator sequence generated regularly by a sequence in a class of sequences is a subsequential convergence condition for , then for any integer , the repeated arithmetic means of , , generated regularly by a sequence in the class , is also a subsequential convergence condition for .

  16. Generation of High Pressure and Temperature by Converging Detonation Waves

    Directory of Open Access Journals (Sweden)

    V. P. Singh

    1987-07-01

    Full Text Available Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  17. Generation of High Pressure and Temperature by Converging Detonation Waves

    OpenAIRE

    Singh, V. P.; Shukla, S K

    1987-01-01

    Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  18. Generation of high pressure and temperature by converging detonation waves

    Science.gov (United States)

    Singh, V. P.; Shukla, S. K.

    1987-07-01

    Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  19. IT-BT convergence technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book explains IT-BT convergence technology as the future technology, which includes a prolog, easy IT-BT convergence technology that has infinite potentials for new value, policy of IT-BT convergence technology showing the potential of smart Korea, IT-BT convergence opening happy future, for the new future of IT powerful nation Korea with IT-BT convergence technology and an epilogue. This book reveals the conception, policy, performance and future of IT-BT convergence technology.

  20. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  1. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  2. Research into the Safety Zone in Treatment of Radial Neck Fracture with Titanium Plate%钛板治疗桡骨颈骨折置入安全区方法的研究

    Institute of Scientific and Technical Information of China (English)

    郭家全; 许光耀; 李玲; 牛志强; 郭振中; 索赛; 于景川; 史瑞超; 褚会军; 焦弘升

    2015-01-01

    目的:研究桡骨颈骨折置入钛板时安全区位置和置入安全区方法,避免影响前臂旋转范围,减少对神经和血运损伤,最大程度恢复前臂功能。方法回顾性研究我院自2010年7月至2014年7月收治32例无合并伤的单纯桡骨颈骨折,其中男26例,女6例,年龄15~60岁,平均(35.4±0.5)岁。致伤原因:摔伤25例,车祸伤4例,高处坠落伤2例,打架伤1例。根据 Steele 和 Gtrham 方法把桡骨颈骨折的严重程度分为四级,本次研究病例中,其中2级24例,3级5例,4级3例。桡骨颈骨折均行钛板固定治疗,采取 Kocher 入路切开复位,术中采用前臂旋后法标记安全区后缘,然后旋前前臂,根据后缘预放置钛板,找到钛板固定位置,经该处切开关节囊,放置钛板固定,钛板长度不超过3 cm,术后行康复锻炼。根据 Steele 和 Gtrham 评价标准来评价结果。结果32例患者均获随访,随访时间12~24个月,平均16个月。结果示骨折愈合时间3~6个月,平均4个月。本组病例未发现感染、神经损伤,未发现桡骨头坏死和骨折不愈合病例。仅1例患者因术后恐惧疼痛,不行锻炼,制动时间较长,导致关节僵硬,后经康复治疗,功能好转,但仍部分受限。根据 Steele 和 Gtrham 评价标准进行评价,优27例,良4例,一般1例,优良率为96.8%。结论经该法切开复位钛板固定桡骨颈骨折,术后肘关节及前臂功能恢复良好。通过寻找安全区置入钛板,配合手术技巧减少神经和血运损伤,可最大程度恢复肘关节和前臂功能。%Objective To study the position of the safety zone to put the titanium plate and placement methods,and avoid side effects on the forearm's rotating range and reducing damages of nerve and blood supply system,so as to realize maximum function recovery of the forearm. Methods 32 cases of simple radial neck fracture without

  3. ANALYTICAL RELATIONS BETWEEN EIGENVALUES OF CIRCULAR PLATE BASED ON VARIOUS PLATE THEORIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory(RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequencyfor a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.

  4. Subduction of fracture zones

    Science.gov (United States)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  5. Global Plate Motions and Their Impact on the Earth's Surface Area Change

    Institute of Scientific and Technical Information of China (English)

    Cao Shuai; Zhang Keliang; Wei Dongping

    2010-01-01

    Based on their Euler polea,we calculated the relative velocities between every two plates in the typical global plate motion models,respectively,and estimated the area change along these boundaries.In our calculations.plates on both sides accommodated area changes depending on the boundary types:extensional,convergent or transform,so we can estimate area change of each plate and then globally.Our preliminary results show that the area of the southern hemisphere increased while that of the northern hemisphere decreased over the past 1 million years,and global area has increased by 26,000km2 to 36,000km2,which corresponds to the 160m~250m increment on the Earth's radius if all these area increments are attributed to Earth's expansion.Taking the NUVEL-1 model as an example,of the 14 plates in this model,11 are decreasing,but the global area has increased because of the larger increment amount from Africa,North America and Antarctica.Finally,we also discussed factors affecting the global area change such as subduction zone retreating and back-arc spreading.

  6. Converging towards the future

    Energy Technology Data Exchange (ETDEWEB)

    Gale, R. W.

    1997-05-01

    The likelihood of convergence in the electric power industry in Canada and the United Sates was examined, and the impact of such a development with respect to electricity and natural gas was explored. Based on developments to date, convergence between gas and electric utilities was considered an inevitable step towards the ultimate consolidation of the energy industry as a whole. Characteristics shared by gas and electric utilities were described, and likely developments leading to convergence of the two industries were reviewed. According to this author the competition between the opposing utilities will lead to price wars, loss leaders and other marketing strategies. Prices will be set by supply and demand principles. While users will be able to select customized, money-saving energy solutions, for suppliers, the new utility market will be a Darwinian battle royale, where only the most viable will survive. The end result will be a larger market dominated by a few super players.

  7. On the Fuzzy Convergence

    Directory of Open Access Journals (Sweden)

    Abdul Hameed Q. A. Al-Tai

    2011-01-01

    Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.

  8. Convergence of Networks

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Ruggieri, Marina

    2008-01-01

    The paper focuses on the revolutionary changes that could characterise the future of networks. Those changes involve many aspects in the conceivement and exploitation of networks: architecture, services, technologies and modeling. The convergence of wired and wireless technologies along...... with the integration of system componennts and the convergence of services (e.g. communications and navigation) are only some of the elements that shape the perpsected mosaic. Authors delineate this vision, highlighting the presence of the space and stratospheric components and the related services as building block...

  9. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    OpenAIRE

    Inna Safonova; Konstantin Litasov; Shigenori Maruyama

    2015-01-01

    The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbona...

  10. The convergence of chaotic integrals

    CERN Document Server

    Bauer, O; Bauer, Oliver; Mainieri, Ronnie

    1995-01-01

    We review the convergence of chaotic integrals computed by Monte Carlo simulation, the trace method, dynamical zeta function, and Fredholm determinant on a simple one-dimensional example: the parabola repeller. There is a dramatic difference in convergence between these approaches. The convergence of the Monte Carlo method follows an inverse power law, whereas the trace method and dynamical zeta function converge exponentially, and the Fredholm determinant converges faster than any exponential.

  11. Plate Tectonics and Taiwan Orogeny based on TAIGER Experiments

    Science.gov (United States)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.

    2014-12-01

    Plate tectonics framework is usually complex in a collision zone, where continental lithosphere is involved. In the young Taiwan orogeny, with geologic understanding and large new geodetic and subsurface datasets now available an environment has been created for testing tectonic hypotheses regarding collision and orogeny. Against the background of the commonly accepted view of Taiwan as a southward propagating, self-similar 2-D orogen, a fully 3-D structure is envisaged. Along the whole length of the island the convergence of the Eurasian plate (EUP) the Philippine Sea plate (PSP) takes shape with different plate configurations. In northern Taiwan the convergence occurs with simultaneous collision of the oceanic PSP with continental EUP and the northward subduction of the PSP; in the south, EUP, in the guise of the South China Sea rifted Eurasian continent, subducts toward the east; in central Taiwan collision of oceanic PSP with continental EUP dominates. When relocated seismicity and focal mechanisms are superposed on subsurface P and Vp/Vs velocity images the configurations and the kinematics of the PSP and EUP collision and subduction become clear. While in northern Taiwan the subduction/collision explains well the high peaks and their dwindling (accompanied by crustal thinning) toward the north. In the south, mountains rise above the east-dipping EUP subduction zone as the Eurasian continental shelf veers toward the southwest, divergent from the trend of the Luzon Arc - calling into question the frequently cited arc-continent collision model of Taiwan orogeny. High velocity anomaly and Benioff seismicity coexist in the south. Going north toward Central Taiwan the high velocity anomaly persists for another 150 km or so, but it becomes seismically quiescent. Above the quiescent section the PSP and EUP collide to build the main part of the Central Range and its parallel neighbor the eastern Coastal Range. Key implications regarding orogeny include: 1) Significant

  12. Did growth of high Andes slow down Nazca plate subduction?

    Science.gov (United States)

    Quinteros, J.; Sobolev, S. V.

    2010-12-01

    The convergence velocity rate of the Nazca and South-American plate and its variations during the last 100 My are quite well-known from the global plate reconstructions. The key observation is that the rate of Nazca plate subduction has decreased by about 2 times during last 20 Myr and particularly since 10 Ma. During the same time the Central Andes have grown to its present 3-4 km height. Based on the thin-shell model, coupled with mantle convection, it was suggested that slowing down of Nazca plate resulted from the additional load exerted by the Andes. However, the thin-shell model, that integrates stresses and velocities vertically and therefore has no vertical resolution, is not an optimal tool to model a subduction zone. More appropriate would be modeling it with full thermomechanical formulation and self-consistent subduction. We performed a set of experiments to estimate the influence that an orogen like the Andes could have on an ongoing subduction. We used an enhanced 2D version of the SLIM-3D code suitable to simulate the evolution of a subducting slab in a self-consistent manner (gravity driven) at vertical crossections through upper mantle, transition zone and shallower lower mantle. The model utilizes non-linear temperature- and stress-dependant visco-elasto-plastic rheology and phase transitions at 410 and 660 km depth. We started from a reference case with a similar configuration as both Nazca and South-America plates. After some Mys of slow kinematicaly imposed subduction, to develop a coherent thermo-mechanical state, subduction was totally dynamic. On the other cases, the crust was slowly thickened artificially during 10 My to generate the Andean topography. Although our first results show no substantial changes on the velocity pattern of the subduction, we, however, consider this result as preliminary. At the meeting we plan to report completed and verified modeling results and discuss other possible cases of the late Cenozoic slowing down of

  13. The Convergence Years

    Science.gov (United States)

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  14. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  15. Convergence of Networks

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Ruggieri, Marina

    2008-01-01

    with the integration of system componennts and the convergence of services (e.g. communications and navigation) are only some of the elements that shape the perpsected mosaic. Authors delineate this vision, highlighting the presence of the space and stratospheric components and the related services as building block...

  16. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  17. Language Convergence Infrastructure

    NARCIS (Netherlands)

    V. Zaytsev (Vadim); J.M. Fernandes; R. Lämmel (Ralf); J.M.W. Visser (Joost); J. Saraiva

    2011-01-01

    htmlabstractThe process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind

  18. Convergence of Arnoldi method

    Energy Technology Data Exchange (ETDEWEB)

    Nevanlinna, O. [Helsinki Univ. of Technology, Espoo (Finland)

    1994-12-31

    This note summarizes some results on (a monitored version of) the Arnoldi method in Hilbert spaces. The interest in working in infinite dimensional spaces comes partly from the fact that only then can one have meaningful asymptotical statements (which hopefully give some light to the convergence of Arnoldi in large dimensional problems with iteration indices far less than the dimension).

  19. The Convergence Years

    Science.gov (United States)

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  20. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    Science.gov (United States)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  1. Decoupled crust-mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin

    OpenAIRE

    Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; García-Castellanos, Daniel; Fullea, J.; M. Pérez-Gussinyé; Afonso, Juan Carlos

    2011-01-01

    The extent of the area accommodating convergence between the African and Iberian plates, how this convergence is partitioned between crust and mantle, and the role of the plate boundary in accommodating deformation are not well-understood subjects. We calculate the structure of the lithosphere derived from its density distribution along a profile running from the Tagus Abyssal Plain to the Sahara Platform and crossing the Gorringe Bank, the NW Moroccan margin, and the Atlas Mountains. The mod...

  2. A NEW QUADRILATERAL THIN PLATE ELEMENT BASED ON THE MEMBRANE-PLATE SIMILARITY THEORY

    Institute of Scientific and Technical Information of China (English)

    黄若煜; 郑长良; 钟万勰; 姚伟岸

    2002-01-01

    A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending. Because of avoiding the difficulty of c1 continuity , the construction of thin plate elements becomes easier. The similarity theory and its applications were discussed more deeply, and a new four nodes, sixteen D. O. F. ( degree of fieedom) thin plate element was presented on the base of the similarity theory. Numerical results for typical problems show that this new element can pass the patch test and has a very good convergence and a high precision.

