WorldWideScience

Sample records for plate cells produce

  1. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  2. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  3. Methods for identifying lipoxygenase producing microorganisms on agar plates

    NARCIS (Netherlands)

    Nyyssola, A.; Heshof, R.; Haarmann, T.; Eidner, J.; Westerholm-Parvinen, A.; Langfelder, K.; Kruus, K.; Graaff, de L.H.; Buchert, J.

    2012-01-01

    Plate assays for lipoxygenase producing microorganisms on agar plates have been developed. Both potassium iodide-starch and indamine dye formation methods were effective for detecting soybean lipoxygenase activity on agar plates. A positive result was also achieved using the beta-carotene bleaching

  4. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  5. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  6. Instrument modifications that produced reduced plate heights supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2016-04-29

    The concept of peak fidelity was shown to be helpful in modeling tubing and detector cell dimensions. Connection tubing and flow cell variances were modeled to determine appropriate internal ID's, lengths, and volumes. A low dispersion plumbing configuration, based on these calculations, was assembled to replace the standard plumbing and produced the reported results. The modifications made were straightforward using commercially available parts. The full theoretical efficiency of a 3×100 mm column packed with 1.8 μm totally porous particles was achieved for the first time in supercritical fluid chromatography (SFC). Peak fidelity of >0.95 was maintained to below k=2. A reduced plate height as low as 1.87 was measured. Thus, true "ultra high performance" SFC was achieved, with the results a major improvement from all previous SFC reports. Since there were no efficiency losses, none could be attributed to thermal gradients caused by the expansion of the fluid over large pressure drops, under the conditions used. Similarly, changes in diffusion coefficients caused by significant decreases in density during expansion are apparently balanced by the increase in linear velocity, keeping the ratio between the diffusion coefficient and the linear velocity a constant. Changing modifier concentration to change retention was shown to not be a significant problem. All these issues have been a concern in the past. Diffusion coefficients, and viscosity data needs to be collected at high pressures before the actual limits of SFC can be discovered. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  8. Ni-based amorphous alloy-coating for bipolar plate of PEM fuel cell by electrochemical plating

    International Nuclear Information System (INIS)

    Yamaura, S; Kim, S C; Inoue, A

    2013-01-01

    In this study, the Ni-Cr-P amorphous alloy-coated bipolar plates were produced by electro-plating on the Cu base plates with a flow field. The power generation tests of a single fuel cell with those Ni-Cr-P bipolar plates were conducted at 353 K. It was found that the single fuel cell with those Ni-Cr-P bipolar plates showed excellent I-V performance as well as that with the carbon graphite bipolar plates. It was also found that the single cell with those Ni-Cr-P bipolar plates showed better I-V performance than that with the Ni-P amorphous alloy-coated bipolar plates. Furthermore, the long-time operation test was conducted for 440 h with those Ni-Cr-P bipolar plates at the constant current density of 200 mA·cm −2 . As a result, it was found that the cell voltage gradually decreased at the beginning of the measurement before 300 h and then the voltage was kept constant after 300 h.

  9. Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication

    International Nuclear Information System (INIS)

    Yun, W.B.; Howells, M.R.

    1987-01-01

    In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed

  10. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  11. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  12. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  13. Two-step freezing of hybridoma cells in 96-well microculture plates.

    Science.gov (United States)

    Pĕknicová, J; Kristofová, H

    1985-01-01

    Stabile hybridoma cells, colonies of hybridoma cells 14 days after fusion of immune spleen and myeloma cells, myeloma cells and fibroblasts cultured in 96-well microculture plates were frozen by the method of two-step freezing. The culture medium was aspirated, and 50 microliter of the medium containing a cryoprotectant (5% dimethyl sulphoxide) was added for 10 min at room temperature. The plates were put into microtene bags, placed at -25 degrees C in a freezer for 30 min and then stored at -100 degrees C in liquid nitrogen vapour. Plates with cells were thawed rapidly in a 50 degree C water bath. After thawing the hybrid cells were viable and continued to produce the specific antibody.

  14. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  15. Transfer plate radioassay using adsorbed anti-insulin antibody to detect insulin secreted by islet cell cultures

    International Nuclear Information System (INIS)

    Scearce, R.M.; Oie, H.K.; Gazdar, A.F.; Chick, W.L.; Eisenbarth, G.S.

    1981-01-01

    A solid-phase radioimmunoassay for detection of insulin synthesized by islet cell clones is described. This assay employs anti-insulin antibody adsorbed onto fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each transfer plate well permits fluid to enter the wells when transfer plates are lowered into microculture wells containing insulin. With this assay it is possible to rapidly screen hundreds of islet cell cultures for insulin production. The authors have used this assay to facilitate cloning of the RIN rat insulinoma cell line. The assay readily detects insulin synthesis by RIN cells and [ 125 I]insulin is not displaced by culture medium from cells which do not produce insulin. The transfer plate format should be applicable to semiautomate other radioimmunoassays. (Auth.)

  16. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  17. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  18. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  19. Quantitative analysis of textures produced in a hot-extruded zirconium plate

    International Nuclear Information System (INIS)

    Couterne, J.

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type , Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of (α v )-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [fr

  20. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Carton, J.G.; Olabi, A.G.

    2010-01-01

    Low temperature hydrogen fuel cells are electrochemical devices which offer a promising alternative to traditional power sources. Fuel cells produce electricity with a reaction of the fuel (hydrogen) and air. Fuel cells have the advantage of being clean; only producing water and heat as by products. The efficiency of a fuel cell varies depending on the type; SOFC with CHP for example, can have a system efficiency of up to 65%. What the Authors present here is a comparison between three different configurations of flow plates of a proton exchange membrane fuel cell, the manufacturer's serpentine flow plate and two new configurations; the maze flow plate and the parallel flow plate. A study of the input parameters affecting output responses of voltage, current, power and efficiency of a fuel cell is performed through experimentation. The results were taken from direct readings of the fuel cell and from polarisation curves produced. This information was then analysed through a design of experiment to investigate the effects of the changing parameters on different configurations of the fuel cell's flow plates. The results indicate that, in relation to current and voltage response of the polarisation curve and the corresponding graphs produced from the DOE, the serpentine flow plate design is a much more effective design than the maze or parallel flow plate design. It was noted that the parallel flow plate performed reasonably well at higher pressures but over all statically the serpentine flow plate performed better.

  1. Shielding analysis of the IEM cell offset adapter plate

    International Nuclear Information System (INIS)

    Simons, R.L.

    1995-01-01

    The adapter plate for the Interim Examination and Maintenance (IEM) cell ten foot ceiling valve was modified so that the penetration through the valve is offset to the north side of the steel plate. The modifications required that the shielding effectiveness be evaluated for several operating conditions. The highest gamma ray dose rate (51 mrem/hr) occurs when a Core Component Container (CCC) with six high burn-up driver fuel assemblies is transferred into or out of Solid Waste Cask (SWC). The neutron dose rate at the same source location is 2.5 mrem/hr. The total dose rate during the transfer is less than the 200 mrem/hr limit. If the ten foot ceiling valve is closed, the dose rate with twelve DFA in the cell will be less than 0.1 mrem/hr. However, with the ceiling valve open the dose rate will be as high as 12 mrem/hr. The latter condition will require controlled access to the area around the offset adapter plate when the ceiling valve is open. It was found that gaps in the shield block around the SWC floor valve will allow contact dose rates as high as 350 mrem/hr during the transfer of a fully loaded CCC. Although this situation does not pertain to the offset adapter plate, it will require controlled access around the SWC valve during the transfer of a fully loaded CCC

  2. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  3. Development of a selective agar plate for the detection of Campylobacter spp. in fresh produce.

    Science.gov (United States)

    Yoo, Jin-Hee; Choi, Na-Young; Bae, Young-Min; Lee, Jung-Su; Lee, Sun-Young

    2014-10-17

    This study was conducted to develop a selective medium for the detection of Campylobacter spp. in fresh produce. Campylobacter spp. (n=4), non-Campylobacter (showing positive results on Campylobacter selective agar) strains (n=49) isolated from fresh produce, indicator bacteria (n=13), and spoilage bacteria isolated from fresh produce (n=15) were plated on four Campylobacter selective media. Bolton agar and modified charcoal cefoperazone deoxycholate agar (mCCDA) exhibited higher sensitivity for Campylobacter spp. than did Preston agar and Hunt agar, although certain non-Campylobacter strains isolated from fresh produce by using a selective agar isolation method, were still able to grow on Bolton agar and mCCDA. To inhibit the growth of non-Campylobacter strains, Bolton agar and mCCDA were supplemented with 5 antibiotics (rifampicin, polymyxin B, sodium metabisulfite, sodium pyruvate, ferrous sulfate) and the growth of Campylobacter spp. (n=7) and non-Campylobacter strains (n=44) was evaluated. Although Bolton agar supplemented with rifampicin (BR agar) exhibited a higher selectivity for Campylobacter spp. than did mCCDA supplemented with antibiotics, certain non-Campylobacter strains were still able to grow on BR agar (18.8%). When BR agar with various concentrations of sulfamethoxazole-trimethoprim were tested with Campylobacter spp. (n=8) and non-Campylobacter (n=7), sulfamethoxazole-trimethoprim was inhibitory against 3 of 7 non-Campylobacter strains. Finally, we validated the use of BR agar containing 50mg/L sulfamethoxazole (BRS agar) or 0.5mg/L ciprofloxacin (BRCS agar) and other selective agars for the detection of Campylobacter spp. in chicken and fresh produce. All chicken samples were positive for Campylobacter spp. when tested on mCCDA, BR agar, and BRS agar. In fresh produce samples, BRS agar exhibited the highest selectivity for Campylobacter spp., demonstrating its suitability for the detection of Campylobacter spp. in fresh produce. Copyright

  4. Cells and methods for producing fatty alcohols

    Science.gov (United States)

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  5. Environmental testing of flat plate solar cell modules

    Science.gov (United States)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  6. Electron cryotomography of vitrified cells with a Volta phase plate.

    Science.gov (United States)

    Fukuda, Yoshiyuki; Laugks, Ulrike; Lučić, Vladan; Baumeister, Wolfgang; Danev, Radostin

    2015-05-01

    Electron cryotomography provides a means of studying the three dimensional structure of pleomorphic objects, such as organelles or cells, with a resolution of 1-3nm. A limitation in the study of radiation sensitive biological samples is the low signal-to-noise ratio of the tomograms which may obscure fine details. To overcome this limitation, the recently developed Volta phase plate (VPP) was applied in electron cryotomographic studies of a wide range of cellular structures, from magnetotactic bacteria to primary cultured neurons. The results show that the VPP improves contrast significantly and consequently the signal-to-noise ratio of the tomograms, moreover it avoids disturbing fringing artifacts typical for Zernike phase plates. The contrast improvement provided by the VPP was also confirmed in projection images of relatively thick (∼400nm) samples. In order to investigate the respective contributions of the VPP and the energy filter, images acquired with different combinations of the two were compared. Zero-loss energy filtering reduced the background noise in thicker areas of the sample and improved the contrast of features such as poly-β-hydroxybutyrate granules in magnetotactic bacteria, whereas the VPP provided an overall contrast improvement for all sample areas. After 3D reconstruction, tomograms acquired with the combination of a VPP and an energy filter showed structural features in neuronal processes with outstanding clarity. We also show that the VPP can be combined with focused ion beam milling to examine structures embedded deeply inside cells. Thus, we expect that VPP will become a standard element of the electron cryotomography workflow. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... not succeed. Cultures grew exponentially on a shaker at 27°C in the light. Their doubling times varied from 1.1 days on 2,4–D (10–6M) or NAA (10−5M)+ 1 g/1 casein hydrolysate to 2.7 days on BAP (3 × 10−7M) and 5.1 days on supraoptimal levels of 2,4-D (10−5M). Cultures grew on NH4+-N alone (from ammonium...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  8. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  9. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  10. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    Directory of Open Access Journals (Sweden)

    Katia Mareschi

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use.

  11. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    Science.gov (United States)

    Mareschi, Katia; Rustichelli, Deborah; Calabrese, Roberto; Gunetti, Monica; Sanavio, Fiorella; Castiglia, Sara; Risso, Alessandra; Ferrero, Ivana; Tarella, Corrado; Fagioli, Franca

    2012-01-01

    Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use. PMID:23715383

  12. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  13. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'alessandro, R.; Ferrando, A.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LBC; based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (117 mn each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author)

  14. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  15. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  16. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  17. Comparison between beryllium and diamond-backing plates in diamond-anvil cells

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci

    2011-01-01

    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  18. Peptide specific expansion of CD8(+) T cells by recombinant plate bound MHC/peptide complexes

    DEFF Research Database (Denmark)

    Schmidt, Esben G W; Buus, Soren; Thorn, Mette

    2009-01-01

    to in vitro T cell stimulation was investigated. By use of an antigenic peptide derived from the cytomegalovirus (CMVp) we tested the stimulatory efficacy of recombinant plate bound MHC molecules (PB-MHC), being immobilized in culture plates. A single stimulation of non-adherent peripheral blood mononuclear...

  19. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value

    DEFF Research Database (Denmark)

    2011-01-01

    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack...

  20. Statistical properties of laser hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    A quantitative theory of laser hot spots, which control plasma instabilities in real laser--plasma interactions, is presented in the case of random phase plate (RPP) optics. It is shown that the probability density of intense hot spots with intensity I, P hot (I), is given by P hot (I)∼(I/I 0 2 )exp(-I/I 0 ) where I 0 is the average intensity, and that the detailed amplitude and phase variation of the laser field in the vicinity of an intense hot spot is uniquely specified by the optics and is deterministic. These hot spots may be the source of below threshold stimulated Raman scattering (SRS) and its variation with I 0 is shown to be super exponential. A brief preview of a quantitative nonlinear theory of hot-spot-induced laser filamentation is presented

  1. Transfer plate radioassay using cell monolayers to detect anti-cell surface antibodies synthesized by lymphocyte hybridomas

    International Nuclear Information System (INIS)

    Schneider, M.D.; Eisenbarth, G.S.

    1979-01-01

    A solid phase [ 125 I] Protein A radioassay for anti-cell surface antibodies is described, which employs target cell monolayers cultured on fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each well is small enough to retain fluid contents by surface tension during monolayer growth, but also permits fluid to enter the wells when transfer plate are lowered into receptacles containing washing buffer on test sera. To assay for antibodies directed against target cell surface antigens, transfer plates bearing monolayers are inserted into microculture plates with corresponding 96-well geometry, thereby simultaneously sampling 96 wells. This assay allows rapid screening of hundreds of hybrid cell colonies for production of antibodies with desired tissue specificity. (Auth.)

  2. An investigation on thermal and friction effect produced by friction welding of SA 213 tube to SA 387 tube plate

    Directory of Open Access Journals (Sweden)

    S. Pandia Rajan

    2016-03-01

    Full Text Available The present study investigates the effect of thermal and friction produced in the tube to tube plate during the friction welding process by using a Tungsten carbide external tool. In this process, the fictional welding of SA 213 tube and SA 387 tube plate was done by using an external tool. Modeling of tool and wok piece is done by using Solid works and to study the thermal and frictional effect by using Ansys. In this research work, joining of SA 213 tube to SA 387 tube plate was done by using two different techniques such as with hole [WH] and without hole [WOH]. The stress value of with hole and without hole such as 18,782 MPa and 10,486 MPa respectively and the ultimate heat flux generated with hole and without hole such as 0.80475 W/mm2 and 1.1344 W/mm2 respectively were observed.

  3. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  4. Structure, properties and applications of TiN coatings produced by sputter ion plating

    International Nuclear Information System (INIS)

    Rickerby, D.S.

    1988-01-01

    The potential beneficial effects that wear-resistant coatings have on engineering surfaces depends upon their ability to remain adherent with the treated component. This paper concentrates on the process of sputter ion plating, a simple dc glow discharge sputtering system operating in soft vacuum, and relates the properties of titanium nitride coatings to the degree of ion polishing (substrate bias) which is utilised during deposition. Substrate bias was identified as the most important system parameter since it allowed for some stress relaxation within the coating via its influence on porosity levels in the coating microstructure. The influence that this has on coating adhesion is discussed. The internal stress is a combination of intrinsic growth stresses and thermal mismatch stresses with the latter tending to dominate as substrate bias is increased. In addition to substrate bias, the role that titanium interlayers and substrate cleaning play in improving the adhesion of titanium nitride coatings is discussed, and the potential benefits highlighted. In the last part of the paper some applications of titanium nitride coating are described -it will be shown that increase in component life is by no means the only criterion which should be considered when judging the success, or otherwise, of a coated component. (author)

  5. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov (United States)

    measured in operating quantum dot solar cells at low light intensity; these cells showed significant power Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL

  6. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  7. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available BACKGROUND: Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited. METHODOLOGY/PRINCIPAL FINDINGS: We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins. CONCLUSION/SIGNIFICANCE: These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.

  8. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  9. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  10. On the Performance of X-ray Imaging Plates in Gamma Radiography employing Reactor-produced Radioisotopes

    Science.gov (United States)

    Silvani, Maria Ines; de Almeida, Gevaldo L.; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-08-01

    Gamma-radiography employing radiographic films is a well established technique for non-destructive assays. The advent of X-ray sensitive Imaging Plates opens up new possibilities to apply this technique thanks to the advantages exhibited by this new device. Indeed, besides a sensitivity about 20 times higher then the conventional photographic film, requiring thus a shorter exposure time, it does not require a dark room for a cumbersome and time-consuming chemical processing associated to the development, an can be erased to be reused many times. Moreover, its development carried out by means of a laser beam produces digitalized images which can be promptly stored in a computer. Although its resolution is still poorer than that of the conventional film, those advantages overwhelms this specific parameter when it is not an essential feature for the intended application. This work evaluates the feasibility of employing X-ray Imaging Plates as detector for higher photon energies as those emitted by reactor-produced radioisotopes. Within this frame, radioisotopes such as 198Au and 56Mn, produced at the Argonauta research reactor in the Instituto de Engenharia Nuclear-CNEN have been employed as sources to acquire radiographic images of several pieces of equipment, devices and components. In order to keep the source appearance—with regard to the detector—as punctual as possible, reducing hence the penumbra effect, the mass of the irradiated material had to be limited. Therefore, due to the low neutron flux available at the main port of the reactor, the exposure times have to be extended along several hours or even a couple of days in order to reach an image with adequate contrast. This demand, nevertheless, does not constitute a serious hindrance as the exposure process can be carried out without any intervention or surveillance. Results have shown that in spite of the higher photon energies used, surpassing the X-ray range for which the imaging plates have been

  11. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  12. Front-side metallization of silicon solar cells by nickel plating and light induced silver plating

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, M.; Bay, N.; Barucha, D.; Glunz, S.W.; Preu, R. [Fraunhofer Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2009-07-01

    At present, screen-printing is the industrial method of choice for forming front-side contacts. Granted, the method is robust, but results in terms of contact width and contact formation, especially for high-efficiency solar cells, are not optimal. For forming these front-side contacts, a new process was developed, not requiring an etching step, but using a laser beam for direct writing of the contact pattern. By making use of the special properties of the semiconductor substrate, a metallising step can be simultaneously carried out. The basic process, involving deposition of nickel, then silver, is described. (orig.)

  13. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    Science.gov (United States)

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  14. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bizzeti, A.; Civinini, C.; D' Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-07-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs.

  15. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs

  16. Analysis and design recommendation on rabbeted capping plate of equipment cell in nuclear chemical facility

    International Nuclear Information System (INIS)

    Zhang Jingyu; Yin Xiaozhan

    2013-01-01

    Rabbeted capping plates are widely used in the roof of equipment cells in order to meet the requirements of nuclear radiation protection. The key considerations in the design include vertical load, seismic load and repair load. This article establishes T shaped and Z-shaped plate model via FEM software (ANSYS), analyzes the bearing capacity and displacement distribution in different load cases, and provides recommendations to the design and construction accordingly. (authors)

  17. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0517 TITLE: IL-9-Producing Mast Cell Precursors and Food Allergy PRINCIPAL INVESTIGATOR: Dr. Simon P. Hogan PhD...IL-9-Producing Mast Cell Precursors and Food Allergy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yui Hsi Wang, Sunil...threatening anaphylaxis. We have identified a novel multi-functional IL-9-producing mucosal mast cells (MMC9s) that produce large amounts of IL-9, IL

  18. Influence of radiation on initial attachment of osteoblast-like cells on titanium plate

    International Nuclear Information System (INIS)

    Kakuta, Saburo; Hamazaki, Miki; Mitsumoto, Kazuyo; Itabashi, Yuto; Fujimori, Shinya; Miyazaki, Takashi; Nagumo, Masao

    1996-01-01

    Radiotherapy is a useful and convenient therapy for oral cancer. However, there are many side effects such as stomatitis and radionecrosis of jaws. Radionecrosis may cause loosing or infection of biomaterials used for reconstruction of jaws. In this experiment, in vitro investigation was performed to clarify the influence of radiation on initial attachment of osteoblast-like cells to the titanium plate. UMR-106 and MC3T3-E1 cells were used as osteoblast-like cells. Cell attachment was evaluated by alkaline phosphatase activity and staining attached cells with crystal violet. The results revealed that initial attachment of osteoblast-like cells to the titanium plate was dose-dependently decreased by radiation and that radiosensitivity of each cell was different respectively. Furthermore, the participation of active oxygen was suggested because of partial recovery of cell attachment by addition of superoxide dismutase and/or an antioxidant such as ascorbic acid. (author)

  19. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  20. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  1. Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1

    NARCIS (Netherlands)

    Esseling-Ozdoba, A.; Vos, J.W.; Lammeren, van A.A.M.; Emons, A.M.C.

    2008-01-01

    Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1,[W],[OA] Agnieszka Esseling-Ozdoba2, Jan W. Vos, André A.M. van Lammeren and Anne Mie C. Emons* Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, 6703¿BD Wageningen, The

  2. Targeting development of incretin-producing cells increases insulin secretion

    DEFF Research Database (Denmark)

    Petersen, Natalia; Reimann, Frank; van Es, Johan H

    2015-01-01

    the number of intestinal L cells, which produce GLP-1, is an alternative strategy to augment insulin responses and improve glucose tolerance. Blocking the NOTCH signaling pathway with the γ-secretase inhibitor dibenzazepine increased the number of L cells in intestinal organoid-based mouse and human culture...... of the development of incretin-producing cells in the intestine has potential as a therapeutic strategy to improve glycemic control....

  3. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  4. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  5. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  6. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  7. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  8. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    Science.gov (United States)

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  9. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Wang, Yundong [Department of Chemical Engineering, Tsinghua University, State Key Lab of Chemical Engineering, Beijing 100084 (China); Fan, Xing, E-mail: foxcqdx@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Tao, Changyuan [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm{sup 2} was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm{sup 2} could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  10. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2014-02-01

    Full Text Available Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  11. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-01-01

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm"2 was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm"2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  12. On the use of plate-type normal pressure cells in silos

    DEFF Research Database (Denmark)

    Ramirez, Alvaro; Nielsen, Jørgen; Ayuga, F.

