WorldWideScience

Sample records for plate boundary intersecting

  1. Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries

    International Nuclear Information System (INIS)

    Voinov, O.V.

    2004-01-01

    The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru

  2. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  3. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  4. Intersection Group Dynamic Subdivision and Coordination at Intraregional Boundaries in Sudden Disaster

    Directory of Open Access Journals (Sweden)

    Ciyun Lin

    2015-01-01

    Full Text Available This paper aims at the traffic flow agglomeration effect characteristics and rapid evacuation requirement in sudden disaster; operation time of intraregional boundaries traffic signal coordination was presented firstly. Then intraregional boundaries intersection group dynamic subdivision and consolidation method based on relative similarity degree and similarity coefficient of adjacent intersections was put forward. As to make the traffic control strategy adapt to traffic condition of different intraregional boundaries intersection groups, this paper proposes an intraregional boundaries traffic signal coordination and optimization technology based on organic computing theory. Finally, this paper uses Delphi 7.0, MapX, and Oracle developing a software package, combined with Paramics V6 Simulator to validate the methods of this paper. The result shows that it can obviously improve disaster affected regional traffic signal control efficiency which reduces average traffic delay by 30–35%, decreases vehicle queue by more than 20% and reduces evacuation time more than 13.06%.

  5. Iberian plate kinematics: A jumping plate boundary between Eurasia and Africa

    Science.gov (United States)

    Srivastava, S.P.; Schouten, Hans; Roest, W.R.; Klitgord, Kim D.; Kovacs, L.C.; Verhoef, J.; Macnab, R.

    1990-01-01

    THE rotation of Iberia and its relation to the formation of the Pyrenees has been difficult to decipher because of the lack of detailed sea-floor spreading data, although several models have been proposed1-7. Here we use detailed aeromagnetic measurements from the sea floor offshore of the Grand Banks of Newfoundland to show that Iberia moved as part of the African plate from late Cretaceous to mid-Eocene time, with a plate boundary extending westward from the Bay of Biscay. When motion along this boundary ceased, a boundary linking extension in the King's Trough to compression along the Pyrenees came into existence. Finally, since the late Oligocene, Iberia has been part of the Eurasian plate, with the boundary between Eurasia and Africa situated along the Azores-Gibraltar fracture zone.

  6. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  7. Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary

    Science.gov (United States)

    Neely, James S.; Furlong, Kevin P.

    2018-03-01

    The San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon Islands, provides an opportunity to study the transform boundary development process. Recent seismicity (2013-2016) along the 280 km long SCT, known as a Subduction-Transform Edge Propagator (STEP) fault, highlights the tearing process and ongoing development of the plate boundary. The region's earthquakes reveal two key characteristics. First, earthquakes at the western terminus of the SCT, which we interpret to indicate the Australia plate tearing, display disparate fault geometries. These events demonstrate that plate tearing is accommodated via multiple intersecting planes rather than a single through-going fault. Second, the SCT hosts sequences of Mw ∼7 strike-slip earthquakes that migrate westward through a rapid succession of events. Sequences in 1993 and 2015 both began along the eastern SCT and propagated west, but neither progression ruptured into or nucleated a large earthquake within the region near the tear. Utilizing b-value and Coulomb Failure Stress analyses, we examine these along-strike variations in the SCT's seismicity. b-Values are highest along the youngest, western end of the SCT and decrease with increasing distance from the tear. This trend may reflect increasing strain localization with increasing displacement. Coulomb Failure Stress analyses indicate that the stress conditions were conducive to continued western propagation of the 1993 and 2015 sequences suggesting that the unruptured western SCT may have fault geometries or properties that inhibit continued rupture. Our results indicate a displacement-driven fault maturation process. The multi-plane Australia plate tearing likely creates a western SCT with diffuse strain accommodated along a network of disorganized faults. After ∼90 km of cumulative displacement (∼900,000 yr of plate motion), strain localizes and faults align, allowing the SCT to host

  8. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  9. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2014-10-28

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  10. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel

    2014-01-01

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  11. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  12. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    Science.gov (United States)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  13. Chevron defect at the intersection of grain boundaries with free surfaces in Au

    International Nuclear Information System (INIS)

    Radetic, T.; Lancon, F.; Dahmen, U.

    2002-01-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90 deg. tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1 nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary

  14. Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.

    Science.gov (United States)

    Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.

    2014-12-01

    The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and

  15. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  16. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    Science.gov (United States)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  17. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  18. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  19. The Intersection between the Gloria Transform Fault and the Tore-Madeira Rise in the NE Atlantic: New Tectonic Insights from Analog Modeling Results

    Science.gov (United States)

    Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.

    2014-12-01

    The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with

  20. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  1. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  2. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  3. The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary

    Directory of Open Access Journals (Sweden)

    Daniel W. Zietlow

    2012-12-01

    Full Text Available The experimentally measured resonance frequencies of a thin annular plate with a small ratio of inner to outer radii and clamped on the inner boundary are compared to the predictions of classical thin-plate (CTP theory and a finite-element (FE model. The results indicate that, contrary to the conclusions presented in a number of publications, CTP theory does not accurately predict the frequencies of a relatively small number of resonant modes at lower frequencies. It is shown that these inaccuracies are attributable to shear deformations, which are thought to be negligible in thin plates and are neglected in CTP theory. Of particular interest is the failure of CTP theory to accurately predict the resonance frequency of the lowest vibrational mode, which was shifted approximately 30% by shear motion at the inner boundary.

  4. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  5. Seafloor spreading on the Southeast Indian Ridge over the last one million years: a test of the Capricorn plate hypothesis

    Science.gov (United States)

    Conder, James A.; Forsyth, Donald W.

    2001-05-01

    Plate motions in the Indian Ocean are inconsistent with a rigid Indo-Australian plate. An equatorial, diffuse boundary dividing the plate into separate Indian and Australian plates significantly improves the fit of kinematic plate models to the spreading rates, transform azimuths, and earthquake slip vectors on the spreading center boundaries. An additional boundary, further dividing the Australian plate into Australian and Capricorn plates has been proposed to account for much of the remaining inconsistency and the pattern of intraplate earthquakes [J.-Y. Royer, R.G. Gordon, Science 277 (1997) 1268-1274]. The proposed boundary is ˜2000 km wide where it intersects the Southeast Indian Ridge. Several recent geophysical cruises to the Southeast Indian Ridge, including a cruise within the proposed boundary, provide many new data for investigating the validity of the Capricorn plate model. These new observations strongly support the hypothesis that the Capricorn plate exists. Statistical tests of the data from the Southeast Indian Ridge alone are not sufficient to confirm it, but motion about the Rodriguez Triple Junction (RTJ) suggests some non-rigidity in the Antarctica-Australia-Somalia circuit. Inferred deformation with enforced closure about the RTJ leads to an estimate of plate motion consistent with the Capricorn plate model. However, the diffuse Capricorn-Australia boundary does not extend south of the St. Paul Fracture Zone, 800 km narrower than the previously proposed boundary.

  6. Transitional and turbulent flat-plate boundary layers with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  7. Buckling transition and boundary layer in non-Euclidean plates.

    Science.gov (United States)

    Efrati, Efi; Sharon, Eran; Kupferman, Raz

    2009-07-01

    Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.

  8. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    Science.gov (United States)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly consolidated sediments at the deformation front are interpreted to facilitate megathrust rupture to the trench (Hupers et al., 2017). A uniformly strong plate interface at Cascadia may inhibit microseismicity while building stress that is released in great earthquakes.

  9. Refined open intersection numbers and the Kontsevich-Penner matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Alexander [Center for Geometry and Physics, Institute for Basic Science (IBS),Pohang 37673 (Korea, Republic of); Centre de Recherches Mathématiques (CRM), Université de Montréal,Montréal (Canada); Department of Mathematics and Statistics, Concordia University,Montréal (Canada); Institute for Theoretical and Experimental Physics (ITEP),Moscow (Russian Federation); Buryak, Alexandr [Department of Mathematics, ETH Zurich, Zurich (Switzerland); Tessler, Ran J. [Institute for Theoretical Studies, ETH Zurich,Zurich (Switzerland)

    2017-03-23

    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  10. Refined open intersection numbers and the Kontsevich-Penner matrix model

    International Nuclear Information System (INIS)

    Alexandrov, Alexander; Buryak, Alexandr; Tessler, Ran J.

    2017-01-01

    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  11. Stress accumulation and release at complex transform plate boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))

    1992-10-01

    Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.

  12. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate

    OpenAIRE

    Guo, Yan; Nguyen, Toan T.

    2014-01-01

    This paper concerns the validity of the Prandtl boundary layer theory in the inviscid limit for steady incompressible Navier-Stokes flows. The stationary flows, with small viscosity, are considered on $[0,L]\\times \\mathbb{R}_{+}$, assuming a no-slip boundary condition over a moving plate at $y=0$. We establish the validity of the Prandtl boundary layer expansion and its error estimates.

  13. Defects and boundary layers in non-Euclidean plates

    International Nuclear Information System (INIS)

    Gemmer, J A; Venkataramani, S C

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl–von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet. (paper)

  14. Global plate boundary evolution and kinematics since the late Paleozoic

    Science.gov (United States)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  15. Geological and Structural evolution of the Eurasia Africa plate boundary in the Gulf of Cadiz Central Eastern Atlantic Sea.

    OpenAIRE

    D’Oriano, Filippo

    2010-01-01

    Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibral...

  16. Interaction between bubble and air-backed plate with circular hole

    Science.gov (United States)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  17. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

    Science.gov (United States)

    Schurr, Bernd; Asch, Günter; Hainzl, Sebastian; Bedford, Jonathan; Hoechner, Andreas; Palo, Mauro; Wang, Rongjiang; Moreno, Marcos; Bartsch, Mitja; Zhang, Yong; Oncken, Onno; Tilmann, Frederik; Dahm, Torsten; Victor, Pia; Barrientos, Sergio; Vilotte, Jean-Pierre

    2014-08-21

    On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.

  18. Heat conduction in a plate-type fuel element with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Maiorino, J.R.

    1981-01-01

    A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt

  19. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  20. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    Science.gov (United States)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  1. Turbulent thermal boundary layer on a permeable flat plate

    International Nuclear Information System (INIS)

    Vigdorovich, I. I.

    2007-01-01

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses

  2. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  3. Two-media boundary layer on a flat plate

    OpenAIRE

    Nikolay Ilyich Klyuev; Asgat Gatyatovich Gimadiev; Yuriy Alekseevich Kryukov

    2014-01-01

    The present paper provides a solution to the problem of a flow over a flat semi-infinite plate set at an angle to the horizon, and having a thin liquid film on its surface by external airflow. The film is formed by extrusion of liquid from the porous wall. The paper proposes a mathematical model of a two-media boundary layer flow. The main characteristics of the flow to a zero and a first approximation are determined. A drop of frictional stress is obtained.

  4. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    Science.gov (United States)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate

  5. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    Science.gov (United States)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  6. Boundary layer on a flat plate with suction

    International Nuclear Information System (INIS)

    Favre, A.; Dumas, R.; Verollet, E.

    1961-01-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [fr

  7. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  8. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  9. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  10. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    Science.gov (United States)

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  11. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele; Acocella, Valerio; Ruch, Joel; Rivalta, Eleonora

    2015-01-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma

  12. Focused Fluid Flow along Convergent Plate Boundaries - Deriving Flow Rates along Faults from Local Upwarping of the Base of the Gas Hydrate Stability Zone

    Science.gov (United States)

    Kunath, P.; Chi, W. C.; Liu, C. S.

    2017-12-01

    Convergent plate boundaries provide the ideal opportunity to examine the interactions of deformation, fluid flow and gas hydrate stability. However, there are still processes and parameters that remain unclear or scarce. This may be in part due to the fact that in situ determination of fluid flow rate is very difficult. Here, we present a newly developed 2-D hydrothermal model for (1) simulating the steady state, thermal effect of forced heat advection along a thin and shallow dipping fault and (2) quantifying fluid velocities required to deliver a thermal anomalies manifested at the bottom-simulating reflector (BSR) at its intersection with the fault zone. Assuming the horizontal thermal conduction is negligible, we derive our model using only a few crucial parameters: (a) the thermal conductivity structure between seafloor and fault; (b) the temperature at BSR depth and the seafloor; (c) fluid flow rate; (d) geometry of the fault conduit, including depth and thickness. Temperature disturbance is then described as a function of Peclet number and of the dip of the fault. Application of our model to Site 892 at Cascadia accretionary wedge (ODP Leg 146), where borehole data provide excellent thermal constraints on the hydrology, shows consistent results. By comparing the temperatures derived at the BSRs with the temperature field of our model, the results demonstrate that the temperature discrepancy is about 0 - 0.5 oC. We propose that this simple approach can provide, on the basis of a few parameters, rough estimate of the disturbance of the temperature caused by advecting fluid. Localized lateral BSR-based heat flow variations have been observed near thrust faults along many convergent plate boundaries around the world and are associated with strong localized fluid flow. We wish to further testing this approach using other seismic datasets to estimate first order of magnitude fluid migration patterns in other convergent boundaries.

  13. Heat transfer enhancement in a turbulent natural convection boundary layer along a vertical flat plate

    International Nuclear Information System (INIS)

    Tsuji, Toshihiro; Kajitani, Tsuyoshi; Nishino, Tatsuhiko

    2007-01-01

    An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters

  14. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  15. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Govers, R.; Wortel, R.

    2014-01-01

    The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the “Bahamas Collision”) is generally invoked as a cause of this fragmentation. We propose that a second

  16. Discrete quintic spline for boundary value problem in plate deflation theory

    Science.gov (United States)

    Wong, Patricia J. Y.

    2017-07-01

    We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.

  17. An analytical study of the free and forced vibration response of a ribbed plate with free boundary conditions

    Science.gov (United States)

    Lin, Tian Ran; Zhang, Kai

    2018-05-01

    An analytical study to predict the vibration response of a ribbed plate with free boundary conditions is presented. The analytical solution was derived using a double cosine integral transform technique and then utilized to study the free and forced vibration of the ribbed plate, as well as the effect of the rib on the modal response of the uniform plate. It is shown that in addition to the three zero-frequency rigid body modes of the plate, the vibration modes of the uniform plate can be classified into four mode groups according to the symmetric properties of the plate with respect to the two orthogonal middle lines parallel to the plate edges. The four mode groups correspond to a double symmetric group, a double anti-symmetric group and two symmetric/anti-symmetric groups. Whilst the inclusion of the rib to the plate is shown to cause distortion to the distribution of vibration modes, most modes can still be traced back to the original modes of the uniform plate. Both the mass and stiffness of the rib are shown to affect the modal vibration of the uniform plate, whereby a dominant effect from the rib mass leads to a decrease in the modal frequency of the plate, whereas a dominant effect from the rib stiffness leads to an increase in plate modal frequency. When the stiffened rib behaves as an effective boundary to the plate vibration, an original plate mode becomes a pair of degenerate modes, whereby one mode has a higher frequency and the other mode has a lower frequency than that of the original mode.

  18. Numerical analysis of viscoelastic boundary layers : the case of plate withdrawal in a Maxwellian fluid

    International Nuclear Information System (INIS)

    Sadeghy, K.; Sharifi, M.

    2002-01-01

    The effect of a fluid's elasticity on the characteristics of its boundary layer was investigated in this work. A viscoelastic fluid of Maxwellian type was selected for this purpose and the flow induced in this fluid by a plate withdrawing at a constant velocity was studied. Conventional boundary layer assumptions were invoked to reduce the equations of motion to a simple form incorporating an elastic term in addition to the familiar inertial, viscous and pressure terms. It was shown that for elastic effects to be of an importance in a boundary layer, the fluid's relaxation time should be of an order much larger than its kinematic viscosity. By introducing a stream function, the governing equation was transformed into a nonlinear ODE with x-coordinate still appearing in the equation demonstrating that no similarity solution existed for this flow. The resulting equation was then solved numerically for Deborah numbers as large as 1.0. The results showed a marked formation of boundary layer adjacent to a moving wall for a Maxwellian fluid. The boundary layer thickness and the wall shear stress were found to scale with fluid's elasticity - both decreasing the higher the fluid's elasticity. It is thus anticipated that in free coating processes, the force required to impart a constant velocity to a withdrawing belt or plate would be lower if fluid's elasticity is significant. (author)

  19. Experimental Results from a Flat Plate, Turbulent Boundary Layer Modified for the Purpose of Drag Reduction

    Science.gov (United States)

    Elbing, Brian R.

    2006-11-01

    Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.

  20. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  1. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  2. Transition due to streamwise streaks in a supersonic flat plate boundary layer

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-12-01

    Transition induced by stationary streaks undergoing transient growth in a supersonic flat plate boundary layer flow is studied using numerical computations. While the possibility of strong transient growth of small-amplitude stationary perturbations in supersonic boundary layer flows has been demonstrated in previous works, its relation to laminar-turbulent transition cannot be established within the framework of linear disturbances. Therefore, this paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite amplitude streaks in the downstream region, and then studies the modal instability of those streaks as a likely cause for the onset of bypass transition. The nonmodal evolution of linearly optimal stationary perturbations in a supersonic, Mach 3 flat plate boundary layer is computed via the nonlinear plane-marching parabolized stability equations (PSE) for stationary perturbations, or equivalently, the perturbation form of parabolized Navier-Stokes equations. To assess the effect of the nonlinear finite-amplitude streaks on transition, the linear form of plane-marching PSE is used to investigate the instability of the boundary layer flow modified by the spanwise periodic streaks. The onset of transition is estimated using an N -factor criterion based on modal amplification of the secondary instabilities of the streaks. In the absence of transient growth disturbances, first mode instabilities in a Mach 3, zero pressure gradient boundary layer reach N =10 at Rex≈107 . However, secondary instability modes of the stationary streaks undergoing transient growth are able to achieve the same N -factor at Rex<2 ×106 when the initial streak amplitude is sufficiently large. In contrast to the streak instabilities in incompressible flows, subharmonic instability modes with twice the fundamental spanwise wavelength of the streaks are found to have higher amplification ratios than the streak instabilities at fundamental

  3. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Science.gov (United States)

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  4. Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements

    Science.gov (United States)

    Nugroho, Hendro; Harris, Ron; Lestariya, Amin W.; Maruf, Bilal

    2009-12-01

    New GPS measurements reveal that large sections of the SE Asian Plate are progressively accreting to the edge of the Australian continent by distribution of strain away from the deformation front to forearc and backarc plate boundary segments. The study was designed to investigate relative motions across suspected plate boundary segments in the transition from subduction to collision. The oblique nature of the collision provides a way to quantify the spatial and temporal distribution of strain from the deformation front to the back arc. The 12 sites we measured from Bali to Timor included some from an earlier study and 7 additional stations, which extended the epoch of observation to ten years at many sites. The resulting GPS velocity field delineates at least three Sunda Arc-forearc regions around 500 km in strike-length that shows different amounts of coupling to the Australian Plate. Movement of these regions relative to SE Asia increases from 21% to 41% to 63% eastward toward the most advanced stages of collision. The regions are bounded by the deformation front to the south, the Flores-Wetar backarc thrust system to the north, and poorly defined structures on the sides. The suture zone between the NW Australian continental margin and the Sunda-Banda Arcs is still evolving with more than 20 mm/yr of movement measured across the Timor Trough deformation front between Timor and Australia.

  5. Seismicity and Seismic Hazard along the Western part of the Eurasia-Nubia plate boundary

    Science.gov (United States)

    Bezzeghoud, Mourad; Fontiela, João; Ferrão, Celia; Borges, José Fernando; Caldeira, Bento; Dib, Assia; Ousadou, Farida

    2016-04-01

    The seismic phenomenon is the most damaging natural hazard known in the Mediterranean area. The western part of the Eurasia-Nubia plate boundary extends from the Azores to the Mediterranean region. The oceanic part of the plate boundary is well delimited from the Azores Islands, along the Azores-Gibraltar fault to approximately 12°W (west of the Strait of Gibraltar). From 12°W to 3.5°E, including the Iberia-Nubia region and extending to the western part of Algeria, the boundary is more diffuse and forms a wider area of deformation. The boundary between the Iberia and Nubia plates is the most complex part of the margin. This region corresponds to the transition from an oceanic boundary to a continental boundary, where Iberia and Nubia collide. Although most earthquakes along this plate boundary are shallow and generally have magnitudes less than 5.5, there have been several high-magnitude events. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss and considerable economic damage to the region. From 1920 to present, three earthquakes with magnitudes of about 8.0 (Mw 8.2, 25 November 1941; Ms 8.0, 25 February 1969; and Mw 7.9, 26 May 1975) occurred in the oceanic region, and four earthquakes with magnitudes of about 7.0 (Mw 7.1, 8 May 1939, Santa Maria Island and Mw 7.1, January 1980, Terceira and Graciosa Islands, both in the Azores; Ms 7.1, 20 May 1931, Azores-Gibraltar fracture zone; and Mw 7.3, 10 October 1980, El Asnam, Algeria) occurred along the western part of the Eurasia-Nubia plate boundary. In general, large earthquakes (M ≥7) occur within the oceanic region, with the exception of the El Asnam (Algeria) earthquakes. Some of these events caused extensive damage. The 1755 Lisbon earthquake (˜Mw 9) on the Portugal Atlantic margin, about 200 km W-SW of Cape St. Vincent, was followed by a tsunami and fires that caused the near-total destruction of Lisbon and adjacent areas. Estimates of the death toll in Lisbon alone (~70

  6. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which

  7. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Directory of Open Access Journals (Sweden)

    Rab Nawaz

    Full Text Available In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  8. Effects of freestream on the characteristics of thermally-driven boundary layers along a heated vertical flat plate

    International Nuclear Information System (INIS)

    Abedin, Mohammad Zoynal; Tsuji, Toshihiro; Lee, Jinho

    2012-01-01

    Highlights: ► A time-developing direct numerical simulations are done for water along a heated vertical plate. ► The objective is to see the effects of free streams on the combined-convection boundary layers. ► There are no reports for water with direct numerical simulation in this regards. ► An experiment is also conducted on the transitional and turbulent boundary layer in water. ► This is to collect informations on the integral thickness of the velocity boundary layer. - Abstract: Time-developing thermally-driven boundary layers created by imposing aiding and opposing freestreams on the natural-convection boundary layer in water along a heated vertical flat plate have been examined with a direct numerical simulation to clarify their transition and turbulence behaviors. The numerical results for aiding flow reveal that the transition begins at a thick laminar boundary layer due to the delay of the transition and large-scale vortexes centering on the spanwise direction are followed, while, for opposing flow, the transition begins at a thin laminar boundary layer due to the quickening of the transition and relatively small-scale vortexes are generated with the progress of transition. To improve the significance of the present numerical results, the association of turbulence statistics between time- and space-developing flows has been investigated. Consequently, the numerical results for time-developing flow are converted to those for space-developing flow through the integral thickness of the velocity boundary layer for pure natural convection, and thus the regimes of boundary layer flows can be quantitatively assessed. Moreover, the turbulence statistics and the flow structures in the thermally-driven boundary layers are also presented.

  9. Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

    Directory of Open Access Journals (Sweden)

    Dae Seung Cho

    2016-03-01

    Full Text Available In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

  10. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  11. Experiments of dike-induced deformation: Insights on the long-term evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, D.; Ruch, Joel; Acocella, V.; Rivalta, E.

    2015-01-01

    on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages

  12. Stresses at the intersection of two cylindrical shells

    International Nuclear Information System (INIS)

    Xue, M.D.; Chen, W.; Hwang, K.C.