  3. Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements

    Institute of Scientific and Technical Information of China (English)

    Bahattin Kanber; O.Yavuz Bozkurt

    2006-01-01

    In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.

  4. Summable series and convergence factors

    CERN Document Server

    Moore, Charles N

    1938-01-01

    Fairly early in the development of the theory of summability of divergent series, the concept of convergence factors was recognized as of fundamental importance in the subject. One of the pioneers in this field was C. N. Moore, the author of the book under review.... Moore classifies convergence factors into two types. In type I he places the factors which have only the property that they preserve convergence for a convergent series or produce convergence for a summable series. In type II he places the factors which not only maintain or produce convergence but have the additional property that

  5. Thin plate neotectonic models of the Australian plate

    Science.gov (United States)

    Burbidge, D. R.

    2004-10-01

    Thin plate finite element models of the neotectonic deformation of the Australian plate have been calculated in order to estimate the stress and strain rate within the plate, specifically concentrating on the Australian continent. The model includes plate-bounding faults, an anelastic brittle-ductile layered rheology and the option of laterally varying elevation and heat flow. The results of the models are compared to (1) the velocity of geodetic benchmarks on the Australian plate, (2) the spreading rate of the mid-oceanic ridges along the Australian plate's margins, (3) the direction of the maximum horizontal principal stress, (4) the stress regime within the plate, and (5) the crustal thickness estimated from the depth to the base of Mohorovicic discontinuity's transition zone. A variety of models are tested with a wide range of input parameters. The model with the smallest misfit with observations predicts that the strain rate for most of the Australian continent is approximately 10-17 s-1. This model has a slightly lower strain rate in the central Australia and is higher off the northern coast of Australia than for the rest of the continent. Strain rates of this magnitude would be difficult to observe from geodetic or geologic data for most parts of Australia but would be enough to generate much of the seismicity that has been observed over the last century.

  6. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    Science.gov (United States)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  7. The Convergent Learning Space:

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter; Asmussen, Jørgen Bering

    2013-01-01

    is described as well as the theoretical construct and hypotheses surrounding the emergence of the concept in technology-rich classrooms, where students bring their own devices and involve their personal learning spaces and networks. The need for new ways of approaching concepts like choice, learning resources......This paper describes the concept of “The Convergent Learning Space” as it is being explored in an ongoing action research project carried out at undergraduate level in select bachelor programs at a Danish University College. The background nature, design, and beginning of this work in progress......, trajectories of participation etc. calls for new action and new pedagogies by teachers in order to secure alignment between students’ worlds and expectations and aims and plans of the teacher. Action research methods are being used to define and test the constituents and variables of the convergent learning...

  8. Subsequential Convergence Conditions

    Directory of Open Access Journals (Sweden)

    İbrahim Çanak

    2007-10-01

    Full Text Available Let (un be a sequence of real numbers and let L be any (C,1 regular limitable method. We prove that, under some assumptions, if a sequence (un or its generator sequence (Vn(0(Δu generated regularly by a sequence in a class 𝒜 of sequences is a subsequential convergence condition for L, then for any integer m≥1, the mth repeated arithmetic means of (Vn(0(Δu, (Vn(m(Δu, generated regularly by a sequence in the class 𝒜(m, is also a subsequential convergence condition for L.

  9. Convergence Reflects Maturity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Competition has been playing a dominant role among telecommunication equipment manufacturers. In 2006, however, merger overwhelmed competition. In the tide of converging, a large number of equipment manufacturers were involved in mergers. At the same time, telecommunication equipment manufacturers, the most innovative community in the world, drive 3G technology fast in line with its technical roadmap. In addition, Chinese equipment manufacturers cut a figure in world-class telecommunication markets, whic...

  10. IT Convergence and Security 2012

    CERN Document Server

    Chung, Kyung-Yong

    2013-01-01

    The proceedings approaches the subject matter with problems in technical convergence and convergences of security technology. This approach is new because we look at new issues that arise from techniques converging. The general scope of the proceedings content is convergence security and the latest information technology. The intended readership are societies, enterprises, and research institutes, and intended content level is mid- to highly educated personals. The most important features and benefits of the proceedings are the introduction of the most recent information technology and its related ideas, applications and problems related to technology convergence, and its case studies and finally an introduction of converging existing security techniques through convergence security. Overall, through the proceedings, authors will be able to understand the most state of the art information strategies and technologies of convergence security.

  11. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    Science.gov (United States)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear

  12. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    Science.gov (United States)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  13. Fold/cleavage relationships as indicator for late Variscan sinistral transpression at the Rheno-Hercynian-Saxo-Thuringian boundary zone, Central European Variscides

    Science.gov (United States)

    Stephan, Tobias; Kroner, Uwe; Hahn, Torsten; Hallas, Peter; Heuse, Thomas

    2016-06-01

    The boundary between the Rheno-Hercynian and the Saxo-Thuringian zones of the European Variscides is characterized by a NE-SW striking late orogenic fold-and-thrust belt affecting the intervening Rheic suture. Classical models used the first-order strike of this zone as an indicator for perpendicular plate convergence, i.e. NW-SE. We present structural data from both sides of the suture, focusing on fold-cleavage relationships. The statistical analysis reveals an orientation maximum of the youngest cleavage that deviates from the strike of the fold-and-thrust belt by c. 22°. The presence of clockwise transection of the folds by the cleavage (up to - 16°) indicates pervasive sinistral transpression. Three types of fold-cleavage relationships are observed: NE trending folds (I) with or (II) without a transecting cleavage, and (III) non-transected ENE trending folds. We explain the occurrence of different fold-cleavage types by strain partitioning due to NNW convergence obliquely to pre-existent NE trending mechanical anisotropies. In terms of plate tectonics we propose that the classical boundary of the Rheno-Hercynian and the Saxo-Thuringian Zone represents an initial transform plate boundary that was finally affected by sinistral transpression.

  14. Structural evolution of the La Trocha fault zone: Oblique collision and strike-slip basins in the Cuban Orogen

    Science.gov (United States)

    Cruz-Orosa, Israel; Sã Bat, Francesc; Ramos, Emilio; Rivero, LluíS.; VáZquez-Taset, Yaniel M.

    2012-10-01

    The La Trocha fault zone acted as a major left-lateral transfer zone and is bounded by the La Trocha (LTF), Zaza-Tuinicú (ZTF), Cristales (CTF) and Taguasco (TGF) faults. These faults were consistent with the clockwise rotation of convergence and shortening in central Cuba. From the Paleocene to the Early Eocene (65-48 Ma), a SSW-NNE shortening produced transtension in the LTF and transpression in the ZTF. Subsequently, during the Middle Eocene (48-37 Ma), shortening shifted to a SW-NE direction, resulting in the normal component of the LTF and transpression in the ZTF and CTF. Since the Late Eocene (37 Ma), central Cuba has been welded to the North American Plate. The post-welding deformation gave rise to transtension of the LTF and TGF. This deformation is consistent with a WSW-ENE shortening and reflects activity in the transform boundary of the Cayman Trough. Both the normal and thrust displacements of these previous faults are corroborated by structural data whereas left-lateral displacement is deduced from the concordance between oblique collision and structural features. Plate-kinematics and the structural evolution of the La Trocha fault zone indicate that the related Central Basin is a strike-slip polygenetic basin and that the formation of this system (i.e., fault zone - strike-slip basin) was a consequence of the Paleogene oblique collision between the Caribbean Volcanic Arc and the Bahamas Borderland (North American plate).

  15. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    Science.gov (United States)

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  16. A possible transoceanic tsunami directed toward the U.S. west coast from the Semidi segment, Alaska convergent margin

    Science.gov (United States)

    von Huene, Roland; Miller, John J.; Dartnell, Peter

    2016-01-01

    The Semidi segment of the Alaska convergent margin appears capable of generating a giant tsunami like the one produced along the nearby Unimak segment in 1946. Reprocessed legacy seismic reflection data and a compilation of multibeam bathymetric surveys reveal structures that could generate such a tsunami. A 200 km long ridge or escarpment with crests >1 km high is the surface expression of an active out-of-sequence fault zone, recently referred to as a splay fault. Such faults are potentially tsunamigenic. This type of fault zone separates the relatively rigid rock of the margin framework from the anelastic accreted sediment prism. Seafloor relief of the ridge exceeds that of similar age accretionary prism ridges indicating preferential slip along the splay fault zone. The greater slip may derive from Quaternary subduction of the Patton Murray hot spot ridge that extends 200 km toward the east across the north Pacific. Estimates of tsunami repeat times from paleotsunami studies indicate that the Semidi segment could be near the end of its current inter-seismic cycle. GPS records from Chirikof Island at the shelf edge indicate 90% locking of plate interface faults. An earthquake in the shallow Semidi subduction zone could generate a tsunami that will inundate the US west coast more than the 1946 and 1964 earthquakes because the Semidi continental slope azimuth directs a tsunami southeastward.

  17. A possible transoceanic tsunami directed toward the U.S. west coast from the Semidi segment, Alaska convergent margin

    Science.gov (United States)

    von Huene, Roland; Miller, John J.; Dartnell, Peter

    2016-03-01

    The Semidi segment of the Alaska convergent margin appears capable of generating a giant tsunami like the one produced along the nearby Unimak segment in 1946. Reprocessed legacy seismic reflection data and a compilation of multibeam bathymetric surveys reveal structures that could generate such a tsunami. A 200 km long ridge or escarpment with crests >1 km high is the surface expression of an active out-of-sequence fault zone, recently referred to as a splay fault. Such faults are potentially tsunamigenic. This type of fault zone separates the relatively rigid rock of the margin framework from the anelastic accreted sediment prism. Seafloor relief of the ridge exceeds that of similar age accretionary prism ridges indicating preferential slip along the splay fault zone. The greater slip may derive from Quaternary subduction of the Patton Murray hot spot ridge that extends 200 km toward the east across the north Pacific. Estimates of tsunami repeat times from paleotsunami studies indicate that the Semidi segment could be near the end of its current inter-seismic cycle. GPS records from Chirikof Island at the shelf edge indicate 90% locking of plate interface faults. An earthquake in the shallow Semidi subduction zone could generate a tsunami that will inundate the US west coast more than the 1946 and 1964 earthquakes because the Semidi continental slope azimuth directs a tsunami southeastward.

  18. The Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert region of the southwestern United States

    Science.gov (United States)

    Wells, Michael L.; Beyene, Mengesha A.; Spell, Terry L.; Kula, Joseph L.; Miller, David M.; Zanetti, Kathleen A.

    2005-09-01

    The Pinto shear zone is one of several Late Cretaceous shear zones within the eastern fringe of the Mesozoic magmatic arc of the southwest Cordilleran orogen that developed synchronous with continued plate convergence and backarc shortening. We demonstrate an extensional origin for the shear zone by describing the shear-zone geometry and kinematics, hanging wall deformation style, progressive changes in deformation temperature, and differences in hanging wall and footwall thermal histories. Deformation is constrained between ˜74 and 68 Ma by 40Ar/ 39Ar thermochronology of the exhumed footwall, including multi-diffusion domain modeling of K-feldspar. We discount the interpretations, applied in other areas of the Mojave Desert region, that widespread Late Cretaceous cooling results from refrigeration due to subduction of a shallowly dipping Laramide slab or to erosional denudation, and suggest alternatively that post-intrusion cooling and exhumation by extensional structures are recorded. Widespread crustal melting and magmatism followed by extension and cooling in the Late Cretaceous are most consistent with production of a low-viscosity lower crust during anatexis and/or delamination of mantle lithosphere at the onset of Laramide shallow subduction.

  19. Knowledge Convergence and Collaborative Learning

    Science.gov (United States)

    Jeong, Heisawn; Chi, Michelene T. H.

    2007-01-01

    This paper operationalized the notion of knowledge convergence and assessed quantitatively how much knowledge convergence occurred during collaborative learning. Knowledge convergence was defined as an increase in common knowledge where common knowledge referred to the knowledge that all collaborating partners had. Twenty pairs of college students…

  20. High-frequency seismic radiation during Maule earthquake (Chile, 27/02/2010, Mw 8.8) inferred by backprojection of P waves: evidence of activation of two distinct zones at the downdip part of the plate interface

    Science.gov (United States)

    Palo, M.; Tilmann, F. J.; Krueger, F.; Ehlert, L.; Lange, D.; Rietbrock, A.; Jenkins, J.; Hicks, S. P.

    2013-12-01

    zones of the subduction interface at different depths, the deeper of which is characterised by a large number of repeating event clusters (Rietbrock, Jenkins et al., this session). Thus, our backprojection analysis in combination with the aftershock distribution demonstrates the existence of a peculiar doubled downdip transition from seismogenic behaviour to stable sliding. We suspect fluids released from the downgoing plate to be the cause of the transitions in frictional behaviour because of (1) the co-location of high Vp/Vs ratios with the deep interface seismicity, (2) systematic decrease of depth of onset of deeper seismicity with younging incoming plate age, (3) patchy occurrence along-strike of deeper seismicity.