    2010-01-01

    the interpretation of results. Once the cells have been delivered from the manufacturer to the researcher, they should be calibrated and validated with reference to the measurement of pressure from a granular material against a silo wall. Two related papers deal with a specific plate-type normal pressure cell...... for use in an installation of three full-scale steel silos with different hopper eccentricities (concentric, half-eccentric and full-eccentric) as part of a silo research project. It was found to be necessary to validate the performance of the cells when measuring pressures in the silos in order to arrive...... at a solid basis for the interpretation of the pressure measurements in the silo installation aforementioned. This paper presents calibration results from three investigated methods as well as results from a finite element analysis of the plate deflection of the pressure cell which were performed to evaluate...

  13. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  14. Plated copper front side metallization on printed seed-layers for silicon solar cells

    OpenAIRE

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  15. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P.J.; Pollet, B.G. [PEM Fuel Cell Research Group, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2010-08-15

    This review describes some recent developments in the area of flow field plates (FFPs) for proton exchange membrane fuel cells (PEMFCs). The function, parameters and design of FFPs in PEM fuel cells are outlined and considered in light of their performance. FFP materials and manufacturing methods are discussed and current in situ and ex situ characterisation techniques are described. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.

    Science.gov (United States)

    Mauss, Alex S; Borst, Alexander

    2016-01-01

    Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method. To this end, animals are fixed to a holder and mounted below a recording chamber. The head capsule is cut open and the glial sheath covering the brain is ruptured by a combination of shearing and enzymatic digest. Neuronal somata are thus exposed and targeted by low-resistance patch electrodes. After formation of a high resistance seal, electrical access to the cell is gained by small current pulses and suction. Stable recordings of large neurons are feasible for >1 h and can be combined with controlled visual stimulation as well as genetic and pharmacological manipulation of upstream circuit elements to infer circuit function in great detail.

  17. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process.

    Science.gov (United States)

    Murugan, K; Saravanababu, S; Arunachalam, M

    2007-03-01

    Industrially important tannase producing fungi were isolated from tannery effluent using simple agar plate method. The isolates were screened by submerged fermentation using auto-controlled bioreactor. The colony diameter on the solid surface media shows high correlation with quantitative production of tannase. The isolate Aspergillus niger shows maximum production of both extracellular and intracellular enzyme.

  18. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  19. Mucin-producing signet ring cell adenoma of the thyroid

    Directory of Open Access Journals (Sweden)

    Gulwani Hanni

    2008-10-01

    Full Text Available Signet ring cell adenoma of the thyroid, though rare, is well documented. This change is chiefly due to intracellular accumulation of thyroglobulin that appears mucinous. Awareness of this entity is important as it may closely simulate a metastatic mucin-secreting signet ring cell carcinoma. Although the mucinous material in signet ring cells has been reported to stain positive with thyroglobulin, in some cases it may not be so. We herein describe a rare case of a 46-year-old man who was hypothyroid and the mass removed from the thyroid showed a mucin-producing signet ring cell adenoma of the thyroid.

  20. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  1. Sonocatalytic injury of cancer cells attached on the surface of a nickel-titanium dioxide alloy plate.

    Science.gov (United States)

    Ninomiya, Kazuaki; Maruyama, Hirotaka; Ogino, Chiaki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    The present study demonstrates ultrasound-induced cell injury using a nickel-titanium dioxide (Ni-TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni-TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm(2) for 30s led to an increased generation of hydroxyl (OH) radicals compared to nickel-titanium (Ni-Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni-TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm(2) for 30s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni-Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni-TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni-TiO2 alloy plates, indicating induction of apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  3. Host cells and methods for producing diacid compounds

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.; Keasling, Jay D.

    2018-04-24

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  4. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  5. Improving poor fill factors for solar cells via light-induced plating

    International Nuclear Information System (INIS)

    Xing Zhao; Jia Rui; Ding Wuchang; Meng Yanlong; Jin Zhi; Liu Xinyu

    2012-01-01

    Silicon solar cells are prepared following the conventional fabrication processes, except for the metallization firing process. The cells are divided into two groups with higher and lower fill factors, respectively. After light-induced plating (LIP), the fill factors of the solar cells in both groups with different initial values reach the same level. Scanning electron microscope (SEM) images are taken under the bulk silver electrodes, which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process. Moreover, the application of LIP to cells with poor electrode contact performance, such as nanowire cells and radial junction solar cells, is proposed. (semiconductor devices)

  6. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells.

    Science.gov (United States)

    Wang, Chun; Xu, Can-Xin; Alippe, Yael; Qu, Chao; Xiao, Jianqiu; Schipani, Ernestina; Civitelli, Roberto; Abu-Amer, Yousef; Mbalaviele, Gabriel

    2017-07-07

    Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1β-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.

  7. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation

    OpenAIRE

    Youngkyun Kim; Yeri Alice Rim; Hyoju Yi; Narae Park; Sung-Hwan Park; Ji Hyeon Ju

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol...

  8. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  9. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  10. Quantitative analysis of textures produced in a hot-extruded zirconium plate; Analyse quantitative des textures developpees dans une plaque de zirconium filee a chaud

    Energy Technology Data Exchange (ETDEWEB)

    Couterne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Institut national des sciences et techniques nucleaires, laboratoire de metallurgie

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type <1010>, Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of ({alpha}{sub v})-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [French] Les textures conferees au zirconium par filage a chaud a 730 deg C d'une billette cylindrique sous forme d'une plaque de section rectangulaire, ont ete

  11. Quantitative analysis of textures produced in a hot-extruded zirconium plate; Analyse quantitative des textures developpees dans une plaque de zirconium filee a chaud

    Energy Technology Data Exchange (ETDEWEB)

    Couterne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Institut national des sciences et techniques nucleaires, laboratoire de metallurgie

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type <1010>, Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of ({alpha}{sub v})-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [French] Les textures conferees au zirconium par filage a chaud a 730 deg C d'une billette cylindrique sous forme d'une plaque de section rectangulaire, ont

  12. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  13. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial growth plate arrest in pigs

    Czech Academy of Sciences Publication Activity Database

    Plánka, L.; Srnec, R.; Rauser, P.; Starý, D.; Filová, Eva; Jančář, J.; Juhásová, Jana; Křen, J.; Nečas, A.; Gál, P.

    2012-01-01

    Roč. 156, č. 2 (2012), s. 128-134 ISSN 1213-8118 R&D Projects: GA MZd(CZ) NS9896 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50450515 Institutional support: RVO:68378041 ; RVO:67985904 Keywords : mesenchymal stem cells * growth plate defect * bone bridge Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.990, year: 2012

  14. Heating produced by therapeutic ultrasound in the presence of a metal plate in the femur of canine cadavers

    Directory of Open Access Journals (Sweden)

    A.O. Andrades

    2014-10-01

    Full Text Available The present study aimed to assess the heat generated by a therapeutic ultrasound (TUS in a metal bone plate and adjacent structures after fixation to the femur of canine cadavers. Ten pairs of hind limbs were used, and they were equally distributed between groups that were subjected to 1- and 3-MHz frequencies, with each frequency testing 1- and 2-W/cm² intensities. The right hind limb was defined as the control group (absence of the metal plate, and the left hind limb was the test group (presence of the metal plate. Therefore, the control groups (CG were denominated CGI, using TUS with 1-MHz frequency and 1-W/cm² intensity; CGII, using 1-MHz frequency and 2-W/cm² intensity; CGIII, using 3-MHz frequency and 1-W/cm² intensity; and CGIV, using 3-MHz frequency and 2-W/cm² intensity. For each control group, its respective test group (TG was denominated TGI, TGII, TGIII and TGIV. The TUS was applied to the lateral aspect of the thigh using the continuous mode and a 3.5-cm² transducer in a 6.25-cm² area for 2 minutes. Sensors were coupled to digital thermometers that measured the temperature in different sites before (t0 and after (t1 of the TUS application. The temperatures in t1 were higher in all tested groups. The intramuscular temperature was significantly higher (P<0.05 in the groups used to test the 3-MHz frequency in the presence of the metal plate. The therapeutic ultrasound in the continuous mode using frequencies of 1 and 3 MHz and intensities of 1 and 2 W/cm2 for 2 minutes caused heating of the metal plate and adjacent structures after fixation to the femur of canine cadavers.

  15. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  16. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    Science.gov (United States)

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  17. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation

    Directory of Open Access Journals (Sweden)

    Youngkyun Kim

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs. In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  18. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  19. The Relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dmitri Svistounov

    Full Text Available Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished.

  20. Anti-tumor therapy with macroencapsulated endostatin producer cells

    Directory of Open Access Journals (Sweden)

    Balduino Keli N

    2010-03-01

    Full Text Available Abstract Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that

  1. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  2. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Science.gov (United States)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-02-01

    Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  3. Li plating as unwanted side reaction in commercial Li-ion cells - A review

    Science.gov (United States)

    Waldmann, Thomas; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2018-04-01

    Deposition of Lithium metal on anodes contributes significantly to ageing of Li-ion cells. Lithium deposition is connected not only to a drastic limitation of life-time, but also to fast-charging capability and safety issues. Lithium deposition in commercial Li-ion cells is not limited to operation conditions at low temperatures. In recent publications various types of commercial cells were investigated using complimentary analysis methods. Five cell types studied in literature (18650, 26650, pouch) serve as a basis for comparison when and why Li deposition happens in commercial Li-ion cells. In the present paper, we reviewed literature on (i) causes, (ii) hints and evidences for Li deposition, (iii) macroscopic morphology of Li deposition/plating, (iv) ageing mechanisms and shapes of capacity fade curves involving Li deposition, and (v) influences of Li deposition on safety. Although often discussed, safety issues regarding Li deposition are not only limited to dendrite growth and internal short circuits, but also to exothermic reactions in the presence of Lithium metal. Furthermore, we tried to connect knowledge from different length scales including the macroscopic level (Li-ion cells, operating conditions, gradients in cells, electrochemical tests, safety tests), the microscopic level (electrodes, particles, microstructure), and the atomic level (atoms, ions, molecules, energy barriers).

  4. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  5. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  6. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  7. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    Science.gov (United States)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  8. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  9. Effect of wrapped Zn plate on the densification of Al-MWCNTs composites produced by cold pressing and liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Joo, M.R. [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Choi, H.J. [School of Advanced Materials Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Shin, S.E. [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.H., E-mail: donghyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-09-30

    To produce highly dense and cost-effective Al-multi-walled carbon nanotube (Al-MWCNT) composites, the composite powders are wrapped by a Zn plate and then cold-pressed. The green compacts are then sintered at 550 °C, which shows ~99%density after sintering for 24 h. During sintering, Zn atoms fill the voids at the powder boundaries by capillary action and are then dissolved into the Al matrix because of the high solubility of Zn in Al, thus assisting densification of the composite powder. The Al/Zn-based composites containing 4 vol% MWCNTs show compressive yield strength (~380 MPa) and high work hardening capacity.

  10. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  11. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  12. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  13. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  14. Optimal Design for the Diffusion Plate with Nanoparticles in a Diffusive Solar Cell Window by Mie Scattering Simulation

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Chen

    2013-01-01

    Full Text Available A diffusive solar cell window comprises a diffusion plate with TiO2 nanoparticles sandwiched between two glass layers. It is a simple, inexpensive, easy-to-made, and highly reliable transparent solar energy module. To improve its power generation efficiency as well as maintain indoor natural lighting, we examined the scattering mechanism in the diffusion plate with TiO2 nanoparticles within a diffusive solar cell window by Mie scattering simulations. In this work, a multiwavelength ASAP ray tracing model for a diffusive solar cell window with acceptable accuracy was developed to investigate the influence of the diffusion plate design parameter, mainly concentration of a diffusion plate with determined particle size distribution, on power generation efficiency and color shift of transmitted sun light. A concept of “effective average radius” was proposed to account for the equivalent scattering effect of a size distribution of quasispherical particles. Simulation results demonstrated that both the transmitted light and its correlated color temperature decreased as the concentration increased for a large-size diffusive solar cell window. However, there existed a maximum power generation efficiency at around 160 ppm concentration. The optimal design for a large-size diffusion plate inside a diffusive solar cell window by taking indoor lighting into account was suggested based on the simulation results.

  15. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  16. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    Science.gov (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  17. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    Science.gov (United States)

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  18. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  19. Cell cycle indicators of buccal epithelial cells in the treatment of different types of removable plate partial dentures

    Directory of Open Access Journals (Sweden)

    E. V. Beliaiev

    2018-02-01

    Full Text Available The purpose of the work. To investigate nuclear DNA and buccal epithelial cells proliferative activity in patients with dental defects, who use removable partial dentures plates made of acrylic or thermoplastic. Materials and Methods. The study of buccal epithelial cell cycle parameters was carried out in 70 people. Among them 23 patients were treated with acrylic dentures prostheses, 23 patients – with thermoplastic-based prostheses. The comparison group consisted of 24 clinically healthy persons without defects in the dentition. DNA content in human buccal epithelial cells nuclei was determined by flow cytometry. Results. The obtained indicators of buccal epithelial cell cycle of the control group indicate a high intensity of cell self-renewal in the normal range. It is suggested by a significant percentage of events occurring within the Sub-G1 range that characterizes apoptosis, as well as the fact that more than half of the cells were in the range of S + G2/M. It has been revealed by flow cytometry that the percentage of apoptosis in cells was higher in patients using acrylic dentures base plastic, showed initial signs of keratinization that was confirmed by increase in cells in the range of Sub-G1 and by their decrease in the range of S-G2/M. It has been established in the study of buccal epithelium cell cycle indicators in the dentures bases thermoplastic application that these prostheses did not affect the proliferative activity of buccal epithelial cells compared to the group using acrylic dentures bases with prolonged use. This is evident in almost the same number of cellular events ranging Sub-G1, so apoptosis in the thermoplastic dentures bases application corresponded to the control group indicators both in the early period and over a year of use. Conclusions. The direct negative effect of prostheses with acrylic bases on the complex mechanism of the oral cavity mucous membrane functioning has been revealed. Absence of dentures

  20. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com; Deng, Bo; Chen, Tao; Deng, Keli [Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-07-15

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  1. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  2. Extrinsic Factors Involved in the Differentiation of Stem Cells into Insulin-Producing Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.

  3. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  4. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  5. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  6. Porous Composite for Bipolar Plate in Low Emission Hydrogen Fuel Cells

    Directory of Open Access Journals (Sweden)

    Renata Katarzyna Włodarczyk

    2018-01-01

    Full Text Available The paper presents the results of graphite-stainless steel composites for the bipolar plates in low-temperature fuel cells. The sinters were performed by powder metallurgy technology. The influenceof technological parameters, especially molding pressure were examined. Following the requirements formulated by the DOE concerning the parameters of the materials, it indicated by the value of the parameters. The density, flowabilit, particle size of graphite and stainless steel powders have been evaluated. Composites have been tested by microstructure and phase analysis, properties of strength, functional properties: wettability, porosity, roughness. The special attention was paid to the analysis of corrosion resistance obtained sinters and influenceof technological parameters on the corrosion. Corrosion tests were carried out under conditions simulating the environment of the fuel cell under anode and cathode conditions. The effectof pH solution during working of the cell on corrosion resistance of composites have been evaluated. Contact resistance depends on roughness of sinters. Low ICR determined high contact area GDL-BP and high electrical conductivity on the contact surface. The ICR in anode conditions after corrosion tests are not change significantly; composite materials can be used for materials for B in terms of H 2 .

  7. Ink jet assisted metallization for low cost flat plate solar cells

    Science.gov (United States)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  8. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  9. Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Szu-Hsiu Liu

    2012-01-01

    Full Text Available Embryonic stem (ES cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs by a two-step differentiation protocol comprising of (i the formation of definitive endoderm in monolayer culture by activin A, and (ii this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.

  10. Standardization of the CFU-GM assay: Advantages of plating a fixed number of CD34+ cells in collagen gels.

    Science.gov (United States)

    Dobo, Irène; Pineau, Danielle; Robillard, Nelly; Geneviève, Frank; Piard, Nicole; Zandecki, Marc; Hermouet, Sylvie

    2003-10-01

    We investigated whether plating a stable amount of CD34(+) cells improves the CFU-GM assay. Data of CFU-GM assays performed with leukaphereses products in two transplant centers using a commercial collagen-based medium and unified CFU-GM scoring criteria were pooled and analyzed according to the numbers of CD34(+) cells plated. A first series of 113 CFU-GM assays was performed with a fixed number of mononuclear cells (i.e., a variable number of CD34(+) cells). In these cultures the CFU-GM/CD34 ratio varied according to the number of CD34(+) cells plated: median CFUGM/CD34 ratios were 1/6.2 to 1/6.6 for grafts containing or =2% CD34(+) cells. The median CFU-GM/CD34 ratio also varied depending on pathology: 1/9.3 for multiple myeloma (MM), 1/6.8 for Hodgkin's disease (HD), 1/6.5 for non-Hodgkin lymphoma (NHL), and 1/4.5 for solid tumors (ST). A second series of 95 CFU-GM assays was performed with a fixed number of CD34(+) cells (220/ml). The range of median CFU-GM/CD34 ratios was narrowed to 1/7.0 to 1/5.2, and coefficients of variation for CFU-GM counts decreased by half to 38.1% (NHL), 36.1% (MM), 49.9% (HD), and 22.4% (ST). In addition, CFU-GM scoring was facilitated as the percentages of cultures with >50 CFU/GM/ml decreased from 6.7% to 43.8% when a variable number of CD34(+) cells was plated, to 4.5% to 16.7% when 220 CD34(+) cells/ml were plated. Hence, plating a fixed number of CD34(+) cells in collagen gels improves the CFU-GM assay by eliminating cell number-related variability and reducing pathology-related variability in colony growth.

  11. Programmed Cell Death and Postharvest Deterioration of Horticultural Produce

    NARCIS (Netherlands)

    Woltering, E.J.; Iakimova, E.T.

    2010-01-01

    Programmed cell death (PCD) is a process where cells or tissues are broken down in an orderly and predictable manner, whereby nutrients are re-used by other cells, tissues or plant parts. The process of (petal) senescence shows many similarities to autophagic PCD in animal cells including a massive

  12. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  13. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice.

    Science.gov (United States)

    Hitomi, Hirofumi; Kasahara, Tomoko; Katagiri, Naoko; Hoshina, Azusa; Mae, Shin-Ichi; Kotaka, Maki; Toyohara, Takafumi; Rahman, Asadur; Nakano, Daisuke; Niwa, Akira; Saito, Megumu K; Nakahata, Tatsutoshi; Nishiyama, Akira; Osafune, Kenji

    2017-09-27

    The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    International Nuclear Information System (INIS)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-01-01

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  15. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  16. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  17. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  18. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    NARCIS (Netherlands)

    van Gool, S.A.; Emons, J.A.M.; Leijten, Jeroen Christianus Hermanus; Decker, E.; Sticht, C.; van Houwelingen, J.C.; Goeman, J.J.; Kleijburg, C.; Scherjon, S.; Gretz, N.; Wit, J.M.; Rappold, G.; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether

  19. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  20. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  1. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    Science.gov (United States)

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  2. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  3. Imbalance between IL-17A-Producing Cells and Regulatory T Cells during Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yuehua Hu

    2014-01-01

    Full Text Available Immune responses and inflammation are key elements in the pathogenesis of ischemic stroke (IS. Although the involvement of IL-17A in IS has been demonstrated using animal models, the involvement of IL-17A and IL-17-secreting T cell subsets in IS patients has not been verified, and whether the balance of Treg/IL-17-secreting T cells is altered in IS patients remains unknown. In the present study, we demonstrated that the proportion of peripheral Tregs and the levels of IL-10 and TGF-β were reduced in patients with IS compared with controls using flow cytometry (FCM, real-time PCR, and ELISA assays. However, the proportions of Th17 and γδ T cells, the primary IL-17A-secreting cells, increased dramatically, and these effects were accompanied by increases in the levels of IL-17A, IL-23, IL-6, and IL-1β in IS patients. These studies suggest that the increase in IL-17A-producing cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and IL-17A-producing cells might be helpful for the treatment of IS.

  4. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  5. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.; Koetzsch, S.; Proctor, C.R.; Besmer, M.D.; Prest, E.I.; Vrouwenvelder, Johannes S.; Knezev, A.; Boon, N.; Hammes, F.

    2017-01-01

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  6. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  7. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  8. Dismantling of a hot cell-block and the treatment of the produced concrete bars

    International Nuclear Information System (INIS)

    Rompf, U.; Brielmayer, M.; Graf, A.; Stutz, U.; Ambos, F.

    2003-01-01

    A building with hot cells had been operated in Karlstein/Main from 1968 to 1989 in order to perform check-ups at radiated fuel rods and nuclear components. The operation of the system was stopped after an operation period of approximately 20 years. The core part of the building to be disassembled is a U-shaped hot cell-block with nine individual cells, partly consisting of heavy reinforced concrete, located in the ground floor (fig. 1 and fig. 2). The major part of the cells was covered with 10 mm steel plate and provided with approx. 1,400 openings of all different kinds. The wall thickness of the cells was between 0.90 m and 1.10 m. Under these conditions a successful decontamination at the ''existing building structure'' was not possible. Therefore, the non-supporting structures of the hot cell-block were removed in individual blocks by means of sawing and the remaining walls and floors were peeled by using the diamond rope sawing technique. The dismantling took 17 months. A re-treatment of the produced concrete blocks (235 blocks, approx. 970 Mg) to reduce the radioactive waste to a minimum was performed at the Research Centre Karlsruhe, Central Decontamination Department (HDB). The Target of the concrete bar treatment at HDB is to reduce the volume of radioactive waste to a minimum and to add the major part of the concrete bars to harmless utilisation. To achieve the same, initially the more contaminated parts of the bars without openings, such as tubes, cable or ventilating shafts, are removed by means of wire cutting and packed into a KONRAD-Container as radioactive waste. The remaining bar is decontaminated by means of sandblasting and afterwards, following successful release measurement, released from the scope of the regulations under the Atomic Energy. Bars with openings are crushed into small pieces by means of the remote-controlled chisel excavator, in order to separate the individual kinds of material. The rubble is packed into drums and measured by

  9. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2016-10-01

    that Stat6-/- BM progenitors in sensitized wild type recipients that were competent in GFP- CD4+ST2+TH2 and ILC2s ( innate lymphoid cells ) generation, and...report demonstrated that type 2 innate lymphoid cells (ILC2s) lack cell lineage markers and have the potential to pro- duce IL-9 (Wilhelm et al., 2011...Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells . Nature 463, 540–544

  10. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  11. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  12. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  13. Electroplating of Ni-Mo Coating on Stainless Steel for Application in Proton Exchange Membrane Fuel Cell Bipolar Plate

    Directory of Open Access Journals (Sweden)

    H. Rashtchi

    2018-03-01

    Full Text Available Stainless steel bipolar plates are preferred choice for use in Proton Exchange Membrane Fuel Cells (PEMFCs. However, regarding the working temperature of 80 °C and corrosive and acidic environment of PEMFC, it is necessary to apply conductive protective coatings resistant to corrosion on metallic bipolar plate surfaces to enhance its chemical stability and performance. In the present study, by applying Ni-Mo and Ni-Mo-P alloy coatings via electroplating technique, corrosion resistance was improved, oxid layers formation on substrates which led to increased electrical conductivity of the surface was reduced and consequently bipolar plates fuction was enhanced. Evaluation tests included microstructural and phase characterizations for evaluating coating components; cyclic voltammetry test for electrochemical behavior investigations; wettability test for measuring hydrophobicity characterizations of the coatings surfaces; interfacial contact resistance measurements of the coatings for evaluating the composition of applied coatings; and polarization tests of fuel cells for evaluating bipolar plates function in working conditions. Finally, the results showed that the above-mentioned coatings considerably decreased the corrosion and electrical resistance of the stainless steel.