    1995-01-01

    The stress analysis based on the theory of a thin shell is carried out for two normally intersecting cylindrical shells with a large diameter ratio. Instead of the Donnell shallow shell equation, the modified Morley equation, which is applicable to ρ 0 (R/T) 1/2 XXXX1, is used for the analysis of the shell with cut-out. The solution in terms of displacement function for the nozzle with a non-planar end is based on the Love equation. The boundary forces and displacements at the intersection are all transformed from Gaussian coordinates (α,β) on the shell, or Gaussian coordinates (ζ,θ) on the nozzle into three-dimensional cylindrical coordinates (ρ,θ,z). Their expressions on the intersecting curve are periodic functions of θ and expanded in Fourier series. Every harmonics of Fourier coefficients of boundary forces and displacements are obtained by numerical quadrature.The results obtained are in agreement with those from the finite element method and experiments for d/D≤0.8. ((orig.))

  13. Tracer Flux Balance at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.

    2010-05-01

    Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.

  14. Examples of the Re-number effect on the transitional flat plate boundary layers

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 605-606 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : transition * flat plate * boundary layer Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1002/pamm.201410290

  15. Alternate model of Chladni figures for the circular homogenous thin plate case with open boundaries

    International Nuclear Information System (INIS)

    Trejo-Mandujano, H A; Mijares-Bernal, G; Ordoñez-Casanova, E G

    2015-01-01

    The wave equation is a direct but a complex approach to solve analytically for the Chladni figures, mainly because of the complications that non-smooth and open boundary conditions impose. In this paper, we present an alternate solution model based on the principle of Huygens-Fresnel and on the ideas of Bohr for the hydrogen atom. The proposed model has been implemented numerically and compared, with good agreement, to our own experimental results for the case of a thin homogenous circular plate with open boundaries

  16. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    Science.gov (United States)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and

  17. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  18. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    Science.gov (United States)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  19. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.; Mitsudharmadi, Hatsari; Winoto, S.H.; Low, H.T.; Lua, K.B.

    2017-01-01

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns

  20. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  1. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  2. Numerical investigation of a spatially developing turbulent natural convection boundary layer along a vertical heated plate

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Hattori, Yasuo; Suto, Hitoshi

    2017-01-01

    Highlights: • A large-eddy simulation of a spatially developing natural convection boundary layer is conducted. • First- and second-order moments of the heat and momentum showed a reasonable agreement with past experiments. • Coherent structure of turbulent vortex inherent in this boundary layer is discussed. - Abstract: Large-eddy simulation (LES) on a spatially developing natural convection boundary layer along a vertical heated plate was conducted. The heat transfer rate, friction velocity, mean velocity and temperature, and second-order turbulent properties both in the wall-normal and the stream-wise direction showed reasonable agreement with the findings of past experiments. The spectrum of velocity and temperature fluctuation showed a -2/3-power decay slope and -2-power decay slope respectively. Quadrant analysis revealed the inclination on Q1 and Q3 in the Reynolds stress and turbulent heat flux, changing their contribution along the distance from the plate surface. Following the convention, we defined the threshold region where the stream-wise mean velocity takes local maximum, the inner layer which is closer to the plate than the threshold region, the outer layer which is farther to the plate than the threshold region. The space correlation of stream-wise velocity tilted the head toward the wall in the propagating direction in the outer layer; on the other hand, the correlated motion had little inclination in the threshold region. The time history of the second invariant of gradient tensor Q revealed that the vortex strength oscillates both in the inner and the outer layers in between the laminar and the transition region. In the turbulent region, the vortex was often dominant in the outer layer. Instantaneous three-dimensional visualization of Q revealed the existence of high-speed fluid parcels associated with arch-shape vortices. These results were considered as an intrinsic structure in the outer layer, which is symmetrical to the structure of

  3. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    Science.gov (United States)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  4. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    Science.gov (United States)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  5. Buckling behaviour of imperfect ring-stiffened cone-cylinder intersections under internal pressure

    International Nuclear Information System (INIS)

    Zhao, Y.

    2005-01-01

    Cone-cylinder intersections are used commonly in pressure vessels and piping. In the case of a cone large end-to-cylinder intersection under internal pressure, the intersection is subject to a large circumferential compressive force. While both the cone and the cylinder may be locally thickened to strengthen the intersection, it is often desirable and convenient to provide an annular plate ring at the cone-to-cylinder joint to supplement local thickening or as an alternative strengthening measure, leading to a ring-stiffened cone-cylinder intersection. Only limited work has been carried out specifically on ring-stiffened cone-cylinder intersections under internal pressure. This paper presents the first experimental study on such intersections. In addition to the presentation of test results including geometric imperfections, failure behaviour and the determination of buckling mode and load based on displacement measurements, results from nonlinear bifurcation analysis using the perfect shape and nonlinear analysis using the measured imperfect shape are presented and compared with the experimental results

  6. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  7. Boundary rings and N=2 coset models

    International Nuclear Information System (INIS)

    Lerche, W.; Walcher, J.

    2002-01-01

    We investigate boundary states of N=2 coset models based on Grassmannians Gr(n,n+k), and find that the underlying intersection geometry is given by the fusion ring of U(n). This is isomorphic to the quantum cohomology ring of Gr(n,n+k+1), which in turn can be encoded in a 'boundary' superpotential whose critical points correspond to the boundary states. In this way the intersection properties can be represented in terms of a soliton graph that forms a generalized, Z n+k+1 symmetric McKay quiver. We investigate the spectrum of bound states and find that the rational boundary CFT produces only a small subset of the possible quiver representations

  8. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  9. Four-parametric two-layer algebraic model of transition boundary layer at a planar plate

    International Nuclear Information System (INIS)

    Labusov, A.N.; Lapin, Yu.V.

    1996-01-01

    Consideration is given to four-parametric two-layer algebraic model of transition boundary layer on a plane plate, based on generalization of one-parametric algebraic Prandtl-Loitsjansky-Klauzer-3 model. The algebraic model uses Prandtl formulas for mixing path with Loitsjansky damping multiplier in the internal region and the relation for turbulent viscosity, based on universal scales of external region and named the Klauzer-3 formula. 12 refs., 10 figs

  10. Crustal and upper mantle investigations of the Caribbean-South American plate boundary

    Science.gov (United States)

    Bezada, Maximiliano J.

    The evolution of the Caribbean --- South America plate boundary has been a matter of vigorous debate for decades and many questions remain unresolved. In this work, and in the framework of the BOLIVAR project, we shed light on some aspects of the present state and the tectonic history of the margin by using different types of geophysical data sets and techniques. An analysis of controlled-source traveltime data collected along a boundary-normal profile at ˜65°W was used to build a 2D P-wave velocity model. The model shows that the Caribbean Large Igenous Province is present offshore eastern Venezuela and confirms the uniformity of the velocity structure along the Leeward Antilles volcanic belt. In contrast with neighboring profiles, at this longitude we see no change in velocity structure or crustal thickness across the San Sebastian - El Pilar fault system. A 2D gravity modeling methodology that uses seismically derived initial density models was developed as part of this research. The application of this new method to four of the BOLIVAR boundary-normal profiles suggests that the uppermost mantle is denser under the South American continental crust and the island arc terranes than under the Caribbean oceanic crust. Crustal rocks of the island arc and extended island arc terranes of the Leeward Antilles have a relatively low density, given their P-wave velocity. This may be caused by low iron content, relative to average magmatic arc rocks. Finally, an analysis of teleseismic traveltimes with frequency-dependent kernels produced a 3D P-wave velocity perturbation model. The model shows the structure of the mantle lithosphere under the study area and clearly images the subduction of the Atlantic slab and associated partial removal of the lower lithosphere under northern South America. We also image the subduction of a section of the Caribbean plate under South America with an east-southeast direction. Both the Atlantic and Caribbean subducting slabs penetrate the

  11. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  12. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    OpenAIRE

    E.Hemalatha; N. Bhaskar Reddy

    2015-01-01

    This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to desc...

  13. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  14. Experiments of dike-induced deformation: Insights on the long-term evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2015-10-22

    The shallow transport of magma occurs through dikes causing surface deformation. Our understanding of the effects of diking at the surface is limited, especially on the long term, for repeated intrusive episodes. We use analogue models to study the upper crustal deformation induced by dikes. We insert metal plates within cohesive sand with three setups: in setup A, the intrusion rises upward with constant thickness and in setups B and C, the intrusion thickens at a fixed depth, with final rectangular (setup B) or triangular (setup C) shape in section. Setup A creates a doming delimited by reverse faults, with secondary apical graben, without close correspondence in nature. In setups B and C, a depression flanked by two uplifted areas is bordered by inward dipping normal faults propagating downward and, for deeper intrusions in setup B, also by inner faults, reverse at the surface; this deformation is similar to what is observed in nature, suggesting a consistent physical behavior. Dikes in nature initially propagate developing a mode I fracture at the tip, subsequently thickened by magma intrusion, without any host rock translation in the propagation direction (as in setup A). The deformation pattern in setups B and C depends on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages resemble the structure of mature rifts (i.e., Krafla, Iceland), confirming diking as a major process in shaping divergent plate boundaries.

  15. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  16. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    Science.gov (United States)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  17. An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows

    Science.gov (United States)

    Gupta, R. N.

    1972-01-01

    The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.

  18. Edge Effects in Line Intersect Sampling With

    Science.gov (United States)

    David L. R. Affleck; Timothy G. Gregoire; Harry T. Valentine

    2005-01-01

    Transects consisting of multiple, connected segments with a prescribed configuration are commonly used in ecological applications of line intersect sampling. The transect configuration has implications for the probability with which population elements are selected and for how the selection probabilities can be modified by the boundary of the tract being sampled. As...

  19. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  20. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  1. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  2. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  3. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  4. Dynamic Stress Concentration at the Boundary of an Incision at the Plate Under the Action of Weak Shock Waves

    Directory of Open Access Journals (Sweden)

    Mikulich Olena

    2017-09-01

    Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of weak shock waves. For solution of the problem it uses the integral and discrete Fourier transforms. Calculation of transformed dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithm is based on the method of mechanical quadratures and collocation technique. For calculation of originals of the dynamic stresses it uses modified discrete Fourier transform. The algorithm is effective in the analysis of the dynamic stress state of defective plates.

  5. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    OpenAIRE

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-01-01

    The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...

  6. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    Science.gov (United States)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  7. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie; Á rnadó ttir, Thó ra; Jonsson, Sigurjon; Decriem, Judicaë l; Hooper, Andrew John

    2010-01-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  8. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  9. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    Science.gov (United States)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  10. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  11. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary

    Science.gov (United States)

    Khan, W. A.; Khan, Z. H.; Rahi, M.

    2014-06-01

    Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.

  12. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  13. Normal boundary intersection method for suppliers' strategic bidding in electricity markets: An environmental/economic approach

    International Nuclear Information System (INIS)

    Vahidinasab, V.; Jadid, S.

    2010-01-01

    In this paper the problem of developing optimal bidding strategies for the participants of oligopolistic energy markets is studied. Special attention is given to the impacts of suppliers' emission of pollutants on their bidding strategies. The proposed methodology employs supply function equilibrium (SFE) model to represent the strategic behavior of each supplier and locational marginal pricing mechanism for the market clearing. The optimal bidding strategies are developed mathematically using a bilevel optimization problem where the upper-level subproblem maximizes individual supplier payoff and the lower-level subproblem solves the Independent System Operator's market clearing problem. In order to solve market clearing mechanism the multiobjective optimal power flow is used with supplier emission of pollutants, as an extra objective, subject to the supplier physical constraints. This paper uses normal boundary intersection (NBI) approach for generating Pareto optimal set and then fuzzy decision making to select the best compromise solution. The developed algorithm is applied to an IEEE 30-bus test system. Numerical results demonstrate the potential and effectiveness of the proposed multiobjective approach to develop successful bidding strategies in those energy markets that minimize generation cost and emission of pollutants simultaneously.

  14. An EarthScope Plate Boundary Observatory Progress Report

    Science.gov (United States)

    Jackson, M.; Anderson, G.; Blume, F.; Walls, C.; Coyle, B.; Feaux, K.; Friesen, B.; Phillips, D.; Hafner, K.; Johnson, W.; Mencin, D.; Pauk, B.; Dittmann, T.

    2007-12-01

    UNAVCO is building and operating the Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project to understand the structure, dynamics, and evolution of the North American continent. When complete in October 2008, the 875 GPS, 103 strain and seismic, and 28 tiltmeters stations will comprise the largest integrated geodetic and seismic network in United States and the second largest in the world. Data from the PBO network will facilitate research into plate boundary deformation with unprecedented scope and detail. As of 1 September 2007, UNAVCO had completed 680 PBO GPS stations and had upgraded 89% of the planned PBO Nucleus stations. Highlights of the past year's work include the expansion of the Alaska subnetwork to 95 continuously-operating stations, including coverage of Akutan and Augustine volcanoes and reconnaissance for future installations on Unimak Island; the installation of nine new stations on Mt. St. Helens; and the arrival of 33 permits for station installations on BLM land in Nevada. The Augustine network provided critical data on magmatic and volcanic processes associated with the 2005-2006 volcanic crisis, and has expanded to a total of 11 stations. Please visit http://pboweb.unavco.org/?pageid=3 for further information on PBO GPS network construction activities. As of September 2007, 41 PBO borehole stations had been installed and three laser strainmeter stations were operating, with a total of 60 borehole stations and 4 laser strainmeters expected by October 2007. In response to direction from the EarthScope community, UNAVCO installed a dense network of six stations along the San Jacinto Fault near Anza, California; installed three of four planned borehole strainmeter stations on Mt. St. Helens; and has densified coverage of the Parkfield area. Please visit http://pboweb.unavco.org/?pageid=8 for more information on PBO strainmeter network construction progress. The combined PBO/Nucleus GPS network provides 350 GB of raw standard

  15. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  16. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  17. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    Science.gov (United States)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  18. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  19. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  20. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    Science.gov (United States)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  1. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Directory of Open Access Journals (Sweden)

    Abid Hussanan

    Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  2. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    Science.gov (United States)

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-09-01

    The Eurasia (EU) - North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on the EU-OK-NA triple junction and is thus caught and compressed between converging EU and NA. We suggest that this leads to a coherent and understandable large scale deformation pattern of mostly northwest-southeast trending strike-slip faults which split Northwest OK into several extruding slivers. When the fault geometry is analysed together with space geodetic and focal mechanism data it suggests a central block which is extruding faster bordered east and west by progressively slower extruding blocks until the OK plate boundary faults are encountered. Taking into account elastic loading from both the intra-OK faults and the OK-Pacific (PA) boundary reconciles geodetic motions with geologic slip rates on at least the OK-NA boundary which corresponds to the Ulakhan fault.

  3. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  4. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    Science.gov (United States)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    To better understand the influence of Rivera plate kinematics on the geodynamic evolution of western Mexico, we use more than 1400 crossings of seafloor spreading magnetic lineations along the Pacific-Rivera rise and northern Mathematician ridge to solve for rotations of the Rivera plate relative to the underlying mantle and the Pacific and North American plates at 14 times since 9.9 Ma. Our comparison of magnetic anomaly crossings from the undeformed Pacific plate to their counterparts on the Rivera plate indicates that significant areas of the Rivera plate have deformed since 9.9 Ma. Dextral shear along the southern edge of the plate from 3.3-2.2 Ma during a regional plate boundary reorganization deformed the Rivera plate farther into its interior than previously recognized. In addition, seafloor located north of two rupture zones within the Rivera plate sutured to North America after 1.5 Ma. Anomaly crossings from these two deformed regions thus cannot be used to reconstruct motion of the Rivera plate. Finite rotations that best reconstruct Pacific plate anomaly crossings onto their undeformed counterparts on the Rivera plate yield stage spreading rates that decrease gradually by 10% between 10 and 3.6 Ma, decrease rapidly by 20% after ˜3.6 Ma, and recover after 1 Ma. The slowdown in Pacific-Rivera seafloor spreading at 3.6 Ma coincided with the onset of dextral shear across the then-incipient southern boundary of the Rivera plate with the Pacific plate. The available evidence indicates that the Rivera plate has been an independent microplate since at least 10 Ma, contrary to published assertions that it fragmented from the Cocos plate at ˜5 Ma. Motion of the Rivera plate relative to North America has changed significantly since 10 Ma, in concert with significant changes in Pacific-Rivera motion. A significant and robust feature of Rivera-North America motion not previously recognized is the cessation of margin-normal convergence and thus subduction from 2

  5. Vehicular traffic flow at an intersection with the possibility of turning

    International Nuclear Information System (INIS)

    Foulaadvand, M Ebrahim; Belbasi, Somayyeh

    2011-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  6. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  7. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  8. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  9. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  10. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    Science.gov (United States)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent

  11. Types of intersections.

    NARCIS (Netherlands)

    2015-01-01

    There are many types of intersections in the Netherlands. In an inherently safe road traffic system, however, the number of intersection types needs to be limited, depending on the road types that intersect. The desired types of intersections do not always correspond with the recommendations in the

  12. Grounded Intersectionality

    DEFF Research Database (Denmark)

    Marfelt, Mikkel Mouritz

    2016-01-01

    associated with intersectional research. The findings assist in positioning the proposed methodological framework within recent intersectional debates. Findings – The review shows a rise in intersectional publications since the birth of the “intersectionality” term in 1989. Moreover, the paper points to four...... oriented but still emphasizes stable concepts. Moreover, it does not give primacy to oppression. Finally, it adopts a critical stance on the nature of the macro, meso, and micro levels as dominant analytical perspectives. As a result, this paper focusses on the importance of intersectionality...

  13. Logistical Support for the Installation of the Plate Boundary Observatory GPS and Borehole Strainmeter Networks

    Science.gov (United States)

    Kurnik, C.; Austin, K.; Coyle, B.; Dittmann, T.; Feaux, K.; Friesen, B.; Johnson, W.; Mencin, D.; Pauk, B.; Walls, C.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters by October 2008. Such a broad network presents significant logisitical challenges, including moving supplies, equipment, and personnel around 6 million square kilometers, and this requires accurate tracking and careful planning. The PBO logistics chain includes the PBO headquarters at UNAVCO in Boulder, Colorado and five regional offices in the continental United States and Alaska, served by dozens of suppliers spread across the globe. These offices are responsible for building and maintaining sites in their region. Most equipment and supplies first arrive in Boulder, where they are tagged and entered into a UNAVCO-wide equipment database, assembled and quality checked as necessary, and sent on to the appropriate regional office. Larger items which are costly to store and ship from Boulder, such as batteries or long sections of stainless steel pipe and bar required for monuments, are shipped directly from the supplier to each region as needed. These supplies and equipment are also tracked through the ordering, delivery, installation, and maintenance cycle via Earned Value Management techniques which allow us to meet NSF and other Federal procurement rules. Early prototypes and assembly configurations aid the development of material and supply budgets. A thorough understanding of Federal procurement rules at project start up is critical as the project moves forward.

  14. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    Science.gov (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  15. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  16. Is There Really A North American Plate?

    Science.gov (United States)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks

  17. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    Science.gov (United States)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un

  18. Linking plate reconstructions with deforming lithosphere to geodynamic models

    Science.gov (United States)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  19. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    Science.gov (United States)

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  1. Dual Solutions in a Boundary Layer Flow of a Power Law Fluid over a Moving Permeable Flat Plate with Thermal Radiation, Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2018-01-01

    Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.

  2. Plate boundary deformation in North Iceland during 1992–2009 revealed by InSAR time-series analysis and GPS

    KAUST Repository

    Metzger, Sabrina

    2014-08-20

    In North Iceland, extensional plate motion is accommodated by the Northern Volcanic Zone, a set of en-echelon volcanic systems, and the Tjörnes Fracture Zone, a transform offset in the mid-Atlantic Ridge consisting of two parallel transform lineaments. The southern lineament, the Húsavík–Flatey fault, is a 100 km-long right-lateral strike slip fault that has not ruptured for more than 140 years and poses a significant seismic hazard to Húsavík, a fishing town located by the fault, and to other coastal communities. We present results of InSAR time-series analysis data spanning almost two decades (1992–2009) that show extensional and interseismic deformation within the Northern Volcanic Zone and the on-shore part of the Tjörnes Fracture Zone. The results also exhibit transient inflation at Theistareykir volcano, deflation at Krafla central volcano and a broad uplift north of Krafla. The current plate extension is not uniform across the Northern Volcanic Zone, but concentrated at the western fissures of the Theistareykir volcanic system and the outermost fissures of the Krafla fissure swarm. We combine a back-slip plate boundary model with a set of point pressure sources representing volcanic changes to describe the current extensional plate boundary deformation and update the previous estimations of the locking depth and slip rate of the Húsavík–Flatey fault that were based on GPS data alone. Using different combinations of input data, we find that the Húsavík–Flatey fault has a locking depth of 6–10 km and, with a slip rate of 6–9 mm/yr, is accommodating about a third of the full transform motion. We furthermore show that while the InSAR data provide important constraints on the volcanic deformation within the NVZ, they do not significantly improve the model parameter estimation for the HFF, as the dense GPS network appears to better capture the deformation across the fault.

  3. Plate boundary deformation in North Iceland during 1992–2009 revealed by InSAR time-series analysis and GPS

    KAUST Repository

    Metzger, Sabrina; Jonsson, Sigurjon

    2014-01-01

    In North Iceland, extensional plate motion is accommodated by the Northern Volcanic Zone, a set of en-echelon volcanic systems, and the Tjörnes Fracture Zone, a transform offset in the mid-Atlantic Ridge consisting of two parallel transform lineaments. The southern lineament, the Húsavík–Flatey fault, is a 100 km-long right-lateral strike slip fault that has not ruptured for more than 140 years and poses a significant seismic hazard to Húsavík, a fishing town located by the fault, and to other coastal communities. We present results of InSAR time-series analysis data spanning almost two decades (1992–2009) that show extensional and interseismic deformation within the Northern Volcanic Zone and the on-shore part of the Tjörnes Fracture Zone. The results also exhibit transient inflation at Theistareykir volcano, deflation at Krafla central volcano and a broad uplift north of Krafla. The current plate extension is not uniform across the Northern Volcanic Zone, but concentrated at the western fissures of the Theistareykir volcanic system and the outermost fissures of the Krafla fissure swarm. We combine a back-slip plate boundary model with a set of point pressure sources representing volcanic changes to describe the current extensional plate boundary deformation and update the previous estimations of the locking depth and slip rate of the Húsavík–Flatey fault that were based on GPS data alone. Using different combinations of input data, we find that the Húsavík–Flatey fault has a locking depth of 6–10 km and, with a slip rate of 6–9 mm/yr, is accommodating about a third of the full transform motion. We furthermore show that while the InSAR data provide important constraints on the volcanic deformation within the NVZ, they do not significantly improve the model parameter estimation for the HFF, as the dense GPS network appears to better capture the deformation across the fault.

  4. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  5. A Generic analytical solution for modelling pumping tests in wells intersecting fractures

    Science.gov (United States)

    Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe

    2018-04-01

    The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of

  6. Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions

    Science.gov (United States)

    Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.

    2016-11-01

    Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.