  1. Beyond plate tectonics - Looking at plate deformation with space geodesy

    Science.gov (United States)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  2. Beyond plate tectonics - Looking at plate deformation with space geodesy

    Science.gov (United States)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  3. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... shear zone between the forward and backward slip zones in the deformation zone thus lowering the rolling load. A numerical analysis of the cross shear rolling process is carried out based on the slab method adopting Wanheim and Bay's general friction model. The pressure distribution along the contact...

  4. The Iberian Plate: myth or reality?

    Energy Technology Data Exchange (ETDEWEB)

    Canerot, J.

    2016-10-01

    The plate tectonics theory generally leads us to consider that Iberia was an independent plate separated from Europe by the North Pyrenean Fault (NPF). The NPF has been commonly interpreted as a transform fault associated with a huge counterclockwise transverse and rotational movement that allowed the opening of the Bay of Biscay and the relative eastward motion of Iberia during the Mesozoic. According to some interpretations, this movement may have generated an interplate gap several hundreds of km wide, which led to the creation of an oceanic crust during the Late Jurassic and Early Cretaceous. However, field studies recently carried out in the Pyrenees do not support these interpretations. The North Pyrenean Fault (NPF) of Tertiary age is observed in the central and eastern Pyrenees, where pioneering researchers defined it as separating the North Pyrenean Zone from the Axial Zone.However, this fault cannot be identified in the western part of the range to the west of the Ossau valley. Consequently, the geodynamic evolution of Iberia has always been dependent on Europe, especially during the failed oceanic rifting in the Mid-Cretaceous. Indeed, during this period, a central zone of crustal thinning occupied by turbiditic basins separated the European from the Iberian continental crust, with a very localized mantle exhumation found only in the Mauleon basin. Therefore, far from being an interplate range, the Pyrenees can neither be considered as an intraplate unit. We can define this orogenic belt as resulting from the Tertiary tectonic inversion of a Mid-Cretaceous rift system. According to this new interpretation, Iberia would not have been an isolated plate but represented an unstable, outlying part of Europe. Rather than displaying the features of a rigid lithospheric unit with well-defined boundaries, Iberia grouped together different crustal blocks undergoing specific movements at particular times. During the Mesozoic, normal, reverse or strike

  5. Seismicity of the Earth 1900-2010 eastern margin of the Australia plate

    Science.gov (United States)

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    The eastern margin of the Australia plate is one of the most seismically active areas of the world due to high rates of convergence between the Australia and Pacific plates. In the region of New Zealand, the 3,000 km long Australia-Pacific plate boundary extends from south of Macquarie Island to the southern Kermadec Island chain. It includes an oceanic transform (the Macquarie Ridge), two oppositely verging subduction zones (Puysegur and Hikurangi), and a transpressive continental transform, the Alpine Fault through South Island, New Zealand. Since 1900, there have been 15 M7.5+ earthquakes recorded near New Zealand. Nine of these, and the four largest, occurred along or near the Macquarie Ridge, including the 1989 M8.2 event on the ridge itself, and the 2004 M8.1 event 200 km to the west of the plate boundary, reflecting intraplate deformation. The largest recorded earthquake in New Zealand itself was the 1931 M7.8 Hawke's Bay earthquake, which killed 256 people. The last M7.5+ earthquake along the Alpine Fault was 170 years ago; studies of the faults' strain accumulation suggest that similar events are likely to occur again.

  6. Convergence Patterns in Latin America

    DEFF Research Database (Denmark)

    Quiroga, Paola Andrea Barrientos

    Literature on convergence among Latin American countries is still scarce compared to other regions. Moreover, almost none of the research connects convergence to the economic history of Latin America and the usual finding is one speed of convergence. In this paper I analyze 32 countries and 108...... years, more observations than any other study. This long span of data allows me to use economic history to explain, analyze, validate, and understand the results of convergence patterns in the region. I find more than one speed of convergence (clubs) related to the known historical background, country...

  7. The role of viscoelasticity in subducting plates

    Science.gov (United States)

    Farrington, R. J.; Moresi, L.-N.; Capitanio, F. A.

    2014-11-01

    of tectonic plates into Earth's mantle occurs when one plate bends beneath another at convergent plate boundaries. The characteristic time of deformation at these convergent boundaries approximates the Maxwell relaxation time for olivine at lithospheric temperatures and pressures, it is therefore by definition a viscoelastic process. While this is widely acknowledged, the large-scale features of subduction can, and have been, successfully reproduced assuming the plate deforms by a viscous mechanism alone. However, the energy rates and stress profile within convergent margins are influenced by viscoelastic deformation. In this study, viscoelastic stresses have been systematically introduced into numerical models of free subduction, using both the viscosity and shear modulus to control the Maxwell relaxation time. The introduction of an elastic deformation mechanism into subduction models produces deviations in both the stress profile and energy rates within the subduction hinge when compared to viscous only models. These variations result in an apparent viscosity that is variable throughout the length of the plate, decreasing upon approach and increasing upon leaving the hinge. At realistic Earth parameters, we show that viscoelastic stresses have a minor effect on morphology yet are less dissipative at depth and result in an energy transfer between the energy stored during bending and the energy released during unbending. We conclude that elasticity is important during both bending and unbending within the slab hinge with the resulting stress loading and energy profile indicating that slabs maintain larger deformation rates at smaller stresses during bending and retain their strength during unbending at depth.

  8. Medialogy - convergence and transdisciplinarity

    DEFF Research Database (Denmark)

    Nordahl, Rolf

    2007-01-01

    for changes in society, developments in taste etc.  However, it certainly seems fair to say, that available technology makes a great difference to the development of any art form or practice. With the up rise of new educations such as Medialogy, new aspects of convergence and different forms...... of interdisciplinarity and transdisciplinarity is a pre-requisite for both researchers and students. In this talk we will demonstrate our approach through concrete examples of student productions and projects. We will also display the pedagogical method (problem based learning), that enables students to bridge gaps...... between art and science....

  9. Create Your Plate

    Medline Plus

    Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...

  10. Hypocenters relocation using double-difference method around Molucca Collision Zone

    Science.gov (United States)

    Yulianto, Yuhanas; Nugraha, Andri Dian; Wiyono, Wandono Samsul

    2017-07-01

    Eastern Indonesia is situated in a very complicated tectonic settings due to the converging of three major plates. Those plates do not have a clear boundary between each other. The boundary zone is covered by many microplates which converging or subducting to each other or create a large dimension of transform fault. Consequently, the region has a relatively higher seismic activity compared to others region in Indonesia, or even we can say, in the world. In this study, we attempt to achieve better hypocenter locations with double-difference method using local earthquake events compiled by MCGA of Indonesia. We selected 3,666 events from 42 stations for time periods of January 2010 to December 2015 which occurred in area around Molucca Collision Zone. Our results show better hypocenter location according to the RMS of time residual shifting. The most significant changes are in the shallow events where fix-depth effect had been removed. Overall, the relocated hypocenter locations show a better distribution to represent the tectonic setting.

  11. Frictional convergence at coastlines

    NARCIS (Netherlands)

    Roeloffzen, J.C.; Berg, W.D. van den; Oerlemans, J.

    1986-01-01

    The coastline generally represents it marked discontinuity in surface roughness. The resulting mechanical forcing leads to a secondary circulation in the boundary layer, and consequently to a vertical motion field that may have a strong influence on the weather in the coastal zone. In potentially un

  12. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  13. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  14. Methane Production In Forearc Sediments At The Costa Rican Convergent Margin

    Science.gov (United States)

    Cardace, D.; Morris, J. D.; Peacock, A.; White, D. C.

    2004-12-01

    Plate tectonics creates suitable habitats for deep biosphere organisms, affecting the distribution of biological communities on Earth. Subduction zones, where crustal materials return to the planetary interior through plate convergence, expose active microbial communities in subducting seafloor sediments to a fresh chemical inventory as diagenesis, metamorphic reactions, and tectonically-induced fluid flow alter sediments and surrounding porewaters. The plate interface (the decollement) experiences persistent geochemical flux of light hydrocarbon- and metal-bearing fluids from depth. This project (1) examines the habitability of the decollement zone at the Costa Rican convergent margin from a geochemical perspective, (2) uses lipid biomarkers to describe biomass distribution in sediment samples adjacent to and within the decollement, and (3) cites methanogenesis as a likely metabolic strategy employed by the resident microbial community. Sterile plugs of sediment were recovered from cores taken during Leg 205 of the Ocean Drilling Program, in the Middle America Trench off Costa Rica. Samples are from the incoming carbonate section of Site 1253 at 370-437 meters below seafloor (mbsf), in the forearc sedimentary wedge at Site 1255 at 134-145 mbsf, and around an upper fault (153-220 mbsf) and in the decollement zone (305-366 mbsf) at Site 1254. Drilling mud and fluid were sampled to monitor potential microbial contamination. Samples were immediately frozen at -80ºC. Prior to analysis, samples were freeze-dried in preparation for serial extraction of DNA and lipids. DNA was identified by fluorometry in 13 of 26 samples tested. The DNA was screened for methanogens by real time polymerase chain reaction (PCR), employing ME1 and ME2 primers that amplify a 0.75-kb region of the alpha-subunit gene for methyl coenzyme M reductase (MCR). Methanogen-specific genes were detected in DNA extracted from one Site 1253 sample (at 436.9 mbsf in the basal carbonates) and four Site

  15. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-05-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry and the pressure-temperature path of the Early Cretaceous granulites that occur within the Tertiary Sabzevar suture zone of NE Iran. The geochemical data set document that the granulites are remnants of a MORB-type oceanic crust and thus of a (Early Cretaceous ? back-arc basin formed in the upper plate of the Neotethyan subduction and thus interpreted as portions of a dismembered dynamothermal sole formed during oceanic subduction. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop, compatible with burial in a hot subduction zone followed by cooling during exhumation. This is interpreted as the evidence of a nascent subduction zone formed at the expenses of hot and hence young oceanic lithosphere. These data point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing heterogeneity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected with further investigations.

  16. The fluid budget of a continental plate boundary fault: Quantification from the Alpine Fault, New Zealand

    Science.gov (United States)

    Menzies, Catriona D.; Teagle, Damon A. H.; Niedermann, Samuel; Cox, Simon C.; Craw, Dave; Zimmer, Martin; Cooper, Matthew J.; Erzinger, Jörg

    2016-07-01

    Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures and precipitation of commonly weak, secondary minerals. Fluid flow paths, sources and fluxes, and the permeability evolution of fault zones throughout their seismic cycles remain poorly constrained, despite their importance to understanding fault zone behaviour. Here we use geochemical tracers of fluid-rock exchange to determine budgets for meteoric, metamorphic and mantle fluids on a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island, New Zealand and appears to fail in regular (329 ± 68 yrs) large earthquakes (Mw ∼ 8) with the most recent event in 1717 AD. Significant convergent motion has formed the Southern Alps and elevated geothermal gradients in the hangingwall, which drive crustal fluid flow. Along the Alpine Fault the Alpine Schist of the Pacific Plate is thrust over radiogenic metasedimentary rocks on the Australian plate. The absence of highly radiogenic (87Sr/86Sr > 0.7200) strontium isotope ratios of hangingwall hot springs and hydrothermal minerals formed at a range of depths in the Alpine Fault damage zone indicates that the fluid flow is restricted to the hangingwall by a cross-fault fluid flow barrier throughout the seismogenic crust. Helium isotope ratios measured in hot springs near to the Alpine Fault (0.15-0.81 RA) indicate the fault is a crustal-scale feature that acts as a conduit for fluids from the mantle. Rock-exchanged oxygen, but meteoric water-like hydrogen isotope signatures of hydrothermal veins indicate that partially rock-exchanged meteoric fluids dominate down to the top of the brittle to ductile transition zone at ∼6 km. Geochemical tracer transport modelling suggests only ∼0.02 to 0.05% of total rainfall west of the Main Divide penetrates to depth, yet this

  17. Evidence for relative motions between the Indian and Australian Plates during the last 20 m.y. from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian Plate

    Science.gov (United States)