  14. Aluminum cathode plates in zinc electrowinning cells: microstructural and failure analysis

    International Nuclear Information System (INIS)

    Buarzaiga, M.; Dreisinger, D.; Tromans, D.; Gonzalez, J.A.

    2001-01-01

    The microstructure of aluminum cathode plates used in zinc electrowinning was analyzed using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Three principal phases dominated the microstructure: primary aluminum, uniformly distributed intermetallic particles, and round rosettes. The intermetallics exhibited blade shape morphology, light gray color, and were aligned in the rolling direction. The chemical composition of the intermetallic particles was consistent with FeAl 3 . Angular particles of elemental silicon were also detected. Failure characteristics of industrial cathode plates were analyzed using optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, and x-ray diffraction analysis. Three distinct corrosion zones were identified on failed plates: Zone I below the electrolyte/air interface, Zone II 0-40 mm above the electrolyte/air interface, and Zone III 40-140 mm above the electrolyte/air interface. After 24 months in service, the corrosion damage in Zones I and III was equivalent to ca. 10% reduction in plate thickness. Zone II experienced the greatest corrosion damage; the reduction in plate thickness was ca. 80%. Some plates exhibited severe thinning and perforation, which occurred preferentially near the electrical contact edge. Plates often fail in service by fracture in Zone II. (author)

  15. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells

    International Nuclear Information System (INIS)

    Skinner, M.K.; Fritz, I.B.

    1985-01-01

    The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. The stimulation by follicle-stimulating hormone of the incorporation of [ 35 S]SO 2 ) -4 ) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III, and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule

  16. Hyperthermic survival of Chinese hamster ovary cells as a function of cellular population density at the time of plating

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Holahan, P.K.; Dewey, W.C.

    1984-01-01

    The survival of synchronous G 1 or asynchronous Chinese hamster ovary cells in vitro to heat treatment may depend on the cellular population density at the time of heating and/or as the cells are cultured after heating. The addition of lethally irradiated feeder cells may increase survival at 10 -3 by as much as 10- to 100-fold for a variety of conditions when cells are heated either in suspension culture or as monolayers with or without trypsinization. The protective effect associated with feeder cells appears to be associated with close cell-to-cell proximity. However, when cells are heated without trypsinization about 24 hr or later after plating, when adaptation to monolayer has occurred, the protective effect is reduced; i.e., addition of feeder cells enhances survival much less, for example, about 2- to 3-fold at 10 -2 -10 -3 survival. Also, the survival of a cell to heat is independent of whether the neighboring cell in a microcolony is destined to live or die. Finally, if protective effects associated with cell density do occur and are not controlled, serious artifacts can result as the interaction of heat and radiation is studied; for example, survival curves can be moved upward, and thus changed in shape as the number of cells plated is increased with an increase in the hyperthermic treatment or radiation dose following hyperthermia. Therefore, to understand mechanisms and to obtain information relevant to populations of cells in close proximity, such as those in vivo, these cellular population density effects should be considered and understood

  17. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  18. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  19. Porcine induced pluripotent stem cells produce chimeric offspring.

    Science.gov (United States)

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  20. Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry

    International Nuclear Information System (INIS)

    Ebong, Abasifreke

    2014-01-01

    Metallization is crucial to silicon solar cell performance. It is the second most expensive process step in the fabrication of a solar cell. In order to reduce the cost of solar cell, the metallization cost has to be cut down by using less metal without compromising the efficiency. Screen-printing has been used in metallizing the commercial solar cell because of the high throughput and low cost at the expense of performance. However, because of the variability in the screen-printed gridlines, the amount of Ag metal used cannot be controlled. More so, the dependence of the contact resistance on doping necessitates the use of low sheet resistance emitters, which exacerbates losses in the blue response and hence the efficiency. To balance the contact resistance and improve blue response, several approaches have been undertaken including, use of Ag pastes incorporating nanoparticle glass frits that will not diffuse excessively into a lightly doped emitter, Ni plating on lightly doped emitter through SiNx dielectric plus NiSi formation followed by Cu and/or Ag plating, light induced plating (LIP) of Ag or Cu on fired through dielectric metal seed layers formed by aerosol or inkjet or screen-printing. All these approaches require excellent adhesion and gridline conductivity to minimize the total series resistance, which impedes the collection of electrons. This paper presents the issues and the pathway to achieving high efficiency using low cost metallization technology involving inkjet-printed Ag fine gridline having 38 μm width and 3 μm height fired through the SiNx followed by Ni and Cu plating. A comprehensive analysis of silicon/metal interface, using high precision microscopy, has shown that the investigated metallization technology is appropriate for the longevity of the device

  1. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  2. Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates.

    Science.gov (United States)

    Cui, Long-Hui; Joo, Hyung Joon; Kim, Dae Hwan; Seo, Ha-Rim; Kim, Jung Suk; Choi, Seung-Cheol; Huang, Li-Hua; Na, Ji Eun; Lim, I-Rang; Kim, Jong-Ho; Rhyu, Im Joo; Hong, Soon Jun; Lee, Kyu Back; Lim, Do-Sun

    2018-01-01

    Nanotopography plays a pivotal role in the regulation of cellular responses. Nonetheless, little is known about how the gradient size of nanostructural stimuli alters the responses of endothelial progenitor cells without chemical factors. Herein, the fabrication of gradient nanopattern plates intended to mimic microenvironment nanotopography is described. The gradient nanopattern plates consist of nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] that were used to screen the responses of human endothelial colony-forming cells (hECFCs). Nanopillars with a smaller nanopillar diameter caused the cell area and perimeter of hECFCs to decrease and their filopodial outgrowth to increase. The structure of vinculin (a focal adhesion marker in hECFCs) was also modulated by nanostructural stimuli of the gradient nanopattern plates. Moreover, Rho-associated protein kinase (ROCK) gene expression was significantly higher in hECFCs cultured on GP 120/200 than in those on flat plates (no nanopillars), and ROCK suppression impaired the nanostructural-stimuli-induced vinculin assembly. These results suggest that the gradient nanopattern plates generate size-specific nanostructural stimuli suitable for manipulation of the response of hECFCs, in a process dependent on ROCK signaling. This is the first evidence of size-specific nanostructure-sensing behavior of hECFCs. Nano feature surfaces are of growing interest as materials for a controlled response of various cells. In this study, we successfully fabricated gradient nanopattern plates to manipulate the response of blood-derived hECFCs without any chemical stimulation. Interestingly, we find that the sensitive nanopillar size for manipulation of hECFCs is range between 120 nm and 200 nm, which decreased the area and increased the filopodial outgrowth of hECFCs. Furthermore, we only modulate the nanopillar size to increase ROCK expression can be an

  3. Cytokine-producing T cell subsets in human leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, Kåre

    2000-01-01

    Leishmania specific Th1/Th2 cells have been identified in humans as well as in mice. There is a correlation between the clinical outcome of the infection and the cytokine response profile. Generally, the production of Th2 cytokines leads to severe infection, whereas the production of Th1 cytokine...

  4. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  5. Transplants of cells engineered to produce GABA suppress spontaneous seizures

    Czech Academy of Sciences Publication Activity Database

    Thompson, K. W.; Suchomelová, Lucie

    2004-01-01

    Roč. 45, č. 1 (2004), s. 4-12 ISSN 0013-9580 Grant - others:VA Greater Los Angeles Healthcare System Research Service(US) MREP Institutional research plan: CEZ:AV0Z5011922 Keywords : cell transplantation * epilepsy * seizures Subject RIV: FH - Neurology Impact factor: 3.329, year: 2004

  6. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    OpenAIRE

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniq...

  7. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Directory of Open Access Journals (Sweden)

    Seong Gyu Jeon

    Full Text Available Specific intestinal microbiota has been shown to induce Foxp3(+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+ dendritic cells (DCs mediated B. breve-induced development of IL-10-producing T cells. CD103(+ DCs from Il10(-/-, Tlr2(-/-, and Myd88(-/- mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+ DCs failed to induce IL-10 production from co-cultured Il27ra(-/- T cells. B. breve treatment of Tlr2(-/- mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+ T cells from wild-type mice, but not Il10(-/- mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  8. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Science.gov (United States)

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  9. Targeting of histamine producing cells by EGCG: a green dart against inflammation?

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2010-09-01

    The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.

  10. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  11. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage

    OpenAIRE

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-01-01

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearra...

  12. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  13. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  14. Programmed death-1 receptor suppresses γ-IFN producing NKT cells in human tuberculosis.

    Science.gov (United States)

    Singh, Amar; Dey, Aparajit Ballav; Mohan, Anant; Mitra, Dipendra Kumar

    2014-05-01

    IFN-γ biased Th1 effector immune response is crucial for containment of Mycobacterium tuberculosis infection. Various T cell subsets with regulatory function dictate the generation of Th1 like cells. NKT cells are a specialized T cell subset known to be activated early in immune response and control T cell response via release of immunoregulatory cytokines like IFN-γ, IL-4 and IL-10. M. tuberculosis, with abundance of its cell wall lipids may potently activate NKT cells resulting in cytokine production and PD-1 expression. In this study, among 49 treatment naive active pulmonary tuberculosis patients, we found a higher percentage of PD1(+) NKT cells correlating with sputum bacillary load. Furthermore, blocking PD-1 increased the number of IFN-γ producing NKT cells by inhibiting their apoptosis. Moreover, peripheral frequency of NKT cells declined with therapy suggesting their role in host T cell response. In this study, we concluded that PD-1 preferentially induces apoptosis of IFN-γ producing NKT cells while sparing NKT cells that produce IL-4. Such a polarized NKT cell function may impose a Th2 bias on the ensuing effector T cell response leading to inefficient clearance of M. tuberculosis. Inhibiting PD-1 may therefore alter the T cell response in favor of the host by rescuing type 1 NKT cells from apoptosis and boosting Th1 effector T cell functions against M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    Science.gov (United States)

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  16. Transformation of Nonfunctioning Pancreatic Neuroendocrine Carcinoma Cells into Insulin Producing Cells after Treatment with Sunitinib

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    2013-06-01

    Full Text Available We report a rare case of severe hypoglycemia after sunitinib treatment for pancreatic neuroendocrine carcinoma. We describe the initial clinical presentation, laboratory results, pathologic findings, and managment in a patient with a nonfunctioning pancreatic neuroendocrine carcinoma with liver metastases who developed life threatening hypoglycemia after 2 months of sunitinib therapy. A 46-year-old woman presented to the emergency department with loss of consciousness from hypoglycemia. Serum C-peptide and insulin levels at fasting state revealed that the hypoglycemia resulted from endogenous hyperinsulinemia. She had been diagnosed with nonfunctioning pancreatic neuroendocrine carcinoma based on a biopsy of metastatic cervical lymph node and was being treated with sunitinib, a small molecule tyrosine kinase inhibitor. Immunohistochemical stain of the metastatic liver mass demonstrated that the initially nonfunctioning neuroendocrine carcinoma cells had changed into insulin-producing cells after sunitinib therapy. Transarterial chemoembolization of the liver masses and systemic chemotherapy with streptozotocin/adriamycin relieved the hypoglycemia. A nonfunctioning pancreatic neuroendocrine carcinoma was transformed into an insulin-producing tumor after treatment with sunitinib, causing endogenous hyperinsulinemia and severe hypoglycemia.

  17. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  18. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L

    2016-07-07

    The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Soares-Silveira Alda

    2002-07-01

    Full Text Available Abstract Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ.

  20. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  1. Marking and quantifying IL-17A-producing cells in vivo.

    Directory of Open Access Journals (Sweden)

    April E Price

    Full Text Available Interleukin (IL-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+ T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-CD3ε(+ cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-CD3ε(+ cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.

  2. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    Science.gov (United States)

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  3. Multinucleated Giant Cancer Cells Produced in Response to Ionizing Radiation Retain Viability and Replicate Their Genome

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2017-02-01

    Full Text Available Loss of wild-type p53 function is widely accepted to be permissive for the development of multinucleated giant cells. However, whether therapy-induced multinucleation is associated with cancer cell death or survival remains controversial. Herein, we demonstrate that exposure of p53-deficient or p21WAF1 (p21-deficient solid tumor-derived cell lines to ionizing radiation (between 2 and 8 Gy results in the development of multinucleated giant cells that remain adherent to the culture dish for long times post-irradiation. Somewhat surprisingly, single-cell observations revealed that virtually all multinucleated giant cells that remain adherent for the duration of the experiments (up to three weeks post-irradiation retain viability and metabolize 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT, and the majority (>60% exhibit DNA synthesis. We further report that treatment of multinucleated giant cells with pharmacological activators of apoptosis (e.g., sodium salicylate triggers their demise. Our observations reinforce the notion that radiation-induced multinucleation may reflect a survival mechanism for p53/p21-deficient cancer cells. With respect to evaluating radiosensitivity, our observations underscore the importance of single-cell experimental approaches (e.g., single-cell MTT as the creation of viable multinucleated giant cells complicates the interpretation of the experimental data obtained by commonly-used multi-well plate colorimetric assays.

  4. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  5. Redox regulation of stress signals: possible roles of dendritic stellate TRX producer cells (DST cell types).

    Science.gov (United States)

    Yodoi, Junji; Nakamura, Hajime; Masutani, Hiroshi

    2002-01-01

    Thioredoxin (TRX) is a 12 kDa protein with redox-active dithiol (Cys-Gly-Pro-Cys) in the active site. TRX is induced by a variety of stresses including viral infection and inflammation. The promoter sequences of the TRX gene contain a series of stress-responsive elements including ORE, ARE, XRE, CRE and SP-1. TRX promotes DNA binding of transcription factors such as NF-kappaB, AP-1 and p53. TRX interacts with target proteins modulating the activity of those proteins. We have identified TRX binding protein-2 (TBP-2), which was identical to vitamin D3 up-regulated protein 1 (VDUP1). Potential action of TBP-2/VDUP1 as a redox-sensitive tumor suppressor will be discussed. There is accumulating evidence for the involvement of TRX in the protection against infectious and inflammatory disorders. We will discuss the role of TRX-dependent redox regulation of the host defense mechanism, in particular its relation to the emerging concept of constitutive and/or inducible TRX on special cell types with dendritic and stellate morphology in the immune, endocrine and nervous systems, which we provisionally designate as dendritic stellate TRX producer cells (DST cell types).

  6. The regulation of function, growth and survival of GLP-1-producing L-cells

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Holst, Jens Juul; Kappe, Camilla

    2016-01-01

    that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells...... absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous...... secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms...

  7. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  8. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  9. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.

  10. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival.

    Science.gov (United States)

    Webster, K E; Kim, H-O; Kyparissoudis, K; Corpuz, T M; Pinget, G V; Uldrich, A P; Brink, R; Belz, G T; Cho, J-H; Godfrey, D I; Sprent, J

    2014-09-01

    Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt(+) NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt(+) innate lymphoid cells and CD4(+) Th17 cells, and suggests common survival requirements for functionally similar cells.

  11. Analysis of the Optical Properties of Screen-Printed and Aerosol-Printed and Plated Fingers of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    R. Woehl

    2008-01-01

    Full Text Available One main efficiency loss in industrial solar cells is the shading of the cell caused by the metal front side contacts. With the aerosol-printing technique plus an additional light-induced plating (LIP step, not only is the geometrical contact width narrowed compared to screen-printed contacts but also the shape of the finger changes. In this work, the effective shading of different finger types is analysed with two different measurement methods. The essential parameter for characterising the finger is the effective width which can be reduced drastically compared to the geometrical width due to total internal reflection at the glass-air layer and the reflection from the roundish edges of the contact fingers into the cell. This parameter was determined with different methods. It could be shown that for aerosol-printed fingers the effective (optical width is only 38% of its geometrical width, while for standard screen-printed fingers it is 47%. The measured values are compared to a theoretical model for an aerosol-printed and plated finger and are in good agreement.

  12. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy

    Directory of Open Access Journals (Sweden)

    Matthew M Wielgosz

    Full Text Available We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.

  13. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.

  14. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  15. Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells

    International Nuclear Information System (INIS)

    Bodine, D.M.; McDonagh, K.T.; Brandt, S.J.; Ney, P.A.; Agricola, B.; Byrne, E.; Nienhuis, A.W.

    1990-01-01

    Retroviral-mediated gene transfer into primitive hematopoietic cells has been difficult to achieve in large-animal models. The authors have developed an amphotropic producer clone that generates >10 10 recombinant retroviral particles (colony-forming units) per ml of culture medium. Autologous rhesus monkey bone marrow cells were cocultured with either high or low titer producer clones for 4-6 days and reinfused into sublethally irradiated animals. The proviral genome was detected in blood and bone-marrow cells from all three animals reconstituted with cells cocultured with the high-titer producer cells. In contrast, three animals reconstituted with bone marrow cocultured with the low-titer producer clone exhibited no evidence of gene transfer

  16. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells

    Directory of Open Access Journals (Sweden)

    Rafael Pérez Solano

    2012-03-01

    Full Text Available The distinctive spectral absorption characteristics of cancer cells make photoacoustic techniques useful for detection in vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectable photoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12 exhibited values similar to a precursor of melanin (tyrosinase, but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacoustic wave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signal generated by a cell monolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cells in vitro and in vivo.

  17. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6

    International Nuclear Information System (INIS)

    Miles, S.A.; Rezai, A.R.; Salazar-Gonzalez, J.F.; Meyden, M.V.; Stevens, R.H.; Mitsuyasu, R.T.; Martinez-Maza, O.; Logan, D.M.; Taga, Tetsuya; Hirano, Toshio; Kishimoto, Tadamitsu

    1990-01-01

    Cell lines derived from Kaposi sarcoma lesions of patients with AIDS (AIDS-KS cells) produce several cytokines, including an endothelial cell growth factor, interleukin 1β, and basic fibroblast growth factor. Since exposure to human immunodeficiency virus increases interleukin 6 (IL-6) production in monocytes and endothelial cells produce IL-6, the authors examined IL-6 expression and response in AIDS-KS cell lines and IL-6 expression in AIDS Kaposi sarcoma tissue. The AIDS-KS cell lines (N521J and EKS3) secreted large amounts of immunoreactive and biologically active IL-6. The authors found both IL-6 and IL-6 receptor (IL-6-R) RNA by slot blot hybridization analysis of AIDS-KS cells. The IL-6-R was functional, as [ 3 H]thymidine incorporation by AIDS-KS cells increased significantly after exposure to human recombinant IL-6 (hrIL-6) at >10 units/ml. When AIDS-KS cells (EKS3) were exposed to IL-6 antisense oligonucleotide, cellular proliferation decreased by nearly two-thirds, with a corresponding decrease in the production of IL-6. These results show that both IL-6 and IL-6-R are produced by AIDS-KS cells and that IL-6 is required for optimal AIDS-KS cell proliferation, and they suggest that IL-6 is an autocrine growth factor for AIDS-KS cells

  18. In situ cannulation, microgrid follow-up and low-density plating provide first passage endothelial cell masscultures for in vitro lining.

    Science.gov (United States)

    Zilla, P; Fasol, R; Dudeck, U; Siedler, S; Preiss, P; Fischlein, T; Müller-Glauser, W; Baitella, G; Sanan, D; Odell, J

    1990-08-01

    A rapid and reliable harvest and culture technique was developed to provide a sufficient number of autologous endothelial cells for the confluent in vitro lining of cardiovascular prostheses. Enzymatic endothelial cell detachment was achieved by the in situ application of collagenase to short vessel segments. This harvest technique resulted in a complete lack of contaminating smooth muscle cells in all of 124 cultures from nonhuman primates and 13 cultures from human adults. The use of a microgrid technique enabled the daily in situ quantification of available endothelial cells. To assess ideal plating densities after passage the population doubling time was continuously related to the cell density. Surprisingly, a low plating density of 1.5 X 10(3) endothelial cells/cm2 achieved 43% shorter cell cycles than the usual plating density of 1.0 X 10(4) endothelial cells/cm2. Moreover, low density plating enabled mass cultures after one single cell passage, thereby reducing the cell damaging effect of trypsin. When the growth characteristics of endothelial cells from five anatomically different vessel sites were compared, the external jugular vein--which would be easily accessible and dispensable in each patient--proved to be an excellent source for endothelial cell cultures. By applying in situ administration of collagenase, low density plating and microgrid follow-up to adult human saphenous vein endothelial cells, 14,000,000 first passage endothelial cells--sufficient for the in vitro lining of long vascular prostheses--were obtained 26.2 days after harvest. (95% confidence interval:22.3 to 32.2 days).

  19. Quantitative studies of the gastrin-producing cells of the human antrum. A methodological study

    DEFF Research Database (Denmark)

    Nielsen, H O; Halken, S; Lorentzen, M

    1980-01-01

    The antral gastrin-producing cells (G-cells) have been identified by the indirect immunoperoxidase technique in two antrum preparations removed due to a recurrent duodenal and gastric ulcer. Morphometric principles were applied to the G-cells with determination of their volume density, numerical....... A method for estimating the total G-cell population and the total G-cell volume in the antrum was developed. In the antrum removed due to a gastric ulcer the number of G-cells was 190 x 10(6) and their total volume 176 mm3....

  20. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  1. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  2. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    Science.gov (United States)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  3. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  4. Ontogeny and localization of the cells produce IL-2 in healthy animals.

    Science.gov (United States)

    Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio

    2013-03-01

    IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo.

    Science.gov (United States)

    Agulnick, Alan D; Ambruzs, Dana M; Moorman, Mark A; Bhoumik, Anindita; Cesario, Rosemary M; Payne, Janice K; Kelly, Jonathan R; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z; Kerr, Justin; Frazier, Mauro A; Kroon, Evert J; D'Amour, Kevin A

    2015-10-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%-80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%-89% endocrine cells, of which approximately 40%-50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%-98% endocrine cells and 1%-3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin-producing cells in vitro and a new

  6. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  7. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  8. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates

    International Nuclear Information System (INIS)

    Andre, J.

    2007-10-01

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  9. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    International Nuclear Information System (INIS)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

    2004-01-01

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

  10. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to Simulated Food Processing Treatments, Determined Using Fluorescence-Activated Cell Sorting and Plate Counting▿

    Science.gov (United States)

    Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.

    2011-01-01

    Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370

  11. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  12. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  13. Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Ishikawa, Ken-ichi; Kawai, Seiko; Koyama-Saegusa, Kumiko; Ishikawa, Atsuko; Imai, Takashi; Shimada, Yutaka; Inazawa, Johji

    2005-01-01

    Morphologically heterogeneous colonies were formed from a cultured cell line (KYSE70) established from one human esophageal carcinoma tissue. Two subclones were separated from a single clone (clone 13) of KYSE70 cells. One subclone (clone 13-3G) formed mainly mounding colonies and the other (clone 13-6G) formed flat, diffusive colonies. X-irradiation stimulated the cells to dedifferentiate from the mounding state to the flat, diffusive state. Clone 13-6G cells were more radiosensitive than the other 3 cell lines. Clustering analysis for gene expression level by oligonucleotide microarray demonstrated that in the radiosensitive clone 13-6G cells, expression of genes involved in cell adhesion was upregulated, but genes involved in the response to DNA damage stimulus were downregulated. The data demonstrated that a single cancer cell had the potential to produce progeny heterogeneous in terms of morphology, radiation sensitivity and gene expression, and irradiation enhanced the dedifferentiation of cancer cells. (author)

  14. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  15. Interleukin 4-producing CD4+ T cells in the skin of cats with allergic dermatitis.