  7. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  8. Design space for space design: Dialogs through boundary objects at the intersections of art, design, science, and engineering

    Science.gov (United States)

    Balint, Tibor S.; Pangaro, Paul

    2017-05-01

    For over half a century space exploration has been dominated by engineering and technology driven practices. This paradigm leaves limited room for art and design. Yet in other parts of our lives, art and design play important roles: they stimulate new ideas and connect people to their experiences and to each other at a deeper level, while affecting our worldview as we evolve our cognitive models. We develop these models through circular conversations with our environment, through perception and making sense through our sensory systems and responding back through language and interactions. Artists and designers create artifacts through conversation cycles of sense-giving and sense-making, thus increasing variety in the world in the form of evolving messages. Each message becomes information when the observer decodes it, through multiple sense-making and re-sampling cycles. The messages form triggers to the cognitive state of the observer. Having a shared key between the artist/designer and the observer-for example, in the form of language, gestures, and artistic/design styles-is fundamental to encode and decode the information, in conversations. Art, design, science, and engineering, are all creative practices. Yet, they often speak different languages, where some parts may correspond, while others address a different variety in a cybernetic sense. These specialized languages within disciplines streamline communications, but limit variety. Thus, different languages between disciplines may introduce communication blocks. Nevertheless, these differences are desired as they add variety to the interactions, and could lead to novel discourses and possibilities. We may dissolve communication blocks through the introduction of boundary objects in the intersection of multiple disciplines. Boundary objects can ground ideas and bridge language diversity across disciplines. These artifacts are created to facilitate circular cybernetic conversations, supporting convergence

  9. A Walking Method for Non-Decomposition Intersection and Union of Arbitrary Polygons and Polyhedrons

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yao, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-28

    We present a method for computing the intersection and union of non- convex polyhedrons without decomposition in O(n log n) time, where n is the total number of faces of both polyhedrons. We include an accompanying Python package which addresses many of the practical issues associated with implementation and serves as a proof of concept. The key to the method is that by considering the edges of the original ob- jects and the intersections between faces as walking routes, we can e ciently nd the boundary of the intersection of arbitrary objects using directional walks, thus handling the concave case in a natural manner. The method also easily extends to plane slicing and non-convex polyhedron unions, and both the polyhedron and its constituent faces may be non-convex.

  10. Large Eddy Simulation of Supersonic Boundary Layer Transition over a Flat-Plate Based on the Spatial Mode

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2014-02-01

    Full Text Available The large eddy simulation (LES of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 is performed in the present work. The Favre-filtered Navier-Stokes equations are used to simulate large scales, while a dynamic mixed subgrid-scale (SGS model is used to simulate subgrid stress. The convective terms are discretized with a fifth-order upwind compact difference scheme, while a sixth-order symmetric compact difference scheme is employed for the diffusive terms. The basic mean flow is obtained from the similarity solution of the compressible laminar boundary layer. In order to ensure the transition from the initial laminar flow to fully developed turbulence, a pair of oblique first-mode perturbation is imposed on the inflow boundary. The whole process of the spatial transition is obtained from the simulation. Through the space-time average, the variations of typical statistical quantities are analyzed. It is found that the distributions of turbulent Mach number, root-mean-square (rms fluctuation quantities, and Reynolds stresses along the wall-normal direction at different streamwise locations exhibit self-similarity in fully developed turbulent region. Finally, the onset and development of large-scale coherent structures through the transition process are depicted.

  11. Predictions of the effect of stratification on superimposed forced and free convection between vertical parallel plates for various boundary conditions

    International Nuclear Information System (INIS)

    Cowan, G.H.; Irvine, T.J. Jr.; Quarini, G.L.

    1983-01-01

    The velocity and temperature equations for laminar buoyancy and forced convection flows between vertical flat parallel plates are presented. The thermal boundary conditions on the plate define the buoyancy driven field, while the channel Reynolds number defines the forced flow field. Specific examples relating to tall narrow channels with laminar convention and to closed high ratio cavities (as may be found in the proposed active and passive insulation systems for sodium cooled fast reactors) are presented. The analysis is limited to the laminar flow regimes, whilst some reactor situations are likely to be turbulent, hence a proposal for a simple extension of this analysis to the turbulent regime is made. It is shown how the analysis can be made to apply to fluids of various Prandtl numbers. (author)

  12. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  13. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  14. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  15. The baffle influence on sound radiation characteristics of a plate

    Directory of Open Access Journals (Sweden)

    Bao Liu

    2017-01-01

    Full Text Available The acoustic radiation characteristics of the baffle plates and unbaffle plates are calculated and compared by single-layer potential and double-layer potential. Based on the boundary integral equation, the sound pressure integral equation of the baffle and the baffle are deduced respectively. According to the boundary compatibility condition, the sound pressure and the vibration velocity of the plates are obtained. Further, the dynamic equation of the structure is substituted into the vibration equation in the form of the baffle plate and the baffle plate. The sound pressure difference and the displacement of a plate surface are in the form of the vibration mode superposition and the acoustic radiation impedance of the double integral form is obtained, which determines vibration mode coefficient and sound radiation parameters. The effect of the baffle on the acoustic radiation characteristics of the thin plate is analyzed by comparing the acoustic radiation parameters with the simple and simple rectangular plate in water.

  16. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  17. Hall effects on free convection hydromagnetic boundary layer flow of Rivlin-Ericksen fluid past a vertical plate

    International Nuclear Information System (INIS)

    Jha, P.K.

    1986-01-01

    An attempt has been made to study the problem of free convection hydromagnetic flow of an elastico-viscous fluid past a porous vertical plate in a rotating frame of reference taking ohmic and viscous dissipations into account in the presence of Hall current. The nature of velocity profile shows the existence of multiple boundary layers. Their 'thickness' is seen to decrease with increasing values of Ekman, Hartman and Prandtl numbers and Hall parameter. The graphical study reveals that the increasing values of Hall parameter and Ekman number (for a fixed large value of Hall parameter) exert opposite influence on the flow. (author). 11 refs., 2 tables

  18. Theories for Elastic Plates via Orthogonal Polynomials

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori......, and this introduces a weight function in the variations of the transverse normal and shear stresses. As a result the coupling between the two-dimensional differential equations is described in terms of a single difference operator. Special attention is given to a truncated system of equations for bending...... of transversely isotropic plates. This theory has three boundary conditions, like Reissner's, but includes the effect of transverse normal strain, essentially through a reinterpretation of the transverse displacement function. Full agreement with general integrals to the homogeneous three-dimensional equations...

  19. Analysis Of Convective Plane Stagnation Point Chemically Reactive Mhd Flow Past A Vertical Porous Plate With A Convective Boundary Condition In The Presence Of A Uniform Magnetic Field.

    OpenAIRE

    Adeniyan, A.,

    2013-01-01

    The numerical investigation of a stagnation point boundary layer flow , mass and heat transfer of a steady two dimensional , incompressible , viscous electrically conducting, chemically reacting laminar fluid over a vertical convectively heated , electrically neutral flat plate exposed to a transverse uniform magnetic field has been carried out to examine the influence of the simultaneous presence of the effects of a convective boundary condition, chemical reaction, heat transfer and suctio...

  20. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.A. [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States); Ghoniem, N.M., E-mail: ghoniem@ucla.edu [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States)

    2009-09-15

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent {Sigma}=3[110](112) twin boundary (ITB), pinned between two {Sigma}=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  1. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    International Nuclear Information System (INIS)

    Brown, J.A.; Ghoniem, N.M.

    2009-01-01

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent Σ=3[110](112) twin boundary (ITB), pinned between two Σ=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  2. Coupled effects of director orientations and boundary conditions on light induced bending of monodomain nematic liquid crystalline polymer plates

    International Nuclear Information System (INIS)

    You, Yue; Ding, Shurong; Huo, Yongzhong; Xu, Changwei

    2012-01-01

    A photo-chromic liquid crystal polymers (LCPs) is a smart material for large light-activated variation or bending to transfer luminous energy into mechanical energy. We study the light induced behavior by modeling planar and homeotropic nematic network polymer plates. We effectively illustrate some reported experimental outcomes and theoretically predict some possible bending patterns. This paper constructs an understanding between the bending behaviors and interactions among the alignments, aspect ratios and boundary conditions, etc. Our work provides information on optimizing light induced bending in the process of micro-opto-mechanical system (MOMS) design. (paper)

  3. NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE

    Directory of Open Access Journals (Sweden)

    Egorychev Oleg Aleksandrovich

    2012-10-01

    Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.

  4. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    Science.gov (United States)

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  5. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Science.gov (United States)

    Lallemand, Serge

    2016-12-01

    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite

  6. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  7. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  8. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  9. Analysis of hydraulic instability of ANS involute fuel plates

    International Nuclear Information System (INIS)

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates

  10. L'intersectionnalité contre l'intersection

    NARCIS (Netherlands)

    Chauvin, S.; Jaunait, A.

    2015-01-01

    Intersectionality against intersection. Is the notion of intersectionality doomed to being part of the problem it designates? Intersectionality theory was not developed to merely point at intersections but to capture subject positions made invisible by dominant systems of normative representation.

  11. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  12. Reorganization of convergent plate boundaries. Geologica Ultraiectina (340)

    NARCIS (Netherlands)

    Baes, M.

    2011-01-01

    It is still unclear where a subduction is initiated and what are the responsible mechanisms involved in subduction initiation process. Understanding of subduction initiation will advance our knowledge of how and when plate tectonics started on Earth. Another issue concerning the subduction process

  13. Trace expansions for mixed boundary problems

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Robert T

    2002-01-01

    We discuss the heat trace expansion for a mixed boundary problem for the Laplace operator acting on sections of some bundle V over a manifold M of dimension d. The boundary is divided in two parts N{sub D} and N{sub N}, intersecting in a smooth submanifold {sigma}. Dirichlet conditions are imposed on N{sub D} - {sigma}, and Neumann conditions on N{sub N} - {sigma}. It turns out that it is also necessary to impose a condition along {sigma}. We then obtain an expansion of the trace of the heat operator with these boundary conditions, containing integrals of the usual terms over the interior and the two parts of the boundary, together with integrals over {sigma} of terms that are 'global' in certain operators on a semicircle. The first nonzero such term is computed; it involves the zeta function of an operator on the semicircle, and depends on the boundary condition along {sigma}. We find that no logarithmic terms occur in the expansion.

  14. Free vibration characteristics analysis of rectangular plate with rectangular opening based on Fourier series method

    Directory of Open Access Journals (Sweden)

    WANG Minhao

    2017-08-01

    Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.

  15. Interpretation of horizontal well performance in complicated systems by the boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jongkittinarukorn, K.; Tiab, D. [Oklahoma Univ., School of Petroleum and Geological Engineering (United States); Escobar, F. H. [Surcolombiana Univ., Dept. of Petroleum Engineering (Colombia)

    1998-12-31

    A solution obtained by using the boundary element method to simulate pressure behaviour of horizontal wells in complicated reservoir-wellbore configurations is presented. Three different types of well bore and reservoir models were studied, i.e. a snake-shaped horizontal wellbore intersecting a two-layer reservoir with cross flow, a horizontal well in a three-layer reservoir with cross flow, and a vertical well intersecting a two-layer reservoir without cross flow. In each case, special attention was paid to the influence of wellbore inclination angle, the distance from the wellbore to the different boundaries and the permeability ratio. Performance of each of these types of wells are discussed. 9 refs., 18 figs.

  16. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  17. Eikonal Tomography of the Southern California Plate Boundary Region

    Science.gov (United States)

    Qiu, H.; Ben-Zion, Y.; Zigone, D.; Lin, F. C.

    2016-12-01

    We use eikonal tomography to derive directionally-dependent phase velocities of surface waves for the plate boundary region in southern CA sensitive to the approximate depth range 1-20 km. Seismic noise data recorded by 346 stations in the area provide a spatial coverage with 5-25 km typical station spacing and period range of 1-20 s. Noise cross-correlations are calculated for vertical component data recorded in year 2014. Rayleigh wave group and phase travel times between 2 and 13 sec period are derived for each station pair using frequency-time analysis. For each common station, all available phase travel time measurements with sufficient signal to noise ratio and envelope peak amplitude are used to construct a travel time map for a virtual source at the common station location. By solving the eikonal equation, both phase velocity and propagation direction are evaluated at each location for each virtual source. Isotropic phase velocities and 2-psi azimuthal anisotropy and their uncertainties are determined statistically using measurements from different virtual sources. Following the method of Barmin et al. (2001), group velocities are also inverted using all the group travel times that pass quality criteria. The obtained group and phase dispersions of Rayleigh waves are then inverted on a 6 x 6 km2 grid for local 1D piecewise shear wave velocity structures using the procedure of Herrmann (2013). The results agree well with previous observations of Zigone et al. (2015) in the overlapping area. Clear velocity contrasts and low velocity zones are seen for the San Andreas, San Jacinto, Elsinore and Garlock faults. We also find 2-psi azimuthal anisotropy with fast directions parallel to geometrically-simple fault sections. Details and updated results will be presented in the meeting.

  18. Strain resolving method of composite plane plates

    Directory of Open Access Journals (Sweden)

    Ion FUIOREA

    2011-06-01

    Full Text Available The paper deals with the extension of isotropic plates problem to the case of composite plates. In order to perform it, the Kirchhoff-Love hypotheses were “softened” by some additional ones. Considering the constitutive laws for composite materials the stress functions were eliminated by using Cauchy equations. As a result a partial derivative equation in displacements was obtained. Finally the boundary condition formulation was extended for the case of complex composite plates.

  19. Intersectionality research in counseling psychology.

    Science.gov (United States)

    Grzanka, Patrick R; Santos, Carlos E; Moradi, Bonnie

    2017-10-01

    This article introduces the special section on intersectionality research in counseling psychology. Across the 4 manuscripts that constitute this special section, a clear theme emerges: a need to return to the roots and politics of intersectionality. Importantly, the 2 empirical articles in this special section (Jerald, Cole, Ward, & Avery, 2017; Lewis, Williams, Peppers, & Gadson, 2017) are studies of Black women's experiences: a return, so to speak, to the subject positions and social locations from which intersectionality emanates. Shin et al. (2017) explore why this focus on Black feminist thought and social justice is so important by highlighting the persistent weaknesses in how much research published in leading counseling psychology journals has tended to use intersectionality as a way to talk about multiple identities, rather than as a framework for critiquing systemic, intersecting forms of oppression and privilege. Shin and colleagues also point to the possibilities intersectionality affords us when scholars realize the transformative potential of this critical framework. Answers to this call for transformative practices are foregrounded in Moradi and Grzanka's (2017) contribution, which surveys the interdisciplinary literature on intersectionality and presents a series of guidelines for using intersectionality responsibly. We close with a discussion of issues concerning the applications of intersectionality to counseling psychology research that spans beyond the contributions of each manuscript in this special section. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. INTERSECTIONAL DISCRIMINATION AGAINST CHILDREN

    DEFF Research Database (Denmark)

    Ravnbøl, Camilla Ida

    This paper adds a perspective to existing research on child protection by engaging in a debate on intersectional discrimination and its relationship to child protection. The paper has a twofold objective, (1) to further establish intersectionality as a concept to address discrimination against...... children, and (2) to illustrate the importance of addressing intersectionality within rights-based programmes of child protection....

  1. Experimental research on crossing shock wave boundary layer interactions

    Science.gov (United States)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  2. Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): Insights from analog models

    OpenAIRE

    Duarte , João ,; Rosas , Filipe ,; Terrinha , Pedro; Gutscher , Marc-André ,; Malavielle , Jacques; Silva , Sonia; Matias , Luis

    2011-01-01

    International audience; In the Gulf of Cadiz key segment of the Africa-Iberia plate boundary (North-East Atlantic ocean), three main different modes of tectonic interference between a recently identified wrench system (SWIM) and the Gulf of Cadiz Accretionary Wedge (GCAW) were tested through analog sand-box modeling: a) An active accretionary wedge on top of a pre-existent inactive basement fault; b) An active strike-slip fault cutting a previously formed, inactive, accretionary wedge; and c)...

  3. Analysis of fatigue resistance of continuous and non-continuous welded rectangular frame intersections by finite element method

    International Nuclear Information System (INIS)

    McCoy, M. L.; Moradi, R.; Lankarani, H. M.

    2011-01-01

    Agricultural and construction equipment are commonly implemented with rectangular tubing in their structural frame designs. A typical joining method to fabricate these frames is by welding and the use of ancillary structural plating at the connections. This aids two continuous members to pass through an intersection point of the frame with some degree of connectivity, but the connections are highly unbalanced as the tubing centroids exhibit asymmetry. Due to the practice of welded continuous member frame intersections in current agricultural equipment designs, a conviction may exist that welded continuous member frames are superior in structural strength over that of structural frame intersections implementing welded non-continuous members where the tubing centroids lie within two planes of symmetry, a connection design that would likely fabricating a more fatigue resistant structural frame. Three types of welded continuous tubing frame intersections currently observed in the designs of agricultural equipment were compared to two non-continuous frame intersection designs. Each design was subjected to the same loading condition and then examined for stress levels using the Finite Element Method to predict fatigue life. Results demonstrated that a lighter weight, non-continuous member frame intersection design was two magnitudes superior in fatigue resistance than some current implemented frame designs when using Stress-Life fatigue prediction methods and empirical fatigue strengths for fillet welds. Stress-Life predictions were also made using theoretical fatigue strength calculations for the fatigue strength at the welds for comparison to the empirical derived weld fatigue strength

  4. Theroretical modelling of the plate-tubes coupling in the hydroelasticity of the perforated plates

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Manoach, E.S.

    1983-01-01

    In the previous investigations on the perforated plate hydroelasticity the problem of the plates-tubes-liquid interaction in the process of the general structural vibration is stated. But the interaction of the vibrating plates with the tubes, passing through them, is taken into account considering the tubes only as absolutely rigid supports. This is one of the possible technical realizations. In the present article the case when the tubes are taking part in the plate motion (vibration) is studied. Two circular perforated plates are supported by the absolutely rigid wall of the modelled roundcircular reactor barrel. The distance between the plates is given. They are connected by tubes, passing through, and clamped into the perforation holes. The plates and the tubes are made by any elastic HOOKIAN material. The volume between the two plates and outwardly to the tubes, but intrinsically of the barrel is filled by ideal, compressible and heavy liquid. Evidently the liquid volume is multiconnected one. The free vibration of the whole system is considered with the purposes: i) to give a theoretical model of the plates-tubes-liquid interaction including governing equations and boundary conditions; ii) to trace the solution of the eigen-value problem for the modelled structure; iii) to underline the engineering sides of the modelling process. (orig./GL)

  5. Comparing the effects of infrastructure on bicycling injury at intersections and non-intersections using a case–crossover design

    Science.gov (United States)

    Harris, M Anne; Reynolds, Conor C O; Winters, Meghan; Cripton, Peter A; Shen, Hui; Chipman, Mary L; Cusimano, Michael D; Babul, Shelina; Brubacher, Jeffrey R; Friedman, Steven M; Hunte, Garth; Monro, Melody; Vernich, Lee; Teschke, Kay

    2013-01-01

    Background This study examined the impact of transportation infrastructure at intersection and non-intersection locations on bicycling injury risk. Methods In Vancouver and Toronto, we studied adult cyclists who were injured and treated at a hospital emergency department. A case–crossover design compared the infrastructure of injury and control sites within each injured bicyclist's route. Intersection injury sites (N=210) were compared to randomly selected intersection control sites (N=272). Non-intersection injury sites (N=478) were compared to randomly selected non-intersection control sites (N=801). Results At intersections, the types of routes meeting and the intersection design influenced safety. Intersections of two local streets (no demarcated traffic lanes) had approximately one-fifth the risk (adjusted OR 0.19, 95% CI 0.05 to 0.66) of intersections of two major streets (more than two traffic lanes). Motor vehicle speeds less than 30 km/h also reduced risk (adjusted OR 0.52, 95% CI 0.29 to 0.92). Traffic circles (small roundabouts) on local streets increased the risk of these otherwise safe intersections (adjusted OR 7.98, 95% CI 1.79 to 35.6). At non-intersection locations, very low risks were found for cycle tracks (bike lanes physically separated from motor vehicle traffic; adjusted OR 0.05, 95% CI 0.01 to 0.59) and local streets with diverters that reduce motor vehicle traffic (adjusted OR 0.04, 95% CI 0.003 to 0.60). Downhill grades increased risks at both intersections and non-intersections. Conclusions These results provide guidance for transportation planners and engineers: at local street intersections, traditional stops are safer than traffic circles, and at non-intersections, cycle tracks alongside major streets and traffic diversion from local streets are safer than no bicycle infrastructure. PMID:23411678

  6. Earthquake recurrence and magnitude and seismic deformation of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.

    2011-02-01

    Recorded seismicity from the northwestern Okhotsk plate, northeast Asia, is currently insufficient to account for the predicted slip rates along its boundaries due to plate tectonics. However, the magnitude-frequency relationship for earthquakes from the region suggests that larger earthquakes are possible in the future and that events of ˜Mw 7.5 which should occur every ˜100-350 years would account for almost all the slip of the plate along its boundaries due to Eurasia-North America convergence. We use models for seismic slip distribution along the bounding faults of Okhotsk to conclude that relatively little aseismic strain release is occurring and that larger future earthquakes are likely in the region. Our models broadly support the idea of a single Okhotsk plate, with the large majority of tectonic strain released along its boundaries.

  7. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  8. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  9. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  10. Expanding the boundaries of evaluative learning research: How intersecting regularities shape our likes and dislikes.

    Science.gov (United States)

    Hughes, Sean; De Houwer, Jan; Perugini, Marco

    2016-06-01

    Over the last 30 years, researchers have identified several types of procedures through which novel preferences may be formed and existing ones altered. For instance, regularities in the presence of a single stimulus (as in the case of mere exposure) or 2 or more stimuli (as in the case of evaluative conditioning) have been shown to influence liking. We propose that intersections between regularities represent a previously unrecognized class of procedures for changing liking. Across 4 related studies, we found strong support for the hypothesis that when environmental regularities intersect with one another (i.e., share elements or have elements that share relations with other elements), the evaluative properties of the elements of those regularities can change. These changes in liking were observed across a range of stimuli and procedures and were evident when self-report measures, implicit measures, and behavioral choice measures of liking were employed. Functional and mental explanations of this phenomenon are offered followed by a discussion of how this new type of evaluative learning effect can accelerate theoretical, methodological, and empirical development in attitude research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-12-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  12. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  13. Reconstruction of boundary conditions from internal conditions using viability theory

    KAUST Repository

    Hofleitner, Aude; Claudel, Christian G.; Bayen, Alexandre M.

    2012-01-01

    This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.

  14. Reconstruction of boundary conditions from internal conditions using viability theory

    KAUST Repository

    Hofleitner, Aude

    2012-06-01

    This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.

  15. Intersectional perspective in elderly care.

    Science.gov (United States)

    Cuesta, Marta; Rämgård, Margareta

    2016-01-01

    Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees' well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self

  16. Intersectional perspective in elderly care

    Directory of Open Access Journals (Sweden)

    Marta Cuesta

    2016-05-01

    Full Text Available Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions and interrelates them to processes of power (objective dimension. This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees’ well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.. The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1 Intersectionality, knowledge, and experiences of professionalism; 2 Intersectionality, knowledge, and experiences of collaboration; and 3 Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee

  17. Intersectional perspective in elderly care

    Science.gov (United States)

    Cuesta, Marta; Rämgård, Margareta

    2016-01-01

    Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees’ well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self

  18. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  19. Spatial database for intersections.

    Science.gov (United States)

    2015-08-01

    Deciding which intersections in the state of Kentucky warrant safety improvements requires a comprehensive inventory : with information on every intersection in the public roadway network. The Kentucky Transportation Cabinet (KYTC) : had previously c...