    Royer, Jean-Yves; Chang, Ted

    1991-07-01

    We use plate tectonic reconstructions to establish whether motions between India and Australia occurred since chron 18 (43 Ma). We test the Africa/Antarctica/Australia/India plate circuit closure at chrons 5 (10 Ma), 6 (21 Ma) and 13 (36 Ma) using a compilation of magnetic anomalies and fracture zone traces from the Southeast, Southwest, Central Indian and the Carlsberg ridges. Additional reconstructions at chrons 23 (55 Ma) and 26 (61 Ma) are used to estimate the overall motion between India and Australia. Relative motions between the Indian and Australian plates are estimated using the plate circuit India → Africa → Australia. A new statistical approach, based on spherical regression analyses, is used to assess the uncertainty of the "best-fitting" finite rotations from the uncertainties in the data. The uncertainty in a rotation is described by a covariance matrix directly related to the geometry of the reconstructed plate boundary, to the distribution and estimated errors of the data points along it. Our parameterization of the rotations allows for simple combination of the rotation uncertainties along a plate circuit path. Results for chron 5 are remarkably consistent with present-day kinematics in the Indian Ocean, except that the Arabian and Indian plates are found to be separate plates. Comparisons of the motions between the Indian and African plates across the Carlsberg Ridge with that between the Australian and African plates across the Central Indian Ridge evidence a significant counterclockwise rotation of the Australian plate relative to the Indian plate about a pole located in the Central Indian Basin. The determinations are consistent for chrons 26, 13, 6 and 5. Determination at chron 23 is different but questionable due to the small number of available data. We propose two alternative solutions that both predict convergence within the Wharton and Central Indian basins and extension in the vicinity of the Chagos-Laccadive Ridge. The first

  18. Seismicity and shallow slab geometry in the central Vanuatu subduction zone

    Science.gov (United States)

    Baillard, Christian; Crawford, Wayne C.; Ballu, Valérie; Régnier, Marc; Pelletier, Bernard; Garaebiti, Esline

    2015-08-01

    The Vanuatu arc in the southwest Pacific Ocean is one of the world's most seismically active regions, with almost 39 magnitude 7+ earthquakes in the past 43 years. Convergence rates are around 90-120 mm/yr along most of the arc, but drop to 25-43 mm/yr in the central section, probably due to the subduction of the d'Entrecasteaux ridge. We characterize the slab geometry and tectonic state in this central section by analyzing data from a 10 month deployment of 30 seismometers over this section. We located more than 30,000 events (all less than magnitude 5.5), constructed an improved 1-D velocity model, calculated focal mechanisms and cluster geometries, and determined the 3-D geometry of the interplate seismogenic zone. The seismogenic zone has a shallow bulge in front of the d'Entrecasteaux ridge, which could be explained by the ridge's buoyancy contributing to the uplift of the fore-arc islands. The seismogenic zone extends to ~45 km depth, significantly below the 26-27 km depth of the fore-arc Moho, indicating that the upper mantle wedge is not significantly serpentinized, which is consistent with the relatively high thermal parameter of the subducting plate. The maximum width of the seismogenic zone is 80 km, indicating an upper earthquake magnitude limit of Mw 7.85 ± 0.4, assuming standard rupture zone aspect ratios. The data also reveal a double seismic zone, 20 to 30 km below the seismogenic zone, which is presumably caused by flexure of the downgoing plate.

  19. Cocos Ridge Collision as a Driver for Plate Boundary Deformation in the Western Caribbean

    Science.gov (United States)

    La Femina, P. C.; Govers, R. M.; Geirsson, H.; Kobayashi, D.

    2011-12-01

    The subduction and collision of bathymetric highs can result in geodynamic changes along convergent plate boundaries, including intense upper plate deformation, increases in mechanical coupling and seismicity, migration and or cessation of volcanism and formation of forearc terranes. But how extensive can the deformation associated with these features be and what are the implications for the long-term formation and evolution of plate boundary zones? Plate boundary evolution and upper plate deformation in southern Central America associated with Cocos Ridge collision is well studied and indicates, 1) migration of the volcanic arc toward the backarc northwest of and cessation of volcanism directly inboard the ridge, 2) uplift of the Cordillera de Talamanca inboard the ridge, 3) shortening across the forearc Fila Costena fold and thrust belt, and 4) outer forearc uplift above and flanking the ridge. Recent geodynamical modeling of Cocos Ridge collision, combined with the results of kinematic block models for the Central American margin, suggests the ridge drives northwest-directed forearc motion from central Costa Rica northwest to the Cocos - Caribbean (Central American forearc block) - North America triple junction, greatly increasing the spatial scale of deformation. Upperplate deformation of the Central American margin to the southeast of the Cocos Ridge in Panama was not investigated in these models. We investigate the dynamics of Cocos Ridge collision along the entire Central American margin and the implications on plate boundary evolution with a new geodynamic model of ridge collision. Our model results are compared to a new GPS derived horizontal velocity field for Central America and preliminary results indicate that the Cocos Ridge drives the Panamanian isthmus into northern South America (i.e., the North Andes block).

  20. Subduction obliquity as a prime indicator for geotherm in subduction zone

    Science.gov (United States)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  1. Zoned mantle convection.

    Science.gov (United States)

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  2. Convergence as Organization

    DEFF Research Database (Denmark)

    Harrison, Yannick Nehemiah Antonio; Risager, Bjarke Skærlund

    2016-01-01

    . The article is based on participant observation of the Blockupy event and interviews with a group of Danish activists who also participated. The article constructs sociospatial narrative that unfolds through three different scales of organization: the Blockupy coalition, the participating formal and informal...... organizations, and the activist subject. This narrative explicates the mode of organization as a ‘convergence space’ (cf. Routledge, 2003), with different ‘roots’ and ‘routes’ of organization (cf. Davies, 2012). Thus, through an analysis of the modes of organization constituting this mass protest event......, this article restates the relevance of the concept of organization, which have recently been ignored or understated in favour of master-narratives of networks or the dichotomy of horizontalism and verticality. It concludes by posing a set of questions for further discussion among both activists...

  3. Homology, convergence and parallelism.

    Science.gov (United States)

    Ghiselin, Michael T

    2016-01-05

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. © 2015 The Author(s).

  4. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    Science.gov (United States)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  5. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border.

    Science.gov (United States)

    Schille, Carolin; Bayerlová, Michaela; Bleckmann, Annalen; Schambony, Alexandra

    2016-09-01

    The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.

  6. The Convergence in Spatial Tasks

    OpenAIRE

    Vladimir P. Kulagin; Victor Y. Tsvetkov; Maiya V. Maksimova

    2013-01-01

    The article reveals the problem of convergence of direct and inverse problems in Earth Sciences, describes the features and application of these problems, discloses analytical features of direct and inverse problems. The convergence criteria and conditions for convergence were presented. This work is supported by the Grant of the Government of the Russian Federation for support of scientific research, implemented under the supervision of leading scientists in Russian institutions of higher ed...

  7. Dynamic Analysis of Modifications to Simple Plate Tectonic Theory

    Science.gov (United States)

    Paczkowski, Karen

    A number of geological and geophysical observations suggest significant departures from simple, first-order plate tectonic theory. In this thesis we address the dynamic implications of some of these observations and propose generalized theories to explain their dynamics and conditions of formation. In Chapter 2, we develop a generalized theory and analytic model to predict the conditions under which large-volume removal of continental lithosphere can occur through the formation of drip instabilities. Using damage physics relevant for Earth, we find a large portion of the lithosphere may be mobilized and entrained into growing drip instabilities. For a critical amount of damage, the growth is accelerated sufficiently that large-volume drip instabilities may form within geologically feasible time frames. Our model suggests large-volume lithospheric drip instabilities may arise independently of tectonic settings through damage-assisted mobilization and entrainment of the highly viscous lithosphere. In Chapter 3, we develop a mechanical model independent of volcanism and thermal weakening to explain the initial formation and length scale of rifting and extension near convergent plate boundaries. We conduct a linear stability analysis of a simple viscous necking model, which includes the lithosphere's negative buoyancy, non-Newtonian rheology, and freely moving top surface, to determine which properties of the lithosphere govern the location of rifting. We find that the negative buoyancy of the lithosphere promotes the formation of rifting structures when simple Newtonian viscosities are present. However, localized weakening, introduced through a power law exponent, is required to generate realistic rifting length scales. Our model suggests that the initial location of rifting in the overriding plate at subduction zones is primarily due to the mechanical extension induced by rollback of the subducting slab. In Chapter 4, we propose a theory to explain the seismic

  8. Intermittent plate tectonics?

    Science.gov (United States)

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  9. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest

    Institute of Scientific and Technical Information of China (English)

    CUI Xiao-feng; XIE Fu-ren; ZHANG Hong-yan

    2006-01-01

    In this paper, we have carefully determined the stress zones in the Sichuan-Yunnan region with reference to the in-situ stress data of hydraulic fracturing and the inverted fault slip data by using the step-by-step convergence method for stress zoning based on focal mechanism solutions. The results indicate that the tectonic stress field in the Sichuan-Yunnan region is divided into 3 stress zones by 2 approximately parallel NNW-trending stress transition belts. The area between the 2 belts is the Sichuan-Yunnan stress zone where the maximum principal stress σ1 is just in the NNW direction. The eastern boundary of Sichuan-Yunnan stress zone (the eastern stress transition belt) is basically consistent with the eastern boundary of Sichuan-Yunnan rhombic block. The western boundary of Sichuan-Yunnan stress zone (the western stress transition belt) is not totally consistent with the western boundary of Sichuan-Yunnan rhombic block. The northern segment of the western stress transition belt extends basically along the Jinshajiang fault and accords with the western boundary of Sichuan-Yunnan rhombic block, while its southern segment does not extend along the southwestern boundary of the rhombic block, i.e., Honghe fault and converge with the eastern stress transition belt, but stretches continuously in the NNW direction and accords with the Yingpanshan fault. We therefore consider that under the combined influence from the northward motion of India Plate, the southeastward shift of east Qinghai-Xizang Plateau and the strong obstruction of South China block, the tectonic stress field in the Sichuan-Yunnan region might not be totally controlled by the previous tectonic frame and new stress transition belt may have possibly formed.

  10. DOES THE MAASTRICHT CONVERGENCE CRITERIA WORK?

    Directory of Open Access Journals (Sweden)

    Karsai Zoltán-Krisztián

    2012-12-01

    Full Text Available During its 13 year history, the euro area experienced the most severe economic downturn in the late 2000s as a result of the 2007 financial-economic crisis stemming from the US banking sector. The crisis in the monetary union, besides posting a significant economic and social cost, revealed several weaknesses not just of the currency block as a whole, but also of its constituting members, which were masked by the prosperous economic environment characteristic for the 2000s. These conditions have put to the test the solidarity among the euro zone members, or in other words the existence of the currency block. One important problem of the currency block is the lack of harmony between the fiscal and economic policies of the member states, creating several and occasionally very divergent parts of the currency block. The aim of this research is to enhance the Maastricht convergence criteria’s and the Stability and Growth Pact’s role as a monitoring mechanism, allowing them to become more informative tools for the policy makers. For this, based on the relevant literature, we propose new potential explanatory variables which could enhance the role of the Maastricht convergence criteria and the Stability and Growth Pact. Some of the studied variables, like indebtedness of the private sector, capital flow compared to the size of the economy, government revenue compared to total public debt and current account balance help in enforcing the nominal convergence, while others (real labour productivity contribute to the real convergence. The explanatory power of the proposed variables are investigated in the case of France, Germany, Greece, Ireland, Italy, Portugal and Spain for the period comprised between 2000Q1-2011Q4. Results of the research show that with the exception of government revenue compared to total public debt, all proposed variables have significant explanatory power regarding the evolution of the state of the economy in all

  11. Three-Dimensional Thermal Model of the Costa Rica-Nicaragua Subduction Zone

    Science.gov (United States)

    Rosas, Juan Carlos; Currie, Claire A.; He, Jiangheng

    2016-10-01

    The thermal structure of a subduction zone controls many key processes, including subducting plate metamorphism and dehydration, the megathrust earthquake seismogenic zone and volcanic arc magmatism. Here, we present the first three-dimensional (3D), steady-state kinematic-dynamic thermal model for the Costa Rica-Nicaragua subduction zone. The model consists of the subducting Cocos plate, the overriding Caribbean Plate, and a viscous mantle wedge in which flow is driven by interactions with the downgoing slab. The Cocos plate geometry includes along-strike variations in slab dip, which induce along-strike flow in the mantle wedge. Along-strike flow occurs primarily below Costa Rica, with a maximum magnitude of 4 cm/year (~40 % of the convergence rate) for a mantle with a dislocation creep rheology; an isoviscous mantle has lower velocities. Along-margin flow causes temperatures variations of up to 80 °C in the subducting slab and mantle wedge at the volcanic arc and backarc. The 3D effects do not strongly alter the shallow (<35 km) thermal structure of the subduction zone. The models predict that the megathrust seismogenic zone width decreases from ~100 km below Costa Rica to just a few kilometers below Nicaragua; the narrow width in the north is due to hydrothermal cooling of the oceanic plate. These results are in good agreement with previous 2D models and with the rupture area of recent earthquakes. In the models, along-strike mantle flow is induced only by variations in slab dip, with flow directed toward the south where the dip angle is smallest. In contrast, geochemical and seismic observations suggest a northward flow of 6-19 cm/year. We do not observe this in our models, suggesting that northward flow may be driven by additional factors, such as slab rollback or proximity to a slab edge (slab window). Such high velocities may significantly affect the thermal structure, especially at the southern end of the subduction zone. In this area, 3D models that

  12. Giant lobelias exemplify convergent evolution.

    Science.gov (United States)

    Givnish, Thomas J

    2010-01-14

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  13. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  14. Notes on Some Convergences in Riesz Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-jie; AI Fu-ju

    2007-01-01

    An equivalent description of u-uniform convergence is presented first. Then the relations among the order convergence,u-uniform convergence and norm convergence of sequences are discussed in Riesz spaces. An equivalence of the three convergences is brought forward; namely, {fn} is a u-uniform Cauchy sequence. Finally the relations among the three convergences of sequences am also extended to the relations among the convergences of nets in Riesz spaces.