    Science.gov (United States)

    Roosje, P J; Dean, G A; Willemse, T; Rutten, V P M G; Thepen, T

    2002-03-01

    Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.

  16. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    Science.gov (United States)

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  17. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin

    NARCIS (Netherlands)

    Szegedi, Krisztina; Kremer, Andreas E.; Kezic, Sanja; Teunissen, Marcel B. M.; Bos, Jan D.; Luiten, Rosalie M.; Res, Pieter C.; Middelkamp-Hup, Maritza A.

    2012-01-01

    Interleukin (IL)-31 has been associated with pruritus, a characteristic feature of atopic dermatitis (AD). Local T cell responses may be responsible for the increased level of IL-31 mRNA observed in AD. We investigated the frequency of IL-31-producing T cells in AD lesions, as well as their cytokine

  18. Gene probes to detect cross-culture contamination in hormone producing cell lines

    DEFF Research Database (Denmark)

    Matsuba, I; Lernmark, A; Madsen, Ole Dragsbæk

    1988-01-01

    hamster insulin gene. Karyotyping confirmed the absence of human chromosomes in the Clone-16 cells while sizes, centromere indices, and banding patterns were identical to Syrian hamster fibroblasts. We conclude that the insulin-producing Clone-16 cells are of Syrian hamster origin and demonstrate...

  19. Radiation pretreatment of cellulosic wastes and immobilization of cells producing cellulase for their conversion to glucose

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1988-01-01

    Radiation pretreatment of cellulosic wastes such as saw dust and chaff was studied by using electron beam accelerator, in which irradiation effect was increased by increasing irradiation dose and dose rate, by after heating irradiated materials at 100∼140deg C, and by irradiation in the addition of alkaline solution. Trichoderma reesei cells producing cellulase were immobilized by using fibrous porous carrier obtained from radiation polymerization. The filter paper, cellobiose, and CMC activities in the immobilized growing cells were higher than those in free cells. The activity in the immobilized cells obtained with hydrophobic carrier was higher than that obtained with hydrophilic one. Durability of the immobilized cells was examined by repeated batch culture. It was found that the enzyme solution produced in the culture of the immobilized cells can hydrolyze effectively saw dust pretreated by radiation. (author)

  20. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Fan, Xing; Zhang, Xiaoying; Zhang, Nannan; Cheng, Li; Du, Jun; Tao, Changyuan

    2015-01-01

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  2. A plate reader-based method for cell water permeability measurement

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, H B; Nielsen, S

    2010-01-01

    Cell volume and water permeability measurements in cultured mammalian cells are typically conducted under a light microscope. Many of the employed approaches are time consuming and not applicable to a study of confluent epithelial cell monolayers. We present here an adaptation of a calcein......: AQP2-S256D > AQP2 wild-type > AQP2-S256A. We propose that the method can be applied to study AQP function and more generally to study cell volume changes in adherent cell lines. Furthermore, it should be adaptable for AQP inhibitor screening in chemical compound libraries....

  3. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  4. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells.

    Science.gov (United States)

    Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Ohashi, Toya; Sado, Yoshikazu; Suzuki, Hideaki; Kawamura, Tetsuya; Okabe, Masataka; Hosoya, Tatsuo; Kobayashi, Eiji

    2008-06-15

    Differentiation of autologous stem cells into functional transplantable tissue for organ regeneration is a promising regenerative therapeutic approach for cancer, diabetes, and many human diseases. Yet to be established, however, is differentiation into tissue capable of producing erythropoietin (EPO), which has a critical function in anemia. We report a novel EPO-producing organ-like structure (organoid) derived from human mesenchymal stem cells. Using our previously established relay culture system, a human mesenchymal stem cell-derived, human EPO-competent organoid was established in rat omentum. The organoid-derived levels of human EPO increased in response to anemia induced by rapid blood withdrawal. In addition, the presence of an organoid in rats suppressed for native (rat) EPO production enhanced recovery from anemia when compared with control animals lacking the organoid. Together these results confirmed the generation of a stem cell-derived organoid that is capable of producing EPO and sensitive to physiological regulation.

  5. Contamination of infectious RD-114 virus in vaccines produced using non-feline cell lines.

    Science.gov (United States)

    Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki

    2011-01-01

    All domestic cats have a replication-competent endogenous retrovirus, termed RD-114 virus, in their genome and several feline cell lines produce RD-114 viruses. Recently, we found that a portion of live attenuated feline and canine vaccines produced using feline cell lines was contaminated with infectious RD-114 viruses. In this study, we expanded our survey and examined canine vaccines produced using 'non-feline' cell lines. Consequently, we found two vaccines containing RD-114 viral RNA by reverse transcriptase (RT)-polymerase chain reaction (PCR) and real-time RT-PCR. We also confirmed the presence of infectious RD-114 virus in the vaccines by the LacZ marker rescue assay and PCR to detect proviral DNA in TE671 cells (human rhabdomyosarcoma cells) inoculated with the vaccines. It is impossible to investigate the definitive cause of contamination with RD-114 virus; however, we suspect that a seed canine parvovirus type 2 was contaminated with RD-114 virus, because many canine parvoviruses have been isolated and attenuated using feline cell lines. To exclude RD-114 virus from live attenuated vaccines, we must pay attention to the contamination of seed viruses with RD-114 virus in addition to avoiding feline cell lines producing RD-114 virus when manufacturing vaccines. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  6. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  7. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  8. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  9. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  13. Purification and characterization of a bioactive alpha-fetoprotein produced by HEK-293 cells.

    Science.gov (United States)

    Lin, Bo; Peng, Guoqing; Feng, Haipeng; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Wang, Qiaoyun; Xie, Xieju; Zhu, Mingyue; Li, Mengsen

    2017-08-01

    Alpha-fetoprotein (AFP) is a biomarker that is used to diagnose hepatocellular carcinoma (HCC) and can promote malignancy in HCC. AFP is an important target in the treatment of liver cancer. To obtain enough AFP to screen for AFP inhibitors, we expressed and purified AFP in HEK-293 cells. In the present study, we produced AFP in the cells and harvested highly pure rAFP (or recombinant expression AFP in HEK-293 cells). We also analysed the bioactivity of rAFP and found that rAFP promoted growth of the human HCC cells, antagonize paclitaxel inhibition of HCC cell proliferation, suppress expression of active caspase-3, and promote expression of Ras and survivin. This study provides a method to produce significant amounts of AFP for use in biochemical assays and functional studies and to screen AFP inhibitors for use in HCC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    International Nuclear Information System (INIS)

    Mueller, M; Hoehlich, D; Scharf, I; Lampke, T; Hollaender, U; Maier, H J

    2016-01-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W 2 N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing. (paper)

  15. A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lin, G.; Shih, A.J.; Hu, S.J. [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-01-01

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells. (author)

  16. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    Science.gov (United States)

    Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee

    2012-01-01

    Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360

  17. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    Directory of Open Access Journals (Sweden)

    Juliana Branco Novo

    2012-01-01

    Full Text Available Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher’s patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr− cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa and secreted (63–69 kDa form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.

  18. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  20. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  1. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  2. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology

    Directory of Open Access Journals (Sweden)

    MY Loqman

    2010-05-01

    Full Text Available The remarkable increase in chondrocyte volume is a major determinant in the longitudinal growth of mammalian bones. To permit a detailed morphological study of hypertrophic chondrocytes using standard histological techniques, the preservation of normal chondrocyte morphology is essential. We noticed that during fixation of growth plates with conventional fixative solutions, there was a marked morphological (shrinkage artifact, and we postulated that this arose from the hyper-osmotic nature of these solutions. To test this, we fixed proximal tibia growth plates of 7-day-old rat bones in either (a paraformaldehyde (PFA; 4%, (b glutaraldehyde (GA; 2% with PFA (2% with ruthenium hexamine trichloride (RHT; 0.7%, (c GA (2% with RHT (0.7%, or (d GA (1.3% with RHT (0.5% and osmolarity adjusted to a ‘physiological’ level of ~280mOsm. Using conventional histological methods, confocal microscopy, and image analysis on fluorescently-labelled fixed and living chondrocytes, we then quantified the extent of cell shrinkage and volume change. Our data showed that the high osmolarity of conventional fixatives caused a shrinkage artefact to chondrocytes. This was particularly evident when whole bones were fixed, but could be markedly reduced if bones were sagittally bisected prior to fixation. The shrinkage artefact could be avoided by adjusting the osmolarity of the fixatives to the osmotic pressure of normal extracellular fluids (~280mOsm. These results emphasize the importance of fixative osmolarity, in order to accurately preserve the normal volume/morphology of cells within tissues.

  3. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  4. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  5. Concentration of solar radiation by white painted transparent plates.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1982-04-01

    A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.

  6. [In vitro generation of insulin-producing cells from the neonatal rat bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai

    2015-03-01

    To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.

  7. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody

    Directory of Open Access Journals (Sweden)

    Philipp Fecher

    2018-05-01

    Full Text Available In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to—and largely limited by—the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  8. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    Science.gov (United States)

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  9. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells

    International Nuclear Information System (INIS)

    Waldmann, Thomas; Wohlfahrt-Mehrens, Margret

    2017-01-01

    During charging at low temperatures, metallic Lithium can be deposited on the surface of graphite anodes of Li-ion cells. This Li plating does not only lead to fast capacity fade, it can also impair the safety behavior. The present study observes the effect of rest periods between Li plating and subsequent accelerated rate calorimetry (ARC) tests. As an example, commercial 3.25 Ah 18650-type cells with graphite anodes and NCA cathodes are cycled at 0 °C to provoke Li plating. It is found that the rest period at 25 °C between Li plating and the ARC tests has a significant influence on the onset temperature of exothermic reactions (T SH ), the onset temperature of thermal runaway (T TR ), the maximum temperature, the self-heating rate, and on damage patterns of 18650 cells. The results are discussed in terms of chemical intercalation of Li plating into adjacent graphite particles during the rest period. The exponential increase of capacity recovery and T SH as a function of time suggests a reaction of 1st order for the relaxation process.

  10. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  11. A Simulation Tool for Geometrical Analysis and Optimization of Fuel Cell Bipolar Plates: Development, Validation and Results

    Directory of Open Access Journals (Sweden)

    Javier Pino

    2009-07-01

    Full Text Available Bipolar plates (BPs are one of the most important components in Proton Exchange Membrane Fuel Cells (PEMFC due to the numerous functions they perform. The objective of the research work described in this paper was to develop a simplified and validated method based on Computational Fluid Dynamics (CFD, aimed at the analysis and study of the influence of geometrical parameters of BPs on the operation of a cell. A complete sensibility analysis of the influence of dimensions and shape of the BP can be obtained through a simplified CFD model without including the complexity of other components of the PEMFC. This model is compared with the PEM Fuel Cell Module of the FLUENT software, which includes the physical and chemical phenomena relevant in PEMFCs. Results with both models regarding the flow field inside the channels and local current densities are obtained and compared. The results show that it is possible to use the simple model as a standard tool for geometrical analysis of BPs, and results of a sensitivity analysis using the simplified model are presented and discussed.

  12. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  13. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    Science.gov (United States)

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Bone marrow stromal cells spontaneously produce Flt3-ligand: influence of ionizing radiations and cytokine stimulation.

    Science.gov (United States)

    Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François

    2008-08-01

    To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.

  15. High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2002-01-01

    that IL-2-producing cells appear slightly delayed compared with the majority of IFN-gamma producing cells, and the relative frequency of the IL-2-producing subset increases with transition into the memory phase. In contrast to acute immunizing infection, few IL-2-producing cells are generated during...... chronic LCMV infection. Furthermore, in MHC class II-deficient mice, which only transiently control LCMV infection, IL-2-producing CD8+ T cells are initially generated, but by 4 weeks after infection this subset has nearly disappeared. Eventually the capacity to produce IFN-gamma also becomes impaired...

  16. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  17. De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2014-03-01

    Full Text Available The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.

  18. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment.

    Science.gov (United States)

    Kojima, Ryosuke; Bojar, Daniel; Rizzi, Giorgio; Hamri, Ghislaine Charpin-El; El-Baba, Marie Daoud; Saxena, Pratik; Ausländer, Simon; Tan, Kelly R; Fussenegger, Martin

    2018-04-03

    Exosomes are cell-derived nanovesicles (50-150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson's disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.

  19. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  20. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment. A candid......BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment...

  1. CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-? are major effector T cells in nickel allergy

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Løvendorf, Marianne B

    2013-01-01

    the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6......-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel......Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine...

  2. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sandra Mjoll Jonsdottir-Buch

    Full Text Available BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed. CONCLUSION/SIGNIFICANCE: Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets.

  3. Effect of combined treatment with preoperative. gamma. -therapy on function of gastrin producing cells in patients with gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Berdov, B A; Vedzizheva, T B; Bassalyk, L S; Zagrebin, V M [Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii; Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Nauchnyj Tsentr)

    1982-04-01

    It is stated that preoperative irradiation with the dose of 20 Gy doesn't produce any considerable effect on function of the extragastric gastrin producing cells. Despite the decrease of reserve potentialities of gastrin producing cells in patients with stomach cancer the basal level of gastrin in the group of gastric cancer patients on the whole is higher than in practically healthy people. Radiotherapy results in the pronounced inhiibition of gastrin synthesis and secretion of gastrin producing cells.

  4. RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells

    DEFF Research Database (Denmark)

    Orellana, Camila A.; Marcellin, Esteban; Palfreyman, Robin W.

    2018-01-01

    The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO......-regulation of genes encoding secreted glycoproteins is found to be the most significant change. The large number of significant differences even between subclones challenges the notion of identifying and manipulating a few key genes to generate high production CHO cell lines....

  5. Multiple growth hormone-binding proteins are expressed on insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, A; Billestrup, N; Thorn, N A

    1989-01-01

    The insulin-producing rat islet tumor cell line, RIN-5AH, expresses somatogen binding sites and responds to GH by increased proliferation and insulin production. Affinity cross-linking shows that RIN-5AH cells contain two major GH-binding subunits of Mr 100-130K (110K), which appear to exist as d....... It is concluded that the RIN-5AH cells have multiple GH-binding proteins which may mediate signals for either proliferation and/or insulin production....

  6. [Renal cell carcinoma producing erythrocytosis due to inappropriate production of erythropoietin].

    Science.gov (United States)

    Villanueva-Gimeno, M M; Vicario-Bermúdez, J M; Fonseca-López, Ch; Caballero-Castro, J P; Zabala-López, S I; Sánchez-Elipe, M A; González-Gómez, N

    2013-01-01

    Erythrocytosis, or polycythaemia, is an increase, in absolute terms, of the erythrocyte mass. The most common solid tumour related to this phenomenon is renal cell carcinoma, which can produce erythrocytosis by increasing erythropoietin production. About 30% of symptomatic renal cell carcinomas are diagnosed due to the appearance of a paraneoplastic syndrome. Polycythaemia is one of these. Surgery, (radical or partial nephrectomy), is the treatment of choice in renal cell carcinoma and helps to keep the erythrocytosis situation under control. Copyright © 2011 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  7. Perivascular Adipose Tissue Harbors Atheroprotective IgM-Producing B Cells

    Directory of Open Access Journals (Sweden)

    Prasad Srikakulapu

    2017-09-01

    Full Text Available Adipose tissue surrounding major arteries (Perivascular adipose tissue or PVAT has long been thought to exist to provide vessel support and insulation. Emerging evidence suggests that PVAT regulates artery physiology and pathology, such as, promoting atherosclerosis development through local production of inflammatory cytokines. Yet the immune subtypes in PVAT that regulate inflammation are poorly characterized. B cells have emerged as important immune cells in the regulation of visceral adipose tissue inflammation and atherosclerosis. B cell-mediated effects on atherosclerosis are subset-dependent with B-1 cells attenuating and B-2 cells aggravating atherosclerosis. While mechanisms whereby B-2 cells aggravate atherosclerosis are less clear, production of immunoglobulin type M (IgM antibodies is thought to be a major mechanism whereby B-1 cells limit atherosclerosis development. B-1 cell-derived IgM to oxidation specific epitopes (OSE on low density lipoproteins (LDL blocks oxidized LDL-induced inflammatory cytokine production and foam cell formation. However, whether PVAT contains B-1 cells and whether atheroprotective IgM is produced in PVAT is unknown. Results of the present study provide clear evidence that the majority of B cells in and around the aorta are derived from PVAT. Interestingly, a large proportion of these B cells belong to the B-1 subset with the B-1/B-2 ratio being 10-fold higher in PVAT relative to spleen and bone marrow. Moreover, PVAT contains significantly greater numbers of IgM secreting cells than the aorta. ApoE−/− mice with B cell-specific knockout of the gene encoding the helix-loop-helix factor Id3, known to have attenuated diet-induced atherosclerosis, have increased numbers of B-1b cells and increased IgM secreting cells in PVAT relative to littermate controls. Immunostaining of PVAT on human coronary arteries identified fat associated lymphoid clusters (FALCs harboring high numbers of B cells, and flow

  8. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells.

    NARCIS (Netherlands)

    Yang, P.T.; Lorenowicz, M.J.; Silhankova, M.; Coudreuse, D.Y.M.; Betist, M.C.; Korswagen, H.C.

    2008-01-01

    Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of

  9. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  10. ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract

    NARCIS (Netherlands)

    Alex, S.; Lichtenstein, L.L.; Dijk, W.; Mensink, R.P.; Tan, N.S.; Kersten, A.H.

    2014-01-01

    Gut hormones produced by entero-endocrine cells (EEC) located throughout the gastrointestinal tract play a major role in the regulation of glucose and energy homeostasis. Angiopoietin-like 4 (ANGPTL4, also referred to as fasting induced adipose factor) is a secreted factor involved in regulation of

  11. Development and characterisation of electrically conductive polymeric-based blends for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Bouatia, S.; Mighri, F. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Bousmina, M. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Canada Research Chair on Polymer Physics and Nanomaterials, Department of Chemical Engineering, Laval University, Quebec (Canada); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2008-04-15

    The main objective of this work was to develop films with controlled dimensions for proton exchange membrane fuel cell (PEMFC) bipolar plates (BPPs) using the twin-screw extrusion process. These films consisted of a low-viscosity polyethylene terephthalate (PET) in which a mixture of high specific surface area carbon black (CB) and synthetic flake graphite (GR) were dispersed. A third conductive additive, consisting of silver-coated glass particles (SCG) or multi-walled carbon nanotubes (MWCNT), was also added at a low concentration (5 wt.-%) in order to study its synergistic effect on the PET-based blend electrical conductivity. As the developed blends had to meet properties suitable for PEMFC bipolar plate applications, they were characterised for their electrical through-plane resistivity, mechanical properties and oxygen permeability. Through-plane electrical resistivity of about 0.3 {omega}.cm and oxygen permeation rate of 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} were obtained for only 30 wt.-% of a 60:40 mixture of CB/GR conductive additives. Although the substitution of 5 wt.-% of CB/GR by the same amount of MWCNT had no significant effect on BPPs' electrical resistivity, it helped to improve their mechanical properties and especially their oxygen permeation, which was decreased from 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} to around 0.6 x 10{sup -8} cc cm{sup -2}s{sup -1}. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Skin-infiltrating, interleukin-22-producing T cells differentiate pediatric psoriasis from adult psoriasis.

    Science.gov (United States)

    Cordoro, Kelly M; Hitraya-Low, Maria; Taravati, Keyon; Sandoval, Priscila Munoz; Kim, Esther; Sugarman, Jeffrey; Pauli, Mariela L; Liao, Wilson; Rosenblum, Michael D

    2017-09-01

    Evidence from adult psoriasis studies implicates an imbalance between regulatory and effector T cells, particularly T H -17-producing T cells, in the pathogenesis of psoriasis. Little is known about the immunopathology of psoriasis in children. We sought to functionally characterize the inflammatory cell profiles of psoriatic plaques from pediatric patients and compare them with healthy, age-matched controls and adult psoriasis patients. Skin samples from pediatric psoriasis patients and healthy controls were analyzed by multiparameter flow cytometry to determine the dominant immune cell subsets present and cytokines produced. Lesional tissue from pediatric psoriasis patients had significantly increased interleukin (IL) 22 derived from CD4 + and CD8 + cells compared with the tissues from healthy pediatric controls and adult psoriasis patients. Tissue from pediatric psoriasis patients had significantly less elevation of IL-17 derived from CD4 + and CD8 + cells compared with the tissue from adult psoriasis patients. In contrast with the lesions from adult patients, lesional skin in pediatric patients with psoriasis did not have increases in regulatory T cells. This is a pilot study, thus the sample size is small. Significant differences in IL-17 and IL-22 expression were observed in the pediatric psoriasis patients compared with pediatric healthy controls and adult psoriasis patients. IL-22 might be relevant in the pathogenesis of pediatric psoriasis and represents a potential treatment target unique to pediatric psoriasis. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Virus-like particle of Macrobrachium rosenbergii nodavirus produced in Spodoptera frugiperda (Sf9) cells is distinctive from that produced in Escherichia coli.

    Science.gov (United States)

    Kueh, Chare Li; Yong, Chean Yeah; Masoomi Dezfooli, Seyedehsara; Bhassu, Subha; Tan, Soon Guan; Tan, Wen Siang

    2017-03-01

    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017. © 2016 American Institute of Chemical Engineers.

  14. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Shogo [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan); Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara [Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo (Japan); Ozaki, Yukio [Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi (Japan); Moriyama, Takanori, E-mail: moriyama@hs.hokuda.ac.jp [Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  15. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    International Nuclear Information System (INIS)

    Tamura, Shogo; Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya; Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara; Ozaki, Yukio; Moriyama, Takanori

    2012-01-01

    Highlights: ► It has been thought that BDNF is not produced in the megakaryocytic lineage. ► MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. ► BDNF accelerates proliferation of MEG-01 in an autocrine manner. ► BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  16. Evidence for paracrine/autocrine regulation of GLP-1-producing cells

    DEFF Research Database (Denmark)

    Kappe, Camilla; Zhang, Qimin; Holst, Jens Juul

    2013-01-01

    Glucagon-like peptide-1 (GLP-1), secreted from gut L cells upon nutrient intake, forms the basis for novel drugs against type 2 diabetes (T2D). Secretion of GLP-1 has been suggested to be impaired in T2D and in conditions associated with hyperlipidemia and insulin resistance. Further, recent...... studies support lipotoxicity of GLP-1-producing cells in vitro. However, little is known about the regulation of L-cell viability/function, the effects of insulin signaling, or the potential effects of stable GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors. We determined effects of insulin...... as well as possible autocrine action of GLP-1 on viability/apoptosis of GLP-1-secreting cells in the presence/absence of palmitate, while also assessing direct effects on function. The studies were performed using the GLP-1-secreting cell line GLUTag, and palmitate was used to simulate hyperlipidemia. Our...