  20. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  1. Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension

    Science.gov (United States)

    Ustaszewski, Kamil; Kounov, Alexandre; Schmid, Stefan M.; Schaltegger, Urs; Krenn, Erwin; Frank, Wolfgang; Fügenschuh, Bernhard

    2010-12-01

    The Sava Zone of the northern Dinarides is part of the Cenozoic Adria-Europe plate boundary. Here Late Cretaceous subduction of remnants of Meliata-Vardar oceanic lithosphere led to the formation of a suture, across which upper plate European-derived units of Tisza-Dacia were juxtaposed with Adria-derived units of the Dinarides. Late Cretaceous siliciclastic sediments, deposited on the Adriatic plate, were incorporated into an accretionary wedge that evolved during the initial stages of continent-continent collision. Structurally deeper parts of the exposed accretionary wedge underwent amphibolite-grade metamorphism. Grt-Pl-Ms-Bt thermobarometry and multiphase equilibria indicate temperatures between 550°C and 630°C and pressures between 5 and 7 kbar for this event. Peak metamorphic conditions were reached at around 65 Ma. Relatively slow cooling from peak metamorphic conditions throughout most of the Paleogene was possibly induced by hanging wall erosion in conjunction with southwest directed propagation of thrusting in the Dinarides. Accelerated cooling took place in Miocene times, when the Sava Zone underwent substantial extension that led to the exhumation of the metamorphosed units along a low-angle detachment. Footwall exhumation started under greenschist facies conditions and was associated with top-to-the-north tectonic transport, indicating exhumation from below European plate units. Extension postdates the emplacement of a 27 Ma old granitoid that underwent solid-state deformation under greenschist facies conditions. The 40Ar/39Ar sericite and zircon and apatite fission track ages from the footwall allow bracketing this extensional unroofing between 25 and 14 Ma. This extension is hence linked to Miocene rift-related subsidence in the Pannonian basin, which represents a back-arc basin formed due to subduction rollback in the Carpathians.

  2. On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation

    NARCIS (Netherlands)

    Zarubinskaya, M.A.; Van Horssen, W.T.

    2003-01-01

    In this paper an initial-boundary value problem for a weakly nonlinear plate equation with a quadratic nonlinearity will be studied. This initial-boundary value problem can be regarded as a simple model describing free oscillations of a simply supported square plate on an elastic foundation. It is

  3. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  4. Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation

    OpenAIRE

    Abd El-Fattah A. Rizk

    2012-01-01

    The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...

  5. A folded plate clamped along one side only

    Science.gov (United States)

    Nazarov, Serguei A.; Slutskij, Andrey S.

    2017-12-01

    An asymptotic model of a folded thin elastic plate is posed on two plane domains and contains transmission conditions at the common line segment of their boundaries. These conditions become non-local and inhomogeneous if only one side of the plate is fixed. Solvability and smoothness results and error estimates for the model are derived. xml:lang="fr"

  6. 16 Years, 16 Cruises, 1.6 Billion Soundings: a Compilation of High-Resolution Multibeam Bathymetry of the Active Plate Boundary Along the Chilean Continental Margin

    Science.gov (United States)

    Weinrebe, W.; Flueh, E. R.; Hasert, M.; Behrmann, J. H.; Voelker, D.; Geersen, J.; Ranero, C. R.; Diaz-Naveas, J. L.

    2011-12-01

    Chile, a country stranding the active plate boundary between the South-American and the Nazca Plate is afflicted by recurrent earthquakes and hazardous volcanic eruptions. The strongest earthquake ever recorded occurred here, and volcanic hazards are frequent. Consequently, this area has been studied by geoscientists for many years to improve the understanding of subduction zone processes. Swath bathymetry mapping of the ocean floor has proven to bear a large potential for the interpretation of subduction-related processes, such as tectonic deformation of the marine forearc, release and migration of fluids as well as earthquake-triggered mass wasting. Multibeam bathymetry data of 16 major cruises of German, British, and Chilean research vessels recorded between 1995 and December 2010, in total more than 10,000 data files comprising about 1.6 billion soundings, have now been carefully reprocessed, compiled and merged into a unifying set of high-resolution bathymetric maps of the Chilean continental margin from latitude 40°S to 20°S. The imprint of subsurface processes on the surface morphology is well displayed in the case of the Chilean continental margin. The 3,500 km long Chilean convergent margin is not uniform, as various segments with different tectonic characteristics can be distinguished. Major factors that control margin morphology and thus the style of subduction are (1) relief and structure of the incoming oceanic plate, (2) supply of trench sediment, (3) turbidite transport within the trench, and (4) the input of terrigeneous sediments down the continental slope. A major segment boundary occurs at latitude 32°-33° S where the hotspot-related volcanic chain of Juan Fernandez is presently subducting. South of the area of ridge subduction the trench is filled with turbidites, and accretionary ridges develop across the base of the slope along most of the segment, whereas north of this boundary the turbiditic infill is reduced and subduction erosion is

  7. Doubling inequalities for anisotropic plate equations and applications to size estimates of inclusions

    International Nuclear Information System (INIS)

    Di Cristo, M; Lin, C-L; Morassi, A; Rosset, E; Vessella, S; Wang, J-N

    2013-01-01

    We prove the upper and lower estimates of the area of an unknown elastic inclusion in a thin plate by one boundary measurement. The plate is made of non-homogeneous linearly elastic material belonging to a general class of anisotropy and the domain of the inclusion is a measurable subset of the plate. The size estimates are expressed in terms of the work exerted by a couple field applied at the boundary and of the induced transversal displacement and its normal derivative taken at the boundary of the plate. The main new mathematical tool is a doubling inequality for solutions to fourth-order elliptic equations whose principal part P(x, D) is the product of two second-order elliptic operators P 1 (x, D), P 2 (x, D) such that P 1 (0, D) = P 2 (0, D). The proof of the doubling inequality is based on the Carleman method, a sharp three-spheres inequality and a bootstrapping argument. (paper)

  8. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    Science.gov (United States)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  9. Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Valerio Acocella

    2018-02-01

    Full Text Available The tectono-magmatic relationships along obliquely convergent plate boundaries, where strain partitioning promotes strike-slip structures along the volcanic arc, are poorly known. Here it is unclear if and, in case, how the strike-slip structures control volcanic processes, distribution and size. To better define the possible tectono-magmatic relationships along strike-slip arcs, we merge available information on the case study of Sumatra (Indonesia with field structural data. The Sumatra arc (entire volcanic belt consists of 48 active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF, which carries most horizontal displacement on the overriding plate, whereas 27% lie at >20 km from the GSF. Among the volcanoes at <10 km from GSF, 48% show a possible structural relation to the GSF, whereas only 28% show a clear structural relation, lying in pull-aparts or releasing bends; these localized areas of transtension (local extensional zone do not develop magmatic segments. There is no relation between the GSF along-strike slip rate variations and the volcanic productivity. The preferred N30°-N40°E volcano alignment and elongation are subparallel to the convergence vector or to the GSF. The structural field data, collected in the central and southern GSF, show, in addition to the dextral motions along NW-SE to N-S striking faults, also normal motions (extending WNW-ESE or NE-SW, suggesting local reactivations of the GSF. Overall, the collected data suggest a limited tectonic control on arc volcanism. The tectonic control is mostly expressed by the mean depth of the slab surface below the volcanoes (130 ± 20 km and, subordinately, local extension along the GSF. The latter, when WNW-ESE oriented (more common, may be associated with the overall tectonic convergence, as suggested by the structural data; conversely, when NE-SW oriented (less common, the extension may result from co- and post-seismic arc normal extension

  10. Rough horizontal plates: heat transfer and hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, J-C; Gasteuil, Y; Pabiou, H; Castaing, B; Chilla, F [Universite de Lyon, ENS Lyon, CNRS, 46 Allee d' ltalie, 69364 Lyon Cedex 7 (France); Creyssels, M [LMFA, CNRS, Ecole Centrale Lyon, 69134 Ecully Cedex (France); Gibert, M, E-mail: mathieu.creyssels@ec-lyon.fr [Also at MPI-DS (LFPN) Gottingen (Germany)

    2011-12-22

    To investigate the influence of a rough-wall boundary layer on turbulent heat transport, an experiment of high-Rayleigh convection in water is carried out in a Rayleigh-Benard cell with a rough lower plate and a smooth upper plate. A transition in the heat transport is observed when the thermal boundary layer thickness becomes comparable to or smaller than the roughness height. Besides, at larger Rayleigh numbers than the threshold value, heat transport is found to be increased up to 60%. This enhancement cannot be explained simply by an increase in the contact area of the rough surface since the contact area is increased only by a factor of 40%. Finally, a simple model is proposed to explain the enhanced heat transport.

  11. Boundary-layer interactions in the plane-parallel incompressible flows

    International Nuclear Information System (INIS)

    Nguyen, Toan T; Sueur, Franck

    2012-01-01

    We study the inviscid limit problem of incompressible flows in the presence of both impermeable regular boundaries and a hypersurface transversal to the boundary across which the inviscid flow has a discontinuity jump. In the former case, boundary layers have been introduced by Prandtl as correctors near the boundary between the inviscid and viscous flows. In the latter case, the viscosity smoothes out the discontinuity jump by creating a transition layer which has the same amplitude and thickness as the Prandtl layer. In the neighbourhood of the intersection of the impermeable boundary and of the hypersurface, interactions between the boundary and the transition layers must then be considered. In this paper, we initiate a mathematical study of this interaction and carry out a strong convergence in the inviscid limit for the case of the plane-parallel flows introduced by Di Perna and Majda (1987 Commun. Math. Phys. 108 667–89). (paper)

  12. Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, M.R. Golbahar; Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario (Canada)

    2009-03-15

    In this paper, a three-dimensional transient inverse heat conduction (IHC) procedure is presented to estimate the unknown boundary heat flux of thick functionally graded (FG) plates. For this purpose, the conjugate gradient method (CGM) in conjunction with adjoint problem is used. A recently developed three-dimensional efficient hybrid method is employed to solve variable-coefficient initial-boundary-value differential equations of direct problem as a part of the inverse solution. The accuracy of the inverse analysis is examined by simulating the exact and noisy data for problems with different types of boundary conditions and material properties. In addition to rectangular domain, skew plates are considered. The results obtained show good accuracy for the estimation of boundary heat fluxes. (author)

  13. Mathematical methods for elastic plates

    CERN Document Server

    Constanda, Christian

    2014-01-01

    Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

  14. Free vibration analysis of corroded steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Eslami-Majd, Alireza; Rahbar-Ranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Vibration analysis of unstiffened/stiffened plates has long been studied due to its importance in the design and condition assessments of ship and offshore structures. Corrosion is inevitable in steel structures and has been so far considered in strength analysis of structures. We studied the free vibration of pitted corroded plates with simply supported boundary conditions. Finite element analysis, with ABAQUS, was used to determine the natural frequencies and mode shapes of corroded plates. Influential parameters including plate aspect ratio, degree of pit, one-sided/both-sided corroded plate, and different corrosion patterns were investigated. By increasing the degree of corrosion, reduction of natural frequency increases. Plate aspect ratio and plate dimensions have no influence on reduction of natural frequency. Different corrosion patterns on the surface of one-sided corroded plates have little influence on reduction of natural frequency. Ratio of pit depth over plate thickness has no influence on the reduction of natural frequency. The reduction of natural frequency in both-sided corroded plates is higher than one-sided corroded plates with the same amount of total corrosion loss. Mode shapes of vibration would change due to corrosion, except square mode shapes.

  15. Analysis of three idealized reactor configurations: plate, pin, and homogeneous

    International Nuclear Information System (INIS)

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations

  16. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    flow in a vertical double passage channel using Robin boundary conditions. ... the diffusion of a chemically reactive species in a laminar boundary layer flow. ...... hydrodynamic flow past a flat plate will Hall effects, Journal of the Physical.

  17. Fundamental structure model of island arcs and subducted plates in and around Japan

    Science.gov (United States)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (75-150 km), but provide a

  18. Expanding the boundaries of evaluative learning research: how intersecting regularities shape our likes and dislikes

    OpenAIRE

    Hughes, Sean Joseph; De Houwer, Jan; Perugini, Marco

    2016-01-01

    Over the last 30 years, researchers have identified several types of procedures through which novel preferences may be formed and existing ones altered. For instance, regularities in the presence of a single stimulus (as in the case of mere exposure) or 2 or more stimuli (as in the case of evaluative conditioning) have been shown to influence liking. We propose that intersections between regularities represent a previously unrecognized class of procedures for changing liking. Across 4 related...

  19. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  20. EJWS retrospective on intersectionality

    NARCIS (Netherlands)

    Davis, K.E.; Zarkov, Dubravka

    2017-01-01

    The EJWS has been at the forefront of debates about intersectionality in Europe. In the past two decades, the journal has published countless articles on intersectionality as theory, methodology, and political framework for doing critical feminist research. We have selected some of these articles

  1. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  2. Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.; Fujita, K.

    2007-12-01

    The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.

  3. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  4. Information infrastructure(s) boundaries, ecologies, multiplicity

    CERN Document Server

    Mongili, Alessandro

    2014-01-01

    This book marks an important contribution to the fascinating debate on the role that information infrastructures and boundary objects play in contemporary life, bringing to the fore the concern of how cooperation across different groups is enabled, but also constrained, by the material and immaterial objects connecting them. As such, the book itself is situated at the crossroads of various paths and genealogies, all focusing on the problem of the intersection between different levels of scale...

  5. Spectral assessment of the turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds numbers up to Re θ = 13000

    OpenAIRE

    Renard , N.; Deck , S.; Sagaut , P.

    2014-01-01

    International audience; A method inspired by del Alamo et al. [1] is derived to assess the wavelength-dependent convection velocity in a zero pressure gradient spatially developing flat plate turbulent boundary layer at Retheta = 13 000 for all wavelengths and all wall distances, using only estimates of the time power spectral density of the streamwise velocity and of its local spatial derivative. The resulting global convection velocity has a least-squares interpretation and is easily relate...

  6. The Fairway-Aotea Basin and the New Caledonia Trough, witnesses of the Pacific-Australian plate boundary evolution : from mid-Cretaceous cessation of subduction to Eocene subduction renewal

    Science.gov (United States)

    Collot, J.; Geli, L. B.; Lafoy, Y.; Sutherland, R.; Herzer, R. H.; Roest, W. R.

    2009-12-01

    The geodynamical history of the SW Pacific is controlled since the Mesozoic by the evolution of peri-Pacific subduction zones, in a trench retreat by slab roll-back process, which successively occurred along the Eastern Gondwana margin. In this context, most basins which formed after 45 Ma reached a stage of seafloor spreading, have recorded the inversions of the earth's magnetic field and present typical oceanic crust morphologies. By contrast, the New Caledonia and Fairway basins, which are narrower and present thick sedimentary covers have a less known and more controversial origin. Based on a regional geological synthesis and on interpretation of multichannel seismic reflection and refraction data, combined with drill hole data off New Zealand and a compilation of regional potential data, we distinguish 2 phases of the evolution of the Fairway-Aotea Basin (FAB) and the New Caledonia Trough (NCT), which reflect the evolution of the Gondwana-Pacific plate boundary: Phase 1: Mid Cretaceous formation of the FAB in a continental intra- or back- arc position of the Pacific-Gondwana subduction system. The formation of this shallow basin reflects the onset of continental breakup of the Eastern Gondwana margin during Cenomanian which was most probably caused by a dynamic change of the subduction zone through a « verticalization » of the slab. This event may be the result of the 99 Ma kinematic plate reorganization which probably led to subduction cessation along the Gondwana-Pacific plate boundary. A tectonic escape mechanism, in relation with the locking of the subduction zone by the Hikurangi Plateau, could also be responsible of the trench retreat leading to backarc extension. Phase 2: Regional Eocene-Oligocene uplift followed by rapid subsidence (3-4 km) of the system « Lord Howe Rise - FAB - Norfolk Ridge ». The structural style of this deformation leads us to suggest that detachment of the lower crust is the cause of subsidence. We therefore propose a model in

  7. Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data

    Science.gov (United States)

    Schikorra, Armin

    2018-02-01

    We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.

  8. Intersectionality, Race-Gender Subordination, and Education

    Science.gov (United States)

    Harris, Angela; Leonardo, Zeus

    2018-01-01

    In this chapter, we unpack "intersectionality as an analytical framework." First, we cite Black Lives Matter as an impetus for discussing intersectionality's current traction. Second, we review the genealogy of "intersectionality" beginning with Kimberlé Crenshaw's formulation, which brought a Black Studies provocation into…

  9. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  10. Tectonics of ridge-transform intersections at the Kane fracture zone

    Science.gov (United States)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non

  11. A Comment Upon Previous Studies on 3-D Boundary Layer Transition

    OpenAIRE

    ÇARPINLIOĞLU, Melda Özdinç

    2014-01-01

    The common feature of the experimental studies upon 3-D boundary layer development on swept flat plates cited in the available literature is the application of streamwise and/or spanwise pressure gradients. In fact; presence of the pressure gradients was suggested to be vital for having crossflow effective in 3-D boundary layer transition. In the presented paper here, this idea is questioned evaluating the results of an experimental investigation conducted on swept flat plates under the ab...

  12. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    Science.gov (United States)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  13. Exploring Class-Based Intersectionality

    Science.gov (United States)

    Block, David; Corona, Victor

    2014-01-01

    This paper argues that language, culture and identity researchers need to take the intersectionality of identity inscriptions seriously and, further to this, that an intersectional approach which emanates from an interest in social class provides a productive way to examine the lives and experience of individuals living in multicultural societies.…

  14. Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition

    International Nuclear Information System (INIS)

    Jat, R.N.; Chaudhary, Santosh

    2009-01-01

    The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)

  15. Segmentation along the Queen Charlotte Fault: The long-lived influence of plate-motion rotation and Explorer Ridge fracture zones

    Science.gov (United States)

    Miller, N. C.; Walton, M. A. L.; Brothers, D. S.; Haeussler, P. J.; Ten Brink, U. S.; Conrad, J. E.; Kluesner, J.; Andrews, B. D.

    2017-12-01

    The Queen Charlotte Fault (QCF) generally tracks the flow line for Pacific/North America (Pa/NA) relative motion since 20 Ma, indicating that the plate boundary localized along an optimally oriented small circle geometry. Rotation in Pa/NA motion at 10—12 Ma caused the QCF south of 53 N to be oblique to plate motion by 10—20. This oblique convergence appears to be accommodated in part by underthrusting of the Pacific Plate beneath Haida Gwaii and in part by slip on faults west of the QCF. On the west side of the QCF, a series of ridges and small basins oriented subparallel to either the QCF or relative plate motion form a 40-km-wide terrace. New high-resolution seismic reflection data image the seaward edge of the ridges as a vertical contact between horizontal or sometimes downwarped deep-sea sediments and west-vergent anticlinal structures within the ridges, supporting earlier interpretations that these ridges have accommodated some component of oblique motion. We argue that the ridges originated as step overs from fracture zones on Explorer Ridge, analogous to the current fault geometry at the southernmost end of the QCF. There, the Revere-Dellwood Fracture Zone (RDFZ) overlaps the QCF for 120 km and connects to the QCF via a more-optimally oriented extensional right step. 3.9—6.4 Mw strike-slip earthquakes along the RDFZ and a lack of contractional seafloor morphologies along the QCF south of the RDFZ-QCF right step suggest that the step over and reactivation along the RDFZ accommodates a majority of plate motion in this region. Kinematic reconstruction of ridges from 54—56 N indicates that they also originated in a similar location, potentially as right steps from either the RDFZ or Sovanco Fracture Zone. Similarly, the RDFZ flow path is coincident with a truncation of seafloor magnetic anomalies and the outer edge of the ridge-bounded terrace, which both parallel the QCF since at least the onset of Explorer Ridge spreading at 8 Ma. The RDFZ-QCF right

  16. 30 CFR 57.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  17. UpSet: Visualization of Intersecting Sets

    Science.gov (United States)

    Lex, Alexander; Gehlenborg, Nils; Strobelt, Hendrik; Vuillemot, Romain; Pfister, Hanspeter

    2016-01-01

    Understanding relationships between sets is an important analysis task that has received widespread attention in the visualization community. The major challenge in this context is the combinatorial explosion of the number of set intersections if the number of sets exceeds a trivial threshold. In this paper we introduce UpSet, a novel visualization technique for the quantitative analysis of sets, their intersections, and aggregates of intersections. UpSet is focused on creating task-driven aggregates, communicating the size and properties of aggregates and intersections, and a duality between the visualization of the elements in a dataset and their set membership. UpSet visualizes set intersections in a matrix layout and introduces aggregates based on groupings and queries. The matrix layout enables the effective representation of associated data, such as the number of elements in the aggregates and intersections, as well as additional summary statistics derived from subset or element attributes. Sorting according to various measures enables a task-driven analysis of relevant intersections and aggregates. The elements represented in the sets and their associated attributes are visualized in a separate view. Queries based on containment in specific intersections, aggregates or driven by attribute filters are propagated between both views. We also introduce several advanced visual encodings and interaction methods to overcome the problems of varying scales and to address scalability. UpSet is web-based and open source. We demonstrate its general utility in multiple use cases from various domains. PMID:26356912

  18. Boundaries, injective envelopes, and reduced crossed products

    DEFF Research Database (Denmark)

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  19. Mean flow structure of non-equilibrium boundary layers with adverse ...

    Indian Academy of Sciences (India)

    According to them, an equilibrium boundary layer might exist if the pressure ... of adverse pressure gradient on the turbulent boundary layer at the flat plate for ..... of a constant-pressure turbulent layer to the sudden application of an sudden.

  20. The M w = 5.8 14 August 2016 middle Sakhalin earthquake on a boundary between Okhotsk and Eurasian (Amurian) plates

    Science.gov (United States)

    Konovalov, A. V.; Stepnov, A. A.; Safonov, D. A.; Kozhurin, A. I.; Pavlov, A. S.; Gavrilov, A. V.; Manaychev, K. A.; Tomilev, D. Ye.; Takahashi, H.; Ichiyanagi, M.

    2018-04-01

    An earthquake with the moment magnitude M w = 5.8 occurred in the middle part of the Sakhalin Island, Russian Federation, on 14 August 2016, at 11:17 a.m. UTC. The earthquake source was located west of the Central Sakhalin Fault Zone, which is considered to mark the boundary between the Okhotsk and Eurasian (Amurian) plates. Moment tensor solution of the mainshock as well as the configuration of aftershock cloud suggests that the earthquake was caused by slip on a SW-dipping reverse fault. For the first time for Sakhalin, we have got the felt reports unified in accordance with DYFI. We also analyzed observed PGA values and, based on them, produced shaking maps.

  1. BEPLATE emdash simulation of electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  2. Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions

    Science.gov (United States)

    Chardon, Gilles; Daudet, Laurent

    2013-11-01

    This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.

  3. 30 CFR 56.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  4. Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj Marotrao Ghugal

    Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.

  5. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    Science.gov (United States)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  6. Influence on electron coherence from quantum electromagnetic fields in the presence of conducting plates

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Lee, D.-S.

    2006-01-01

    The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the electron is derived by the method of influence functional. We find that the plate boundary anisotropically modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal case. The presence of the second parallel plate is found to boost these effects. The potential relation between the amplitude change and phase shift of interference fringes is pointed out. The finite conductivity effect on electron coherence is discussed

  7. Investigation of acoustic field near to elastic thin plate using integral method

    Directory of Open Access Journals (Sweden)

    В.І. Токарев

    2004-01-01

    Full Text Available  Investigation of acoustic field near to elastic thin plate using  integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.