  15. Insights into the fragmentation of the Adria Plate

    Science.gov (United States)

    Sani, Federico; Vannucci, Gianfranco; Boccaletti, Mario; Bonini, Marco; Corti, Giacomo; Serpelloni, Enrico

    2016-12-01

    This study gives an interpretation of the current tectonics and kinematics of the Adria Plate, a region mostly coinciding with Italy and its surroundings. We have examined the spatial distribution and kinematics of seismicity by using an updated dataset obtained integrating the available catalogues of earthquakes and focal mechanisms. Moreover, to highlight the distribution of seismicity and of the associated strain patterns, we have elaborated a seismic flux map of the Italian region, which is a map of the energy released per unit time and per unit area. Seismic flux represents the energy released and provides a synthetic and continuous view of areas with greater seismicity and associated strain patterns with respect to the plot of earthquakes only. The seismic data, and the results of some elaborations carried out using these datasets have been compared with the present-day state of stress and slip rates of the major active faults of some sectors of Italy, as well as with the horizontal kinematics highlighted by GPS observations. The distribution and kinematics of earthquakes and active faults, the seismic flux, and GPS velocities, suggest that the Adria Plate is currently behaving as an ensemble of independent blocks rather than as a unique rigid plate. The Adria Plate can be thus subdivided into three major blocks and a number of smaller blocks moving independently under the action of a first-order mechanism related to the ongoing, roughly N-S, Europe-Africa convergence vector. This complicated setting may promote the occurrence of mutual relationships between blocks, and generate peculiar local kinematics causing seismic activity. We infer that the great majority of the seismic events occur at the boundaries of the main or minor blocks, and therefore the alignments of seismicity allows the individuation of the different blocks and the main seismogenic belts. A major crustal structure subdivides the Adria Plate into a western and two eastern blocks, and

  16. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  17. Stochastic Engine Convergence Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R

    2001-12-11

    ;'burn-in'' period. The MCMC process begins at a particular state, which is selected at random or by design, according to the wish of the user of the engine. After the burn-in period, the chain has essentially forgotten where it started. Moreover, the sample x{sup (t{sub 0})}, x{sup (T{sub 0}+1)},... can be used for most purposes as a random sample from f, even though the x{sup (T{sub 0}+t)}, because of Markovian dependency, are not independent. For example, averages involving x{sup (t{sub 0})}, x{sup (t{sub 0}+1)},... may have an approximate normal distribution. The purpose of this note is to discuss the monitoring techniques currently in place in the stochastic engine software that addresses the issues of burn-in, stationarity, and normality. They are loosely termed ''convergence diagnostics'', in reference to the underlying Markov chains, which converge asymptotically to the desired posterior distribution.

  18. Instability and Tsunamigenic Potential at Convergent Margins

    Science.gov (United States)

    von Huene, R.; Ranero, C. R.; Watts, P.

    2001-12-01

    Along many convergent margins multibeam echosounding navigated with GPS has revealed large slope failures that were probably tsunamigenic. Bathymetric data combined with seismic reflection imaging indicate multiple causes. The 55-km wide Nicoya Slump resulted from the steepening slope above an underthrusting seamount on the subducting oceanic plate. This slump may have generated a 27-m high wave. Several 5-7 km wide mid-slope slides off central Nicaragua probably resulted from steepening of the continental slope by tectonic erosion. They may have generated waves 6-7 m high. A 30 km wide mid-slope slump off northern Peru may have generated a 5 m high wave. Its cause will not be understood without better seismic reflection imaging but considerable fluid venting was observed across its headwall. In the Gulf of Alaska a large slide appears to have resulted from rapid sedimentation. Tsunamigenic slope failure along convergent margins is only beginning to be resolved and the causes vary. Subducted ocean floor relief, tectonically steepened slopes, and sites of rapid sedimentation can help target potential failure and possible future tsunami hazards.

  19. The Convergence of Intelligences

    Science.gov (United States)

    Diederich, Joachim

    Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.

  20. CONVERGENCE OF TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Technology is a catalyst for competitive advantage. However, it is how technology is used that leads to a firm’s improved performance. In this article, an investigative framework is constructed to understand better what strategically drives new technology adoption. The strategic drivers include technology and business strategy alignment, better technology planning and selection of new technologies, the effects on a firm’s culture and climate, links to a firm’s organisational and environmental evolution, and benefits through convergence and collaboration. Using an investigative framework, it is shown how the strategic drivers link to improve a firm’s performance, producing competitive advantage. The investigative framework is tested using structural equation modelling. Various hypotheses are formed, and recommendations for further research are made.

    AFRIKAANSE OPSOMMING: Tegnologie is ‘n katalisator vir mededingende voordeel. Dit is egter hoe tegnologie aangewend word wat aanleiding gee tot ‘n onderneming se verbeterde prestasie. In hierdie artikel word ‘n ondersoekende raamwerk gekonstrueer om insig te kry in dit wat die aanvaarding van nuwe tegnologie strategies dryf. Die strategiese dryfvere sluit in die belyning van tegnologie en ondernemingstrategie, beter tegnologiebeplanning en seleksie van nuwe tegnologieë, die effek op ‘n onderneming se kultuur en klimaat, koppeling na ‘n onderneming se organisatoriese en omgewingsevolusie, en voordele verkry deur konvergensie en samewerking. Deur ‘n ondersoekende raamwerk te gebruik, word daar getoon dat die strategiese dryfvere koppel om ‘n onderneming se prestasie te verbeter en sodoende ‘n mededingende voordeel te skep. Die raamwerk word getoets en hipoteses geformuleer waarna aanbevelings oor verdere navorsing aan die hand gedoen word.

  1. Deformations between African and Euroasian plates estimated by methods of space geodesy - new result

    Science.gov (United States)

    Zeman, A.; Holesovsky, J.; Novotny, Z.; Hassan, K. A.; Abd El Monem, M. S.; Kostelecky, J.

    2009-12-01

    The contribution concerns with analysis of detailed information from the results of space geodesy (GPS) in the region of Mediterranean sea enclosing the results of till now not processed and published observations in quasipermanent network of the sites in Egypt. (It was made possible by agreement between the National Research Institute of Astronomy and Geophysics in Egypt and the Research Center of Earth Dynamics in Czech Republic). A main topic in WEGENER's project activities is observation of geodynamic processes of the European-Mediterranean region, northern Africa and Asia Minor, by (space) geodetic techniques. The geodynamic setting of the region is formed by the convergence of the three major lithosphere plates (Eurasia, Africa and Arabia). In the plate boundary zones a variety of subduction and collision processes are active. The cotribution contains actual results of processing of the observations in Egypt together with selected sites of permanent EPN network in region of eastern part of Mediterranean sea. Results of analyses confirm model presumption of mutual activities between African, Arabic and Euroasian plates.

  2. Creation of the Cocos and Nazca plates by fission of the Farallon plate

    Science.gov (United States)

    Lonsdale, Peter

    2005-08-01

    -Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a "fracture zone" trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos-Nazca spreading began at 23 Ma; reports of older Cocos-Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies. There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.

  3. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... are in the roll gap, the position and the size of the shear zone and the rolling load are calculated. Experimental results are presented verifying the calculations. The numerical analysis facilitates a better understanding of the mechanics in cross shear plate rolling....

  4. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    Science.gov (United States)

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  5. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology

    Science.gov (United States)

    Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin

    2016-11-01

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ˜1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  6. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    Science.gov (United States)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, Germán A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-01

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone. The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. We also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.

  7. Subduction Zone Science - Examples of Seismic Images of the Central Andes and Subducting Nazca Slab

    Science.gov (United States)

    Beck, S. L.; Zandt, G.; Scire, A. C.; Ward, K. M.; Portner, D. E.; Bishop, B.; Ryan, J. C.; Wagner, L. S.; Long, M. D.

    2015-12-01

    Subduction has shaped large regions of the Earth and constitute over 55,000 km of convergent plate margin today. The subducting slabs descend from the surface into the lower mantle and impacts earthquake occurrence, surface uplift, arc volcanism and mantle convection as well as many other processes. The subduction of the Nazca plate beneath the South America plate is one example and constitutes the largest present day ocean-continent convergent margin system and has built the Andes, one of the largest actively growing mountain ranges on Earth. This active margin is characterized by along-strike variations in arc magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have combined data sets and used multiple techniques to generate seismic images spanning ~3000 km of the South American subduction zone to ~800 km depth with unprecedented resolution. For example, using teleseismic P- waves we have imaged the Nazca slab penetrating through the mantle transition zone (MTZ) and into the uppermost lower mantle. Our tomographic images show that there is significant along-strike variation in the morphology of the Nazca slab in the upper mantle, MTZ, and the lower mantle, including possible tears, folding, and internal deformation. Receiver function studies and surface wave tomography have revealed major changes in lithospheric properties in the Andes. Improved seismic images allow us to more completely evaluate tectonic processes in the formation and uplift of the Andes including: (1) overthickened continental crust driven by crustal shortening, (2) changes in slab dip and coupling with the overlying plate (3) localized lithospheric foundering, and (4) large-scale mantle and crustal melting leading to magmatic addition and/or crustal flow. Although

  8. An airborne magnetometry study across Zagros collision zone along Ahvaz-Isfahan route in Iran

    Science.gov (United States)

    Oskooi, Behrooz; Abedi, Maysam

    2015-12-01

    Convergence between the Eurasian and Arabian plates formed the Zagros orogenic belt between Late Cretaceous and Pliocene as a relatively young and active fold-thrust belt in Iran. The structural geology along Ahvaz to Isfahan route across Zagros is investigated employing magnetic data in order to determine the crustal structure in the collision zone of the two Palaeo-continents. Airborne magnetometry data with a line space of survey of 7.5 km have been used to image the variations of the apparent magnetic susceptibility along this route. At first the airborne data were stably 500-m downward continued to the ground surface in order to enhance subtle changes of the Earth's magnetic field. Then 3D inverse modeling of magnetic data was implemented, while the cross section of the magnetic susceptibility variations along the route was mapped down to a depth of 100 km. The acquired magnetic susceptibility model could appropriately predict the observed magnetic data as well. In addition, the analytic signal filter was applied to the reduced-to-pole magnetic data leading to the determination of active faults in Zagros fold-thrust belt (ZFTB) structural zone based upon the generated peaks. Some probable locations of fault events were also suggested in Sanandaj-Sirjan Zone (SSZ). The locations of faults correspond well to the magnetic susceptibility variations on the inverted section. Probable direction, slope and depth extension of these faults were also plotted on the magnetic susceptibility model, showing an intensively tectonized zone of the SSZ. The main difference between two domains is that the Eurasian plate seems to contain high magnetic susceptible materials compared to the Arabian plate. The recovered model of the apparent magnetic susceptibility values indicated that the average thickness of the non-magnetic sedimentary units is about 11 km and the Curie depth locates approximately at depth of 24 km for the whole studied area.

  9. Development of the Himalayan frontal thrust zone: Salt Range, Pakistan

    Science.gov (United States)

    Baker, Dan M.; Lillie, Robert J.; Yeats, Robert S.; Johnson, Gary D.; Yousuf, Mohammad; Zamin, Agha Sher Hamid

    1988-01-01

    The Salt Range is the active frontal thrust zone of the Himalaya in Pakistan. Seismic reflection data show that a 1 km offset of the basement acted as a buttress that caused the central Salt Range-Potwar Plateau thrust sheet to ramp to the surface, exposing Mesozoic and Paleozoic strata. The frontal part of the thrust sheet was folded passively as it overrode the subthrust surface on a ductile layer of Eocambrian salt. Lack of internal deformation of the rear part of the thrust sheet is due to decoupling of sediments from the basement along this salt layer. Early to middle Pliocene (˜4.5 Ma) conglomerate deposition in the southern Potwar Plateau, previously interpreted in terms of compressional deformation, may instead document uplift related to basement normal faulting. Stratigraphic evidence, paleomagnetic dating of unconformities, and sediment-accumulation rates suggest that the thrust sheet began to override the basement offset from 2.1 to 1.6 Ma. Cross-section balancing demonstrates at least 20 to 23 km of shortening across the ramp. The rate of Himalayan convergence that can be attributed to underthrusting of Indian basement beneath sediments in the Pakistan foreland is therefore at least 9-14 mm/yr, about 20%-35% of the total plate convergence rate.