  17. Identification of IFN-gamma-producing CD4+ T cells following PMA stimulation

    DEFF Research Database (Denmark)

    Kemp, K; Bruunsgaard, H

    2001-01-01

    Treatment of T cells with phorbol esters, such as phorbol myristate acetate (PMA), induces downregulation of CD4, making unambiguous identification of this subset difficult. In this study, the kinetics of intracellular expression of interferon-gamma (IFN-gamma) and downmodulation of surface CD4...... were measured in peripheral blood mononuclear cells (PBMC) after PMA stimulation. The number of IFN-gamma-producing cells increased within a 4-h period while the fluorescence intensity of the CD4(+) cell population decreased, and the two phenomena were correlated (n = 9; p = 0.01). Our data suggest...... that intracellular staining of CD4 together with cytokine staining will make identification of CD4(+) cells possible and facilitate the procedure of intracellular staining of cytokines....

  18. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10.

    Science.gov (United States)

    Fujioka, Kazuki; Kishida, Tsunao; Ejima, Akika; Yamamoto, Kenta; Fujii, Wataru; Murakami, Ken; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Oda, Ryo; Yamamoto, Toshiro; Fujiwara, Hiroyoshi; Kawahito, Yutaka; Mazda, Osam

    2015-01-16

    Bone destruction at inflamed joints is an important complication associated with rheumatoid arthritis (RA). Interleukin-10 (IL-10) may suppress not only inflammation but also induction of osteoclasts that play key roles in the bone destruction. If IL-10-producing osteoblast-like cells are induced from patient somatic cells and transplanted back into the destructive bone lesion, such therapy may promote bone remodeling by the cooperative effects of IL-10 and osteoblasts. We transduced mouse fibroblasts with genes for IL-10 and Runx2 that is a crucial transcription factor for osteoblast differentiation. The IL-10-producing induced osteoblast-like cells (IL-10-iOBs) strongly expressed osteoblast-specific genes and massively produced bone matrix that were mineralized by calcium phosphate in vitro and in vivo. Culture supernatant of IL-10-iOBs significantly suppressed induction of osteoclast from RANKL-stimulated Raw264.7 cells as well as LPS-induced production of inflammatory cytokine by macrophages. The IL-10-iOBs may be applicable to novel cell-based therapy against bone destruction associated with RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates

    Directory of Open Access Journals (Sweden)

    Michele E Murphy

    2016-01-01

    Full Text Available Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform. Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

  20. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  1. Use of Limiting Dilution Method for Isolation of Nucleus Pulposus Mesenchymal Stem/Progenitor Cells and Effects of Plating Density on Biological Characteristics and Plasticity

    Directory of Open Access Journals (Sweden)

    Linghan Lin

    2017-01-01

    Full Text Available Objectives. To evaluate the effects of the limiting dilution method and plating density in rat nucleus pulposus mesenchymal stem/progenitor cells (NPMSCs. Materials and Methods. Nucleus pulposus tissues were isolated from 12-week-old male Sprague-Dawley rats and NPMSCs were isolated using limiting dilution method. Cells were then classified into 3 groups according to plating density. Cell morphologies were observed, and colony-forming units, migration abilities, proliferative capacities, cell cycle percentages, multilineage differentiation capacities, stem cell biomarker expression levels, and immunophenotyping were also examined in each group. Results. Low density group (LD had higher morphological homogeneity, stronger colony-forming ability, higher cell proliferation capacity, and enhanced cell migration ability relative to the other two groups (p<0.05. Moreover, LD had more cells entering S phase, with fewer cells arrested in G0/G1 phase (p<0.05. While all three density groups showed a multilineage differentiation potential, LD showed a higher degree of observed and semiquantified lineage specific staining (p<0.05. Furthermore, LD displayed higher expression levels of stem cell biomarkers (Nanog, Oct4, and Sox2 and showed higher percentages of CD29+, CD44+, and CD90+ cells (p<0.05 following flow cytometry analysis. Conclusions. Limiting dilution method is suggested when isolating NPMSCs as a means of improving cell activity and plasticity.

  2. Matrix stiffness and oxigen tension modulate epigenetic conversion of mouse dermal fibroblasts into insulin producing cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Zenobi

    2017-05-01

    Full Text Available In vivo, cells are surrounded by a three-dimensional (3-D organization of supporting matrix, neighboring cells and a gradient of chemical and mechanical signals (Antoni, et al., 2015. However, the present understanding of many biological processes is mainly based on two-dimensional (2-D systems that typically provides a static environment. In the present study, we tested two different 3-D culture systems and apply them to the epigenetic conversion of mouse dermal fibroblasts into insulin producing-cells (Pennarossa, et al., 2013; Brevini, et al., 2015, combining also the use of two oxygen tensions. In particular, cells were differentiated using the Polytetrafluoroethylene micro-bioreactor (PTFE and the Polyacrylamide (PAA gels with different stiffness (1 kPa; 4 kPa, maintained either in the standard 20% or in the more physiological 5% oxygen tensions. Standard differentiation performed on plastic substrates was assessed as a control. Cell morphology (Fig.1A, insulin expression and release were analyzed to evaluate the role of both stiffness and oxygen tension in the process. The results obtained showed that 1 kPa PAA gel and PTFE system induced a significantly higher insulin expression and release than plastic and 4 kPa PAA gel, especially in low oxygen condition (Fig.1B. Furthermore, comparing the efficiency of the two systems tested, 1 kPa PAA gel ensured a higher insulin transcription than PTFE (Fig.1C. Recent studies show the direct influence of substrates on lineage commitment and cell differentiation (Engler, et al., 2006; Evans, et al., 2009. The evidence here presented confirm that the use of an appropriate stiffness (similar to the pancreatic tissue, combined with a physiological oxygen tension, promote β-cell differentiation, with beneficial effects on cell functional activity and insulin release. The present results highlight the importance of 3-D cell rearrangement and oxigen tension to promote in vitro epigenetic conversion of

  3. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    Science.gov (United States)

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.

  4. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  5. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics.

    Science.gov (United States)

    Dave, Shruti

    2013-11-01

    Diabetes mellitus (DM) is considered to be an autoimmune disorder leading to destruction of beta-cells resulting in to a loss of blood sugar control. Attempts using many pharmacological compositions including exogenous insulin have failed to show tight control of glycemia and associated manifestations. Stem cells are considered a potential tool for the supply of insulin-producing cells (IPC) generation in vitro. Stem cell differentiation in to pancreatic lineages requires influence of both intrinsic and extrinsic factors. Application of islet growth factors is considered to be potential for enhancement of beta-cell replication, function and survival. Use of certain extrinsic factors is known to facilitate expression of transcription factors known to be important for beta-cell differentiation and production of insulin enabling IPC generation. Hierarchies of secreted signals and transcription factors have been identified by studies from several laboratories that guide cell differentiation in to IPC. This knowledge provides insights for in vitro IPC differentiation from stem cells. Current advancement in medical knowledge promises an insulin independency for DM patients. The review sheds light on few specific extrinsic factors which facilitate differentiation of stem cells in to IPC in vitro have been discussed; which can be proven as a potential therapeutic option for treatment of DM and associated diseases.

  6. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  7. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  8. Characterisation of micro direct methanol fuel cells with silicon plate supported integrated ionomer membranes

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Kallesee, C.

    2013-01-01

    This work deals with the investigation and fabrication of Micro Direct Methanol Fuel Cells (μDMFC). They are investigated as a possible alternative for zinc-air batteries in small size consumer devices such as hearing aids. In such devices the conventional rechargeable batteries such as lithium......-ion batteries have insufficiently low energy density in the range 240 Wh/L to 300 Wh/L Methanol is a promising fuel for such devices due to the high energy density, with pure methanol having an energy density of 4400 Wh/L. Using a liquid fuel also allows refueling, which can be achieved much faster than battery...

  9. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases

    Directory of Open Access Journals (Sweden)

    MGS Vieira

    2002-10-01

    Full Text Available Biopsies from human localized cutaneous lesions (LCL n = 7 or disseminated lesions (DL n = 8 cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

  10. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    Science.gov (United States)

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  11. IL-9-producing cells in the development of IgE-mediated food allergy.

    Science.gov (United States)

    Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi

    2017-01-01

    Food allergy is a harmful immune reaction driven by uncontrolled type 2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4 + TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type 2 innate lymphoid cells (ILC2s) and CD4 + TH2 cells, which perpetuate allergic reactions from the skin to the gut. IL-4 and cross-linking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9-producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy-triggered anaphylaxis.

  12. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  13. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  14. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  15. Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2008-02-01

    Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.

  16. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Funahashi, Atsushi; Yamamura, Hideki

    1992-01-01

    Morphological changes in Bergmann glial fibers in the developing cerebellar cortex produced by exposure to gamma-rays were investigated in association with ectopic granule cells. Six-day-old mice that had been exposed to 3 Gy of gamma-radiation were killed 6 hours after exposure or at 7 through 30 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death took place in the external granular layer (EGL) of the cerebellum from 6 through 24 hours after exposure. This led to the thinning of the EGL and a decrease in the number of migrating cells in the molecular layer. The number of Bergmann cells was not decreased, but the fibers in the molecular layer were distorted; whereas, in the control these fibers were straight and perpendicular to the pial surface. The EGL began to recover 2 days after exposure, and abnormally oriented migrating cells were seen. At 17 days of age, some cell clustering was observed in the molecular layer of the irradiated cerebellum. Distortion of the Bergmann fibers was marked in regions where ectopic granule cells appeared at 30 days of age. These findings suggest that the distortion of Bergmann fibers leads to the production of ectopic granule cells after exposure to gamma-radiation. (author)

  17. Envisioning Agricultural Sustainability from Field to Plate: Comparing Producer and Consumer Attitudes and Practices toward "Environmentally Friendly" Food and Farming in Washington State, USA

    Science.gov (United States)

    Selfa, Theresa; Jussaume, Raymond A., Jr.; Winter, Michael

    2008-01-01

    A substantial body of sociological research has examined the relationship between farmers' environmental attitudes and their conservation behaviors, but little research has compared the attitudes of producers and consumers toward the environment with their behaviors or practices in support of sustainable agri-food systems. This paper addresses…

  18. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  19. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  20. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  1. Ultrastructural changes produced in Ehrlich ascites carcinoma cells by ultraviolet-visible radiation in the presence of melanins

    Energy Technology Data Exchange (ETDEWEB)

    Lea, P.J.; Pawlowski, A.; Persad, S.D.; Menon, I.A.; Haberman, H.F.

    1988-01-01

    Irradiation of Ehrlich ascites carcinoma (EAC) cells in the presence of pheomelanin, i.e., red hair melanin (RHM), has been reported to produce extensive cell lysis. Irradiation in the presence of eumelanin, i.e., black hair melanin (BHM), or irradiation in the absence of either type of melanin did not produce this effect. We observed that RHM particles penetrated the cell membrane without apparent structural damage to the cell or the cell membrane. Irradiation of the cells in the absence of melanin did not produce any changes in the ultrastructure of the cells. Incubation of the cells in the dark in the presence of RHM produced only minor structural, mainly cytoplasmic changes. Irradiation of the cells in the presence of RHM produced extensive ultrastructural changes prior to complete cell lysis; these changes were more severe than the effects of incubation of the cells in the dark in the presence of RHM. When the cells incubated in the dark or irradiated in the presence of latex particles or either one of the eumelanins particles, viz. BHM or synthetic dopa melanin, these particles did not penetrate into the cells or produce any ultrastructural changes. These particles were in fact not even ingested by the cells.

  2. HCV Specific IL-21 Producing T Cells but Not IL-17A Producing T Cells Are Associated with HCV Viral Control in HIV/HCV Coinfection.

    Directory of Open Access Journals (Sweden)

    Sonya A MacParland

    Full Text Available Decreased hepatitis C virus (HCV clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV coinfection. The CD4+ T helper cytokines interleukin (IL-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.We measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.In acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.These data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.

  3. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    Science.gov (United States)

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  4. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  5. Distinct cytokines balance the development of regulatory T cells and interleukin-10-producing regulatory B cells

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Zajícová, Alena; Javorková, Eliška; Trošan, Peter; Chudíčková, Milada; Pavlíková, M.; Krulová, Magdaléna

    2014-01-01

    Roč. 141, č. 4 (2014), s. 577-586 ISSN 0019-2805 R&D Projects: GA MZd(CZ) NT14102; GA ČR(CZ) GAP301/11/1568; GA ČR GAP304/11/0653 Institutional support: RVO:68378041 Keywords : Autoregulation * B cells * Cytokines Subject RIV: FF - HEENT, Dentistry Impact factor: 3.795, year: 2014

  6. Electroendocytosis is driven by the binding of electrochemically produced protons to the cell's surface.

    Directory of Open Access Journals (Sweden)

    Nadav Ben-Dov

    Full Text Available Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution's buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.

  7. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  8. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    Science.gov (United States)

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets

  9. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    Science.gov (United States)

    2012-01-01

    Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of

  10. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    OpenAIRE

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Ara?jo, Maria Jos? Abigail Mendes; B?falo, Michelle Cristiane; Sforcin, Jos? Maur?cio

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geop...

  11. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Shruti Dave

    2014-01-01

    Full Text Available The pathophysiology of type 1 diabetes mellitus (T1DM is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs can be targeted. To date, the role of MSCs-derived IPC in T1DM-a unique approach with some positive findings-have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.

  12. CD4+FOXP3+ cells produce IL-10 in the spleens of dogs with visceral leishmaniasis.

    Science.gov (United States)

    Silva, Kathlenn Liezbeth Oliveira; de Andrade, Mariana M C; Melo, Larissa M; Perosso, Juliana; Vasconcelos, Rosemeri O; Munari, Danisio P; Lima, Valéria M F

    2014-05-28

    Visceral Leishmaniasis (VL) is caused by intracellular parasites of the genus Leishmania that affect humans and several animal species. Dogs are one of the main urban reservoirs of the parasite and play a central role in the transmission cycle to humans via sandflies. Studies concerning the immune response in dogs with VL have demonstrated that protective immunity is associated with cellular immune response, while disease progression is associated with humoral response and IL-10 and TGF-β production. The study aimed to evaluate IL-10 and TGF-β production by regulatory T (Treg) cells in the blood and spleen of dogs naturally infected by Leishmania spp. and correlate this with parasite load. Five healthy dogs and 29 dogs with proven infection were selected for the study group. Real-time PCR was used to quantify parasite load and confirm infection by Leishmania spp. Treg cells producing IL-10 and TGF-β were quantified using flow cytometry. An increase in IL-10 production by Treg cells was verified in the spleen of dogs naturally infected by Leishmania spp. Concurrently, a decrease in the total number of T cells in these dogs was verified compared with healthy dogs. No association was determined between parasite load and the percentage of spleen Treg cells producing IL-10 and TGF-β. These findings suggest that Treg cells are an important source of IL-10 in the spleen, participating in immune response modulation, while the reduced percentage of these cells in infected dogs could be attributed to persistent immune activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  14. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  15. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2014-09-01

    This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

  16. Human HepaRG Cells can be Cultured in Hanging-drop Plates for Cytochrome P450 Induction and Function Assays.

    Science.gov (United States)

    Murayama, Norie; Usui, Takashi; Slawny, Nicky; Chesné, Christophe; Yamazaki, Hiroshi

    2015-01-01

    Recent guidance/guidelines for industry recommend that cytochrome P450 induction can be assessed using human hepatocyte enzyme activity and/or mRNA levels to evaluate potential drug- drug interactions. To evaluate time-dependent cytochrome P450 induction precisely, induction of CYP1A2, CYP2B6, and CYP3A4 mRNA was confirmed (>2-fold) by the treatment with omeprazole, phenobarbital, and rifampicin, respectively, for 24 or 48 h on day 3 from the start of culture. After 24 h, the fold induction of CYP1A2 with 3.6 and 1.8x10(4) HepaRG cells per well was lower than that for 7.2x10(4) cells. CYP1A2 induction levels at 24 h were higher than those after 48 h. In contrast, higher CYP2B6 inductions were confirmed after 48 h exposure than after 24 h, independent of the number of cells per well. To help reduce the use of human cryopreserved hepatocytes, typical P450-dependent enzyme activities were investigated in human HepaRG cells cultured in commercial hanging-drop plates. Newly designed 96-well hanging-drop plates were capable of maintaining human CYP3A-dependent midazolam hydroxylation activities for up to 4 days using only 10% of the recommended initial 7.2x10(4) cells per well. Favorable HepaRG function using hanging-drop plates was confirmed by detecting 1'- hydroxymidazolam O-glucuronide on day 3, suggesting an improvement over traditional control plates in which this metabolite can be detected for 24-well plates. These results suggest that the catalytic function and/or induction of CYP1A2, CYP2B6, and CYP3A4 can be readily assessed with reduced numbers of starting HepaRG cells cultured in three-dimensional cultures in drops prepared with hanging-drop plates.

  17. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  18. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  19. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  20. Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification.

    Science.gov (United States)

    Fernandes, A R; Dias-Ferreira, J; Cabral, C; Garcia, M L; Souto, E B

    2018-06-01

    The clinical use of poorly water-soluble drugs has become a big challenge in pharmaceutical development due to the compromised bioavailability of the drugs in vivo. Nanocrystals have been proposed as a formulation strategy to improve the dissolution properties of these drugs. The benefits of using nanocrystals in drug delivery, when compared to other nanoparticles, are related to their production facilities, simple structure, and suitability for a variety of administration routes. High pressure homogenization (HPH) is the most promising production process, which can be employed at low or high temperatures. Ibuprofen nanocrystals with a mean size below 175 nm, and polydispersity below 0.18, have been produced by melt-emulsification, followed by HPH. Two nanocrystal formulations, differing on the surfactant composition, have been produced, their in vitro ibuprofen release tested in Franz diffusion cells and adjusted to several kinetic models (zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Baker-Lonsdale and Weibull model). Cell viability was assessed at 3, 6 and 24 h of incubation on human epithelial colorectal cells (Caco-2) by AlamarBlue ® colorimetric assay. For both formulations, Caco-2 cells viability was dependent on the drug concentration and time of exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cellulase producing microorganism ATCC 55702

    Science.gov (United States)

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  2. [Investigation of emergency capacities for occupational hazard accidents in silicon solar cell producing enterprises].

    Science.gov (United States)

    Yang, D D; Xu, J N; Zhu, B L

    2016-11-20

    Objective: To investigate and analyze the influential factors of occupational hazard acci-dents, emergency facilities and emergency management in Silicon solar cell producing enterprises, then to pro-vide scientific strategies. Methods: The methods of occupationally healthy field investigating, inspecting of ven-tilation effectiveness, setup of emergency program and wearing chemical suit were used. Results: The mainly occupational hazard accidents factors in the process of Silicon solar cell producing included poisoning chemi-cals, high temperature, onizing radiation and some workplaces. The poisoning chemicals included nitric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, chlorine, phos-phorus oxychloride, phosphorus pentoxide, nitrogen dioxide, ammonia, silane, and so on; the workplaces in-cluded the area of producing battery slides and auxiliary producing area. Among the nine enterprises, gas detec-tors were installed in special gas supplying stations and sites, but the height, location and alarmvalues of gas detectors in six enterprises were not according with standard criteria; emergency shower and eyewash equip-ment were installed in workplaces with strong corrosive chemicals, but the issues of waste water were not solved; ventilation systems were set in the workplaces with ammonia and silane, but not qualified with part lo-cations and parameters in two enterprises; warehouses with materials of acid, alkali, chemical ammonia and phosphorus oxychloride were equipped with positive - pressure air respirator resuscitator and emergency cabi-nets, but with insufficient quantity in seven enterprises and expiration in part of products. The error rate of set-up emergency program and wearing chemical cloth were 30%~100% and 10%~30%, respectively. Among the nine enterprises, there were emergency rescue plans for dangerous chemical accidents, but without profession-al heatstroke and irradiation accident emergency plans

  3. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate.

    Science.gov (United States)

    Alirezaie, Behnam; Taqavian, Mohammad; Aghaiypour, Khosrow; Esna-Ashari, Fatemeh; Shafyi, Abbas

    2011-05-01

    The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV. Copyright © 2011 Wiley-Liss, Inc.

  4. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  5. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  6. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  7. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  8. Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates.

    Directory of Open Access Journals (Sweden)

    Sara Shafaie

    Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of

  9. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae

    International Nuclear Information System (INIS)

    Lobato, Justo; González del Campo, Araceli; Fernández, Francisco J.; Cañizares, Pablo; Rodrigo, Manuel A.

    2013-01-01

    Highlights: • An algae cathode of a MFC has been used without artificial mediators or catalysts. • To perform a lagooning wastewater treatment coupled with energy-producing MFC. • The producing electricity operates under day/night irradiation cycles, is shown. - Abstract: The paper focused on the start-up and performance characterisation of a new type of microbial fuel cell (MFC), in which an algae culture was seeded in the cathodic chamber to produce the oxygen required to complete the electrochemical reactions of the MFC, thus circumventing the need for a mechanical aerator. The system did not use mediators or high cost catalysts and it can be started-up easily using a straightforward three-stage procedure. The start-up consists of the separate production of the electricity-producing microorganisms and the algae cultures (stage I), replacement of the mechanical aeration system by the algae culture (stage II) and a change in the light dosage from a continuous input to a dynamic day/night profile. The MFC was operated under a regime of 12 h light and 12 h dark and was also operated in batch and continuous substrate-feeding modes. The same cell voltage was achieved when the cathode compartment was operated with air supplied by aerators, which means that this configuration can perform as well as the traditional one. The results also show the influence of both the organic load and light irradiation on electricity production and demonstrate that this type MFC is a robust and promising technology that can be considered as a first approach to perform a lagooning wastewater treatment with microbial fuel cells

  10. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    Science.gov (United States)

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  12. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  13. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Naiara Costa Cinegaglia

    2013-01-01

    Full Text Available Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent, and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment.

  14. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro.

    Science.gov (United States)

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment.

  15. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors

    Directory of Open Access Journals (Sweden)

    Charles Yoon

    2018-01-01

    Full Text Available The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development.

  16. A study on the fracture toughness of heavy section steel plates and forgings for nuclear pressure vessels produced in Japan, (4)

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu; Takahashi, Isao; Miya, Kenzo; Ando, Yoshio.

    1985-01-01

    As another parameter for evaluating the toughness of structural materials, there is crack arrest toughness. This is a parameter showing the resistance of materials to stop the cracks rapidly propagating in brittle state within the materials, unlike static and dynamic fracture toughness related to the occurrence of breaking. As the conventional method of determining the crack arrest toughness, the relatively large testing method such as double tensile test and ESSO test have been known, but the establishment of a smaller convenient testing method is desired. In this study, the evaluation of the crack arrest toughness of the very thick steel materials produced in Japan was carried out by the testing method using small test pieces. In order to make test pieces small, tapered type DCB test and the three-point bending test using DWTT test pieces were examined as well as the testing method recommended by ASTM. The test materials were A 533B, Cl. 1 and A 508, Cl. 3. The test pieces, the various testing methods and the experimental results are reported. The temperature dependence of the crack arrest toughness was shown. (Kako, I.)

  17. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  18. Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-09-01

    Full Text Available Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs, which can be used as a therapeutic approach against type 1 diabetes (T1D. As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2 promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI. Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells

  19. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    Science.gov (United States)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  20. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  1. A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells.