  8. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  9. Heat analysis of the magnetic limiter plate for JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ninomiya, Hiromasa; Shimizu, Masatsugu; Ohta, Mitsuru

    1977-03-01

    Heat analysis has been made of the magnetic limiter plate for JT-60. Test materials of the magnetic limiter plate are molybdenum, graphite, pyrolytic graphite and silicon carbide. It is assumed in calculation of the heat analysis that 10MW is deposited on the 2 cm wide surface of the magnetic limiter plate in about 10 sec. The magnetic limiter plate of pyrolytic graphite is a stack of pyrolytic graphite sheets, heat input is in the deposition plane to take advantage of the large heat conductivity along this plane. Pyrolytic graphite is the best in terms of temperature rise. The temperature of molybdenum and graphite rise up to 1800 0 C and 620 0 C, respectively, in an deposition of 10 MWx10sec. Silicon carbide is not suitable for the magnetic limiter plate. Because the plasma of the JT-60 discharges every 10 min, the average heat flux decreases to 17 w/cm 2 during the each interval. When the magnetic limiter plate has the above heat inflow, a maximum of above 1000 0 C occurs at the edge far from the joint to the thick ring of the vacuum vessel. To reduce heat load of the magnetic limiter plate, an alternating current (2 -- 5Hz) is superposed on the magnetic limiter coil current. The intersection of separatrix line and magnetic limiter plate then moves cyclically more than 10 cm. Concerning temperature distribution of the multi-groove magnetic limiter plate, its dimensions are determined by the limitation in vapor pressure to prevent the impurity inflow. (auth.)

  10. Elastic stability of laminated, flat and curved, long rectangular plates subjected to combined inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.

  11. Modal radiation patterns of baffled circular plates and membranes.

    Science.gov (United States)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2014-05-01

    The far field velocity potential and radiation pattern of baffled circular plates and membranes are found analytically using the full set of modal velocity profiles derived from the corresponding equation of motion. The derivation is valid for a plate or membrane subjected to an external excitation force, which is used as a sound receiver in any medium or as a sound transmitter in a gaseous medium. A general, concise expression is given for the radiation pattern of any mode of the membrane and the plate with arbitrary boundary conditions. Specific solutions are given for the four special cases of a plate with clamped, simply supported, and free edge boundary conditions as well as for the membrane. For all non-axisymmetric modes, the velocity potential along the axis of the radiator is found to be strictly zero. In the long wavelength limit, the radiation pattern of all axisymmetric modes approaches that of a monopole, while the non-axisymmetric modes exhibit multipole behavior. Numerical results are also given, demonstrating the implications of having non-axisymmetric excitation using both a point excitation with varying eccentricity and a homogeneous excitation acting on half of the circular radiator.

  12. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    Science.gov (United States)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to

  13. Self-Localization at Street Intersections.

    Science.gov (United States)

    Fusco, Giovanni; Shen, Huiying; Coughlan, James M

    2014-05-01

    There is growing interest among smartphone users in the ability to determine their precise location in their environment for a variety of applications related to wayfinding, travel and shopping. While GPS provides valuable self-localization estimates, its accuracy is limited to approximately 10 meters in most urban locations. This paper focuses on the self-localization needs of blind or visually impaired travelers, who are faced with the challenge of negotiating street intersections. These travelers need more precise self-localization to help them align themselves properly to crosswalks, signal lights and other features such as walk light pushbuttons. We demonstrate a novel computer vision-based localization approach that is tailored to the street intersection domain. Unlike most work on computer vision-based localization techniques, which typically assume the presence of detailed, high-quality 3D models of urban environments, our technique harnesses the availability of simple, ubiquitous satellite imagery (e.g., Google Maps) to create simple maps of each intersection. Not only does this technique scale naturally to the great majority of street intersections in urban areas, but it has the added advantage of incorporating the specific metric information that blind or visually impaired travelers need, namely, the locations of intersection features such as crosswalks. Key to our approach is the integration of IMU (inertial measurement unit) information with geometric information obtained from image panorama stitchings. Finally, we evaluate the localization performance of our algorithm on a dataset of intersection panoramas, demonstrating the feasibility of our approach.

  14. Changes in Student Knowledge and Views of Geohazards, Societal Risks, and Monitoring at Active Plate Boundaries Using a Data-Rich Curriculum

    Science.gov (United States)

    Selkin, P. A.; Goodell, L. P.; Teasdale, R.

    2015-12-01

    The "Living on the Edge: Building Resilient Societies on Active Plate Margins" curriculum consists of six data-rich activities, each intended for a 50-minute class, in which students assess risk at active plate boundaries due to earthquakes and volcanoes. Developed as part of the InTeGrate NSF STEP Center the peer-reviewed, publically available materials (http://serc.carleton.edu/104296) have been used at several institutions in diverse classroom settings including small laboratory sections, large lecture courses, medium-sized upper division courses and professional development programs for middle and high school teachers. Pre- and post-instruction surveys measured content knowledge and geoscience literacy, self-efficacy in using geologic data to assess hazards and risk, and attitudes towards the value of monitoring plate margins. The activities have overall positive effects on knowledge of geohazard concepts. Views about the value of scientific practice also became more positive: 74% of students indicated they "agree" or "strongly agree" that monitoring geologic activity has value to them personally (even if they don't live on an active plate margin) and 94% indicated that such monitoring is valuable to society. Most became more confident in evaluating geologic hazard and risk (>60% of students self-described increased confidence by one or more Likert levels). Student knowledge of both the types and limits of data in forecasting geological hazards and their effects also improved. However, attitudes toward sustainability and geoscience careers did not change. Learning and attitudinal improvements are true for all classroom types, but the degree of change varies with class size and the amount of time spent on activities. Learning data and instructor feedback suggest that interactive classroom activities that use real-world data to address societally relevant issues increase student learning and enhance students' ability to synthesize scientific information.

  15. The Plate Boundary Observatory Student Field Assistant Program in Southern California

    Science.gov (United States)

    Seider, E. L.

    2007-12-01

    Each summer, UNAVCO hires students as part of the Plate Boundary Observatory (PBO) Student Field Assistant Program. PBO, the geodetic component of the NSF-funded EarthScope project, involves the reconnaissance, permitting, installation, documentation, and maintenance of 880 permanent GPS stations in five years. During the summer 2007, nine students from around the US and Puerto Rico were hired to assist PBO engineers during the busy summer field season. From June to September, students worked closely with PBO field engineers to install and maintain permanent GPS stations in all regions of PBO, including Alaska. The PBO Student Field Assistant Program provides students with professional hands-on field experience as well as continuing education in the geosciences. It also gives students a glimpse into the increasing technologies available to the science community, the scope of geophysical research utilizing these technologies, and the field techniques necessary to complete this research. Students in the PBO Field Assistant Program are involved in all aspects of GPS support, including in-warehouse preparation and in-field installations and maintenance. Students are taught practical skills such as drilling, wiring, welding, hardware configuration, documentation, and proper field safety procedures needed to construct permanent GPS stations. These real world experiences provide the students with technical and professional skills that are not always available to them in a classroom, and will benefit them greatly in their future studies and careers. The 2007 summer field season in Southern California consisted of over 35 GPS permanent station installations. To date, the Southern California region of PBO has installed over 190 GPS stations. This poster presentation will highlight the experiences gained by the Southern California student field assistants, while supporting PBO- Southern California GPS installations in the Mohave Desert and the Inyo National Forest.

  16. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  17. ISR Intersection 1

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The experimental apparatus used at intersection 1 by the CERN-Bologna Collaboration (experiment R105). It consists of two almost identical magnetic spectrometers centered at 90 degrees on opposite sides of the intersection region. In each spectrometer one can see magnetostrictive wire spark chambers, a magnet, more chambers and various hodoscopes of scintillation counters. Gas Cerenkov counters (almost invisible in the picture) are located in the gap of each magnet. On the left hand side, a matrix of 119 lead glass Cerenkov counters is located behind some concrete and iron shielding.

  18. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary

  19. A situated approach to VET students' reflection processes across boundaries

    DEFF Research Database (Denmark)

    Wegener, Charlotte

    2014-01-01

    The purpose of this paper is to illuminate the intersection between institutional requirements for reflection and students’ actual reflection initiatives in the social and health care education programmes. A situated perspective makes it possible to illuminate individuals’ commitment, curiosity a...... be enhanced. The paper adds to previous research on boundary crossing in vocational education and highlights the notion of visible reflection....

  20. Molecular dynamics simulation of dislocation intersections in aluminum

    International Nuclear Information System (INIS)

    Li, M.; Chu, W.Y.; Qian, C.F.; Gao, K.W.; Qiao, L.J.

    2003-01-01

    The molecular dynamics method is used to simulate dislocation intersection in aluminum containing 1.6x10 6 atoms using embedded atom method (EAM) potential. The results show that after intersection between two right-hand screw dislocations of opposite sign there are an extended jog corresponding to a row of 1/3 vacancies in the intersected dislocation, and a trail of vacancies behind the moving dislocation. After intersection between screw dislocations of same sign, there are an extended jog corresponding to a row of 1/3 interstitials in the intersected dislocation, and a trail of interstitials behind the moving dislocation. After intersection between screw and edge dislocations with different Burgers vector, there are a constriction corresponding to one 1/3 vacancy in the edge dislocation, and no point-defects behind the screw dislocation. When a moving screw dislocation intersects an edge dislocation with the same Burgers vector, the point of intersection will split into two constrictions corresponding to one 1/3 vacancy and 1/3 interstitial, respectively. The moving screw dislocation can pass the edge dislocation only after the two constrictions, which can move along the line of intersection of the two slip planes, meet and annihilate

  1. Free vibration analysis of rectangular plates with central cutout

    Directory of Open Access Journals (Sweden)

    Kanak Kalita

    2016-12-01

    Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

  2. Numerical solution of the problems for plates on partial internal supports of complicated configurations

    International Nuclear Information System (INIS)

    Quang A, Dang; Hai, Truong Ha

    2014-01-01

    Very recently in the work S imple Iterative Method for Solving Problems for Plates with Partial Internal Supports, Journal of Engineering Mathematics, DOI: 10.1007/s10665-013-9652-7 (in press) , we proposed a numerical method for solving some problems of plates on one and two line partial internal supports (LPIS). In the essence they are problems with strongly mixed boundary conditions for biharmonic equation. Using this method we reduced the problems to a sequence of boundary value problems for the Poisson equation with weakly mixed boundary conditions, which are easily solved numerically. The advantages of the method over other ones were shown. In this paper we apply the method to plates on internal supports of more complicated configurations. Namely, we consider the case of three LPIS and the case of the cross support. The convergence of the method is established theoretically and its efficiency is confirmed on numerical experiments

  3. Structural Response of Submerged Air-Backed Plates by Experimental and Numerical Analyses

    Directory of Open Access Journals (Sweden)

    Lloyd Hammond

    2000-01-01

    Full Text Available This paper presents the results of a series of small-scale underwater shock experiments that measured the structural responses of submerged, fully clamped, air-backed, steel plates to a range of high explosive charge sizes. The experimental results were subsequently used to validate a series of simulations using the coupled LS-DYNA/USA finite element/boundary element codes. The modelling exercise was complicated by a significant amount of local cavitation occurring in the fluid adjacent to the plate and difficulties in modelling the boundary conditions of the test plates. The finite element model results satisfactorily predicted the displacement-time history of the plate over a range of shock loadings although a less satisfactory correlation was achieved for the peak velocities. It is expected that the predictive capability of the finite element model will be significantly improved once hydrostatic initialisation can be fully utilised with the LS-DYNA/USA software.

  4. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  5. Intersectional embodiment and power

    DEFF Research Database (Denmark)

    Elg, Camilla; Jensen, Sune Qvotrup

    Through almost two decades the term ‘intersectionality' has gained influence in post colonial studies, gender studies, feminist theory and other research fields occupied with how social differences are distributed and how individuals are socially constructed  in stratified societies. The ‘interse......Through almost two decades the term ‘intersectionality' has gained influence in post colonial studies, gender studies, feminist theory and other research fields occupied with how social differences are distributed and how individuals are socially constructed  in stratified societies...... not seem to gain much attention in social stratification research in general. In our paper we will present our work on an embodied approach to intersectionality, which is inspired by Pierre Bourdieu and other thinkers of embodiment. We will argue for the importance of a focus on the embodiment of social...

  6. Cache-Oblivious Red-Blue Line Segment Intersection

    DEFF Research Database (Denmark)

    Arge, Lars; Mølhave, Thomas; Zeh, Norbert

    2008-01-01

    We present an optimal cache-oblivious algorithm for finding all intersections between a set of non-intersecting red segments and a set of non-intersecting blue segments in the plane. Our algorithm uses $O(\\frac{N}{B}\\log_{M/B}\\frac{N}{B}+T/B)$ memory transfers, where N is the total number...... of segments, M and B are the memory and block transfer sizes of any two consecutive levels of any multilevel memory hierarchy, and T is the number of intersections....

  7. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  8. Subduction and Plate Edge Tectonics in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust

  9. Hydrodynamics of a three-dimensional self-propelled flexible plate

    Science.gov (United States)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  10. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  11. Intersectionality - an intercategorical approach

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2017-01-01

    The aim of this article is to demonstrate how to empirically uncover intersectional complexity by simple methods. The article is based on three examples of intercategorical complexity. Firstly, by discussing gender mainstreaming, it is shown that a narrow focus on categories without their interse...... of a study in partial analyses may reveal intersectionality. The examples show how interaction and interwoven categories can be included in intercategorical analyses of structural relationships....

  12. DESIGNING AN EFFECTIVE INTERSECTION USING CAD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    CRISAN George-Horea

    2017-05-01

    Full Text Available Ensuring the safety and streamline in road traffic are very important aims, with regard to the nowadays people mobility level. Road infrastructure is an essential element that can meet these requirements. Thus, it is proposed to develop an effective model of intersection by using CAD software tools. This type of intersection can be successfully used on almost any category of roads, increasing road traffic safety, reducing passing times through the intersection and in the same time, reducing conflict points and increase the intersection capacity.

  13. Statistical modeling of total crash frequency at highway intersections

    Directory of Open Access Journals (Sweden)

    Arash M. Roshandeh

    2016-04-01

    Full Text Available Intersection-related crashes are associated with high proportion of accidents involving drivers, occupants, pedestrians, and cyclists. In general, the purpose of intersection safety analysis is to determine the impact of safety-related variables on pedestrians, cyclists and vehicles, so as to facilitate the design of effective and efficient countermeasure strategies to improve safety at intersections. This study investigates the effects of traffic, environmental, intersection geometric and pavement-related characteristics on total crash frequencies at intersections. A random-parameter Poisson model was used with crash data from 357 signalized intersections in Chicago from 2004 to 2010. The results indicate that out of the identified factors, evening peak period traffic volume, pavement condition, and unlighted intersections have the greatest effects on crash frequencies. Overall, the results seek to suggest that, in order to improve effective highway-related safety countermeasures at intersections, significant attention must be focused on ensuring that pavements are adequately maintained and intersections should be well lighted. It needs to be mentioned that, projects could be implemented at and around the study intersections during the study period (7 years, which could affect the crash frequency over the time. This is an important variable which could be a part of the future studies to investigate the impacts of safety-related works at intersections and their marginal effects on crash frequency at signalized intersections.

  14. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  15. Modelling and solution of contact problem for infinite plate and cross-shaped embedment

    Directory of Open Access Journals (Sweden)

    O.B. Kozin

    2016-09-01

    Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.

  16. Analytical model of unsteady-state convective heat transfer between the heat carrier and the finite sizes plate adjusted for the thermal relaxation

    Directory of Open Access Journals (Sweden)

    Makarushkin Danila

    2017-01-01

    Full Text Available A hyperbolic boundary value problem of the thermal conduction of a two-dimensional plate with the third kind boundary conditions is formulated. The transient thermal process in the plate is due to the temperature changes of the external medium over time and along the plate length, and also by a multiple step change of the plate surface heat transfer coefficient throughout the transient process. An analytical solution with improved convergence adjusted for thermal relaxation and thermal damping is obtained for the temperature field in the plate.

  17. Intersectionality and Critical Race Parenting

    Science.gov (United States)

    DePouw, Christin

    2018-01-01

    This conceptual article employs critical race theory (CRT) as a theoretical framework to explore the importance of intersectionality in critical race parenting. In particular, I focus on intersectionality to understand better how Whiteness and racial power play out in intimate relationships within the family, particularly between White parents and…

  18. Authenticity in Leadership: Intersectionality of Identities.

    Science.gov (United States)

    Jones, Susan R

    2016-12-01

    This chapter situates leadership and the process of becoming a leader within an understanding of identity, particularly intersecting social identities and intersectionality. © 2016 Wiley Periodicals, Inc., A Wiley Company.

  19. Voting based object boundary reconstruction

    Science.gov (United States)

    Tian, Qi; Zhang, Like; Ma, Jingsheng

    2005-07-01

    A voting-based object boundary reconstruction approach is proposed in this paper. Morphological technique was adopted in many applications for video object extraction to reconstruct the missing pixels. However, when the missing areas become large, the morphological processing cannot bring us good results. Recently, Tensor voting has attracted people"s attention, and it can be used for boundary estimation on curves or irregular trajectories. However, the complexity of saliency tensor creation limits its applications in real-time systems. An alternative approach based on tensor voting is introduced in this paper. Rather than creating saliency tensors, we use a "2-pass" method for orientation estimation. For the first pass, Sobel d*etector is applied on a coarse boundary image to get the gradient map. In the second pass, each pixel puts decreasing weights based on its gradient information, and the direction with maximum weights sum is selected as the correct orientation of the pixel. After the orientation map is obtained, pixels begin linking edges or intersections along their direction. The approach is applied to various video surveillance clips under different conditions, and the experimental results demonstrate significant improvement on the final extracted objects accuracy.

  20. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  1. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    OpenAIRE

    AZZEDINE NAHOUI; LAKHDAR BAHI

    2013-01-01

    A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has de...

  2. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  3. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  4. High-Resolution P'P' Precursor Imaging of Nazca-South America Plate Boundary Zones and Inferences for Transition Zone Temperature and Composition

    Science.gov (United States)

    Gu, Y. J.; Schultz, R.

    2013-12-01

    Knowledge of upper mantle transition zone stratification and composition is highly dependent on our ability to efficiently extract and properly interpret small seismic arrivals. A promising high-frequency seismic phase group particularly suitable for a global analysis is P'P' precursors, which are capable of resolving mantle structures at vertical and lateral resolution of approximately 5 and 200 km, respectively, owing to their shallow incidence angle and small, quasi-symmetric Fresnel zones. This study presents a simultaneous analysis of SS and P'P' precursors based on deconvolution, Radon transform and depth migration. Our multi-resolution survey of the mantle near Nazca-South America subduction zone reveals both olivine and garnet related transitions at depth below 400 km. We attribute a depressed 660 to thermal variations, whereas compositional variations atop the upper-mantle transition zone are needed to explain the diminished or highly complex reflected/scattered signals from the 410 km discontinuity. We also observe prominent P'P' reflections within the transition zone, especially near the plate boundary zone where anomalously high reflection amplitudes result from a sharp (~10 km thick) mineral phase change resonant with the dominant frequency of the P'P' precursors. Near the base of the upper mantle, the migration of SS precursors shows no evidence of split reflections near the 660-km discontinuity, but potential majorite-ilmenite (590-640 km) and ilmenite-perovskite transitions (740-750 km) are identified based on similarly processed high-frequency P'P' precursors. At nominal mantle temperatures these two phase changes may be seismically indistinguishable, but colder mantle conditions from the descending Nazca plate, the presence of water and variable Fe contents may cause sufficient separation for a reliable analysis. In addition, our preliminary results provide compelling evidence for multiple shallow lower-mantle reflections (at ~800 km) along the

  5. The EarthScope Plate Boundary Observatory: Bringing Low Latency Data From Unimak Island, Alaska

    Science.gov (United States)

    Feaux, K.; Mencin, D.; Jackson, M.; Gallaher, W.; Pauk, B.; Smith, S.

    2008-05-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, will complete the installation of a fourteen station GPS network on Unimak Island, Alaska in August, 2008. The primary data communications goal of the project is to design and implement a robust data communications network capable of downloading 15-sec daily GPS files and streaming 1 Hz GPS data, via Ustream, from Unimak Island to three data relay points in the Aleutian chain. As part of the permitting agreement with the landowner, PBO will co-locate the GPS stations with existing USGS seismic stations. The technical challenges involved in optimizing the data communications network for both the GPS data and the seismic data will be presented. From Unimak island, there will be three separate data telemetry paths: 1) West through a radio repeater on Akutan volcano to a VSAT in Akutan village, 2) East through a radio repeater to a T1 connection in Cold Bay, AK, 3) South through a radio repeater to a VSAT at an existing PBO GPS station in King Cove, AK. The difficulties involved in the project include complex network geometries with multiple radio repeaters, long distance RF transmission over water, hardware bandwidth limitations, power limitations, space limitations, as well as working in bear country on an incredibly remote and active volcano.

  6. Electromagnetic on-aircraft antenna radiation in the presence of composite plates

    Science.gov (United States)

    Kan, S. H-T.; Rojas, R. G.

    1994-01-01

    The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.

  7. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bull, J.M.; DeMets, C.; Krishna, K.S.; Sanderson, D.J.; Merkouriev, S.

    The far-field signature of the India-Asia collision and history of uplift in Tibet are recorded by sediment input into the Indian Ocean and the strain accumulation history across the diffuse plate boundary between the Indian and Capricorn plates. We...

  8. Investigation of 3D Shock-Boundary Layer Interaction: A Combined Approach using Experiments, Numerical Simulations and Stability Analysis

    Science.gov (United States)

    2015-12-02

    layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...Introduction Shock-wave boundary layer interactions (SBLIs) occur in most supersonic flight applications and have been the subject of many studies...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental

  9. Modeling of the heat transfer in bypass transitional boundary-layer flows

    Science.gov (United States)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  10. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  11. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  12. Scattering Amplitudes from Intersection Theory.

    Science.gov (United States)

    Mizera, Sebastian

    2018-04-06

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  13. Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdjumov-Sachs–Pitsch pathway

    Energy Technology Data Exchange (ETDEWEB)

    Meiser, Jerome; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany)

    2016-08-15

    Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.

  14. Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdjumov-Sachs–Pitsch pathway

    International Nuclear Information System (INIS)

    Meiser, Jerome; Urbassek, Herbert M.

    2016-01-01

    Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.

  15. Preparing the Plate Boundary Observatory GNSS Network for the Future

    Science.gov (United States)

    Austin, K. E.; Walls, C. P.; Dittman, T.; Mann, D.; Boyce, E. S.; Basset, A.; Woolace, A. C.; Turner, R.; Lawrence, S.; Rhoades, S.; Pyatt, C.; Willoughby, H.; Feaux, K.; Mattioli, G. S.

    2017-12-01

    The EarthScope Plate Boundary Observatory (PBO) GNSS network, funded by the NSF and operated by UNAVCO, is comprised of 1100 permanent GPS and GNSS stations spanning three principal tectonic regimes and is administered by distinct management. The GPS-only network was initially designed for daily data file downloads primarily for tectonic analysis. This low data volume requirement and circa-2004 IP-based cellular/VSat modems provided significant freedom for station placement and enabled science-targeted installation of stations in some of the most remote and geologically interesting areas. Community requests for high-rate data downloads for GNSS seismology, airborne LiDAR surveys, meteorological/GNSS/seismic real-time data flow and other demands, however, require significantly increased bandwidth beyond the 5-20 kB/s transfer rates that were needed as part of the original design. Since the close of construction in September 2008, PBO enhancements have been implemented through additional funding by the NSF (ARRA/Cascadia), NOAA, and NASA and in collaboration with stakeholders such as Caltrans, ODOT, Scripps, and the USGS. Today, only 18 of the original cell modems remain, with 601 upgraded cell modems providing 3G/4G/LTE data communications that support transfer rates ranging from 80-400 kB/s. Radio network expansion and upgrades continue to harden communications using both 2.4 GHz and 5.8 GHz radios. 78 VSAT and 5 manual download sites remain. PBO-wide the network capabilities for 1 Hz & 5 Hz downloads or low latency 1 Hz streaming are 85%, 80% and 65% of PBO stations, respectively, with 708 active 1 Hz streams. Vaisala meteorological instruments are located at 140 sites most of which stream GPS/Met data in real time. GPS-only receivers are being replaced with GNSS receivers and antennas. Today, there are 279 stations in the PBO network with either GLONASS enabled Trimble NetR9 or full GNSS constellation Septentrio PolaRx5 receivers. Just as the scale and

  16. Analysis of stress wave propagation in an elasto-viscoplastic plate

    International Nuclear Information System (INIS)

    Nakagawa, Noritoshi; Kawai, Ryoji; Urushi, Norio.