  10. The Convergence in Spatial Tasks

    Directory of Open Access Journals (Sweden)

    Vladimir P. Kulagin

    2013-01-01

    Full Text Available The article reveals the problem of convergence of direct and inverse problems in Earth Sciences, describes the features and application of these problems, discloses analytical features of direct and inverse problems. The convergence criteria and conditions for convergence were presented. This work is supported by the Grant of the Government of the Russian Federation for support of scientific research, implemented under the supervision of leading scientists in Russian institutions of higher education in the field "Space Research and Technologies" in 2011–2013.

  11. Assessing the Seismic Potential Hazard of the Makran Subduction Zone

    Science.gov (United States)

    Frohling, E.; Szeliga, W. M.; Melbourne, T. I.; Abolghasem, A.; Lodi, S. H.

    2013-12-01

    Long quiescent subduction zones like the Makran, Sunda, and Cascadia, which have long recurrence intervals for large (> Mw 8) earthquakes, often have poorly known seismic histories and are particularly vulnerable and often ill-prepared. The Makran subduction zone has not been studied extensively, but the 1945 Mw 8.1 earthquake and subsequent tsunami, as well as more recent mid magnitude, intermediate depth (50-100 km) seismicity, demonstrates the active seismic nature of the region. Recent increases in regional GPS and seismic monitoring now permit the modeling of strain accumulations and seismic potential of the Makran subduction zone. Subduction zone seismicity indicates that the eastern half of the Makran is presently more active than the western half. It has been hypothesized that the relative quiescence of the western half is due to aseismic behavior. However, based on GPS evidence, the entire subduction zone generally appears to be coupled and has been accumulating stress that could be released in another > 8.0 Mw earthquake. To assess the degree of coupling, we utilize existing GPS data to create a fault coupling model for the Makran using a preliminary 2-D fault geometry derived from ISC hypocenters. Our 2-D modeling is done using the backslip approach and defines the parameters in our coupling model; we forego the generation of a 3-D model due to the low spatial density of available GPS data. We compare the use of both NUVEL-1A plate motions and modern Arabian plate motions derived from GPS station velocities in Oman to drive subduction for our fault coupling model. To avoid non-physical inversion results, we impose second order smoothing to eliminate steep strain gradients. The fit of the modeled inter-seismic deformation vectors are assessed against the observed strain from the GPS data. Initial observations indicate that the entire subduction zone is currently locked and accumulating strain, with no identifiable gaps in the interseismic locking

  12. Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes

    Science.gov (United States)

    Blanco-Quintero, Idael Francisco; Gerya, Taras V.; GarcíA-Casco, Antonio; Castro, Antonio

    2011-10-01

    We investigated numerical models of initiation and subsequent evolution of subduction of young (10-30 Myr) oceanic lithosphere. Systematic numerical experiments were carried out by varying the age of the subducting plate (10, 12.5, 15, 17.5, 20, 25 and 30 Myr), the rate of induced convergence (2, 4 and 5 cm/yr) and the degree of hydration (0 and 2 wt% H2O) of the pre-existing weak oceanic fracture zone along which subduction is initiated. Despite the prescribed plate forcing, spontaneously retreating oceanic subduction with a pronounced magmatic arc and a backarc basin was obtained in a majority of the experiments. It was also found that the younger age of oceanic lithosphere results in more intense dehydration and partial melting of the slab during and after the induced subduction initiation due to the shallow dispositions of the isotherms. Partial melting of the subducted young crust may create thermal-chemical instabilities (cold plumes) that ascend along the slab-mantle interface until they either freeze at depth or detach from the slab and penetrate the upper plate lithosphere contributing to the nucleation and growth of a volcanic arc. Freezing of the plumes in the slab-mantle interface is favored by subduction of very young lithosphere (i.e., 10 Myr) at moderate rate (4 cm/yr) of convergence. Such aborted plumes may correspond to Cretaceous partially melted MORB-derived slab material and associated adakitic tonalitic-trondhjemitic rocks crystallized at ca. 50 km depth in the slab-mantle interface and exhumed in a subduction channel (serpentinite mélanges) in eastern Cuba.

  13. Geometry of the Cocos Plate Under North American Plate

    Science.gov (United States)

    Perez-Campos, X.

    2015-12-01

    The Cocos plate subducts under the North American plate with a complex geometry, and previous seismicity studies revealed some of this complexity. However, details of the geometry and the depth that the plate penetrates werelargely unknown. Since 2004, temporary experiments and the expansion of the permanent network of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service) have improved resolution of the plate geometry and have helped to map its descent into the upper mantle. Going from northwest to southeast, the Cocos plate appears to be fragmenting into north and south segments. The north segment subducts with an angle of ~30º and the south with an angle of ~10-15º. The transition is smooth near the trench and progresses to a tear at depth; this coincides with the projection of the Orozco Fracture Zone to depth. Also, this transition marks the limit of the presence to the south of an ultra slow velocity layer (USL) on top of the slab.South of this transition, the Cocos plate subducts horizontally , underplating the North American plate for a distance of ~140 to ~300 km from the trench. Along this horizontal region, silent slow events (SSE) and tectonic tremor (TT) have been observed. At a distance of 300 km from the trench (beneath central Mexico), the plate dives into the mantle with an angle of 76º to a depth of 500 km. This geometry changes abruptly to the south, marking the eastern limit of the USL. This change seems to be also characterized by a tear on the slab. Finally to the south, the Cocos plate subducts with a constant angle of 26º. This presentation summarizes the work of many contributors including A. Arciniega-Ceballos, M. Brudzinski, E. Cabral-Cano, T. Chen, R. Clayton,F. Cordoba-Montiel,P. Davis,S. Dougherty,F. Green, M. Gurnis, D. V. Helmberger, A. Husker,A. Iglesias, Y. Kim, V. Manea, D. Melgar, M. Rodríguez-Domínguez,S. K. Singh, T.-R. A. Song, C. M. Valdés-González, D. Valencia-Cabrera

  14. 猪笼草滑移区表面结构参数表征与捕集滑板仿生设计%Dimensions of Surface Structures of Slippery Zone in Nepenthes Pitchers and Bionic Design of Locust Trapping Plate

    Institute of Scientific and Technical Information of China (English)

    王立新; 周强; 刘启航

    2011-01-01

    猪笼草(Nepenthes)叶笼滑移区因具有特殊的表面结构而对昆虫表现出良好的滑移功能.利用扫描电子显微镜和三维白光干涉表面形貌仪对滑移区表面结构进行了显微观测并提取了三维结构参数,结果表明滑移区表面主要由两端略向下弯曲的月骨体和致密无序排列的蜡质晶体组成.基于滑移区表面微结构及其三维参数,利用3DSMAX软件设计了蝗虫捕集滑板的表面结构,为具有良好滑移功能的蝗虫捕集滑板的制造提供了理论基础.%The slippery zone of inner pitchers in Nepenthes bears specialized structures to serve the functions of trapping insects. The surface microstructures of slippery zone and its geometrical dimensions were acquired with scanning electron microscope ( SEM ) and scanning white-light interferometer ( SWLI) . The slippery zone consists of plenty of downward-directed lunate cells, as well as relatively dense and irregular wax crystals. Based on the microstructures and the geometrical dimensions, surface structures of slippery trapping plates used in controlling plague locust was designed with 3DSMAX software, and this design provided theoretical foundations for manufacturing slippery trapping plates.

  15. Three-dimensional Thermal Model of the Mexican Subduction Zone

    Science.gov (United States)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  16. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    Science.gov (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  17. The transition from linear to diffuse plate boundary in the Azores-Gibraltar region: results from a thin-sheet model

    Science.gov (United States)

    Jiménez-Munt, Ivone; Fernàndez, Manel; Torne, Montse; Bird, Peter

    2001-10-01

    We use the thin-sheet plane-stress approach to study the present-day dynamic behavior of the plate boundary between Eurasia and Africa along the Azores-Gibraltar region. This plate boundary, which extends from the Azores triple junction to the Gibraltar strait, shows a tectonic regime that changes from transtension in the west to transpression in the east, with a strike-slip motion in its central segment. Seismological data reveal that the western and central segments are currently marked by a linear series of earthquakes indicating that the plate boundary is located in a narrow zone. In contrast, the eastern segment is not so well defined and deformation spreads over a much broader area. To apply the thin-sheet approach, we combined heat flow, elevation and crustal thickness data to calculate the steady-state geotherm and the total strength of the lithosphere. Several models with different fault friction coefficients and geometries at the eastern segment of the plate boundary were tested. Results are compared with the maximum compressive stress directions from the World Stress Map, and the calculated seismic strain rates and slip vectors from earthquake data. The best fitting models are consistent with the rotation pole of Argus et al. [D.F. Argus et al., J. Geophys. Res. 94 (1989) 5585-5602], and show that the rheological behavior of the plate boundary must necessarily change from the western and central segments to the eastern segment. The diffuse character of the plate boundary east of the Gorringe Bank is dominated by the transition from oceanic to continental lithosphere, the weakness of the Alboran domain, and the convergence between the African and the Eurasian plates. The displacement of the Alboran domain relative to the African plate may play a major role in stress propagation through the Iberian Peninsula and its Atlantic margin.

  18. WEAK CONVERGENCE OF SOME SERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper continues the study of [1] on weak functions.The weak convergence theory is investigated in complex analysis,Fourier transform and Mellin transform.A Mobius inverse formula of weak functions is obtained.

  19. Dynamical Convergence Trajectory in Networks

    Institute of Scientific and Technical Information of China (English)

    TAN Ning; ZHANG Yun-Jun; OUYANG Qi; GENG Zhi

    2005-01-01

    @@ It is well known that topology and dynamics are two major aspects to determine the function of a network. We study one of the dynamic properties of a network: trajectory convergence, i.e. how a system converges to its steady state. Using numerical and analytical methods, we show that in a logical-like dynamical model, the occurrence of convergent trajectory in a network depends mainly on the type of the fixed point and the ratio between activation and inhibition links. We analytically proof that this property is induced by the competition between two types of state transition structures in phase space: tree-like transition structure and star-like transition structure. We show that the biological networks, such as the cell cycle network in budding yeast, prefers the tree-like transition structures and suggest that this type of convergence trajectories may be universal.

  20. Spaces of Ideal Convergent Sequences

    Directory of Open Access Journals (Sweden)

    M. Mursaleen

    2014-01-01

    Full Text Available In the present paper, we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function ℳ=Mk. We also examine some topological properties of the resulting sequence spaces.

  1. Weak entropy inequalities and entropic convergence

    Institute of Scientific and Technical Information of China (English)

    GAO FuQing; LI LiNa

    2008-01-01

    A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved.A weak entropy inequality is considered and its relationship to entropic convergence is discussed.

  2. Weak entropy inequalities and entropic convergence

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.

  3. Periodic Convergences: Dance and Computers

    OpenAIRE

    deLahunta, Scott

    2002-01-01

    Published in German and English, this chapter is one of deLahunta's major outputs to emerge from a group of related research outputs, concerning "dance and technology". In it he explores the history of the convergence between dance and computers from the 1960s to the 1990s, arguing that this convergence has been periodic, involving particular artists at particular times, rather than producing a genre of work (as others have speculated). As the mainstream of contemporary dance evolved alongsid...

  4. Do magnitudes of great subduction earthquakes depend on strength of mechanical coupling between the plates?

    Science.gov (United States)

    Sobolev, Stephan; Muldashev, Iskander

    2017-04-01

    The common thinking is that the magnitude of a great subduction earthquake correlates with the strength of mechanical coupling between slab and overriding plate. Based on this idea, Ruff and Kanamori (1980) suggested that maximum earthquake's magnitude is controlled by two parameters: age of subducting plate and plate convergence rate, when the youngest and the fastest slabs generate the largest earthquakes. This view was supported by many researches since then. However, since 1980 a number of great earthquakes, and particularly two largest earthquakes of the last 12 years, i.e. Great Sumatra/Andaman 2004 Earthquake and Tohoku 2011 earthquake, have violated the suggested correlation. We address the relation between strength of mechanical coupling and earthquake magnitude directly by cross-scale geodynamic modeling of seismic cycles of great subduction earthquakes. This modeling technique employs elasticity, non-linear transient viscous rheology, and rate-and-state friction at slab interface. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. We model seismic cycles for the great subduction earthquakes with different geometries of subducting plates, different static friction coefficients in subduction channels and different subduction velocities. Under the assumption that rupture length scales with the rupture width, our models demonstrate that maximum magnitudes of the earthquakes are exclusively controlled by the factors that increase rupture width. These factors are: low slab's dipping angle (the largest effect), low friction coefficient in subduction channel (smaller effect) and high subduction velocity (the smallest effect). Models suggest that maximum magnitudes of earthquakes do not correlate significantly with the magnitudes of normal and shear stresses at subduction interface. In agreement with observations, our models

  5. Measure theory of statistical convergence

    Institute of Scientific and Technical Information of China (English)

    CHENG LiXin; LIN GuoChen; LAN YongYi; LIU Hui

    2008-01-01

    The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra of all subsets of N, and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set of all such measures endowed with the topology of point-wise convergence on forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N. Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.