    Science.gov (United States)

    Hussain, Musaddeq

    2015-11-10

    Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing of monoclonal antibody (mAb) drugs in the biopharmaceutical industry. Host cell DNA is an impurity of such manufacturing process and must be controlled and monitored in order to ensure drug purity and safety. A conventional method for quantification of host residual DNA in drug requires extraction of DNA from the mAb drug substance with subsequent quantification of the extracted DNA using real-time PCR (qPCR). Here we report a method where the DNA extraction step is eliminated prior to qPCR. In this method, which we have named 'direct resDNA qPCR', the mAb drug substance is digested with a protease called KAPA in a 96-well PCR plate, the protease in the digest is then denatured at high temperature, qPCR reagents are added to the resultant reaction wells in the plate along with standards and controls in other wells of the same plate, and the plate subjected to qPCR for analysis of residual host DNA in the samples. This direct resDNA qPCR method for CHO is sensitive to 5.0fg of DNA with high precision and accuracy and has a wide linear range of determination. The method has been successfully tested with four mAbs drug, two IgG1 and two IgG4. Both the purified drug substance as well as a number of process intermediate samples, e.g., bioreactor harvest, Protein A column eluate and ion-exchange column eluates were tested. This method simplifies the residual DNA quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell.

    Science.gov (United States)

    Milton, Ross D; Cai, Rong; Abdellaoui, Sofiene; Leech, Dónal; De Lacey, Antonio L; Pita, Marcos; Minteer, Shelley D

    2017-03-01

    Nitrogenases are the only enzymes known to reduce molecular nitrogen (N 2 ) to ammonia (NH 3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N 2 reduction to NH 3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H 2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH 3 from H 2 and N 2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H 2  /N 2 EFCs, which resulted in the formation of 286 nmol NH 3  mg -1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  5. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  6. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  7. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  8. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  9. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  10. Molecular Characterization of Viruses from Clinical Respiratory Samples Producing Unidentified Cytopathic Effects in Cell Culture

    Directory of Open Access Journals (Sweden)

    Guy Boivin

    2009-07-01

    Full Text Available The sequence-independent single primer amplification (SISPA method was performed to identify a virus in 17 clinical respiratory samples producing uncharacterized cytopathic effects in LLC-MK2 cells. Sequence analysis of 600-1600 bp amplicons allowed the identification of six viruses (one influenza C, two parechovirus-3 and three cardioviruses. Genomic sequences of the cardioviruses showed similarities with those of the recently-described Saffold virus strain although significant variation was present in the viral surface EF and CD loops. These results demonstrate the usefulness of SISPA for identifying emerging viruses and also known viruses not easily identified by standard virological methods.

  11. Effective chikungunya virus-like particle vaccine produced in insect cells.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.

  12. The development of methods for obtaining monoclonal antibody-producing cells

    Directory of Open Access Journals (Sweden)

    Michał Skowicki

    2016-04-01

    Full Text Available Monoclonal antibodies (mAbs are biomolecules of great scientific and practical significance. In contrast to polyclonal antibodies from immune sera, they are homogeneous and monospecific, since they are produced by hybridoma cells representing a clone arising from a single cell. The successful technology was described for the first time in 1975; the inventors were later awarded the Nobel Prize. Currently, mAbs are broadly used as a research tool, in diagnostics and medicine in particular for the treatment of cancer or in transplantology. About 47 therapeutics based on monoclonal antibodies are now available in the US and Europe, and the number is still growing. Production of monoclonal antibodies is a multistage, time-consuming and costly process. Growing demand for these molecules creates space for research focused on improvements in hybridoma technology. Lower costs, human labor, and time are important goals of these attempts. In this article, a brief review of current methods and their advances is given.

  13. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus.

    Science.gov (United States)

    Amer, Mona G; Embaby, Azza S; Karam, Rehab A; Amer, Marwa G

    2018-05-15

    Generation of new β cells is an important approach in the treatment of type 1 diabetes mellitus (type 1 DM). Adipose tissue-derived stem cells (ADSCs) might be one of the best sources for cell replacement therapy for diabetes. Therefore, this work aimed to test the possible role of transplanted insulin-producing cells (IPCs) differentiated from ADSCs in treatment of streptozotocin (STZ) induced type I DM in rats. Type 1 DM was induced by single intra peritoneal injection with STZ (50 mg/kg BW). Half of the diabetic rats were left without treatment and the other half were injected with differentiated IPCs directly into the pancreas. ADSCs were harvested, cultured and identified by testing their phenotypes through flow cytometry. They were further subjected to differentiation into IPCs using differentiation medium. mRNA expression of pancreatic transcription factors (pdx1), insulin and glucose transporter-2 genes by real time PCR was done to detect the cellular differentiation and confirmed by stimulated insulin secretion. The pancreatic tissues from all groups were examined 2 months after IPC transplantation and were subjected to histological, Immunohistochemical and morphometric study. The differentiated IPCs showed significant expression of pancreatic β cell markers and insulin secretion in glucose dependent manner. Treatment with IPCs induced apparent regeneration, diffused proliferated islet cells and significant increase in C-peptide immune reaction. We concluded that transplantation of differentiated IPCs improved function and morphology of Islet cells in diabetic rats. Consequently, this therapy option may be a promising therapeutic approach to patient with type 1 DM if proven to be effective and safe. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus.

    Science.gov (United States)

    Domouky, Ayat M; Hegab, Ashraf S; Al-Shahat, Amal; Raafat, Nermin

    2017-06-01

    Diabetes mellitus has become the third human killer following cancer and cardiovascular disease. Millions of patients, often children, suffer from type 1 diabetes (T1D). Stem cells created hopes to regenerate damaged body tissues and restore their function. This work aimed at clarifying and comparing the therapeutic potential of differentiated and non-differentiated mesenchymal stem cells (MSCs) as a new line of therapy for T1D. 40 Female albino rats divided into group I (control): 10 rats and group II (diabetic), III and IV, 10 rats in each, were injected with streptozotocin (50mg/kg body weight). Group III (MSCs) were transplanted with bone marrow derived MSCs from male rats and group IV (IPCs) with differentiated insulin producing cells. Blood and pancreatic tissue samples were taken from all rats for biochemical and histological studies. MSCs reduced hyperglycemia in diabetic rats on day 15 while IPCs normalizes blood glucose level on day 7. Histological and morphometric analysis of pancreas of experimental diabetic rats showed improvement in MSCs-treated group but in IPCs-treated group, β-cells insulin immunoreactions were obviously returned to normal, with normal distribution of β-cells in the center and other cells at the periphery. Meanwhile, most of the pathological lesions were still detected in diabetic rats. MSCs transplantation can reduce blood glucose level in recipient diabetic rats. IPCs initiate endogenous pancreatic regeneration by neogenesis of islets. IPCs are better than MSCs in regeneration of β-cells. So, IPCs therapy can be considered clinically to offer a hope for patients suffering from T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4.

    Science.gov (United States)

    Ouyang, Jingfeng; Huang, Wei; Yu, Wanwan; Xiong, Wei; Mula, Ramanjaneya V R; Zou, Hongbin; Yu, Yongping

    2014-02-05

    Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity. We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3β (HNF 3β) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Lipofection of insulin-producing RINm5F cells: methodological improvements.

    Science.gov (United States)

    Barbu, Andreea; Welsh, Nils

    2007-01-01

    Cationic lipid/DNA-complexes have been widely used as gene transfer vectors because they are less toxic and immunogenic than viral vectors. The aim of the present study was to improve and characterize lipofection of an insulin-producing cell line. We compared the transfection efficiency of seven commercially available lipid formulations (Lipotaxi, SuperFect, Fugene, TransFast, Dosper, GenePORTER and LipofectAMINE) by flow cytometry analysis of GFP-expression. In addition, we have determined the influences of centrifugation, serum and a nuclear localization signal peptide on the lipofection efficiency. We observed that two lipid formulations, GenePORTER and LipofectAMINE, were able to promote efficient gene transfer in RINm5F cells. However, GenePORTER exhibited the important advantage of being able to transfect cells in the presence of serum and with less cytotoxicity than LipofectAMINE. LipofectAMINE-induced RINm5F cell death could partially be counteracted by TPA, forskolin or fumonisin beta(1). Finally, both centrifugation and a nuclear localization signal peptide increased transfection efficiency.

  17. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    Directory of Open Access Journals (Sweden)

    Linlin Fan

    Full Text Available Mannosylerythritol lipids (MELs are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC, self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS.

  18. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Ku, Seockmo; You, Hyun Ju; Park, Myeong Soo; Ji, Geun Eog

    2016-07-28

    Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40°C, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.

  19. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  20. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  1. The stimulation of EL-4 cells to produce interleukin-2 and its potential use in immunocytotoxicity testing

    International Nuclear Information System (INIS)

    Lasek, W.; Steer, S.; Clothier, R.; Balls, M.

    1989-01-01

    The ability of EL-4 thymoma cells to produce interleukin-2 (IL-2) following exposure to phorbol-12-myristate 13-acetate (PMA) and Concanavalin A (Con A) has been studied in vitro using medium containing either 10% or 1% fetal calf serum (FCS). The potent stimulatory effect of PMA on IL-2 production by EL-4 cells has been confirmed by measuring 3H-thymidine incorporation by the IL-2-dependent T cell line, CTLL-2, in the presence of conditioned medium (CM) from stimulated cultures. EL-4 cells produced several times more IL-2 when cultured in medium containing 10% FCS than when only 1% FCS was present. Added together, PMA and Con A acted synergistically in some EL-4 cell cultures. The ability of E:-4 cells to produce IL-2 was maintained after further incubation without stimulants. CM with IL-2 activity from stimulated EL-4 cells could prove useful in immunotoxicity testing

  2. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70

    Directory of Open Access Journals (Sweden)

    Bigalke Iris

    2007-04-01

    Full Text Available Abstract Background For optimal T cell activation it is desirable that dendritic cells (DCs display peptides within MHC molecules as signal 1, costimulatory molecules as signal 2 and, in addition, produce IL-12p70 as signal 3. IL-12p70 polarizes T cell responses towards CD4+ T helper 1 cells, which then support the development of CD8+ cytotoxic T lymphocytes. We therefore developed new maturation cocktails allowing DCs to produce biologically active IL-12p70 for large-scale cancer vaccine development. Methods After elutriation of leukapheresis products in a closed bag system, enriched monocytes were cultured with GM-CSF and IL-4 for six days to generate immature DCs that were then matured with cocktails, containing cytokines, interferon-gamma, prostaglandin E2, and a ligand for Toll-like receptor 8, with or without poly (I:C. Results Mature DCs expressed appropriate maturation markers and the lymph node homing chemokine receptor, CCR7. They retained full maturity after culture for two days without maturation cocktails and following cryopreservation. TLR ligand stimulation induced DCs capable of secreting IL-12p70 in primary cultures and after one day of coculture with CD40L-expressing fibroblasts, mimicking an encounter with T cells. DCs matured with our new cocktails containing TLR8 ligand, with or without poly (I:C, induced alloresponses and stimulated virus-specific T cells after peptide-pulsing. DCs matured in cocktails containing TLR8 ligand without poly (I:C could also be loaded with RNA as a source of antigen, whereas DCs matured in cocktails containing poly (I:C were unable to express proteins following RNA transfer by electroporation. Conclusion Our new maturation cocktails allowed easy DC harvesting, stable maturation and substantial recoveries of mature DCs after cryopreservation. Our procedure for generating DCs is easily adaptable for GMP-compliance and yields IL-12p70-secreting DCs suitable for development of cancer vaccines using

  3. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells

    DEFF Research Database (Denmark)

    Kemp, Kåre; Bruunsgaard, Helle; Skinhøj, Peter

    2002-01-01

    , little is known regarding the T-cell response during in vivo infections in humans. The purpose of this study was to test the hypothesis that activated T cells producing type 1 cytokines were engaged in the host response to pneumococcal infections. The phenotype and function of T cells were studied in 22...

  4. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  5. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.; Cusick, Roland; Call, Douglas F.; Selembo, Priscilla A.; Regan, John M.; Logan, Bruce E.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  6. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    Science.gov (United States)

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, Hsiang-Cheng; Hou, Kung-Hsu; Lu, Chen-En; Ger, Ming-Der

    2014-01-01

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm 2 was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm 2 ) exhibited the coating prepared at 10 A/dm 2 and 10 min possessing the best corrosion resistance (I corr = 9.360 × 10 −8 A/cm 2 ). The contact resistance of Cr–C plated at coating current density of 10 A/dm 2 was the lowest (16.54 mΩ cm 2 at 150 N cm −2 ), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm 2 as BPPs showed the highest current density (about 791.532 mA/cm 2 ) and power density (about 270.150 mW/cm 2 ). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel

  8. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Cheng [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Lu, Chen-En [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der [Department of Applied Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China)

    2014-11-03

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm{sup 2} was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm{sup 2}) exhibited the coating prepared at 10 A/dm{sup 2} and 10 min possessing the best corrosion resistance (I{sub corr} = 9.360 × 10{sup −8} A/cm{sup 2}). The contact resistance of Cr–C plated at coating current density of 10 A/dm{sup 2} was the lowest (16.54 mΩ cm{sup 2} at 150 N cm{sup −2}), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm{sup 2} as BPPs showed the highest current density (about 791.532 mA/cm{sup 2}) and power density (about 270.150 mW/cm{sup 2}). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel.

  9. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In, E-mail: nsi12@jbnu.ac.kr [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Jeon, Ye-Jin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Seok-Soon, E-mail: sskim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do 753-701 (Korea, Republic of); Kim, Tae-Wook [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of)

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  10. Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyunku; Yoon, Jaekyung [Hydrogen Energy Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Bae, Sanghyun [Department of Environmental Engineering, Yonsei University, 234 Maeji-ri, Hungub-myun, Wonju, Gangwon-do 220-710 (Korea); Kim, Chunghwan; Kim, Suhan [Korea Institute of Water and Environment, K-Water, 462-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-730 (Korea)

    2009-09-15

    In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO{sub 2} electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 {mu}mol/cm{sup 2} h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm x 1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V. (author)

  11. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating

    International Nuclear Information System (INIS)

    Mochizuki, Chihiro; Hara, Hiroki; Oya, Kei; Aoki, Shun; Hayakawa, Tohru; Fujie, Hiromichi; Sato, Mitsunobu

    2014-01-01

    Four carbonated apatite films having average thicknesses of 1.3–0.11 μm, proportions of network sizes above 10 μm of 41–68%, and average border heights of the characteristic network structure of 0.98–0.29 μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600 °C, whose film thickness, proportion of network sizes above 10 μm, and border height were 0.11 μm, 61%, and 0.31 μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. - Highlights: • Osteoblastic MC3T3-E1 behaviors on aqueous spray coating-derived carbonated apatite (CA) films • The network size of CA films is important. • CA films having a low network border height are better for cell proliferation

  12. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Chihiro; Hara, Hiroki [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Oya, Kei [Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); School of Engineering, Tokai University, 4-1-1 Kitakanane, Hiratsuka, Kanagawa 259-1292 (Japan); Aoki, Shun [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Hayakawa, Tohru [Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama City, Kanagawa 230-8501 (Japan); Fujie, Hiromichi [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Sato, Mitsunobu, E-mail: lccsato@cc.kogakuin.ac.jp [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2014-06-01

    Four carbonated apatite films having average thicknesses of 1.3–0.11 μm, proportions of network sizes above 10 μm of 41–68%, and average border heights of the characteristic network structure of 0.98–0.29 μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600 °C, whose film thickness, proportion of network sizes above 10 μm, and border height were 0.11 μm, 61%, and 0.31 μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. - Highlights: • Osteoblastic MC3T3-E1 behaviors on aqueous spray coating-derived carbonated apatite (CA) films • The network size of CA films is important. • CA films having a low network border height are better for cell proliferation.

  13. Increased IL-35 producing Tregs and CD19+IL-35+ cells are associated with disease progression in leprosy patients.

    Science.gov (United States)

    Tarique, Mohd; Saini, Chaman; Naqvi, Raza Ali; Khanna, Neena; Rao, D N

    2017-03-01

    The clinical forms of leprosy consist of a spectrum that reflects the host's immune response to the M. leprae; it provides an ideal model to study the host pathogen interaction and immunological dysregulation in humans. IL-10 and TGF-β producing Tregs are high in leprosy patients and responsible for immune suppression and M. leprae specific T cells anergy. In leprosy, involvement of IL-35 producing Tregs and Bregs remain unstudied. To study the role of IL-35 producing Tregs and Bregs in the human leprosy. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA) for 48h. Intracellular cytokine IL-35 was evaluated in CD4 + CD25 + Tregs, CD19 + cells by FACS. Expression of PD-1 on CD4 + CD25 + Tregs, CD19 + cells and its ligand (PD-L1) on B cells, CD11c cells were evaluated by flow cytometry (FACS). Serum IL-35 level was estimated by ELISA. The frequency of IL-35 producing Tregs and Bregs cells were found to be high in leprosy patients (pleprosy patients. This study point out a shift in our understanding of the immunological features that mediate and regulate the immune suppression and the disease progression in leprosy patients with a new paradigm (IL-35 producing Tregs and Bregs) that is beyond TGF-β and IL-10 producing Treg cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2014-01-01

    Full Text Available Radiation damages initiated by radiation-induced bystander effect (RIBE are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells. After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells. Micronucleated cells (MC were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation.

  15. Role of pancreatic polypeptide as a market of transplanted insulin-producing fetal pig cells.

    Science.gov (United States)

    Tuch, B E; Tabiin, M T; Casamento, F M; Yao, M; Georges, P; Amaratunga, A; Pinto, A N

    2001-01-01

    Transplantation of insulin-producing fetal pancreatic tissue into diabetic recipients has been shown to normalize blood glucose levels after several months. This time period is required for the growth and maturation of the fetal tissue so insulin levels cannot be used as a marker of graft function while the beta-cell is immature. Therefore, we have examined the use of another pancreatic endocrine hormone, pancreatic polypeptide (PP), to monitor graft function. The cell that produces this hormone has been shown to be the first mature endocrine cell in the fetal pancreas. Fetal pig pancreatic tissue, both in the form of 1 mm3 explants and islet-like cell clusters (ICCs), was transplanted into immunodeficient SCID mice and the levels of PP and insulin were measured in plasma and in the graft for up to 12 weeks. PP was detected in the untransplanted explants (0.58 pmol/mg) and ICCs (0.06 pmol/ICC) and the PP to insulin ratio was 2.7% and 5.8%, respectively. PP (but not porcine C-peptide, a marker of insulin secretion) was detectable in the plasma of SCID mice from 4 days to 3 weeks after transplantation, but not thereafter. The highest values were obtained at 4 days to 1 week. In the grafted tissue PP and insulin were present at all time points and the ratio of PP to insulin was 59%, 87%, 75%, 56%, 7%, 8%, and 7% at 4 days, 1, 2, 3, 6, 9, and 12 weeks, respectively. The decline in PP levels 3 weeks after transplantation was associated with beta-cell development in the graft. PP was also secreted by fetal pig pancreatic explants transplanted into diabetic NOD/SCID mice, with plasma levels measurable in the first week after the tissue was grafted. In immunocompetent BALB/c mice transplanted with the tissue, PP was detectable in plasma for 2 days after transplantation but not at 4 days, when cellular rejection commenced, or thereafter. We conclude that plasma PP levels can be used as a marker of the viability of fetal porcine pancreatic tissue in the first 3 weeks after

  16. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  17. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  18. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  19. Case Report: Nodule Development From Subcapsular Aldosterone-Producing Cell Clusters Causes Hyperaldosteronism.

    Science.gov (United States)

    Nishimoto, Koshiro; Seki, Tsugio; Kurihara, Isao; Yokota, Kenichi; Omura, Masao; Nishikawa, Tetsuo; Shibata, Hirotaka; Kosaka, Takeo; Oya, Mototsugu; Suematsu, Makoto; Mukai, Kuniaki

    2016-01-01

    We previously reported that the human adrenal cortex remodels to form subcapsular aldosterone-producing cell clusters (APCCs). Some APCCs were recently found to carry aldosterone-producing adenoma (APA)-associated somatic mutations in ion channel/pump genes, which implied that APCCs produce aldosterone autonomously and are an origin of APA. However, there has been no report describing an APCC-to-APA transitional lesion. A histological examination revealed unilateral multiple adrenocortical micronodules in the adrenals of two patients with primary aldosteronism (PA). Based on immunohistochemistry for aldosterone synthase, some of the micronodules were identified as possible APCC-to-APA transitional lesions (pAATLs; a tentative term used in this manuscript), which consisted of a subcapsular APCC-like portion and an inner micro-APA-like (mAPA-like) portion without an apparent histological border. Genomic DNA samples prepared from pAATL histological sections were analyzed by next-generation sequencing for the known APA-associated mutations. The mAPA-like portions from two of the three large pAATLs examined harbored mutations (KCNJ5 [p.G151R] in pAATL 3 and ATP1A1 [p.L337M] in pAATL 7), whereas their corresponding APCC-like portions did not, suggesting their role in the formation of mAPA. Another lesion carried novel mutations in ATP1A1 (p.Ile322_Ile325del and p.Ile327Ser) in both the mAPA-like and APCC-like portions, thereby supporting these portions having a clonal origin. A novel aldosterone-producing pathology, pAATL that causes unilateral PA, was detected in the adrenals of two patients. Next-generation sequencing analyses of the large pAATLs suggested that the introduction of APA-associated mutations in the ion channel/pump genes may be involved in the development of mAPA from existing APCCs.

  20. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells.

    Science.gov (United States)

    Sharma, Anshu; Rani, Rajni

    2017-07-12

    Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p cells seem to have better potential to arrest autoimmune response in type 1 diabetes when

  1. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  2. Chromate-reducing activity of Hansenula polymorpha recombinant cells over-producing flavocytochrome b₂.

    Science.gov (United States)

    Smutok, Oleh; Broda, Daniel; Smutok, Halyna; Dmytruk, Kostyantyn; Gonchar, Mykhailo

    2011-04-01

    b(2) and direct electron transfer from the enzyme to the electrode surface. The application of the chromate-reducing ability of FC b(2)-over-producing recombinant cells of H. polymorpha toward chromate bioremediation and the construction of cells-based biosensor for chromate monitoring in the environment are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Development of interleukin-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus

    DEFF Research Database (Denmark)

    Buus, Terkild Brink; Schmidt, Jonas Damgård; Bonefeld, Charlotte Menné

    2016-01-01

    . In this study, we have investigated the role of inducible T cell co-stimulator (ICOS) on the development of γδ T cells. We show that ICOS is expressed by a population of immature Vγ2+CD45RBlow γδ T cells predisposed to interleukin-17 (IL-17) production. We found that treatment with ICOS specific antibodies...... drastically reduces fetal development of IL-17-producing γδ T cells by agonistic actions, and that ICOS deficient mice have a significant increase in the population of IL-17-producing Vγ2+ γδ T cells in the thymus, spleen, lymph nodes and skin and exhibit exacerbated sensitization responses to 2......,4-dinitrofluorobenzene. In conclusion, this study demonstrates that development of IL-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus....