    1986-01-01

    Stress waves which propagate in the body are reflected at the boundary, and due to the interaction of the reflected stress waves, the focussing of stress waves will take place and a high stress level can be caused. The focussing of stress waves due to the reflection from the boundary may bring about fracture of the body, so that this is an important problem from a viewpoint of dynamic strength of structures. In this paper the process of stress wave focussing and the strain-rate dependence of constitutive equation in elastic and plastic regions are investigated. In the case where an in-plane step load uniformly acts on the straight edge of the plate with a semi-circular boundary, the propagation of stress waves in the plate was numerically analyzed by the finite element method, applying viscoelastic, elasto-plastic and elasto-viscoplastic constitutive equations. As the result, the process of focussing of stress waves due to reflection from the semi-circular boundary was observed and the difference in propagation behaviour of stress waves was discussed in materials represented by some kinds of constitutive equations. (author)

  17. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyro-tactic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Pop, I. [Department of Applied Mathematics, Babes-Bolyai University, Cluj-Napoca (Romania)

    2012-06-15

    The steady boundary layer free convection flow past a horizontal flat plate embedded in a porous medium filled by a water-based nano-fluid containing gyro-tactic microorganisms is investigated. The Oberbeck-Boussinesq approximation is assumed in the analysis. The effects of bio-convection parameters on the dimensionless velocity, temperature, nano-particle concentration and density of motile microorganisms as well as on the local Nusselt, Sherwood and motile microorganism numbers are investigated and presented graphically. In the absence of bio-convection, the results are compared with the existing data in the open literature and found to be in good agreement. The bio-convection parameters strongly influence the heat, mass, and motile microorganism transport rates. (authors)

  18. Using Intersectionality in Student Affairs Research

    Science.gov (United States)

    Strayhorn, Terrell L.

    2017-01-01

    This chapter presents intersectionality as a useful heuristic for conducting research in higher education and student affairs contexts. Much more than just another theory, intersectionality can powerfully shape student affairs research in both obvious and tacit ways.

  19. Homogenization of a thermal problem with the fourier conditions in the thin plates of a heat exchanger

    International Nuclear Information System (INIS)

    Rahmattulla, A.A.; Taghite, M.B.

    1996-01-01

    In this paper was studied a thermal problem with the fourier boundary conditions on the edges of the holes in a periodically perforated plate of a heat exchanger. This problem contains several reduced parameters which can be very small (the period ε of the distribution of the holes, the reduced thickness e of the plate and the three Biot numbers relative to the different parts of the boundary). The homogenization technique was used to estimate the field of temperatures attainable in the upper plate, depending on the relative order of magnitude of the smell parameters. (authors). 9 refs

  20. Shear flow beneath oceanic plates: Local nonsimilarity boundary layers for olivine rheology

    International Nuclear Information System (INIS)

    Yuen, D.A.; Tovish, A.; Schubert, G.

    1978-01-01

    The principle of local similarity, which has been used to model the two-dimensional boundary layers in the oceanic upper mantle, permits calculation of the temperature, velocity, and stress fields with essentially analytic techniques. Finite difference numerical methods are hard pressed to resolve the detail required by the large variation of viscosity between the lithosphere and the asthenosphere. In this paper the local similarity approximation has been justified by quantitatively evaluating the effect of nonsimilarity due to viscous heating, nonlinear temperature- and pressure-dependent rheology, buoyancy, adiabatic cooling, etc. Nonsimilar effects produce only small modifications of the locally similar boundary layers; important geophysical observables such as surface heat flux and ocean floor topography are given to better than 10% by the locally similar solution. A posteriori evaluations of the term neglected in the boundary layer simplification of the complete equations have been conducted on the locally similar temperature and velocity profiles close to the spreading ridge. The boundary layer models are valid to depths of 100 km at 3 m.y. and 10 km at 0.3 m.y

  1. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  2. Reinforcement of a plate weakened by multiple holes with several patches for different types of plate-patch attachment

    KAUST Repository

    Zemlyanova, A.

    2014-01-24

    The most general situation of the reinforcement of a plate with multiple holes by several patches is considered. There is no restriction on the number and the location of the patches. Two types of patch attachment are considered: only along the boundary of the patch or both along the boundary of the patch and the boundaries of the holes which this patch covers. The unattached boundaries of the holes may be loaded with given in-plane stresses. The mechanical problem is reduced to a system of singular integral equations which can be further reduced to a system of Fredholm equations. A new numerical procedure for the solution of the system of singular integral equations is proposed in this paper. It is demonstrated on numerical examples that this procedure has advantages in the case of multiple patches and holes and allows achievement of better numerical convergence with less computational effort.

  3. SOFTWARE MODULE FOR CONSTRUCTING THE INTERSECTION OF TRIANGULATED SURFACES

    Directory of Open Access Journals (Sweden)

    Vladimir V. Kurgansky

    2018-03-01

    Full Text Available The effective algorithm is proposed for implementing Boolean operations over triangulated surfaces, namely, disjunction, conjunction and Boolean difference, and its software implementation. The idea consists in as follow. The first step is to determine pairs of intersecting triangles: localizing the intersection of the two surfaces using the bounding volume of the parallelepipeds and the future of their intersection. The second step is constructing an intersection line for each pair of triangles: a pair of intersecting triangles is selected, and the segment along which they intersect is constructed. Further, thanks to the entered data structure, "adjacent" triangles are selected, among which are selected those that form the intersecting pair. The process described above continues as long as such triangles can be detected. After that the triangles involved in the intersection are retriangulated. For each triangle, all the edges are known on which it intersects with triangles from another surface. These edges are structural edges in the triangulation problem with constraints for a given triangle. The third step is to combine all surfaces into one surface. Further, subsurfaces are constructed along the loops of intersection limited by the found loops. Since the intersection line of the surfaces was constructed in sequence, it is possible to specify the direction of each edge. Any edge from the intersection line is selected. The triangle is added to the subsurface under construction, which includes this edge and its orientation is the same as the direction of the edge. The edge which was selected previously is deleted from intersection line, but two new edges are added is the remaining edges of added triangle. The third step is to combine all surfaces into one surface. Further, subsurfaces are constructed along the cycles of intersection limited by the found cycles. Since the intersection line of the surfaces was constructed in sequence, it is

  4. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  5. Watching Electrons at Conical Intersections and Funnels

    Science.gov (United States)

    Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.

    2009-06-01

    The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.

  6. Framing Gender Intersections in the European Union

    DEFF Research Database (Denmark)

    Lombardo, Emanuela; Agustin, Lise Rolandsen

    2012-01-01

    are increasingly present but they are treated implicitly and from a separate perspective, and the inclusion of a wide range of inequalities often implies a degendering of the policy content. We assess the implications of the identified intersectionality trends for the quality of intersectionality in gender...... equality policies, and we suggest the practice of an “intersectionality impact assessment” as a way to improve the quality of EU policy-making....

  7. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.

  8. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  9. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat-plate boundary layer to a Rankine...example, consume an enormous amount of energy due to friction, many works have been directed to the suppression of transitional boundary layer disturbances...decrease of the enormous amount of energy consumed by airplanes during flight, moreover flight costs and aerodynamic noise could be reduced and number

  10. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    Science.gov (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  11. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Science.gov (United States)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  12. The intersectionality framework and identity intersections in the Journal of Counseling Psychology and The Counseling Psychologist: A content analysis.

    Science.gov (United States)

    Shin, Richard Q; Welch, Jamie C; Kaya, Aylin E; Yeung, Jeffrey G; Obana, Chynna; Sharma, Rajni; Vernay, Collin N; Yee, Stephanie

    2017-10-01

    The framework of intersectionality is a powerful analytical tool for making sense of how interlocking systems of privilege and oppression are experienced by individuals and groups. Despite the long history of the concept, intersectionality has only recently gained attention in psychology. We conducted a content analysis to assess counseling psychology's engagement with an intersectional perspective. All articles published in the Journal of Counseling Psychology (n = 4,800) and The Counseling Psychologist (n = 1,915) from their first issues until July 2016 were reviewed to identify conceptual and empirical work focused on intersectionality. A total of 40 articles were identified and examined for themes. Limitations and future directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  14. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  15. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  16. Casimir densities for a boundary in Robertson-Walker spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A., E-mail: saharian@ictp.i [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-04-12

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  17. Casimir densities for a boundary in Robertson-Walker spacetime

    International Nuclear Information System (INIS)

    Saharian, A.A.; Setare, M.R.

    2010-01-01

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  18. Development of an in-vehicle intersection collision countermeasure

    Science.gov (United States)

    Pierowicz, John A.

    1997-02-01

    Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.

  19. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  20. Receptivity of a high-speed boundary layer to temperature spottiness

    OpenAIRE

    Fedorov, A. V.; Ryzhov, A. A.; Soudakov, V. G.; Utyuzhnikov, S. V.

    2013-01-01

    Two-dimensional direct numerical simulation (DNS) of the receptivity of a flat-plate boundary layer to temperature spottiness in the Mach 6 free stream is carried out. The influence of spottiness parameters on the receptivity process is studied. It is shown that the temperature spots propagating near the upper boundary-layer edge generate mode F inside the boundary layer. Further downstream mode F is synchronized with unstable mode S (Mack second mode) and excites the latter via the inter-mod...

  1. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.; Mitsudharmadi, Hatsari; Winoto, S. H.; Lua, K. B.; Low, H. T.

    2016-01-01

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out

  2. Relative motions of the Australian, Pacific and Antarctic plates estimated by the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeff

    1995-01-01

    Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.

  3. Shallow very-low-frequency earthquakes accompanied with slow slip event along the plate boundary of the Nankai trough

    Science.gov (United States)

    Nakano, M.; Hori, T.; Araki, E.; Kodaira, S.; Ide, S.

    2017-12-01

    Recent improvements of seismic and geodetic observations have revealed the existence of a new family of slow earthquakes occurring along or close to the plate boundary worldwide. In the viewpoint of the characteristic time scales, the slow earthquakes can be classified into several groups as low-frequency tremor or tectonic tremor (LFT) dominated in several hertz, very-low-frequency earthquake (VLFE) dominated in 10 to 100 s, and short- and long-term slow-slip event (SSE) with durations of days to years. In many cases, these slow earthquakes are accompanied with other types of slow events. However, the events occurring offshore, especially beneath the toe of accretionary prism, are poorly understood because of the difficulty to detect signals. Utilizing the data captured from oceanfloor observation networks which many efforts have recently been taken to develop is necessary to improve our understandings for these events. Here, we investigated CMT analysis of shallow VLFEs using data obtained from DONET oceanfloor observation networks along the Nankai trough, southwest of Japan. We found that shallow VLFEs have almost identical history of moment release with that of synchronous SSE which occurred at the same region recently found by Araki et al. (2017). VLFE sources show updip migrations during the activity, coincident with the migration of SSE source. From these findings we conclude that these slow events share the same fault slip, and VLFE represent high-frequency fluctuations of slip during SSE. This result imply that shallow SSE along the plate interface would have occurred in the background during the shallow VLFE activities repeatedly observed along the Nankai trough, but the SSE was not reported because of difficult detections.

  4. Reconstructing Plate Boundaries in the Jurassic Neo-Tethys From the East and West Vardar Ophiolites (Greece and Serbia)

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.

    2018-03-01

    Jurassic subduction initiation in the Neo-Tethys Ocean eventually led to the collision of the Adria-Africa and Eurasia continents and the formation of an 6,000 km long Alpine orogen spanning from Iberia to Iran. Reconstructing the location and geometry of the plate boundaries of the now disappeared Neo-Tethys during the initial moments of its closure is instrumental to perform more realistic plate reconstructions of this region, of ancient ocean basins in general, and on the process of subduction initiation. Neo-Tethyan relics are preserved in an ophiolite belt distributed above the Dinaric-Hellenic fold-thrust belt. Here we provide the first quantitative constraints on the geometry of the spreading ridges and trenches active in the Jurassic Neo-Tethys using a paleomagnetically based net tectonic rotation analysis of sheeted dykes and dykes from the West and East Vardar Ophiolites of Serbia (Maljen and Ibar) and Greece (Othris, Pindos, Vourinos, and Guevgueli). Based on our results and existing geological evidence, we show that initial Middle Jurassic ( 175 Ma) closure of the western Neo-Tethys was accommodated at a N-S trending, west dipping subduction zone initiated near and parallel to the spreading ridge. The West Vardar Ophiolites formed in the forearc parallel to this new trench. Simultaneously, the East Vardar Ophiolites formed above a second N-S to NW-SE trending subduction zone located close to the European passive margin. We tentatively propose that this second subduction zone had been active since at least the Middle Triassic, simultaneously accommodating the closure of the Paleo-Tethys and the back-arc opening of Neo-Tethys.

  5. Flow of nanofluid past a Riga plate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Adeel, E-mail: adeelahmed@comsats.edu.pk [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan); Laboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice (France); Asghar, Saleem [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan); Department of Mathematics, King Abdul Aziz University, Jeddah (Saudi Arabia); Afzal, Sumaira [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000 Islamabad (Pakistan)

    2016-03-15

    This paper studies the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. The mathematical model incorporates the Brownian motion and thermophoresis effects due to nanofluid and the Grinberg-term for the wall parallel Lorentz force due to Riga plate. The analytical solution of the problem is presented using the perturbation method for small Brownian and thermophoresis diffusion parameters. The numerical solution is also presented to ensure the reliability of the asymptotic method. The comparison of the two solutions shows an excellent agreement. The correlation expressions for skin friction, Nusselt number and Sherwood number are developed by performing linear regression on the obtained numerical data. The effects of nanofluid and the Lorentz force due to Riga plate, on the skin friction are discussed. - Highlights: • Mixed convection flow of a nanofluid past a vertical Riga plate. • The Brownian motion and thermophoresis effects due to nanofluid are incorporated. • Grinberg-term represents the wall parallel Lorentz force due to Riga plate. • The correlation expressions for skin friction, Nusselt and Sherwood numbers are developed. • The effects of nanofluid and the Lorentz force on the skin friction are discussed.

  6. Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses

    Directory of Open Access Journals (Sweden)

    Ding Zhou

    2012-01-01

    Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.

  7. Robust Seismic Normal Modes Computation in Radial Earth Models and A Novel Classification Based on Intersection Points of Waveguides

    Science.gov (United States)

    Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal

  8. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  9. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    Science.gov (United States)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  10. A Comparative Study on Fatigue Life Optimization of the Intersection between a Longitudinal and a Webframe

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin

    1996-01-01

    to improve the design. A new improved slot for the longitudinal intersection in the web plate is found on the basis of a shape optimization of the conventional slot. The new slot has an unique shape (tongue form) resulting in a stress relaxation around the slot. Both the conventional and the new slot...... structure were analyzed by FEM followed by fatigue life calculations and subsequently compared. The overall expected fatigue life for the shape optimized slot will increase by approximately 12 %. The results were compared with an another study concerning a slot for a T-longitudinal....

  11. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  12. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  13. Intersection spaces, spatial homology truncation, and string theory

    CERN Document Server

    Banagl, Markus

    2010-01-01

    Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.

  14. Optimising Signalised Intersection Using Wireless Vehicle Detectors

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi; Torkudzor, Moses; Asare, Jack

    Traffic congestion on roads wastes travel times. In this paper, we developed a vehicular traffic model to optimise a signalised intersection in Accra, using wireless vehicle detectors. Traffic volume gathered was extrapolated to cover 2011 and 2016 and were analysed to obtain the peak hour traffic...... volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak periods gave optimal cycle lengths of 100s and 150s with corresponding intersection delay of 48.9s and 90.6s in 2011 and 2016...... respectively while that for the evening was 55s giving delay of 14.2s and 16.3s respectively. It is shown that the model will improve traffic flow at the intersection....

  15. Analysis of the pressure response of high angle multiple (HAM) fractures intersecting a welbore; Kokeisha multi fracture (HAM) kosei ni okeru atsuryoku oto kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ujo, S; Osato, K [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arihara, N [Waseda University, Tokyo (Japan); Schroeder, R

    1996-05-01

    This paper reports pressure response analysis on wells piercing a high angle multi (HAM) fracture model. In this model which is defined on a three-dimensional space, a plurality of slanted fractures intersect with wells at high angles (however, intersection of fractures with each other is not considered). With respect to the pressure response analysis method using this model, the paper presents a basic differential equation on pressure drawdown and boundary conditions in the wells taking flows in the fractures pseudo-linear, as well as external boundary conditions in calculation regions (a reservoir spreads to an infinite distance, and its top and bottom are closed by non-water permeating beds). The paper also indicates that results of calculating a single vertical fracture model and a slanted fracture model by using a numerical computation program (MULFRAC) based on the above equations agree well respectively with the existing calculation results (calculations performed by Erlougher and Cinco et al). 5 refs., 6 figs.

  16. Evaluation of the feasibility for detecting hidden corrosion damage in multi-layer gusset plates using multiple inspection techniques

    International Nuclear Information System (INIS)

    Cobb, Adam C.; Duffer, Charles E.; Light, Glenn M.

    2014-01-01

    Gusset plates are used to connect the members in truss bridges and they are usually inspected using calipers or conventional thickness measurement ultrasonic testing (UT) devices. The damage mechanism of particular concern in gusset plates is corrosion and the regions most susceptible to corrosion damage are on the gusset interior surface where it intersects the chord, diagonal, and vertical members from water collecting at the interfaces. For heavily loaded gusset plates, one or more shingle plates are used to reinforce the gusset plate, creating a multi-layer structure. While the areas with corrosion damage remain near the members on the gusset plate, the shingle plates cover the gusset plate and greatly limit the surface access to the gusset plate, making UT thickness measurement impractical. Because of the critical nature of the gussets, a viable inspection strategy for multi-layer gusset assemblies must be developed. The premise of this research and development effort was to develop viable, field-deployable inspection approaches for this problem area. This paper presents three separate inspection approaches: two ultrasonic-based techniques and one radiographic approach. Each of these techniques was evaluated on a mock-up specimen provided by the Federal Highway Administration (FHWA) that is representative of gusseted connection from a truss bridge

  17. Evaluation of the feasibility for detecting hidden corrosion damage in multi-layer gusset plates using multiple inspection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Adam C.; Duffer, Charles E.; Light, Glenn M. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States)

    2014-02-18

    Gusset plates are used to connect the members in truss bridges and they are usually inspected using calipers or conventional thickness measurement ultrasonic testing (UT) devices. The damage mechanism of particular concern in gusset plates is corrosion and the regions most susceptible to corrosion damage are on the gusset interior surface where it intersects the chord, diagonal, and vertical members from water collecting at the interfaces. For heavily loaded gusset plates, one or more shingle plates are used to reinforce the gusset plate, creating a multi-layer structure. While the areas with corrosion damage remain near the members on the gusset plate, the shingle plates cover the gusset plate and greatly limit the surface access to the gusset plate, making UT thickness measurement impractical. Because of the critical nature of the gussets, a viable inspection strategy for multi-layer gusset assemblies must be developed. The premise of this research and development effort was to develop viable, field-deployable inspection approaches for this problem area. This paper presents three separate inspection approaches: two ultrasonic-based techniques and one radiographic approach. Each of these techniques was evaluated on a mock-up specimen provided by the Federal Highway Administration (FHWA) that is representative of gusseted connection from a truss bridge.

  18. Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian He, E-mail: nmglilianhe@163.com [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China); College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Hohhot 010021 (China); Liu, Guan Ting [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China)

    2014-02-01

    In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant bending moments around the hole boundaries are also given explicitly. When the phonon–phason coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.

  19. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used

  20. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  1. Investigation of Heat Transfer to a Flat Plate in a Shock Tube.

    Science.gov (United States)

    1987-12-01

    2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge

  2. Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V

    2015-01-01

    Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed

  3. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States

    Science.gov (United States)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.

    2012-04-01

    We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes

  4. Vortex sheet approximation of boundary layers

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1978-01-01

    a grid free method for approximating incomprssible boundary layers is introduced. The computational elements are segments of vortex sheets. The method is related to the earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes equations by the Prandtl boundary layer equations. A new method for generating vorticity at boundaries is also presented; it can be used with the earlier voartex method. The applications presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- piston assembly, where the new method is used near walls and an improved version of the random choice method is used in the interior. One of the attractive features of the new method is the ease with which it can be incorporated into hybrid algorithms

  5. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  6. Extended MRI findings of intersection syndrome

    International Nuclear Information System (INIS)

    Lee, Roger P.; Hatem, Stephen F.; Recht, Michael P.

    2009-01-01

    The symptoms and physical findings of intersection syndrome have been well described in the clinical medical literature. However, the magnetic resonance imaging (MRI) findings in patients with intersection syndrome of the forearm have only recently been described in a small number of patients. We review our experience with imaging of intersection syndrome, describe previously unreported MRI findings, and emphasize modifications to MRI protocols for its evaluation. Institutional review board approval was obtained for this retrospective review of patients with MRI findings consistent with intersection syndrome of the forearm during the period from January 2004 to September 2006. Six patients were identified, three males and three females, with an average age of 39.3 years. The MRI examinations were reviewed to assess signal abnormalities within and adjacent to the first and second dorsal extensor tendon compartments (DETC): tendinosis, peritendinous edema or fluid, muscle edema, subcutaneous edema, and juxtacortical edema. The overall longitudinal extent of signal alterations was measured as well as the distance from Lister's tubercle to the crossover of the first and second DETC. Review of the MRIs showed increased intrasubstance tendon signal suggesting tendinosis in two of the six patients, peritendinous edema or fluid in all six patients, muscle edema in five of the six patients, and subcutaneous edema in three of the six patients. Juxtacortical edema was seen in one patient. Peritendinous edema or fluid extended distally beyond the radiocarpal joint in three of the six patients. The average distance from Lister's tubercle to the crossover of the first and second DETC was 3.95 cm, in keeping with recently published data. Intersection syndrome is an uncommon MRI diagnosis. In addition to the previously described MRI findings of edema adjacent to the first or second DETC, possibly with proximal extension and subcutaneous edema, we have identified additional

  7. Research on traffic flow characteristics at signal intersection

    Science.gov (United States)

    Zeng, Jun-Wei; Yu, Sen-Bin; Qian, Yong-Sheng; Wei, Xu-Ting; Feng, Xiao; Wang, Hui

    2017-09-01

    Based on the cautious driving behavior and the principle of the vehicles at left-side having priority to pass in the intersection, a two-dimensional cellular automata model for planar signalized intersection (NS-STCA) is established. The different turning vehicles are regarded as the research objects and the effect of the left-turn probability, signal cycle, vehicle flow density on traffic flow at the intersection is investigated.

  8. QUING WHY paper: Framing gender intersections in the European Union: what implications for the quality of intersectionality in policies?

    DEFF Research Database (Denmark)

    Agustin, Lise Rolandsen; Lombardo, Emanuela

    are increasingly present but they are treated implicitly and from a separate perspective, and the inclusion of a wide range of inequalities often implies a degendering of the policy content. We assess the implications of the identified intersectionality trends for the quality of intersectionality in gender...... equality policies and we suggest the practice of an ‘intersectionality impact assessment’ as a way to improve the quality of EU policy-making. In this regard, we particularly focus on the interface between the civil society and the EU institutions....