  6. Measure theory of statistical convergence

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra A of all subsets of N, and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set S of all such measures endowed with the topology of point-wise convergence on A forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N. Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.

  7. ACCURACY ANALYSIS OF 12-PARAMETERRECTANGULAR PLATE ELEMENTS WITH GEOMETRIC SYMMETRY

    Institute of Scientific and Technical Information of China (English)

    SHI Dongyang; CHEN Shaochun

    2000-01-01

    In this paper, it is proved that the double set parameter rectangular plate elements with geometric symmetry possess a very special convergence property, i.e., the consistency error due to nonconformity is of order O(h2) which is one order higher than that of ACM element and rectangular generalized conforming element proposed by Y. Q.Long, although all these elements have the same asympotical rate of convergence O(h)in the energy norm. This particular property seems to be never seen before for other nonconforming rectangular plate elements.

  8. A mixed finite element for the analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1983-01-01

    A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.

  9. A Mini-Megathrust Event in an Incipient Subduction Zone: The 2012 Mw 7.8 Haida Gwaii Earthquake Sequence

    Science.gov (United States)

    Farahbod, A.; Kao, H.; Shan, S.

    2013-12-01

    The 2012 Haida Gwaii earthquake (Mw 7.8) is the largest event recorded by modern seismograph networks in Canada. The source region is associated with a complicated tectonic system that constitutes the boundary between the North America and Pacific plates. In addition to the strike-slip Queen Charlotte Fault located immediately offshore west of the Haida Gwaii island, the oblique convergence between the two plates also create an incipient subduction zone that is confirmed by previous seismic velocity studies. In this study, we systematically examine the seismic waveforms of the Haida Gwaii earthquake sequence as recorded by the Canadian National Seismograph Network (CNSN) stations. Because of the sparse station density in the source region, precise determination of earthquake hypocenters is challenging. We add the information of back-azimuth and incident angle, both are derived from the cross-correlation of 3-component waveforms, into the locating process to better constrain the distribution of aftershocks. For the first 24 hours, we are able to locate 264 aftershock events whereas the routine location catalogue gives only 106 events. The corresponding b-value is 0.56 with a magnitude of completeness of 2.3. The main shock shows low-angle thrust focal mechanism with the slip consistent in the direction of relative convergence. The distribution of aftershocks forms two major clusters. One is directly updip from the main rupture zone but within the subducting Pacific plate. Focal mechanisms of events with Mw >= 4.5 in this cluster are mostly normal-faulting, probably in response to plate bending. The other cluster is located within the overriding crust of the North America plate. These events show a mixture of normal and strike-slip faulting. Few aftershocks occurred on the main rupture zone, but were all too small for moment-tensor inversion. Most events within the down-going slab beneath the plate interface show downdip extensional mechanisms. We have not observed

  10. Lithospheric Convergence Preceded Extension in the Pannonian-Carpathian System

    Science.gov (United States)

    Houseman, Gregory; Stuart, Graham; Dando, Ben; Hetenyi, Gyorgy; Lorinczi, Piroska; Hegedus, Endre; Brueckl, Ewald

    2010-05-01

    The continuing collision of the Adriatic block with European continental lithosphere has its clearest expression now in the Alpine collision zone. Recent tomographic images of the upper mantle beneath the eastern Alps and western Pannonian Basin support the interpretation that in the Early Miocene the collision zone extended further east: a steeply dipping seismically fast structure stretches downward beneath the Eastern Alps reaching to the base of the transition zone, consistent with the long history of convergence in this region. This high velocity structure also extends eastward beneath the extensional Pannonian Basin. The high velocity anomaly beneath the Basin is strongly developed in transition zone depths (410 to 660 km) but the anomaly weakens upward. High velocities beneath the center of the extensional basin are unexpected because there is substantive evidence that the onset of extension in the Pannonian domain at around 17 Ma produced rapid extension of the lithosphere and replacement of the lower part of the lithosphere by hot asthenosphere. These deeper structures, however, must be explained by the long history of convergence that preceded the extension of the basin. Further evidence of a history of sustained convergence in the present Pannonian region is found in the depression of the 660 km seismic discontinuity beneath the Alps (Lombardi et al., EPSL, 2009) and also beneath the Pannonian Basin (Hetenyi et al., GRL, 2009). The 660 km discontinuity in both places is depressed by as much as 40 km, whereas the 410 km discontinuity is at approximately nominal depths. Evidently in both regions relatively dense material derived from the mid-Miocene collision sits stagnant on top of the 660 km discontinuity, where further descent is obstructed by the negative Clapeyron slope of the spinel-to-perovskite phase transition and/or the high viscosity of the lower mantle. The rapid extension of the Intra-Carpathian Basins in the Mid-Miocene (between about 17 and

  11. Processless offset printing plates

    Directory of Open Access Journals (Sweden)

    Sanja Mahović Poljaček

    2015-06-01

    Full Text Available With the implementation of platesetters in the offset printing plate making process, imaging of the printing plate became more stable and ensured increase of the printing plate quality. But as the chemical processing of the printing plates still highly influences the plate making process and the graphic reproduction workflow, development of printing plates that do not require chemical processing for offset printing technique has been one of the top interests in graphic technology in the last few years. The main reason for that came from the user experience, where majority of the problems with plate making process could be connected with the chemical processing of the printing plate. Furthermore, increased environmental standards lead to reducing of the chemicals used in the industrial processes. Considering these facts, different types of offset printing plates have been introduced to the market today. This paper presents some of the processless printing plates.

  12. Characteristics of the Central Costa Rican Seismogenic Zone Determined from Microseismicity

    Science.gov (United States)

    DeShon, H. R.; Schwartz, S. Y.; Bilek, S. L.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2001-12-01

    Large or great subduction zone thrust earthquakes commonly nucleate within the seismogenic zone, a region of unstable slip on or near the converging plate interface. A better understanding of the mechanical, thermal and hydrothermal processes controlling seismic behavior in these regions requires accurate earthquake locations. Using arrival time data from an onland and offshore local seismic array and advanced 3D absolute and relative earthquake location techniques, we locate interplate seismic activity northwest of the Osa Peninsula, Costa Rica. We present high resolution locations of ~600 aftershocks of the 8/20/1999 Mw=6.9 underthrusting earthquake recorded by our local network between September and December 1999. We have developed a 3D velocity model based on published refraction lines and located events within a subducting slab geometry using QUAKE3D, a finite-differences based grid-searching algorithm (Nelson & Vidale, 1990). These absolute locations are input into HYPODD, a location program that uses P and S wave arrival time differences from nearby events and solves for the best relative locations (Waldhauser & Ellsworth, 2000). The pattern of relative earthquake locations is tied to an absolute reference using the absolute positions of the best-located earthquakes in the entire population. By using these programs in parallel, we minimize location errors, retain the aftershock pattern and provide the best absolute locations within a complex subduction geometry. We use the resulting seismicity pattern to determine characteristics of the seismogenic zone including geometry and up- and down-dip limits. These are compared with thermal models of the Middle America subduction zone, structures of the upper and lower plates, and characteristics of the Nankai seismogenic zone.

  13. Plate Tearing Under Mixed Mode Loading

    DEFF Research Database (Denmark)

    Andersen, Rasmus Grau; Nielsen, Kim Lau; Felter, Christian Lotz

    2016-01-01

    Cohesive-zone finite element modeling is often the technique of choice when dealing with extensive crack growth in large-scale ductile sheet metal structures. Shell elements with in-plane dimensions much larger than the plate thickness are typically employed to discretize the structure, and thus...

  14. A double seismic zone in the Nazca flat slab beneath central Chile (29°-34°S)

    Science.gov (United States)

    Marot, Marianne; Monfret, Tony; Pardo, Mario; Ranalli, Giorgio

    2010-05-01

    given the young age of the Nazca slab (40 Ma). The most probable hypothesis at present is that the large separation distance is a consequence of a combination of factors such as the plate low thermal structure relative to the Nazca plate age, high converge rate, and high degree of hydration. The fact that DBZs are commonly observed in many different kinds of subduction zones suggests that the mechanical and/or chemical processes responsible for producing intraslab seismicity within the oceanic mantle must be linked both to the slab's parameters (composition, internal fabric, and thermal state) and to regional kinematic and dynamic conditions (forces acting on the slab, upper plate convergence, and trench migration).

  15. Inversion for the driving forces of plate tectonics

    Science.gov (United States)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  16. Inversion for the driving forces of plate tectonics

    Science.gov (United States)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  17. Free vibration analysis of rectangular plates with central cutout

    Directory of Open Access Journals (Sweden)

    Kanak Kalita

    2016-12-01

    Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

  18. Trophic convergence drives morphological convergence in marine tetrapods.

    Science.gov (United States)

    Kelley, Neil P; Motani, Ryosuke

    2015-01-01

    Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets-even across large phylogenetic distances-are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.

  19. Deformation and fracture of a plate under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Aptukov, V.N.; Pozdeev, A.A.

    1986-01-01

    The wave processes associated with thermal shock give rise to cumulative tensile stresses whose magnitude and location are determined by the plate geometry, the heating region, and the spatial distribution of the heat sources. Here, the wave processes, damage accumulation, and the development of macrofracture zones during thermal shock are analyzed using a two-dimensional axisymmetric formulation. The evolution of macrocracks during thermal shock in a plate, a cylinder, and a partially heated plate is shown graphically. 14 references.

  20. Along-strike structure of the Costa Rican convergent margin from seismic a refraction/reflection survey: Evidence for underplating beneath the inner forearc

    Science.gov (United States)

    St. Clair, J.; Holbrook, W. S.; Van Avendonk, H. J. A.; Lizarralde, D.

    2016-02-01

    The convergent margin offshore Costa Rica shows evidence of subsidence due to subduction erosion along the outer forearc and relatively high rates of uplift (˜3-6 mm/yr) along the coast. Recently erupted arc lavas exhibit a low 10Be signal, suggesting that although nearly the entire package of incoming sediments enters the subduction zone, very little of that material is carried directly with the downgoing Cocos plate to the magma generating depths of the mantle wedge. One mechanism that would explain both the low 10Be and the coastal uplift is the underplating of sediments, tectonically eroded material, and seamounts beneath the inner forearc. We present results of a 320 km long, trench-parallel seismic reflection and refraction study of the Costa Rican forearc. The primary observations are (1) margin perpendicular faulting of the basement, (2) thickening of the Cocos plate to the northwest, and (3) two weak bands of reflections in the multichannel seismic (MCS) reflection image with travel times similar to the top of the subducting Cocos plate. The modeled depths to these reflections are consistent with an ˜40 km long, 1-3 km thick region of underplated material ˜15 km beneath some of the highest observed coastal uplift rates in Costa Rica.

  1. Catalogue of star positions and B-magnitudes in 60th declination zone based on UkrVO Joint Digital Archive

    CERN Document Server

    Andruk, V N; Golovnya, V V; Ivanov, G O; Yizhakevych, O M; Protsyuk, Yu I; Shatokhina, S V

    2015-01-01

    Catalogue of star positions and B-magnitudes based on UkrVO Joint Digital Archive has been created in 60-degree declination zone of FONAK(FON) observational program as the first attempt to use the commercial scanners for astrometri c purposes. The height of zone is 8 degree, number of involved plates is 120. Digital images of plates were obtained using Microtek ScanMaker 9800XL TMA commercial scanner, with plate resolution 1200 dpi, linear dimensions 13,000x13,000 px for plates 30x30cm. The catalogue includes 1, 263, 932 stars and galaxies down to B 16.5 mag at the epoch 1984.76+/-0.50. Positions of objects are in TYCHO-2 reference frame, B-magnitudes in the system of photoelectric standards. The internal accuracy for all objects on both coordinates RA,DEC is +/-0.26 arcsec.The accuracy of B magnitudes determination is +/-0.17 mag, except stars in the B-interval 8-13 mag having the positional errors +/-0.13 arcsec and photometric ones +/-0.11 mag. The convergence of star positions with TYCHO-2 system is +/-0....

  2. Influence of Subducting Plate Geometry on Upper Plate Deformation at Orogen Syntaxes: A Thermomechanical Modeling Approach

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd; Whipp, David

    2016-04-01

    Syntaxes are short, convex bends in the otherwise slightly concave plate boundaries of subduction zones. These regions are of scientific interest because some syntaxes (e.g., the Himalaya or St. Elias region in Alaska) exhibit exceptionally rapid, focused rock uplift. These areas have led to a hypothesized connection between erosional and tectonic processes (top-down control), but have so far neglected the unique 3D geometry of the subducting plates at these locations. In this study, we contribute to this discussion by exploring the idea that subduction geometry may be sufficient to trigger focused tectonic uplift in the overriding plate (a bottom-up control). For this, we use a fully coupled 3D thermomechanical model that includes thermochronometric age prediction. The downgoing plate is approximated as spherical indenter of high rigidity, whereas both viscous and visco-plastic material properties are used to model deformation in the overriding plate. We also consider the influence of the curvature of the subduction zone and the ratio of subduction velocity to subduction zone advance. We evaluate these models with respect to their effect on the upper plate exhumation rates and localization. Results indicate that increasing curvature of the indenter and a stronger upper crust lead to more focused tectonic uplift, whereas slab advance causes the uplift focus to migrate and thus may hinder the emergence of a positive feedback.