  4. Interferon-¿- and tumour necrosis factor-a-producing cells in humans who are immune to cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, K; Theander, T G; Hviid, L

    1999-01-01

    Individuals infected with Leishmania major usually acquire immunity to cutaneous leishmaniasis. In this study we have investigated peripheral blood mononuclear cells (PBMC) stimulated by Leishmania antigens in two groups of Sudanese individuals, one with a history of cutaneous leishmaniasis and one...... leishmaniasis produced significantly higher levels of IFN-gamma and TNF-alpha than cells from individuals without a history of the disease. Similar levels of IL-10 were found in the two groups. Flow cytometric analysis revealed high numbers of CD3+ cells producing IFN-gamma and TNF-alpha, and only a few CD3......+ cells containing IL-10, in the PBMC cultures from the individuals with a history of cutaneous leishmaniasis. Interferon-gamma and TNF-alpha were predominantly produced by CD4+ T cells rather than CD8+ T cells. The results suggest that cellular immunity against cutaneous leishmaniasis is mediated...

  5. The morpho-functional parameters of rat pituitary hormone producing cells after genistein treatment

    Directory of Open Access Journals (Sweden)

    Svetlana Trifunović

    2018-03-01

    Full Text Available Phytoestrogens are a diverse group of steroid–like compounds that occur naturally in many plants. There are various types of phytoestrogens, including the best-researched isoflavones which are commonly found in soy. The consumption of soy products has many health benefits, including protection against breast cancer, prostate cancer, menopausal symptoms, heart disease and osteoporosis. In contrast, use of hormonally active compounds-isoflavones may unfortunately interfere with the endocrine system and can have far-reaching consequences. Genistein, the most abundant soy-bean derived isoflavone, possesses a ring system similar to estrogens and acts through an estrogen receptor (ER-mediated mechanism, by increasing or decreasing the transcription of ER-dependent target genes. Also, genistein can act on cells through ER non-dependent mechanisms, such as tyrosine kinase inhibitor. The neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, and stress responsiveness. It is well known, that estrogen is important for development of the neuroendocrine system in both sexes. At the pituitary level, estrogen is known to affect the regulation of all hormone producing (HP cells, by direct and/or indirect mechanisms. Due to structural and functional resemblance to estrogen, the question may arise of whether and how genistein affects the morphofunctional features of pituitary HP cells. This review deals with the consequences of genistein’s effects on morphological, stereological and hormonal features of HP cells within the anterior pituitary gland. Transparency on this issue is needed because isoflavones are presently highly consumed. Inter alia, genistein as well as other isoflavones, are present in various dietary supplements and generally promoted as an accepted alternative to estrogen replacement therapy. Potential isoflavone biomedical exploitation is not

  6. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Youfeng Yang

    Full Text Available Fumarate hydratase (FH-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP that either generate NADPH (oxidative or do not (non-oxidative, we utilized [U-(13C]-glucose, [U-(13C,(15N]-glutamine, and [1,2- (13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR and extracellular acidification rate (ECAR of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66% that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid

  7. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  8. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Badri, Nagwa; Ghoneim, Mohamed A

    2014-01-01

    Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β -mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. By immunolabeling, the proportion of generated IPCs was modest ( ≃ 3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  9. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Directory of Open Access Journals (Sweden)

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  10. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2014-01-01

    Full Text Available Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs to form insulin-producing cells (IPCs. We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol, trichostatin-A-based (two-step protocol, and β-mercaptoethanol-based (three-step protocol. At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3% in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  12. CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function.

    Science.gov (United States)

    Rivino, Laura; Gruarin, Paola; Häringer, Barbara; Steinfelder, Svenja; Lozza, Laura; Steckel, Bodo; Weick, Anja; Sugliano, Elisa; Jarrossay, David; Kühl, Anja A; Loddenkemper, Christoph; Abrignani, Sergio; Sallusto, Federica; Lanzavecchia, Antonio; Geginat, Jens

    2010-03-15

    Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10-producing memory T cells. Human CD4(+)CCR6(+) memory T cells contained comparable numbers of IL-17- and IL-10-producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)-beta. In normal human spleens, the majority of CCR6(+) memory T cells were in the close vicinity of CCR6(+) myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6(+) memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6(+) T cells induced expression of IL-2, interferon-gamma, CCL20, and CD40L, and autoreactive CCR6(+) T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6(+) T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions.

  13. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Science.gov (United States)

    Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.

  14. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Chemistry and Materials Science and Engineering, Chung Cheng Institute of Technology, National Defense University, Tau-Yuan 335 (China); Wen, Tse-Min [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China); Hou, Kung-Hsu [Department of Power Vehicles and System Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China)

    2010-02-01

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 x 10{sup -8} A cm{sup -2}, and the smallest interfacial contact resistance, 5.9 m{omega} cm{sup 2}, at 140 N cm{sup -2} among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC. (author)

  15. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  16. Characterization of Chinese Hamster Ovary Cells Producing Coagulation Factor VIII Using Multi-omics Tools

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder

    The first public draft of a genome from Chinese hamster ovary (CHO) cells was published in 2011, an entire decade after the first draft of the human genome. This publication of a relevant CHO reference genome, in combination with the fact that the cost for DNA sequencing has dropped more than 10...... using omics tools. A wide range of methods were applied including whole-genome sequencing, targeted genome sequencing, mRNA sequencing, miRNA sequencing and mass spectrometry based shotgun proteomics on a number of clones in order to get a more holistic picture of the inner workings of these CHO...... transfectants. From the whole-genome sequencing of two CHO genomes (CHO DXB11 and the FVIII producing transfectant: F435) it was observed that roughly 20% of the genes in the genome were haploid and roughly 10% had a copy number of three or higher indicating extensive rearrangements compared to the Chinese...

  17. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11 to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli, and the maximum average migration distance was measured to be 5 to 6 base distances

  18. Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Gérard Manière

    2016-09-01

    Full Text Available Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5 are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND, a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.

  19. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Hydrated electrons, e/sub aq/, were shown to react with BU in BU-DNA with the resultant release of bromide with G(-BR - ) = 0.519 +- 0.062. OH radicals were half as reactive as e/sub aq/ toward producing bromide from BU-DNA. O 2 , which has been shown to transfer charge to BU in aqueous solution, did not transfer charge to BU-DNA. The CO 2 radical was shown to cause the release of bromide from BU-DNA at least as effectively as e/sub aq/. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11% to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli., and the maximum average migration distance was measured to be 5 to 6 base distances

  20. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    Science.gov (United States)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  1. CEA-producing urothelial cell carcinoma with metastasis presenting as a rectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Ming-Hsin Yang

    2012-11-01

    Full Text Available This is a case study of a 61-year-old male who presented with difficult defecation for 1 month. A circumferential submucosal rectal tumor was noted on a digital rectal examination and colonoscopy. Laboratory examination revealed high serum levels of carcinoembryonic antigen (CEA; 43.75 ng/mL and carbohydrate antigen 19-9 (CA19-9; 11,790 U/mL. In addition, tumor biopsies revealed a poorly differentiated adenocarcinoma of the rectum with intact mucosa. The patient had history of advanced stage-T2 urothelial cell carcinoma of bladder, which had been downstaged to T0 by neoadjuvant chemotherapy followed by radical cystectomy 1 year prior. After investigating the initial bladder tumor specimens, a small portion of the tumor with high CEA expression comparable to the submucosal rectal tumor was found. The size of the tumor was reduced and the levels of the tumor markers decreased after administering FOLFIRI chemotherapy targeted at the adenocarcinoma. Although neoadjuvant chemotherapy may have a selective pressure to eliminate most urothelial cell carcinoma, physicians should be aware that it can lead to rectal metastasis via CEA-producing components.

  2. Human Adrenocortical Remodeling Leading to Aldosterone-Producing Cell Cluster Generation

    Directory of Open Access Journals (Sweden)

    Koshiro Nishimoto

    2016-01-01

    Full Text Available Background. The immunohistochemical detection of aldosterone synthase (CYP11B2 and steroid 11β-hydroxylase (CYP11B1 has enabled the identification of aldosterone-producing cell clusters (APCCs in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time. Purposes. To investigate changes in human adrenocortical zonation with age. Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, % and the number of APCCs (NOA, APCCs/mm2 were calculated by four examiners. Average values were used in statistical analyses. Results. Adrenals under 11 years old had layered zona glomerulosa (ZG and zona fasciculata (ZF without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals. Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults.

  3. Scale-up of Carbon/Carbon Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  4. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  5. Spacer grid for fuel assembly of nuclear reactor comprising opposite support points made with elastic thin plates

    International Nuclear Information System (INIS)

    Feutrel, C.

    1983-01-01

    Two series of thin walls form square cells, each containing a fuel pencil. Support points are made in the cells walls. Splines obtained by two parallel slots in the length of the cells. The reaction of fuel pencil produce a deformation of the elastic splines made in the plate, for compensation of the tolerance allowed on the diameter of the pencils [fr

  6. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    Science.gov (United States)

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  7. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume II: Silicon material

    OpenAIRE

    Lutwack, R.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The goal of the Silicon Material Task, a part of the FSA Project, was to develop and ...

  8. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  9. Alpha-fetoprotein-producing ovarian clear cell adenocarcinoma with fetal gut differentiation: a rare case report and literature review.

    Science.gov (United States)

    Chao, Wei-Ting; Liu, Chia-Hao; Lai, Chiung-Ru; Chen, Yi-Jen; Chuang, Chi-Mu; Wang, Peng-Hui

    2018-06-22

    Alpha-fetoprotein (AFP) is a useful tumor marker for ovarian germ cell tumors, particularly yolk sac tumor (YST). It is valuable for both diagnosis and further follow-up. Epithelial ovarian carcinoma (EOC) rarely secretes AFP, especially for clear cell type and in the postmenopausal women. Based on the limited knowledge about AFP-producing clear cell type EOC, a case and literature review on this topic is extensively reviewed. We report a 55-year-old postmenopausal woman experienced vaginal spotting for one month, and serum level of AFP was 60,721 ng/ml initially. Histological examination was clear cell type EOC. Tumor cells revealed strong immunoreactivity for glypican-3 (GPC3) and AFP and weak for hepatocyte nuclear factor-1 beta (HNF-1 beta), but negative for CD30, making the diagnosis of AFP-producing clear cell type EOC with fetal gut differentiation in focal areas, FIGO (International Federation of Gynecology and Obstetrics) IIIc. Although the patient underwent an intensive treatment, including optimal debulking surgery and multi-agent chemotherapy, the patient died of disease. To provide a better understanding of clinical and molecular characteristics of the AFP-producing clear cell type EOC, we conducted a systematic literature review. A total of three papers described the AFP-producing clear cell type EOC are available. The overall survival rate of these cases, including the current case is 50%. Although immunohistochemical examination is not always needed in routine for the diagnosis of clear cell type EOC, to distinguish from other tumors, especially germ cell tumors, or to provide the better way to monitor therapeutic response or to evaluate the disease status, immunostaining, including GPC3, HNF-1 beta, CD30, cytokeratin 7 or 20, and AFP is taken into account. Due to rarity, the appropriate chemotherapy regimen and the biological behavior of AFP-producing clear cell type EOC are still unclear.

  10. Evaluation of korzincalloy prepared by Hohman Plating

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hollingshad, A. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-17

    A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.

  11. Detection of specific antibody producing cells in porcine colostrum by in ovo translation of their mRNA

    International Nuclear Information System (INIS)

    Kortbeek-Jacobs, N.; Donk, H. van der

    1978-01-01

    An improved method is described for the determination of antibody producing cells in sows colostrum. The test system comprises in ovo translation of mRNA from swine colostral cells and analysis of the translation products by radioimmunoassay with specific antibodies and antigen. (C.F.)

  12. The glycolipid sulfatide protects insulin-producing cells against cytokine-induced apoptosis, a possible role in diabetes

    DEFF Research Database (Denmark)

    Roeske-Nielsen, A; Dalgaard, L T; Månsson, Sven-Erik

    2010-01-01

    these is NO production. The glycosphingolipid sulfatide is present in ß-cells in the secretory granules in varying amounts and is secreted together with insulin. We now investigate whether sulfatide is able to protect insulin-producing cells against the pro-apoptotic effect of interleukin-1ß, interferon-¿ and tumour...

  13. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Ghalamfarsa, Ghasem; Memarian, Ali; Asgarian-Omran, Hossein; Razavi, Seyed Mohsen; Sarrafnejad, Abdolfattah; Shokri, Fazel

    2013-04-01

    Little is known about the immunobiology of interleukin-17 (IL-17)-producing T cells and regulatory T cells (Treg) in chronic lymphocytic leukemia (CLL). In this study, the frequencies of Th17, Tc17, and CD39(+) Treg cells were enumerated in peripheral T cells isolated from 40 CLL patients and 15 normal subjects by flow cytometry. Our results showed a lower frequency of Th17 and Tc17 cells in progressive (0.99 ± 0.12 % of total CD3(+)CD4(+) cells; 0.44 ± 0.09 % of total CD8(+) cells) compared to indolent patients (1.57 ± 0.24 %, p = 0.042; 0.82 ± 0.2 %, p = 0.09) and normal subjects (1.78 ± 0.2 %, p = 0.003; 0.71 ± 0.09 %, p = 0.04). Decrease in IL-17-producing T cells was associated with CD39(+) Treg cells expansion. Variation of IL-17-producing cells and Treg cells in indolent and progressive patients was neither associated to the expression levels of Th1- and Th2-specific transcription factors T-bet and GATA-3 nor to the frequencies of IFN-γ and IL-4-producing CD4(+) T cells in a selected number of samples. Additionally, suppressive potential of CD4(+) Treg was similar in CLL patients and normal subjects. Our data indicate that progression of CLL is associated with downregulation of IL-17-producing T cells and expansion of Treg cells, implying contribution of these subsets of T cells in the progression of CLL.

  14. Pancreatic Stellate Cells Have Distinct Characteristics From Hepatic Stellate Cells and Are Not the Unique Origin of Collagen-Producing Cells in the Pancreas.

    Science.gov (United States)

    Yamamoto, Gen; Taura, Kojiro; Iwaisako, Keiko; Asagiri, Masataka; Ito, Shinji; Koyama, Yukinori; Tanabe, Kazutaka; Iguchi, Kohta; Satoh, Motohiko; Nishio, Takahiro; Okuda, Yukihiro; Ikeno, Yoshinobu; Yoshino, Kenji; Seo, Satoru; Hatano, Etsuro; Uemoto, Shinji

    2017-10-01

    The origin of collagen-producing myofibroblasts in pancreatic fibrosis is still controversial. Pancreatic stellate cells (PSCs), which have been recognized as the pancreatic counterparts of hepatic stellate cells (HSCs), are thought to play an important role in the development of pancreatic fibrosis. However, sources of myofibroblasts other than PSCs may exist because extensive studies of liver fibrosis have uncovered myofibroblasts that did not originate from HSCs. This study aimed to characterize myofibroblasts in an experimental pancreatic fibrosis model in mice. We used transgenic mice expressing green fluorescent protein via the collagen type I α1 promoter and induced pancreatic fibrosis with repetitive injections of cerulein. Collagen-producing cells that are negative for glial fibrillary acidic protein (ie, not derived from PSCs) exist in the pancreas. Pancreatic stellate cells had different characteristics from those of HSCs in a very small possession of vitamin A using mass spectrometry and a low expression of lecithin retinol acyltransferase. The microstructure of PSCs was entirely different from that of HSCs using flow cytometry and electron microscopy. Our study showed that characteristics of PSCs are different from those of HSCs, and myofibroblasts in the pancreas might be derived not only from PSCs but also from other fibrogenic cells.

  15. Impact of aldosterone-producing cell clusters on diagnostic discrepancies in primary aldosteronism

    Science.gov (United States)

    Kometani, Mitsuhiro; Yoneda, Takashi; Aono, Daisuke; Karashima, Shigehiro; Demura, Masashi; Nishimoto, Koshiro; Yamagishi, Masakazu; Takeda, Yoshiyu

    2018-01-01

    Adrenocorticotropic hormone (ACTH) stimulation is recommended in adrenal vein sampling (AVS) for primary aldosteronism (PA) to improve the AVS success rate. However, this method can confound the subtype diagnosis. Gene mutations or pathological characteristics may be related to lateralization by AVS. This study aimed to compare the rate of diagnostic discrepancy by AVS pre- versus post-ACTH stimulation and to investigate the relationship between this discrepancy and findings from immunohistochemical and genetic analyses of PA. We evaluated 195 cases of AVS performed in 2011–2017. All surgical specimens were analyzed genetically and immunohistochemically. Based on the criteria, AVS was successful in 158 patients both pre- and post-ACTH; of these patients, 75 showed diagnostic discrepancies between pre- and post-ACTH. Thus, 19 patients underwent unilateral adrenalectomy, of whom 16 had an aldosterone-producing adenoma (APA) that was positive for CYP11B2 immunostaining. Of them, 10 patients had discordant lateralization between pre- and post-ACTH. In the genetic analysis, the rate of somatic mutations was not significantly different between APA patients with versus without a diagnostic discrepancy. In the immunohistochemical analysis, CYP11B2 levels and the frequency of aldosterone-producing cell clusters (APCCs) in APAs were almost identical between patients with versus without a diagnostic discrepancy. However, both the number and summed area of APCCs in APAs were significantly smaller in patients with concordant results than in those whose diagnosis changed to bilateral PA post-ACTH stimulation. In conclusion, lateralization by AVS was affected by APCCs in the adjacent gland, but not by APA-related factors such as somatic gene mutations. PMID:29899838

  16. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    Science.gov (United States)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  17. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  18. Three-Dimensional Environment Sustains Hematopoietic Stem Cell Differentiation into Platelet-Producing Megakaryocytes.

    Science.gov (United States)

    Pietrzyk-Nivau, Audrey; Poirault-Chassac, Sonia; Gandrille, Sophie; Derkaoui, Sidi-Mohammed; Kauskot, Alexandre; Letourneur, Didier; Le Visage, Catherine; Baruch, Dominique

    2015-01-01

    Hematopoietic stem cells (HSC) differentiate into megakaryocytes (MK), whose function is to release platelets. Attempts to improve in vitro platelet production have been hampered by the low amplification of MK. Providing HSC with an optimal three-dimensional (3D) architecture may favor MK differentiation by mimicking some crucial functions of the bone marrow structure. To this aim, porous hydrogel scaffolds were used to study MK differentiation from HSC as well as platelet production. Flow cytometry, qPCR and perfusion studies showed that 3D was suitable for longer kinetics of CD34+ cell proliferation and for delayed megakaryocytic differentiation far beyond the limited shelf-life observed in liquid culture but also increased production of functional platelets. We provide evidence that these 3D effects were related to 1) persistence of MK progenitors and precursors and 2) prolongation of expression of EKLF and c-myb transcription factors involved in early MK differentiation. In addition, presence of abundant mature MK with increased ploidy and impressive cytoskeleton elongations was in line with expression of NF-E2 transcription factor involved in late MK differentiation. Platelets produced in flow conditions were functional as shown by integrin αIIbβ3 activation following addition of exogenous agonists. This study demonstrates that spatial organization and biological cues synergize to improve MK differentiation and platelet production. Thus, 3D environment constitutes a powerful tool for unraveling the physiological mechanisms of megakaryopoiesis and thrombopoiesis in the bone marrow environment, potentially leading to an improved amplification of MK and platelet production.

  19. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    Science.gov (United States)

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  20. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties

    International Nuclear Information System (INIS)

    Sista, Subhash; Wen, Cuie; Hodgson, Peter D.; Pande, Gopal

    2013-01-01

    It is important to understand the cellular and molecular events that take place at the cell–material interface of implants used for bone repair. An understanding of the mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material is fundamental in deciding the fate of the cells that come in contact with it. In this study, we compared the relative gene expression of markers that are known to be associated with cell adhesion and differentiation in MC3T3 osteoblast cells, at various time points after plating the cells on surfaces of titanium (Ti) and its two alloys, titanium–zirconium (TiZr) and titanium–niobium (TiNb) by using Quantitative Real Time Polymerase Chain Reaction (RT-PCR). Our analysis indicated that expression of adhesion supporting genes was higher on TiZr surface as compared to Ti and TiNb. The behavior of these genes is possibly driven by a higher surface energy of TiZr. However no significant difference in the expression of differentiation related genes could be seen between the two alloys, although on both substrates it was higher as compared to unalloyed Ti. We propose that substrate composition of the alloys can influence the adhesion and differentiation related gene expression and that Ti alloys are better substrates for inducing osteogenesis as compared to unalloyed Ti. - Highlights: ► Methodology for comparing gene expression in osteoblasts plated on Ti, TiZr or TiNb ► Alloys with higher surface energy (TiZr) induce cell adhesion genes more efficiently ► Alloyed Ti is superior to unalloyed Ti to induce osteoblast differentiation genes

  1. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections

    Directory of Open Access Journals (Sweden)

    Y. Kaneko

    2016-09-01

    Full Text Available 5-Hydroxytryptamine (5-HT produced by enterochromaffin (EC cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of autofluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of autofluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between autofluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Autofluorescence+ EC cells were detected in the colon of mice and rats. Autofluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or autofluorescence. These results suggest that autofluorescence+ cells are identical to 5-HT+ cells, and the source of autofluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This autofluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.

  2. Peripheral blood CD161+ T cells from asthmatic patients are activated during asthma attack and predominantly produce IFN-gamma.

    Science.gov (United States)

    González-Hernández, Y; Pedraza-Sánchez, S; Blandón-Vijil, V; del Río-Navarro, B E; Vaughan, G; Moreno-Lafont, M; Escobar-Gutiérrez, A

    2007-04-01

    In humans, T cells expressing the CD161 molecule NKR-P1A constitute around 20% of the circulating CD3(+) cells and are potentially immunoregulatory in several diseases. Their role in asthma is not well known, but they could participate in asthma attacks. To determinate whether activation of CD161(+) T cells and their cytokine production correlate with clinical status of asthma, we analysed blood samples from asthma attack patients (AAP) and stable asthma patients (SAP) in comparison with healthy non-atopic controls (HC). There was a significant higher baseline expression of CD69 on T cells from AAP and the difference was more notorious on CD161(+) T cells; upregulation of CD69 was observed on both CD161(-) and CD161(+) T cells driven by Dermatophagoides pteronyssinus crude extract, whereas polyclonal stimulation with phorbol 12-myristate 13-acetate plus ionomycin predominantly induced IFN-gamma but no IL-4, IL-5 and IL-13 by CD161(+) T cells in all groups; upon polyclonal stimulation, there were more CD161(+) T cells producing IFN-gamma and less CD161(-) T cells producing this cytokine, contrasting with the opposite results observed in SAP and HC groups. Our results indicate that, during asthma attack, CD161(+) T cells are activated and are able to produce predominantly IFN-gamma but no Th2 cytokines. We hypothesize that during an asthma attack, IFN-gamma produced by CD161(+) T cells could help to reestablish the Th1/Th2 equilibrium. These observations may contribute to the understanding of the immune mechanisms involved in asthma attacks.

  3. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Davis, J.M.; Arakawa, T.; Strickland, T.W.; Yphantis, D.A.