  9. IFMIF Li target back-plate design integration and thermo-mechanical analysis

    International Nuclear Information System (INIS)

    Riccardi, B.; Roccella, S.; Micciche, G.

    2006-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-driven intense neutron source where fusion reactor candidate materials will be tested. The neutron flux is produced by means of a deuteron beam (current 250 mA, energy 40 MeV) that strikes a liquid lithium target circulating in a lithium loop. The support on which the liquid lithium flows, i.e. the back-plate, is the most heavily exposed component to neutron flux. A '' bayonet '' concept solution for the back-plate was proposed by ENEA with the objectives of improving the back-plate reliability and simplifying the remote handling procedures. On the base of this concept, a back-plate mock-up was fabricated and validated. Starting from the findings of the mock up design, a back-plate design integration exercise was carried out in order to check if the back-plate geometrical features are compatible with the target assembly and the Vertical Test Assemblies (VTA). The work carried out has demonstrated that even with the changes operated for the design integration (increase of in-plane dimensions and reduction of thickness) the bayonet concept is able to guarantee a tight connection to the target assembly. A thermo-mechanical analysis of the back-plate has been carried out by means of ABAQUS code. The thermal load used as input for the calculations, i.e. the neutron heat generation, has been estimated by means of Monte Carlo Mc-Delicious code. The two boundary constraint cases (full and minimum contact with target assembly) considered for each back-plate geometry option represent the extreme cases of the real operating condition of the plate. The influence of the contact heat exchange coefficient and the back-plate thickness has been also evaluated. For all these reasons, the results of the analysis can be considered as the domain of variability of the real working conditions. The results show that AISI 316L steel is not suitable as black-plate material: the stress induced in the plate, in

  10. Boundary layer on a flat plate with suction; Couche limite sur paroi plane poreuse avec aspiration

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A; Dumas, R; Verollet, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Institut de Mecanique Statistique de la Turbulence, Faculte des Sciences de Marseille, 13 (France)

    1961-07-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [French] Ces recherches, effectuees en soufflerie, concernent la couche limite turbulente d

  11. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel; Abebe, B.

    2015-01-01

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  12. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.

    2015-10-08

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  13. Building Theory at the Intersection of Ecological Sustainability and Strategic Management

    DEFF Research Database (Denmark)

    Borland, Helen; Ambrosini, Véronique; Lindgreen, Adam

    2016-01-01

    This article builds theory at the intersection of ecological sustainability and strategic management literature—specifically, in relation to dynamic capabilities literature. By combining industrial organization economics–based, resource-based, and dynamic capability–based views, it is possible...... to develop a better understanding of the strategies that businesses may follow, depending on their managers’ assumptions about ecological sustainability. To develop innovative strategies for ecological sustainability, the dynamic capabilities framework needs to be extended. In particular, the sensing......–seizing–maintaining competitiveness framework should operate not only within the boundaries of a business ecosystem but in relation to global biophysical ecosystems; in addition, two more dynamic capabilities should be added, namely, remapping and reaping. This framework can explicate core managerial beliefs about ecological...

  14. Charting Relations between Intersectionality Theory and the Neurodiversity Paradigm

    Directory of Open Access Journals (Sweden)

    Lauren Rose Strand

    2017-06-01

    Full Text Available This essay explores central elements and applications of intersectionality theory and the neurodiversity paradigm. First, the histories and tenets of intersectionality theory and neurodiversity paradigm are provided. Then, areas are explored where each of the two approaches might further engage with the principles of the other. Finally, the essay concludes by broadly considering the efforts made by the Black Lives Matter movement and the Autistic Self Advocacy Network to bring attention to and end police violence as both networks employ and attend to elements of intersectionality and neurodiversity. The way these two networks draw on both intersectionality and neurodiversity to further their mission could be a possible site for scholars to consider in the interest of advancing dialogues between intersectionality theory and the neurodiversity paradigm. Ultimately, the essay calls for a continued exploration of the potentials for intersectionality and neurodiversity to complement and complicate one another, both in terms of theoretical development and coalition building.

  15. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Science.gov (United States)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  16. Intersection carbon monoxide modeling

    International Nuclear Information System (INIS)

    Zamurs, J.

    1990-01-01

    In this note the author discusses the need for better air quality mobile source models near roadways and intersections. To develop the improved models, a better understanding of emissions and their relation to ambient concentrations is necessary. The database for the modal model indicates that vehicles do have different emission levels for different engine operating modes. If the modal approach is used information is needed on traffic signal phasing, queue lengths, delay times, acceleration rates, deceleration rates, capacity, etc. Dispersion estimates using current air quality models may be inaccurate because the models do not take into account intersecting traffic streams, multiple buildings of varying setbacks, height, and spacing

  17. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    Science.gov (United States)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  18. Intersection assistance: a safe solution for older drivers?

    Science.gov (United States)

    Dotzauer, Mandy; Caljouw, Simone R; de Waard, Dick; Brouwer, Wiebo H

    2013-10-01

    Within the next few decades, the number of older drivers operating a vehicle will increase rapidly (Eurostat, 2011). As age increases so does physical vulnerability, age-related impairments, and the risk of being involved in a fatal crashes. Older drivers experience problems in driving situations that require divided attention and decision making under time pressure as reflected by their overrepresentation in at-fault crashes on intersections. Advanced Driver Assistance Systems (ADAS) especially designed to support older drivers crossing intersections might counteract these difficulties. In a longer-term driving simulator study, the effects of an intersection assistant on driving were evaluated. 18 older drivers (M=71.44 years) returned repeatedly completing a ride either with or without a support system in a driving simulator. In order to test the intersection assistance, eight intersections were depicted for further analyses. Results show that ADAS affects driving. Equipped with ADAS, drivers allocated more attention to the road center rather than the left and right, crossed intersections in shorter time, engaged in higher speeds, and crossed more often with a critical time-to-collision (TTC) value. The implications of results are discussed in terms of behavioral adaptation and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates

    CERN Document Server

    Kitahara, M

    1985-01-01

    The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro

  20. Dynamical Casimir effect on a cavity with mixed boundary conditions

    International Nuclear Information System (INIS)

    Alves, Danilo T.; Farina, Carlos; Maia Neto, Paulo Americo

    2002-01-01

    The most well-known mechanical effect related to the quantum vacuum is the Casimir force between two mirrors at rest. A new effect appears when the mirrors are set to move. In this case, the vacuum field may exert a dissipative force, damping the motion. As a consequence of energy conservation, there will be creation of real particles. If the motion is non-relativistic and has a small amplitude, the dynamical Casimir force can be found via a perturbative method proposed by Ford and Vilenkin. Using their technique, the electromagnetic dynamical Casimir problem, considered when the oscillating cavity is formed by two parallel plates of the same nature (perfectly conducting or perfectly permeable), can be divided into two separated boundary condition problems, namely: one involving Dirichlet BC, related to the transverse electric polarization and the other involving a Neumann BC, related to the transverse magnetic mode. The case of conducting plates can be found in the literature. However, another interesting case, the mixed oscillating cavity where the plates are of different nature, namely, a perfectly conducting plate and a perfectly permeable one (Boyer plates), has not been studied yet. We show that,for this case, the transverse electric models will be related to mixed boundary conditions: Dirichlet-like BC at the conducting plate and Neumann-like BC at the permeable plate. Analogously, the magnetic modes are related to a Neumann BC at the conducting plate and to a Dirichlet BC at the permeable one. As a first step before attacking the three-dimensional electromagnetic problem with mixed BC, we present here a simpler model: a one-dimensional cavity, where a massless scalar field is submitted to mixed (Dirichlet-Neumann) BC. For simplicity, we consider a non-relativistic motion for the conducting wall (Dirichlet BC) and suppose that the perfectly permeable wall (Neumann BC) is at rest. From this model we can extract insights about the dynamical Casimir

  1. Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates

    International Nuclear Information System (INIS)

    Rafiee, M; He, X Q; Liew, K M

    2014-01-01

    This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré–Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study. (paper)

  2. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  3. Rank 2 fusion rings are complete intersections

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections.......We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections....

  4. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  5. Bypass transition in compressible boundary layers

    Science.gov (United States)

    Vandervegt, J. J.

    1992-01-01

    Transition to turbulence in aerospace applications usually occurs in a strongly disturbed environment. For instance, the effects of free-stream turbulence, roughness and obstacles in the boundary layer strongly influence transition. Proper understanding of the mechanisms leading to transition is crucial in the design of aircraft wings and gas turbine blades, because lift, drag and heat transfer strongly depend on the state of the boundary layer, laminar or turbulent. Unfortunately, most of the transition research, both theoretical and experimental, has focused on natural transition. Many practical flows, however, defy any theoretical analysis and are extremely difficult to measure. Morkovin introduced in his review paper the concept of bypass transition as those forms of transition which bypass the known mechanisms of linear and non-linear transition theories and are currently not understood by experiments. In an effort to better understand the mechanisms leading to transition in a disturbed environment, experiments are conducted studying simpler cases, viz. the effects of free stream turbulence on transition on a flat plate. It turns out that these experiments are very difficult to conduct, because generation of free stream turbulence with sufficiently high fluctuation levels and reasonable homogeneity is non trivial. For a discussion see Morkovin. Serious problems also appear due to the fact that at high Reynolds numbers the boundary layers are very thin, especially in the nose region of the plate where the transition occurs, which makes the use of very small probes necessary. The effects of free-stream turbulence on transition are the subject of this research and are especially important in a gas turbine environment, where turbulence intensities are measured between 5 and 20 percent, Wang et al. Due to the fact that the Reynolds number for turbine blades is considerably lower than for aircraft wings, generally a larger portion of the blade will be in a laminar

  6. Low-cost safety enhancements for stop-controlled and signalized intersections

    Science.gov (United States)

    2009-05-01

    The purpose of this document is to present information on suggested effective, low-cost intersection countermeasures developed using intersection safety research results and input from an intersection safety expert panel. These low-cost countermeasur...

  7. Safety Evaluation of Destination Lighting at Stop-Controlled Cross Intersections

    Science.gov (United States)

    2018-02-02

    Unlit or inadequately lit intersections reduce the ability of drivers to recognize upcoming intersections during nighttime hours. Drivers also face difficulty in properly negotiating the intersection because lack of adequate lighting increases the li...

  8. Effect of matrix cracking and material uncertainty on composite plates

    International Nuclear Information System (INIS)

    Gayathri, P.; Umesh, K.; Ganguli, R.

    2010-01-01

    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

  9. Non-intersecting Brownian walkers and Yang-Mills theory on the sphere

    International Nuclear Information System (INIS)

    Forrester, Peter J.; Majumdar, Satya N.; Schehr, Gregory

    2011-01-01

    We study a system of N non-intersecting Brownian motions on a line segment [0,L] with periodic, absorbing and reflecting boundary conditions. We show that the normalized reunion probabilities of these Brownian motions in the three models can be mapped to the partition function of two-dimensional continuum Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and SO(2N). Consequently, we show that in each of these Brownian motion models, as one varies the system size L, a third order phase transition occurs at a critical value L=L c (N)∼√(N) in the large N limit. Close to the critical point, the reunion probability, properly centered and scaled, is identical to the Tracy-Widom distribution describing the probability distribution of the largest eigenvalue of a random matrix. For the periodic case we obtain the Tracy-Widom distribution corresponding to the GUE random matrices, while for the absorbing and reflecting cases we get the Tracy-Widom distribution corresponding to GOE random matrices. In the absorbing case, the reunion probability is also identified as the maximal height of N non-intersecting Brownian excursions ('watermelons' with a wall) whose distribution in the asymptotic scaling limit is then described by GOE Tracy-Widom law. In addition, large deviation formulas for the maximum height are also computed.

  10. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    Science.gov (United States)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  11. Traffic monitoring and modeling for Intersection Safety

    NARCIS (Netherlands)

    Pyykönen, P.; Molinier, M.; Klunder, G.A.

    2010-01-01

    The INTERSAFE-2 project aims to develop and demonstrate a Cooperative Intersection Safety System that is able to significantly reduce injury and fatal accidents at intersections. The cooperative sensor data fusion is based on state-of-the-art and advanced on-board sensors for object recognition and

  12. Transnational Intersectionality in Family Therapy With Resettled Refugees.

    Science.gov (United States)

    Gangamma, Rashmi; Shipman, Daran

    2018-04-01

    In this article, we discuss incorporating the transnational intersectionality framework in family therapy with resettled refugees. Transnational intersectionality is an extension of the framework of intersectionality which helps to better understand complexities of power and oppression across national contexts and their influence on refugees' lives. Adopting this framework alerts family therapists to: (a) develop critical awareness of refugee's transnational contexts; (b) understand differences in experiences of social identities across contexts; (c) acknowledge postmigration factors of oppression affecting resettlement; and (d) critically reflect upon therapist-interpreter-client intersectionalities. This shifts our conceptualization of therapy with refugees to actively consider transnational contexts which refugees uniquely occupy. We describe the framework and provide two case illustrations to highlight its usefulness. © 2017 American Association for Marriage and Family Therapy.

  13. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    Science.gov (United States)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  14. Analytical results for post-buckling behaviour of plates in compression and in shear

    Science.gov (United States)

    Stein, M.

    1985-01-01

    The postbuckling behavior of long rectangular isotropic and orthotropic plates is determined. By assuming trigonometric functions in one direction, the nonlinear partial differential equations of von Karman large deflection plate theory are converted into nonlinear ordinary differential equations. The ordinary differential equations are solved numerically using an available boundary value problem solver which makes use of Newton's method. Results for longitudinal compression show different postbuckling behavior between isotropic and orthotropic plates. Results for shear show that change in inplane edge constraints can cause large change in postbuckling stiffness.

  15. A new plate tectonic concept for the eastern-most Mediterranean

    Science.gov (United States)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  16. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  17. Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural Control

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2016-01-01

    Full Text Available In view of the disadvantages such as higher yield stress and inadequate adjustability, a combined low yield point steel plate damper involving low yield point steel plates and common steel plates is proposed. Three types of combined plate dampers with new hollow shapes are proposed, and the specific forms include interior hollow, boundary hollow, and ellipse hollow. The “maximum stiffness” and “full stress state” are used as the optimization objectives, and the topology optimization of different hollow forms by alternating optimization method is to obtain the optimal shape. Various combined steel plate dampers are calculated by finite element simulation, the results indicate that the initial stiffness of the boundary optimized damper and interior optimized damper is lager, the hysteresis curves are full, and there is no stress concentration. These two types of optimization models made in different materials rations are studied by numerical simulation, and the adjustability of yield stress of these combined dampers is verified. The nonlinear dynamic responses, seismic capacity, and damping effect of steel frame structures with different combined dampers are analyzed. The results show that the boundary optimized damper has better energy-dissipation capacity and is suitable for engineering application.

  18. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  19. The analysis of bainitic ferrite microstructure in microalloyed plate steels through quantitative characterization of intervariant boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Singon, E-mail: sikang@mines.edu [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Speer, John G.; Regier, Ryan W. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Nako, Hidenori [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Materials Research Laboratory, Kobe Steel Ltd., Kobe, Hyogo 651-2271 (Japan); Kennett, Shane C. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Exponent Failure Analysis Associates, Menlo Park, CA 94025 (United States); Findley, Kip O. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States)

    2016-07-04

    Electron backscatter diffraction (EBSD) measurements were performed to investigate the bainitic ferrite microstructure in low-carbon, microalloyed steels with varying C and Mn contents. Fully austenitized samples were isothermally heat treated at temperatures ranging from 450 to 550 °C to form bainitic ferrite. The bainitic ferrite microstructures and boundary characteristics obtained from the EBSD measurements were analyzed based on an inferred Kurdjumov-Sachs (K-S) orientation relationship. The heat treated samples exhibit a microstructure composed of laths and the lath aspect ratio tends to increase at lower isothermal heat treatment temperatures. High fractions of boundary misorientation angles below 5° are observed, which are due to lath boundaries in the microstructure. Additionally, misorientations of approximately 7°, 53° and 60° are observed, which are related to the sub-block, packet, and block boundaries, respectively. With decreasing isothermal heat treatment temperature, there is an increase of block boundaries; these boundaries are intervariant boundaries between different blocks within a packet, most of which have the misorientation angle of 60°. The specimens with a higher carbon level contained increased length of block boundaries, whereas the addition of Mn moderated the dependence of block boundary length on the heat treatment temperature within the experimental temperature range. Meanwhile, the length of intervariant boundaries of both packet and sub-block character did not vary much with heat treatment temperature and alloy composition.

  20. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  1. The Casimir Effect Upon A Single Plate

    OpenAIRE

    Hoodbhoy, Pervez

    2004-01-01

    In the presence of an external field, the imposition of specific boundary conditions can lead to interesting new manifestations of the Casimir effect. In particular, it is shown here that even a single conducting plate may experience a non-zero force due to vacuum fluctuations. The origins of this force lie in the change induced by the external potential in the density of available quantum states.

  2. Negotiating the discursive intersection of the government of others and the government of self in the face of climate change

    DEFF Research Database (Denmark)

    Lindegaard, Laura Bang

    both a boundary and a constitutive moment of government, and, secondly, the realisation that governmentality is somehow intertwined with the continuous becoming of ethical subjects, or, in other words, with continuously negotiated practices of subjectivation. The paper pursues and enforces......-depth analysis of focus group data stemming from sessions in a small Danish village in which citizens accomplish the contested discursive intersection of, one the one hand, a municipal strategy aimed at ’greening’ the citizens’ transportation conduct and, on the other hand, the citizens attempt to conduct...... their own conduct. In this way unravelling the subjectivation that unfolds as the government of others and the government of the self intersect in discursive interaction in the face of climate change, the paper can be seen as contributing more specifically to the yet underdeveloped area of studies...

  3. Urban Intersection Recognition and Construction Based on Big Trace Data

    Directory of Open Access Journals (Sweden)

    TANG Luliang

    2017-06-01

    Full Text Available Intersection is an important part of the generation and renewal of urban traffic network. In this paper, a new method was proposed to detect urban intersections automatically from the spatiotemporal big trace data. Firstly, the turning point pairs were based on tracking the trace data collected by vehicles. Secondly, different types of turning point pairs were clustered by using spatial growing clustering method based on angle and distance differences, and the clustering methods of local connectivity was used to recognize the intersection. Finally, the intersection structure of multi-level road network was constructed with the range of the intersection and turning point pairs. Taking the taxi trajectory data in Wuhan city as an example, the experimental results showed that the method proposed in this paper can automatically detect and recognize the road intersection and its structure.

  4. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  5. Power, privilege and disadvantage: Intersectionality theory and political representation

    Directory of Open Access Journals (Sweden)

    Eline Severs

    2017-06-01

    Full Text Available This article critically reviews the extant literature on social group representation and clarifies the advantages of intersectionality theory for studying political representation. It argues that the merit of intersectionality theory can be found in its ontology of power. Intersectionality theory is founded on a relational conception of political power that locates the constitution of power relations within social interactions, such as political representation. As such, intersectionality theory pushes scholarship beyond studying representation inequalities —that are linked to presumably stable societal positions— to also consider the ways in which political representation (recreates positions of privilege and disadvantage.

  6. Beyond the Cake Model: Critical Intersectionality and the Relative Advantage of Disadvantage

    Directory of Open Access Journals (Sweden)

    Robert Lee Oprisko

    2015-01-01

    Full Text Available Intersectionality came about as a critique of traditional, uniaxial studies of oppression. The initial wave argued that the intersection(s of multiple axes of social construction create uniquely experienced forms of domination and oppression that can only be studied within the context of said intersections. Methodologically, intersectional research has been used primarily as a tool of studying dichotomous intersections of race, gender, and class. However, theoretically focused literature articulates the importance of operating in a more complex understanding of intersectional axes by adding both breadth and depth. Current intersectional studies, therefore, are locked intradeoff between precision and generalizability in any quantitative research and intersect thus far, the power of intersectionality remains unrealized. This paper argues for a large-scale expansion of the number of variables studied in order to gain the most precise understandings of social construction. This creates a tradeoff between precision and generalizability. The power of intersectionality however is not in its generalizability, but rather in its precision for the study of small-n groups. We suggest moving beyond the cake model and into acritical intersectionalitymodel that embraces the agential realism of quantum politics.

  7. Transitional and turbulent boundary layer with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800spots are tightly packed with numerous hairpin vortices. With the advection and merging of turbulent spots, these young isolated hairpin forests develop into the downstream turbulent region. Isosurfaces of temperature up to Reθ=1900 are found to display well-resolved signatures of hairpin vortices, which indicates the persistence of the hairpin forests.

  8. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    Directory of Open Access Journals (Sweden)

    AZZEDINE NAHOUI

    2013-12-01

    Full Text Available A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has demonstrated its positive effect on the transition point and the friction coefficient. Both control procedures are compared for different lengths, speeds and angles of blowing and suction.

  9. Intersectionality and Educational Leadership: A Critical Review

    Science.gov (United States)

    Agosto, Vonzell; Roland, Ericka

    2018-01-01

    In this review of research, we explore intersectionality in the literature on K-12 educational leadership. We seek to understand how researchers have used intersectionality and what their findings or arguments reveal about the work of leading to reduce inequities in education. We ask, What traditions and trends associated with intersectionality…

  10. Driving Simulator study for intelligent cooperative intersection safety system (IRIS)

    NARCIS (Netherlands)

    Vreeswijk, J.; Schendzielorz, T.; Mathias, P.; Feenstra, P.

    2008-01-01

    About forty percent of all accidents occur at intersections. The Intelligent Cooperative Intersection Safety system (IRIS), as part of the European research project SAFESPOT, is a roadside application and aims at minimizing the number of accidents at controlled and uncontrolled intersections. IRIS

  11. Appropriate Pupilness: Social Categories Intersecting in School

    Science.gov (United States)

    Kofoed, Jette

    2008-01-01

    The analytical focus in this article is on how social categories intersect in daily school life and how intersections intertwine with other empirically relevant categories such as normality, pupilness and (in)appropriatedness. The point of empirical departure is a daily ritual where teams for football are selected. The article opens up for a…

  12. Large deflection analysis of a pre-stressed annular plate with a rigid boss under axisymmetric loading

    Science.gov (United States)

    Su, Y. H.; Chen, K. S.; Roberts, D. C.; Spearing, S. M.

    2001-11-01

    The large deflection analysis of a pre-stressed annular plate with a central rigid boss subjected to axisymmetric loading is presented. The factors affecting the transition from plate behaviour to membrane behaviour (e.g. thickness, in-plane tension and material properties) are studied. The effect of boss size and pre-tension on the effective stiffness of the plate are investigated. The extent of the bending boundary layers at the edges of the plate are quantified. All results are presented in non-dimensional form. The design implications for microelectromechanical system components are assessed.

  13. The Interaction between the Plane Wave and the Plate with Limited Height in Soil

    Directory of Open Access Journals (Sweden)

    N.A. Lokteva

    2017-03-01

    Full Text Available A solution of the two-dimensional task on interaction between the harmonic wave and the plate with the limited height in soil has been provided. The plate surrounded on both sides with the half-spaces filled with soil medium has been used as a vibro-absorbing obstacle. The mechanical behavior of the plate has been described by S.P. Timoshenko's shift model and the mechanical behavior of soil by a linear elasticity theory equation. The main purpose of the paper is to determine the total acceleration vector field inducted by the penetrated and radiated waves in the second half-space. The mathematical formulation of the task includes a model of upcoming wave, soil medium and plate movement equation, infinity conditions, and conditions of soil contact with obstacle. Conditions of free slip have been taken as the contact conditions between the soil and the obstacle. We have considered a closed system of equations, which includes wave equations for scalar and vector potentials, elasticity theory equations for soil mediums, Koshi's relations, physical law, and plate movement equation. The boundary conditions for the plate correspond to a hinged support. To solve this task, all functions have been expanded in trigonometric series that allowed to obtain potential values in the coefficients of the series. To define the integrations constants, the contact conditions between the obstacle and soil have been used. On the basis of the revealed potentials, we have defined displacements on the boundary between the plate and soil and in other points of the second half-space. The vibro-absorbing properties of the plate have been investigated depending on the frequency of the harmonic wave falling on the plate. From the practical point of view, this task is related to protection of buildings from vibrations formed at a distance from underground railways.