  3. Late Eocene-Miocene tectono-magmatic response to the Indian- Eurasian plate collision: constraints from structural analysis, and Sr-Nd and Hf geochemistry of leucocratic intrusions along the Ailao Shan Red-River shear zone, SE Tibet

    Science.gov (United States)

    Liu, J.; Tang, Y.; Cao, S.; Ngyuen, Q.; Song, Z.; Tran, M.; Chen, Y.; Ji, M.; Zhang, Z.; Zhao, Z.

    2010-12-01

    The over 1000 km Ailao Shan-Red River (ASRR) shear zone is one of the most important geological discontinuities in Southeast Asia. Great controversies remain on the nature of the shear zone and its role in shaping the tectonic framework of Southeast Asia. Our observation reveals the existence of the Paleogene high potassic alkaline rocks and calc-alkaline intrusions (>30Ma) and the late Oligocene to early Miocene calc-alkaline granitic rocks (28-21Ma). The former are concordant dykes and are generally strongly sheared into mylonitic rocks. The latter are either concordant and show weak strain fabric, or discordant and show no strain fabric. Meanwhile, they have distinct REE, Sr-Nd, Hf isotope signatures and are different in mineralizing features. The Paleogene intrusions are characterized by enriched LREE and depleted HREE without any Eu anomalies (whole rock). Whole rock Sr-Nd (87Sr/86Sr(i): 0.7069 to 0.7098; ɛNd(t): -7.98 to -3.31) and in situ Zircon Hf isotope (-0.79 to +6.2) analyses yield a binary mixing trend between the mantle- and supracrustal-derived melts for the Paleogene magma. Here our new data suggest that most of the Paleogene magmatic rocks are either sheared high potassium alkaline rocks or deformed calc-alkaline intrusions. They are identical to and are the deformed counterparts of rocks from the two Paleogene mineralizing magmatic provinces on both sides of the ASRR shear zone, i.e. the Jinping-Fan Si Pan province and the Dali-Beiya province. These two types of leucocratic rocks are formed as the result of post-collisional delamination of a thickened crust, and deformed and offset by the left lateral shearing along the ASSR shear zone. The late Oligo-Miocene calc-alkaline granitic rocks are localized within the ASRR shear zone. They are in overall concordant to the mylonitic foliation in the shear zone and preserve microstructures typical of syn- to late kinematic emplacement. They have negative Eu anomalies, variable but mostly higher Sr ratios

  4. Hyporheic Microbes Database - Microbes in the hyporheic zone

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The hyporheic zone (i.e., where surface & groundwater converge) is a geomorphic feature that contributes to the overall health of streams & rivers. Much of...

  5. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma

    Science.gov (United States)

    Rangin, Claude; Maurin, Thomas; Masson, Frederic

    2013-10-01

    It is widely accepted that deformation of the India/Sunda plate is the result of partitioned hyper oblique convergence. Presently, sub-meridian dextral strike slip faulting accommodates this India/Sunda motion in a buffer zone, the Burma platelet. This wide dextral strike slip shear zone is complicated by the side effect of the Tibet plateau collapse that can be described in term of crustal flow and gravity tectonics. The loss of potential energy related to this plateau collapse affects most of the Burmese platelet particularly in its northernmost part. Interaction of these two distinct geodynamic processes is recorded in the GPS based regional strain field, the analysis of seismic focal mechanism but also from direct geologic observations both onshore and offshore Myanmar and Bangladesh. We propose the apparent E-W shortening component of this so called partitioned hyper-oblique subduction is only the effect of regional gravitational forces related to the Tibet plateau collapse whereas the NS strike slip faulting accommodates the India/Sunda motion.

  6. Crustal Structure across Rivera Plate and Jalisco Block (MEXICO): TsuJal Project

    Science.gov (United States)

    Nuñez-Cornu, F. J.; Nunez, D.; Barba, D. C., Sr.; Trejo, E.; Escalona, F.; Danobeitia, J.; Gutierrez Pena, Q. J.

    2015-12-01

    Located on the western margin of Mexico, the collision zone between Rivera, Cocos and North American plates is a complex tectonic collage with high seismic hazards and potential tsunamigenic sources. During the spring of 2014, within the framework of TSUJAL project, Spanish and Mexican scientists investigated this region with the main objective of defining the crustal architecture of this active margin and recognizing potential structural sources that can trigger earthquakes and tsunamis at the convergence between Rivera plate-Jalisco block with the North American Plate. To achieve these goals, a wide-ranging of geophysical data was acquired in this region both offshore and onshore. In this paper, we present the preliminary results obtained from this project about bathymetric, structural geology and wide-angle seismic data of the southern coast of Bahía de Banderas. A crustal P-wave velocity model for the southern coast of Bahía de Banderas was obtained using WAS data recorded by OBS and land seismic stations for more than 150 km across Rivera Plate and Jalisco Block. The thickness of the slab in this area is about 10 km and presents a dip angle about 8º. Continental crustal thickness below Puerto Vallarta is about 20 km, no evidence of continental Moho was found in this study. This model support that due to the convergence of Rivera Plate against Jalisco Block, the region of Bahía de Banderas is under strong crustal stresses that generate structural lineaments and have the same trends offshore and inland. Most of the seismicity reported can be associated to the main structural lineaments. The Banderas Canyon apparently is in an opening process from west to east, which seems to continue through the Rio Pitillal river valley. There is no seismic or morphological evidence to consider that the Banderas Canyon is a continuation of Vallarta Graben.South of María Cleofas Island, the SC marks the limit between RP and JB, possibly being the result of the RP against JB

  7. C1-continuous Virtual Element Method for Poisson-Kirchhoff plate problem

    Energy Technology Data Exchange (ETDEWEB)

    Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourad, Hashem Mohamed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    We present a family of C1-continuous high-order Virtual Element Methods for Poisson-Kirchho plate bending problem. The convergence of the methods is tested on a variety of meshes including rectangular, quadrilateral, and meshes obtained by edge removal (i.e. highly irregular meshes). The convergence rates are presented for all of these tests.

  8. A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America

    Science.gov (United States)

    Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca

    2013-04-01

    The Middle America subduction zone (MASZ) is one of the world most complex convergent margins as it involves the subduction of the Rivera and Cocos young oceanic plates beneath the North American and Caribbean plates and is bounded by the Gulf of California rift and the Panama slab window. Characterized by contorted and unusual slab geometry, irregularly distributed seismicity and volcanism, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT), this subduction system represents a great natural laboratory for better understanding geodynamic processes at a fundamental level. Based on a solid observational foundation, and incorporating the latest experimental results into a coherent geodynamical framework, we shed light on the main processes controlling the subduction system evolution in this region. The tectonics, volcanism, slab geometry and segmentation along the margin are reviewed from a geodynamical perspective. We proposed and discussed a series of evolutionary scenarios for the Mexican and Central American subduction zones, providing a coherent starting base for future geodynamical modeling studies tailored to this active margin. We discuss comparatively the recently discovered SSEs and NVTs along the MASZ, and try to differentiate among the proposed mechanisms responsible for these observations. Finally we discuss the recent seismic anisotropy observations in a geodynamic context, offering an integrated view of mantle flow pattern along the entire active margin. Although the MASZ as a whole may be considered a fairly complicated region with many unusual features and sometimes controversial interpretations, its complexity and unusual characteristics can improve our knowledge about the linkage between deep and surface processes associated with subduction zone dynamics.

  9. Digital Convergence and Content Regulation

    Directory of Open Access Journals (Sweden)

    Michael John Starks

    2014-12-01

    Full Text Available Broadcasting, Press and Internet journalism systems of distribution are converging: the same infrastructure can deliver all three historically separate services. Reception devices mirror this: the Connected TV, the tablet and the smart phone overlap in their functionality. Service overlaps are evident too, with broadcasters providing online and on-demand services and newspapers developing electronic versions. Does this mean that media regulation policies must converge too?My argument is that they should, though only where historically different communications are now fulfilling a similar function, e.g. broadcaster online services and electronic versions of newspapers. Convergence requires a degree of harmonisation and, to this end, I advocate a review of UK broadcasting's 'due impartiality' requirement and of the UK's application of the public service concept. I also argue for independent self-regulation (rather than state-based regulation of non-public-service broadcasting journalism.

  10. Order Handling in Convergent Environments

    CERN Document Server

    Vrtanoski, Jordan

    2012-01-01

    The rapid development of IT&T technology had big impact on the traditional telecommunications market, transforming it from monopolistic market to highly competitive high-tech market where new services are required to be created frequently. This paper aims to describe a design approach that puts order management process (as part of enterprise application integration) in function of rapid service creation. In the text we will present a framework for collaborative order handling supporting convergent services. The design splits the order handling processes in convergent environments in three business process groups: order capture, order management and order fulfillment. The paper establishes abstract framework for order handling and provides design guidelines for transaction handling implementation based on the checkpoint and inverse command strategy. The proposed design approach is based in a convergent telecommunication environment. Same principles are applicable in solving problems of collaboration in fun...

  11. Are China and Europe converging?

    Institute of Scientific and Technical Information of China (English)

    Bastianin; Andrea; Cattanceo; Cristina; Markandya; Anil

    2009-01-01

    This analysis aims at giving a flavour of what is happening between the European and Chinese markets with reference to selected energy indicators and economic variables. More precisely the analysis is concerned with the convergence between European countries (EU15 + Norway) and China in terms of both per capita GDP and "sustainability indicators". The variables we refer to as "sustainability indicators" are two: energy intensity (EI) and carbon intensity (CI). The paths of such variables will be investigated both looking at the economy as a whole and by analysing what is happening in three sectors of economic activity, namely industry, agriculture and services. It finds strong evidence of convergence in energy intensity and carbon intensity between the EU and China, with rates fast enough to achieve 90% convergence in a matter of two decades.

  12. Autonomous geodynamics of the Pamir-Tien Shan junction zone from seismology data

    Science.gov (United States)

    Lukk, A. A.; Shevchenko, V. I.; Leonova, V. G.

    2015-11-01

    The geodynamics of the Tajik Depression, the junction zone of the Pamirs and Tien Shan, is typically considered in the context of plate tectonic concept, which implies intense subhorizontal compression of the zone resulting from the subduction of the Indian and Eurasian lithospheric plates. This convergence has been reliably confirmed by the GPS measurements. However, the joint analysis of the geological structure, seismicity, and geodimeter measurements conducted during a few years at the Garm geodynamical testing site of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, demonstrates a widening of the Tajik Depression instead of its shortening, as should be expected from the subhorizontal compression predominant in the present-day stress-state of this region. This conclusion, together with the data from the other regions, suggests that, along with the plate tectonic mechanisms, there are also other, local, autonomous drivers that contribute to the tectogenesis of this region. Besides, the probable existence of these autonomous sources within the Tajik Depression directly follows from the seismology data. Among them is the crustal spreading within the depression suggested by the seismotectonic displacements in the focal mechanisms of the earthquakes. These displacements are directed in different azimuths off the axial's most subsided part of the depression at a depth of 20-30 km. Above this region the distribution of seismotectonic deformations (STD) is chaotic. This pattern of deformation is barely accounted for by a simple model of subhorizontal compression of the Earth's crust in the region. In our opinion, these features of the seismotectonic deformation in the crust within the studied part of the Tajik Depression is probably associated with the gain in the volume of the rocks due to the inflow of the additional material, which is supplied from the bottom crust or upper mantle by the deep fluids. This increase in the rock volume

  13. Converging Information and Communication Systems

    DEFF Research Database (Denmark)

    Øst, Alexander

    2003-01-01

    This Ph.D.-project investigates the process of convergence between television and computers. Identifying three “promises of convergence”: interoperability, quality and interactivity, the project examines the key properties of the computer and television sectors, which have had - or are expected...... in the future to have - significant importance to the process and consequences of the convergence. The project focuses on the appliances, i.e. the TV sets, the computers and their peripheral equipment. It also takes into account the infrastructure and signals, which contain and deliver the information...... and communication, as well as the nature of the content and the usage scenarios of consumers....

  14. Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling

    Science.gov (United States)

    Martinod, Joseph; Guillaume, Benjamin; Espurt, Nicolas; Faccenna, Claudio; Funiciello, Francesca; Regard, Vincent

    2013-03-01

    We present analogue models simulating the subduction of a buoyant ridge oriented pe