    1987-01-01

    Physicochemical properties of recombinant human erythropoietin were examined. This protein, produced in Chinese hamster ovary cells, showed a conformation apparently identical with the natural product isolated from human urine when examined by circular dichroism, UV absorbance, and fluorescence spectroscopy. Sedimentation equilibrium experiments showed the recombinant erythropoietin preparation to be essentially a single macromolecular component with a molecular weight of 30,400 and a carbohydrate content of 39%. The Stokes radius of recombinant erythropoietin was estimated to be 32 A from gel filtration, much larger than the 20-A radius calculated for a sphere of the observed molecular weight. This difference may be ascribed to the extensive glycosylation. The fluorescence and phosphorescence spectra showed that the luminescent tryptophan(s) is (are) solvent-exposed and can be quenched by I - and acrylamide but not by Cs + . On acid titration, the recombinant erythropoietin showed a conformational transition with a midpoint of pH 4.1. This suggests that the net charges on the protein moiety rather than on the whole molecule play a role in protein structure stability

  4. Control of infectious mortality due to carbapenemase-producing Klebsiella pneumoniae in hematopoietic stem cell transplantation.

    Science.gov (United States)

    Forcina, A; Baldan, R; Marasco, V; Cichero, P; Bondanza, A; Noviello, M; Piemontese, S; Soliman, C; Greco, R; Lorentino, F; Giglio, F; Messina, C; Carrabba, M; Bernardi, M; Peccatori, J; Moro, M; Biancardi, A; Nizzero, P; Scarpellini, P; Cirillo, D M; Mancini, N; Corti, C; Clementi, M; Ciceri, F

    2017-01-01

    Carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) infections are an emerging cause of death after hematopoietic stem cell transplantation (HSCT). In allogeneic transplants, mortality rate may rise up to 60%. We retrospectively evaluated 540 patients receiving a transplant from an auto- or an allogeneic source between January 2011 and October 2015. After an Institutional increase in the prevalence of KPC-Kp bloodstream infections (BSI) in June 2012, from July 2012, 366 consecutive patients received the following preventive measures: (i) weekly rectal swabs for surveillance; (ii) contact precautions in carriers (iii) early-targeted therapy in neutropenic febrile carriers. Molecular typing identified KPC-Kp clone ST512 as the main clone responsible for colonization, BSI and outbreaks. After the introduction of these preventive measures, the cumulative incidence of KPC-Kp BSI (P=0.01) and septic shocks (P=0.01) at 1 year after HSCT was significantly reduced. KPC-Kp infection-mortality dropped from 62.5% (pre-intervention) to 16.6% (post-intervention). Day 100 transplant-related mortality and KPC-Kp infection-related mortality after allogeneic HSCT were reduced from 22% to 10% (P=0.001) and from 4% to 1% (P=0.04), respectively. None of the pre-HSCT carriers was excluded from transplant. These results suggest that active surveillance, contact precautions and early-targeted therapies, may efficiently control KPC-Kp spread and related mortality even after allogeneic HSCT.

  5. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    Science.gov (United States)

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  6. TNFR2 expression on CD25hiFOXP3+ T cells induced upon TCR stimulation of CD4 T cells identifies maximal cytokine-producing effectors.

    Directory of Open Access Journals (Sweden)

    Chindu eGovindaraj

    2013-08-01

    Full Text Available In this study, we show that CD25hiTNFR2+ cells can be rapidly generated in vitro from circulating CD4 lymphocytes by polyclonal stimuli anti-CD3 in the presence of anti-CD28. The in vitro induced CD25hiTNFR2+ T cells express a conventional Treg phenotype FOXP3+CTLA4+CD127lo/-, but produce effector and immunoregulatory cytokines including IL-2, IL-10 and IFN-g. These induced CD25hiTNFR2+ T cells do not suppress target cell proliferation, but enhance it instead. Thus the CD25hiTNFR2+ phenotype induced rapidly following CD3/28 cross linking of CD4 T cells identifies cells with maximal proliferative and effector cytokine producing capability. The in vivo counterpart of this cell population may play an important role in immune response initiation.

  7. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  8. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    Science.gov (United States)

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  9. Differentiation of IL-17-Producing Invariant Natural Killer T Cells Requires Expression of the Transcription Factor c-Maf

    Directory of Open Access Journals (Sweden)

    Jhang-Sian Yu

    2017-10-01

    Full Text Available c-Maf belongs to the large Maf family of transcription factors and plays a key role in the regulation of cytokine production and differentiation of TH2, TH17, TFH, and Tr1 cells. Invariant natural killer T (iNKT cells can rapidly produce large quantity of TH-related cytokines such as IFN-γ, IL-4, and IL-17A upon stimulation by glycolipid antigens, such as α-galactosylceramide (α-GalCer. However, the role of c-Maf in iNKT cells and iNKT cells-mediated diseases remains poorly understood. In this study, we demonstrate that α-GalCer-stimulated iNKT cells express c-Maf transcript and protein. By using c-Maf-deficient fetal liver cell-reconstituted mice, we further show that c-Maf-deficient iNKT cells produce less IL-17A than their wild-type counterparts after α-GalCer stimulation. While c-Maf deficiency does not affect the development and activation of iNKT cells, c-Maf is essential for the induction of IL-17-producing iNKT (iNKT17 cells by IL-6, TGF-β, and IL-1β, and the optimal expression of RORγt. Accordingly, c-Maf-deficient iNKT17 cells lose the ability to recruit neutrophils into the lungs. Taken together, c-Maf is a positive regulator for the expression of IL-17A and RORγt in iNKT17 cells. It is a potential therapeutic target in iNKT17 cell-mediated inflammatory disease.

  10. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.

    Science.gov (United States)

    Hoshino, Marie; Kaneko, Kotaro; Miyamoto, Yoichi; Yoshimura, Kentaro; Suzuki, Dai; Akaike, Takaaki; Sawa, Tomohiro; Ida, Tomoaki; Fujii, Shigemoto; Ihara, Hideshi; Tanaka, Junichi; Tsukuura, Risa; Chikazu, Daichi; Mishima, Kenji; Baba, Kazuyoshi; Kamijo, Ryutaro

    2017-09-01

    In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO. Copyright © 2017. Published by Elsevier Inc.

  11. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jochen Behrends

    Full Text Available Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB. Besides interleukin (IL-17A, IL-22 represents a classical T helper (TH17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.

  12. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} production by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.

  13. Coating a polystyrene well-plate surface with synthetic hematite, goethite and aluminium hydroxide for cell mineral adhesion studies in a controlled environment

    International Nuclear Information System (INIS)

    Pouran, Hamid M.; Banwart, Steve A.; Romero-Gonzalez, Maria

    2014-01-01

    Highlights: • Hematite, goethite and aluminium hydroxide were synthesized and characterize. • Polystyrene cell culture well plates were coated with the synthetic metal oxides. • The coated well plates proven to be completely identical to the synthetic minerals. • The coating method is compatible with what occurs in aquifers with metal oxides. • This method provides a key experimental part for cell mineral adhesion studies. - Abstract: Iron and aluminium oxides are available in many climatic regions and play a vital role in many environmental processes, including the interactions of microorganisms in contaminated soils and groundwater with their ambient environment. Indigenous microorganisms in contaminated environments often have the ability to degrade or transform those contaminants, a concept that supports an in situ remediation approach and uses natural microbial populations in order to bio-remediate polluted sites. These metal oxides have a relatively high pH-dependent surface charge, which makes them good candidates for studying mineral–bacterial adhesion. Given the importance of understanding the reactions that occur at metal oxide and bacterial cell interfaces and to investigate this phenomenon further under well-characterized conditions, some of the most common iron and aluminium oxides; hematite, goethite and aluminium hydroxide, were synthesized and characterized and a coating method was developed to coat polystyrene well-plates as a surface exposable to bacterial adhesion with these minerals (non-treated polystyrene-12 well-plates which are used for cell cultures). The coating process was designed in a way that resembles naturally coated surfaces in aquifers. Hematite, Fe 2 O 3 , was synthesized from acidic FeCl 3 solution, while goethite, FeOOH, and aluminium hydroxide, Al(OH) 3 , were prepared from an alkaline solution of Fe(NO 3 ) 3 and Al(NO 3 ) 3 . They were further characterized using X-ray diffraction (XRD), Fourier transform infrared

  14. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  15. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  16. Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes.

    Science.gov (United States)

    De Bem, Tiago H C; Chiaratti, Marcos R; Rochetti, Raquel; Bressan, Fabiana F; Sangalli, Juliano R; Miranda, Moysés S; Pires, Pedro R L; Schwartz, Kátia R L; Sampaio, Rafael V; Fantinato-Neto, Paulo; Pimentel, José R V; Perecin, Felipe; Smith, Lawrence C; Meirelles, Flávio V; Adona, Paulo R; Leal, Cláudia L V

    2011-10-01

    Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585±34,775 vs. 595,579±31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179±45,617 vs. 498,771±33,231) and blastocysts (816,627±40,235 vs. 765,332±51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.

  17. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products

    Directory of Open Access Journals (Sweden)

    Md. Mahfuzur Rahman Shah

    2016-04-01

    Full Text Available Many species of microalgae have been used as source of nutrient rich food, feed and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as super anti-oxidant. Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. Thanks to many researches it is now evident, that astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future. Thus, this comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide towards economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.

  18. Novel whole-cell Reporter Assay for Stress-Based Classification of Antibacterial Compounds Produced by Locally Isolated Bacillus spp.

    OpenAIRE

    Nithya, Vadakedath; Halami, Prakash M.

    2012-01-01

    Reporter bacteria are beneficial for the rapid and sensitive screening of cultures producing peptide antibiotics, which can be an addition or alternative to the established antibiotics. This study was carried out to validate the usability of specific reporter strains for the target mediated identification of antibiotics produced by native Bacillus spp. isolated from different food sources. During preliminary classification, cell wall stress causing Bacillus isolates were screened by using rep...

  19. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells.

    Science.gov (United States)

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R; Atwal, Harjot; de la Mata, A Paulina; Harynuk, James; Case, Rebecca J

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

  1. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies

    DEFF Research Database (Denmark)

    Noh, Soo Min; Shin, Seunghyeon; Min Lee, Gyun

    2018-01-01

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1...... and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated...... in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation...

  2. Characteristics of cells producing stimulator for the proliferation of colony forming unit-spleen (CFU-S)

    International Nuclear Information System (INIS)

    Abdul Manaf Ali; Wright, E.G.; Riches, A.C.

    1994-01-01

    The presence of stimulator for haemopoietic stem cell (CFU-S) proliferation in regenerating bone marrow was assayed by incubating the conditioned medium (CM) prepared from bone marrow with quiescent CFU-S from normal bone marrow. The percentage of CFU-S normal bone marrow in DNA synthesis increased more than 30 percent after incubating with CM of 4.5 Gy regenerating bone marrow. Stimulator was also present in bone marrow of mice at 9.0 Gy whole body X-irradiation. However the conditioned medium prepared from regenerating bone marrow without Fc and Ia-2k cells failed to increase the percentage of CFU-S in DNA synthesis. On the other hand, elimination of Thy 1.2 positive cells with complement cytolysis did not affect the ability of regenerating bone marrow to produce stimulator. These observations suggest that the stimulator producing cells are radio-resistant, Thy 1.2 negative, Fc and Ia-2k positive

  3. Derivation of Insulin Producing Cells From Human Endometrial Stromal Stem Cells and Use in the Treatment of Murine Diabetes

    OpenAIRE

    Santamaria, Xavier; Massasa, Efi E; Feng, Yuzhe; Wolff, Erin; Taylor, Hugh S

    2011-01-01

    Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes, however the shortage of cadaveric donors and limitations due to rejection require alternative solutions. Multipotent cells derived from the uterine endometrium have the ability to differentiate into mesodermal and ectodermal cellular lineages, suggesting the existence of mesenchymal stem cells in this tissue. We differentiated human endometrial stromal stem cells (ESSC) into insulin secreting cells using ...

  4. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  5. Detection of Transketolase in Bone Marrow—Derived Insulin-Producing Cells: Benfotiamine Enhances Insulin Synthesis and Glucose Metabolism

    OpenAIRE

    Oh, Seh-Hoon; Witek, Rafal P.; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E.

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the prolife...

  6. Homologous recombination in hybridoma cells: heavy chain chimeric antibody produced by gene targeting.

    OpenAIRE

    Fell, H P; Yarnold, S; Hellström, I; Hellström, K E; Folger, K R

    1989-01-01

    We demonstrate that murine myeloma cells can efficiently mediate homologous recombination. The murine myeloma cell line J558L was shown to appropriately recombine two transfected DNA molecules in approximately 30% of cells that received and integrated intact copies of both molecules. This activity was then exploited to direct major reconstructions of an endogenous locus within a hybridoma cell line. Production of antigen-specific chimeric heavy chain was achieved by targeting the human IgG1 h...

  7. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages.

    Science.gov (United States)

    Ahn, Sehee; Jeong, Dongjin; Oh, Sae Jin; Ahn, Jiye; Lee, Seung Hyo; Chung, Doo Hyun

    2017-02-01

    Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    Science.gov (United States)

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  9. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  10. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  11. Bovine conceptus of Bos indicus produced by somatic cell nuclear transfer and parthenogenesis present morphological variations since the blastocyst stage

    Directory of Open Access Journals (Sweden)

    F.D. Oliveira

    2015-12-01

    Full Text Available In cattle, embryo development is characterized by the appearance of two distinct cell layers, the trophectoderm and the inner cell mass. The latter will undergo differentiation to form the embryonic disc consisting of the epiblast and hypoblast. The aim of this study was to ultrastructurally characterize the bovine embryo from different in vitro production techniques, with emphasis on trophectoderm and inner cell mass cells. Bovine embryos on day 7 (conception = D1 of pregnancy, derived via in vitro production techniques, were fixed for light and transmission electron microscopy processing. Results suggested that embryos produced by nuclear transfer of somatic cells and parthenogenesis showed significant changes in macroscopic and microscopic structure. Size was reduced, and the inner cell mass had no defined shape. Furthermore, organelles responsible for the absorption processes, communication, growth, and cellular metabolism were fewer and had changes in shape, when compared to results in embryos produced by in vitrofertilization. We concluded that embryos produced by parthenogenesis and SCNT exhibit morphological differences when compared with IVF embryos, such as undeveloped blastocoel, poorly defined distribution of ICM, and morphological differences in organelles.

  12. Estimation by limiting dilution analysis of human IL 2-secreting T cells: detection of IL 2 produced by single lymphokine-secreting T cells

    International Nuclear Information System (INIS)

    Vie, H.; Miller, R.A.

    1986-01-01

    We present here a culture method for the estimation, in human blood, of the number of lymphocytes that can respond to mitogen by producing interleukin 2 (IL 2). T cells are cultured at limiting dilutions with PHA or Con A in the presence of Epstein Barr virus-transformed human lymphoblastoid cells (EB-LCL), and supernatants are tested 3 days later for IL 2 content by a cell proliferation assay. The distribution of negative wells follows the expected Poisson single-hit relationship, suggesting that the assay is sensitive to single cells of a single limiting cell type. On average, 16.3% of peripheral blood mononuclear cells can produce IL 2 in such clonal cultures (mean of 12 determinations; SD = 5.6%). Surprisingly, irradiation (up to 2000 rad) of the titrated responder cell population diminishes the estimated frequencies by less than 50%. The ability to detect IL 2 levels in cultures containing only a single, nonproliferating T lymphocyte allows us to estimate the amount of IL 2 generated by an individual effector cell during a 3-day culture interval after mitogen stimulation. The average responding, irradiated T cell generates 0.92 pg of IL 2 (median) within 3 days. The method presented provides a straightforward way to provide independent estimates of responding cell number and of lymphokine production per cell in a variety of clinical situations

  13. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells

    Science.gov (United States)

    Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon

    2013-01-01

    Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760

  14. CD90-positive cells, an additional cell population, produce laminin α2 upon transplantation to dy3k/dy3k mice

    International Nuclear Information System (INIS)

    Fukada, So-ichiro; Yamamoto, Yukiko; Segawa, Masashi; Sakamoto, Kenta; Nakajima, Mari; Sato, Masaki; Morikawa, Daisuke; Uezumi, Akiyoshi; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Tsujikawa, Kazutake; Yamamoto, Hiroshi

    2008-01-01

    Laminin α2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin α2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin α2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin α2 in non-myogenic cells of normal mice, and we could enrich these laminin α2-producing cells in CD90 + cell fractions. Intriguingly, the number of CD90 + cells increased dramatically during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin α2 in CD90 + cells was not dependent on fusion with myogenic cells. Thus, CD90 + cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy

  15. Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins.

    Science.gov (United States)

    Wu, Changyou; Li, Zitao; Fu, Xiaoying; Yu, Sifei; Lao, Suihua; Yang, Binyan

    2015-10-06

    Natural killer T (NKT) cells from mouse and human play an important role in the immune responses against Mycobacterium tuberculosis. However, the function of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that after stimulation with M. tuberculosis antigens, NKT cells isolated from tuberculosis (TB) pleural fluid mononuclear cells (PFMCs) produced IL-21 and other cytokines including IFN-γ, TNF-α, IL-2 and IL-17. IL-21-expressing NKT cells in PFMCs displayed effector memory phenotype, expressing CD45RO(high)CD62L(low)CCR7(low). Moreover, NKT cells expressed high levels of CXCR5 and all of IL-21-expressing NKT cells co-expressed CXCR5. The frequency of BCL-6-expression was higher in IL-21-expressing but not in non-IL-21-expressing CD3(+)TCRvβ11(+) NKT cells. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs produced IFN-γ and IL-21 after stimulation, which expressed CD40L. Importantly, CD3(+)TCRvβ11(+) NKT cells provided help to B cells for the production of IgG and IgA. Taken together, our data demonstrate that CD3(+)TCRvβ11(+) NKT cells from a local site of M. tuberculosis infection produce IL-21, express CXCR5 and CD40L, help B cells to secrete IgG and IgA, and may participate in local immune responses against M. tuberculosis infection.

  16. Adhesion of yeast cells on surface of polymers produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu, Zhaoxin; Takehisa, Masaaki; Xie Zongchuan.

    1995-01-01

    The adhesion of yeast (Saccharomyces formesences) cells on polymers was studied thermodynamically. The polymers were laminally prepared by means of radiation polymerization. By measuring contact angles, we calculated dispersion component and polar component of surface free energy of the polymers and the cells, and interfacial free energy between the polymer and the cells. Then interfacial free energy change of the cell adhesion to surface of the polymer was evaluated. The adhesion behavior of yeast cells on the polymers was observed by optical microscope. From above results, we conclude that the initial adhesion of the cells is related to the surface free energy of the polymer, but the irreversible adhesion may be close to the polar component in surface free energy. The high polar component is favourable the irreversible adhesion of yeast cells. (author)

  17. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, Takashi

    1993-01-01

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  18. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....

  19. Regulation of hemopoiesis: inhibitors and stimulators produced by a murine bone marrow stromal cell line (H-1)

    International Nuclear Information System (INIS)

    Cronkite, E.P.; Miller, M.E.; Garnett, H.; Harigaya, K.

    1982-01-01

    A murine cell line (H-1) probably derived from the adventitial reticular cell has been isolated and preserved. This line produces: (1) CSF; (2) a labile inhibitor of CFU-c proliferation with preferential action on granulopoiesis; (3) PGE; (4) proliferation inhibitors of BFU-E and GEMM; and (5) suppression of entry of CFU-S into DNA synthesis in vitro. It is postulated that the adventitial reticular cell (ARC) may play a major regulatory role in hemopoiesis through intramedullary production of the factors described. The nature of the signals that activate the genes in the ARC which are coded for the factors described is not known

  20. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Science.gov (United States)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  1. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis.

    Science.gov (United States)

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2014-07-01

    Sarcoidosis is a multisystem granulomatous disorder characterized by marked T-cell expansion of T helper 1 (Th1) cells. The cause of T-cell overactivity is unknown. We hypothesized that interleukin-10 (IL-10) production by a yet undefined cell type might be defective, resulting in loss of regulation of T-cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from the peripheral blood of corticosteroid-naïve sarcoidosis patients (n = 51) produced less IL-10 compared to controls, and were less able to suppress T-cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity score. As invariant natural killer T (iNKT) cells are known to both interact with monocytes and be reduced in sarcoidosis patients, we then asked whether iNKT-specific defects might be responsible for this reduced IL-10 production. We found that greater numbers of circulating iNKT cells was associated with higher IL-10 production. Moreover, iNKT cells enhanced monocytic IL-10 production in vitro. Defective IL-10 production and T-cell suppression by sarcoidosis monocytes could be restored following their coculture with iNKT cells, in a CD1d- and cell contact-dependent process. We suggest that reduced iNKT-cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T-cell expansion in sarcoidosis. These findings provide fresh insight into the mechanism of sarcoidosis disease, and interaction between iNKT cells and monocytes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells

    International Nuclear Information System (INIS)

    Moonen, P.; Mermod, J.J.; Ernst, J.F.; Hirschi, M.; DeLamarter, J.F.

    1987-01-01

    Human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced by several recombinant sources including Escherichia coli, yeast, and animal cells was studied. Recombinant animal cells produced hGM-CSF in low quantities and in multiple forms of varying size. Mammalian hGM-CSF was purified 200,000-fold using immunoaffinity and lectin chromatography. Partially purified proteins produced in yeast and mammalian cells were assayed for the effects of deglycosylation. Following enzymatic deglycosylation, immunoreactivity was measured by radioimmunoassay and biological activity was measured in vitro on responsive human primary cells. Removal of N-linked oligosaccharides from both proteins increased their immunoreactivities by 4- to 8-fold. Removal of these oligosaccharides also increased their specific biological activities about 20-fold, to reach approximately the specific activity of recombinant hGM-CSF from E. coli. The E. coli produced-protein-lacking any carbohydrate- had by far the highest specific activity observed for the recombinant hGM-CSFs

  3. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: Protective and deleterious effects

    NARCIS (Netherlands)

    Grivennikov, Sergei I.; Tumanov, Alexei V.; Liepinsh, Dmitry J.; Kruglov, Andrei A.; Marakusha, Boris I.; Shakhov, Alexander N.; Murakami, Takaya; Drutskaya, Ludmila N.; Förster, Irmgard; Clausen, Björn E.; Tessarollo, Lino; Ryffel, Bernhard; Kuprash, Dmitry V.; Nedospasov, Sergei A.

    2005-01-01

    Tumor necrosis factor (TNF, TNFalpha) is implicated in various pathophysiological processes and can be either protective, as in host defense, or deleterious, as in autoimmunity or toxic shock. To uncover the in vivo functions of TNF produced by different cell types, we generated mice with TNF

  4. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    Science.gov (United States)

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A high-speed data-collection system for large-unit-cell crystals using an imaging plate as a detector

    International Nuclear Information System (INIS)

    Sato, Mamoru; Yamamoto, Masaki; Imada, Katsumi; Katsube, Yukiteru; Tanaka, Nobuo; Higashi, Tsuneyuki

    1992-01-01

    A high-speed data-collection system for large-unit-cell crystals is presented, using the Fuji Imaging Plate as an X-ray detector and a rotating-anode generator as the X-ray source. It is an automatic data-acquisition system that requires almost no manual intervention. The quality of data collected on the system is discussed. Merging R values ranged from 0.04 to 0.05. Compared with a four-circle diffractometer, data reproducibility was better, isomorphous/anomalous Patterson maps were almost identical in quality and data from a small-molecule crystal, cytidine, were of almost the same quality. Protein structures were refinable using the data measured on the system, the final crystallographic R value of the 2.2 A 3-isopropylmalate dehydrogenase structure being 0.185 and that of the 1.88 A Flammulina veltipes agglutinin structure being 0.199. (orig.)

  6. Characterization of injection i