  14. Complicating Counterspaces: Intersectionality and the Michigan Womyn's Music Festival.

    Science.gov (United States)

    McConnell, Elizabeth A; Todd, Nathan R; Odahl-Ruan, Charlynn; Shattell, Mona

    2016-06-01

    The counterspaces framework articulated by Case and Hunter (2012), follows from community psychology's long-standing interest in the potential for settings to promote well-being and liberatory responses to oppression. This framework proposes that certain settings (i.e., "counterspaces") facilitate a specific set of processes that promote the well-being of marginalized groups. We argue that an intersectional analysis is crucial to understand whether and how counterspaces achieve these goals. We draw from literature on safe spaces and present a case study of the Michigan Womyn's Music Festival (Michfest) to illustrate the value of an intersectional analysis and explore how these processes operate. Based on 20 in-person interviews, 23 responses to an online survey, and ethnographic field notes, we show how Michfest was characterized by a particular intersection of identities at the setting level, and intersectional diversity complicated experiences at the individual level. Moreover, intersectional identities provided opportunities for dialogue and change at the setting level, including the creation of counterspaces within counterspaces. Overall, we demonstrate the need to attend to intersectionality in counterspaces, and more broadly in how we conceptualize settings in community psychology. © Society for Community Research and Action 2016.

  15. Assessment at Al-Ameer signalized intersection in Samawa city

    Directory of Open Access Journals (Sweden)

    Joni Hasan

    2018-01-01

    Full Text Available The aim of this paper is to evaluate traffic performance of Al-Ameer signalized intersection in Samawa city, which fits with the prevailing conditions and geometric properties of the intersection. The technique of video recording has used for collection the traffic volume data for all approaches. These data are abstracted from video films. SYNCHRO 8 software was used to evaluate and analyze the intersection and choose the best suggestion. The evaluation process result showed that the intersection is operated with level of service (LOS F. By suggestion of several strategies which vary from signal optimization to geometric improvements. The best solution has been found by suggestion an overpass at the east-west direction, and the level of service has improved from (LOS F to (LOS C, this result is considered an acceptable and economical solution for the existing problems at intersection.

  16. Using GPS, tide gauge and altimetry data to constrain subduction parameters at the Vanuatu plate boundary.

    Science.gov (United States)

    Ballu, V.; Bouin, M.; Baillard, C.; Calmant, S.; Pelletier, B.; Crawford, W. C.; Kanas, T.; Garaebiti, E.

    2012-12-01

    The Vanuatu subduction zone, Southwest Pacific, combines several features that makes it a particularly useful place to study seismic cycles. The convergence rate is high - approximately 12 cm/yr - and the seismic cycle relatively short. Measurements of interseismic motions are helped by relatively high vertical rates, the close proximity of some islands to the plate interface and the existence of very shallow seamounts on either side of the plate interface. The Vanuatu archipelago is part of the Pacific Ring of Fire: the Australian plate subducts eastward beneath the North Fiji basin, on the western border of the Pacific Plate. High topographic features on the diving plate may contribute to locking of the plates, which can play a major role in the genesis of destructive earthquakes. GPS network points were installed in the early 1990s and the geodesy network has been densified through the years, enabling us to map interseismic horizontal and vertical deformation rates throughout the archipelago. More recently, 8 continuous GPS stations were installed, along with 3 continuous seafloor pressure gauges very near to the plate interface. We show results from GPS data collected from 1996 to 2011, that we re-processed and combined into the ITRF2008 reference frame, and altimetry and seafloor pressure data from 1999 to 2010. The GPS results show that vertical deformation rates vary both across and along the archipelago. We believe that these variations result from variable distance to the plate limit and variable locking parameters. In some areas, subsidence rates are close to one centimeter per year. In the Torres islands (at the northern end of the archipelago) where villagers face recurrent coastal flooding, we showed that this flooding is due more to ground motion than to rise in the absolute sea level, even though the sea-level rise rates are locally high and the islands uplift over the long term. In the Central area of Vanuatu, we augmented the on-land network with

  17. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  18. Acoustic excitation of containment insulation cover plate

    International Nuclear Information System (INIS)

    Fenech, H.; Rao, A.K.

    1978-01-01

    An experimental and theoretical program has been implemented by NRC-BNL since 1975 at the University of California, Santa Barbara to assess the reliability of the PCRV thermal insulation cover plate and the possible safety problem caused by the failure of this plate. A typical large HTGR PCRV unit [1160 MW(e)] and thermal insulation class A were selected. The upper core cavity is estimated to be the most critical volume where the noise pressure levels are expected to reach 110 to 130 dB (rel. to 2 x 10 -4 dynes/cm 2 ). The noise spectrum in that cavity is a composite of circulator noise, vortex shedding boundary layer turbulence, and flow impingement. Some anticipated safety related problems associated with the thermal insulation failure are examined

  19. A heat transfer analysis of laminar flow over a flat plate with unheated starting region for low Prandtl number fluids

    International Nuclear Information System (INIS)

    Ahola, M.P.; Karimi, A.

    1996-01-01

    In boundary layer analyses involving heat transfer, the Prandtl number (Pr) relates the diffusion of momentum to the diffusion of heat, and can be shown to directly correlate to the ratio of the thermal boundary layer thickness to the velocity boundary layer thickness. For large Prandtl number fluids (i.e., Pr > 1) the velocity boundary layer thickness is larger than the thermal boundary layer thickness, and vice versa. In some applications in the industry heating does not occur over the entire plate, such as in the case of an unheated starting region or spot heating along a finite segment of the plate. For such applications solutions only exist for the simpler case of large Prandtl number fluids where the thermal boundary layer is assumed to be smaller than the velocity boundary layer. The analyses presented in this paper extends the solution to the unheated starting region problem for small Prandtl number fluids, where the thermal boundary layer grows larger and crosses the velocity boundary layer. The solution is based on the integral method approach assuming laminar flow, and both cases of constant wall temperature as well as constant wall heat flux are analyzed

  20. The trend of road traffic crashes at urban signalised intersection

    Science.gov (United States)

    Farhana Nasarrudin, Nurul; Razelan, Intan Suhana Mohd

    2018-04-01

    Road traffic crash is one of the main contributing factors for deaths in the world. Intersection is listed as the second road type which road crashes occurred frequently. Hence, the traffic light was installed to minimise the road crashes at intersection. However, the crashes are still occurring and arising. The objective of this study was to exhibit the trend of road crashes at the signalised intersections. The data of road crashes for the past 6 years were analysed using descriptive analysis. The results showed that the road traffic crashes at three- and four-legged signalised intersection recorded the increasing trend. In conclusion, this finding shows that the road traffic crashes for these types of signalised intersection in Malaysia is rising. It is also one the contributors to the increasing number of crashes in Malaysia. This finding will encourage the local authority to conduct awareness programs on the safety at the signalised intersection.

  1. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  2. An efficient quantum scheme for Private Set Intersection

    Science.gov (United States)

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    Private Set Intersection allows a client to privately compute set intersection with the collaboration of the server, which is one of the most fundamental and key problems within the multiparty collaborative computation of protecting the privacy of the parties. In this paper, we first present a cheat-sensitive quantum scheme for Private Set Intersection. Compared with classical schemes, our scheme has lower communication complexity, which is independent of the size of the server's set. Therefore, it is very suitable for big data services in Cloud or large-scale client-server networks.

  3. Safety analysis of urban signalized intersections under mixed traffic.

    Science.gov (United States)

    S, Anjana; M V L R, Anjaneyulu

    2015-02-01

    This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Linear Determination of a Camera's Intrinsic Parameters Using Two Intersecting Circles

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2014-03-01

    Full Text Available An approach using two intersecting circles is proposed as a linear approach for determining a camera's intrinsic parameters. The two intersecting coplanar circles have four intersection points in the projective plane: two real points and two circular points. In the image plane, the diagonal triangle - on which the image of the four intersection points composes a complete quadrangle - is a self-polar triangle for the projection curves of the circles. The vertex of the self-polar triangle is the null space of the degenerate conic formed by the image of the four intersection points. By solving the three vertices of the self-polar triangle using the image coordinates of the two real intersection points, the degenerate conic can be obtained. The image of the two circular points is then computed from the intersection points of the degenerate conic. Using the image of the circular points from the three images of the same planar pattern with different directions, the intrinsic parameters can be linearly determined.

  5. P-union and P-intersection of neutrosophic cubic sets

    OpenAIRE

    Florentin Smarandache; Chang Su Kim

    2015-01-01

    Conditions for the P-intersection and P-intersection of falsity-external (resp. indeterminacy-external and truth-external) neutrosophic cubic sets to be an falsity-external (resp. indeterminacy-external and truth- external) neutrosophic cubic set are provided. Conditions for the P-union and the P-intersection of two truth-external (resp. indeterminacy-external and falsity-external) neutrosophic cubic sets to be a truth-internal (resp. indeterminacy-internal and falsity-internal) neutrosoph...

  6. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  7. Barrel organ of plate tectonics - a new tool for outreach and education

    Science.gov (United States)

    Broz, Petr; Machek, Matěj; Šorm, Zdar

    2016-04-01

    Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www

  8. The time development of the plasma-glass boundary layer in a T-tube

    International Nuclear Information System (INIS)

    Pavlov, M.; Djurovic, S.

    1982-01-01

    The refraction of a laser beam by a flat boundary layer between the plasma and the glass plate is analysed. A boundary layer with a constant gradient electron density is assumed. Results of the analysis for plasmas produced in a small T-tube show that the boundary layer thickness increases with time faster than linearly. This means that a relatively fast collapse due to cooling through the boundary layer happens at the second half of the reflected plasma life time, while the boundary layer is negligible thin during the first 2μs after the reflected shock front has passed the point of observation. (author)

  9. Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico

    Science.gov (United States)

    van der Werf, Thomas; Chatzaras, Vasileios; Marcel Kriegsman, Leo; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-12-01

    The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene-Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750-890 °C and pressures of 400-560 MPa, corresponding to 15-22 km depth. A hot crustal geotherm of 40 ° C km-1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12-33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12-17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1-1.3×1020 Pa ṡ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016-1019 Pa ṡ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ṡ s

  10. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.

    Science.gov (United States)

    Scanlon, John M; Sherony, Rini; Gabler, Hampton C

    2016-09-01

    Intersection crashes resulted in over 5,000 fatalities in the United States in 2014. Intersection Advanced Driver Assistance Systems (I-ADAS) are active safety systems that seek to help drivers safely traverse intersections. I-ADAS uses onboard sensors to detect oncoming vehicles and, in the event of an imminent crash, can either alert the driver or take autonomous evasive action. The objective of this study was to develop and evaluate a predictive model for detecting whether a stop sign violation was imminent. Passenger vehicle intersection approaches were extracted from a data set of typical driver behavior (100-Car Naturalistic Driving Study) and violations (event data recorders downloaded from real-world crashes) and were assigned weighting factors based on real-world frequency. A k-fold cross-validation procedure was then used to develop and evaluate 3 hypothetical stop sign warning algorithms (i.e., early, intermediate, and delayed) for detecting an impending violation during the intersection approach. Violation detection models were developed using logistic regression models that evaluate likelihood of a violation at various locations along the intersection approach. Two potential indicators of driver intent to stop-that is, required deceleration parameter (RDP) and brake application-were used to develop the predictive models. The earliest violation detection opportunity was then evaluated for each detection algorithm in order to (1) evaluate the violation detection accuracy and (2) compare braking demand versus maximum braking capabilities. A total of 38 violating and 658 nonviolating approaches were used in the analysis. All 3 algorithms were able to detect a violation at some point during the intersection approach. The early detection algorithm, as designed, was able to detect violations earlier than all other algorithms during the intersection approach but gave false alarms for 22.3% of approaches. In contrast, the delayed detection algorithm sacrificed

  11. On the role of acoustic feedback in boundary-layer instability.

    Science.gov (United States)

    Wu, Xuesong

    2014-07-28

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand

    Science.gov (United States)

    Hua, J.; Fischer, K. M.; Savage, M. K.

    2017-12-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in

  13. SPATIAL UNCERTAINTY IN LINE-SURFACE INTERSECTIONS WITH APPLICATIONS TO PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    J. Marshall

    2012-07-01

    Full Text Available The fields of photogrammetry and computer vision routinely use line-surface intersections to determine the point where a line intersects with a surface. The object coordinates of the intersection point can be found using standard geometric and numeric algorithms, however expressing the spatial uncertainty at the intersection point may be challenging, especially when the surface morphology is complex. This paper describes an empirical method to characterize the unknown spatial uncertainty at the intersection point by propagating random errors in the stochastic model using repeated random sampling methods. These methods accommodate complex surface morphology and nonlinearities in the functional model, however the penalty is the resulting probability density function associated with the intersection point may be non-Gaussian in nature. A formal hypothesis test is presented to show that straightforward statistical inference tools are available whether the data is Gaussian or not. The hypothesis test determines whether the computed intersection point is consistent with an externally-derived known truth point. A numerical example demonstrates the approach in a photogrammetric setting with a single frame image and a gridded terrain elevation model. The results show that uncertainties produced by the proposed empirical method are intuitive and can be assessed with conventional methods found in textbook hypothesis testing.

  14. An experimental investigation of laminar free convection from a vertical flat plate at general boundary condition

    International Nuclear Information System (INIS)

    Aharon, J.; Lahav, C.; Kalman, H.; Shai, I.

    1996-01-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is exposed to an environment of constant temperature - T a , with which heat is exchanged at an effective heat transfer coefficient, Glen. The other side of the plate is exposed to a fluid at a different temperature -T ∞ . The temperature gradient induces a natural convection in the fluid. The present investigation treats the heat transfer problem in the laminar cone in air (P r =1). An experimental apparatus has been constructed to confirm the heat transfer features predicted analytically in previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range. (authors)

  15. Structural factors controlling inter-plate coupling and earthquake rupture process

    Science.gov (United States)

    Kodaira, S.

    2007-05-01

    Recent availability of a large number of ocean bottom seismographs (OBSs), a large volume of air-gun array and a long streamer cable for academics provide several new findings of lithospheric scale structures in subduction seismogenic zones. JAMSTEC has acquired long-offset seismic data using a super-densely deploy OBS (i.e. 1 - 5 km spacing OBSs along 100 - 500 km long profiles) in the Nankai seismogeinc zone, SW. Japan, since 1999. Long-offset multichannel seismic (MCS) data by a two-ship experiment, as well as conventional 2D MCS data, have been also acquired at a part of the profiles. Some of those profiles have been designed as combined onshore - offshore profiles for imaging a land-ocean transition zone. One of the most striking findings is an image of several scales of subducted seamounts/ridges in the Nankai trough seismogenic zone. We detected the subducted seamount/ridges, which are 50 - 100 km wide, distributing from near trough axis to ~ 40 km deep beneath the Japanese island. From a point of seismogenic process, an important aspect is that those structures are strongly correlated with slip zones of magnitude 8-class earthquakes, i.e.; subducted seamounts/ridge control the rupture propagations. Moreover, the most recent seismic study crossing the segmentation boundary between M=8 class earthquakes detected a high seismic velocity body forming a strongly coupled patch at the segmentation boundary. The numerical simulation incorporating all those structures explained the historic rupture patterns, and shows the occurrence of a giant earthquake along the entire Nankai trough, a distance of over 600 km long (Mw=8.7). The growth processes of a rupture revealed from the simulation are; 1) prior to the giant earthquake, a small slow event (or earthquake) occurs near the segmentation boundary, 2) this accelerates a very slow slip (slower than the plate convergent rate), at the strong patch, which reduces a degree of coupling, 3) then a rupture easily propagates

  16. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    Science.gov (United States)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  17. Political Intersectionality and Democratic Politics in the European Public Sphere

    DEFF Research Database (Denmark)

    Siim, Birte

    2015-01-01

    Public Sphere (EPS). It is inspired by results and reflections from the European Gender Project (EGP) , where intersectionality was used as an approach for analysing negotiations between gender and ethno-national diversity in selected European countries and in relation to the European Public Sphere....... The aim of the essay is to further deepen the theoretical and empirical understanding of intersectionality by reflecting on the relations between political intersectionality and democratic politics from a particular European perspective. It thus confronts theory and research findings concerning...... intersections of gender and ethnic diversity in political life at the national and transnational levels across Europe. In this context, political intersectionality refers to the framing of gender and ethnic diversity by major political actors as well as by activities of women’s and anti-racist organisations...

  18. BLM Colorado PLSS Intersected

    Data.gov (United States)

    Department of the Interior — Shapefile Format –The fully intersected data is the atomic level of the PLSS that is similar to the coverage or the smallest pieces used to build the PLSS. Polygons...

  19. Integrating intersectionality and biomedicine in health disparities research.

    Science.gov (United States)

    Kelly, Ursula A

    2009-01-01

    Persisting health disparities have lead to calls for an increase in health research to address them. Biomedical scientists call for research that stratifies individual indicators associated with health disparities, for example, ethnicity. Feminist social scientists recommend feminist intersectionality research. Intersectionality is the multiplicative effect of inequalities experienced by nondominant marginalized groups, for example, ethnic minorities, women, and the poor. The elimination of health disparities necessitates integration of both paradigms in health research. This study provides a practical application of the integration of biomedical and feminist intersectionality paradigms in nursing research, using a psychiatric intervention study with battered Latino women as an example.

  20. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  1. EXTRACTION OF BUILDING BOUNDARY LINES FROM AIRBORNE LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    Y.-H. Tseng

    2016-10-01

    Full Text Available Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line extraction from airborne LiDAR data. In an airborne LiDAR dataset, top surfaces of buildings, such as roofs, tend to have densely distributed points, but vertical surfaces, such as walls, usually have sparsely distributed points or even no points. The intersection lines of roof and wall planes are, therefore, not clearly defined in point clouds. This paper proposes a novel method to extract those boundary lines of building edges. The extracted line features can be used as fundamental data to generate topographic maps of 3D city model for an urban area. The proposed method includes two major process steps. The first step is to extract building boundary points from point clouds. Then the second step is followed to form building boundary line features based on the extracted boundary points. In this step, a line fitting algorithm is developed to improve the edge extraction from LiDAR data. Eight test objects, including 4 simple low buildings and 4 complicated tall buildings, were selected from the buildings in NCKU campus. The test results demonstrate the feasibility of the proposed method in extracting complicate building boundary lines. Some results which are not as good as expected suggest the need of further improvement of the method.

  2. Finite temperature corrections to tachyon mass in intersecting D-branes

    International Nuclear Information System (INIS)

    Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu

    2017-01-01

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  3. Finite temperature corrections to tachyon mass in intersecting D-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)

    2017-04-19

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  4. Particle-nuclear intersections

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With the traditional distinctions between particle and nuclear physics becoming increasing blurred, the Fifth Conference on the Intersections of Particle and Nuclear Physics, held from May 31 to June 6 in St. Petersburg, Florida, brought together particle and nuclear physicists to discuss common research efforts and to define and plan a united approach

  5. The attenuation of temperature oscillations in passing through liquid metal boundary layers

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-08-01

    One aspect of predicting the endurance of components subject to thermal fatigue in liquid metal cooled reactors is the extent to which oscillations in fluid temperature are transmitted to metal surfaces, such as the above-core structure. The first geometry considered is that of a solid plate in contact with a layer of stagnant fluid, in which temperature oscillations are imposed at a given distance from the plate. Transmission through a laminar boundary layer developing over the plate surface is then considered. An approximate calculation based on the slug-flow analysis of Sucec (1975) is developed. (U.K.)

  6. The influence of finite cavities on the sound insulation of double-plate structures.

    Science.gov (United States)

    Brunskog, Jonas

    2005-06-01

    Lightweight walls are often designed as frameworks of studs with plates on each side--a double-plate structure. The studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-circuiting the plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmission coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory and measurement can be achieved.

  7. Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data

    Science.gov (United States)

    Huang, J.; Deng, M.; Zhang, Y.; Liu, H.

    2017-09-01

    It is widely accepted that digital map becomes an indispensable guide for human daily traveling. Traditional road network maps are produced in the time-consuming and labour-intensive ways, such as digitizing printed maps and extraction from remote sensing images. At present, a large number of GPS trajectory data collected by floating vehicles makes it a reality to extract high-detailed and up-to-date road network information. Road intersections are often accident-prone areas and very critical to route planning and the connectivity of road networks is mainly determined by the topological geometry of road intersections. A few studies paid attention on detecting complex road intersections and mining the attached traffic information (e.g., connectivity, topology and turning restriction) from massive GPS traces. To the authors' knowledge, recent studies mainly used high frequency (1 s sampling rate) trajectory data to detect the crossroads regions or extract rough intersection models. It is still difficult to make use of low frequency (20-100 s) and easily available trajectory data to modelling complex road intersections geometrically and semantically. The paper thus attempts to construct precise models for complex road intersection by using low frequency GPS traces. We propose to firstly extract the complex road intersections by a LCSS-based (Longest Common Subsequence) trajectory clustering method, then delineate the geometry shapes of complex road intersections by a K-segment principle curve algorithm, and finally infer the traffic constraint rules inside the complex intersections.

  8. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  9. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  10. Evaluating Picture Quality of Image Plates in Digital CR Systems

    International Nuclear Information System (INIS)

    Kwak, Byung Joon; Ji Tae Jeong

    2011-01-01

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  11. The Priority of Intersectionality in Academic Medicine.

    Science.gov (United States)

    Eckstrand, Kristen L; Eliason, Jennifer; St Cloud, Tiffani; Potter, Jennifer

    2016-07-01

    Recent societal events highlight inequities experienced by underrepresented and marginalized communities. These inequities are the impetus for ongoing efforts in academic medicine to create inclusive educational and patient care environments for diverse stakeholders. Frequently, approaches focus on singular populations or broad macroscopic concepts and do not always elucidate the complexities that arise at the intersection between multiple identities and life experiences. Intersectionality acknowledges multidimensional aspects of identity inclusive of historical, structural, and cultural factors. Understanding how multiple identity experiences impact different individuals, from patients to trainees to providers, is critical for improving health care education and delivery. Building on existing work within academic medicine, this Commentary outlines six key recommendations to advance intersectionality in academic medicine: embrace personal and collective loci of responsibility; examine and rectify unbalanced power dynamics; celebrate visibility and intersectional innovation; engage all stakeholders in the process of change; select and analyze meaningful metrics; and sustain the commitment to achieving health equity over time. Members of the academic medical community committed to advancing health equity can use these recommendations to promote and maintain meaningful changes that recognize and respond to the multidimensional voices and expressed needs of all individuals engaged in providing and receiving health care.

  12. Women's health, men's health, and gender and health: implications of intersectionality.

    Science.gov (United States)

    Hankivsky, Olena

    2012-06-01

    Although intersectionality is now recognized in the context of women's health, men's health, and gender and health, its full implications for research, policy, and practice have not yet been interrogated. This paper investigates, from an intersectionality perspective, the common struggles within each field to confront the complex interplay of factors that shape health inequities. Drawing on developments within intersectionality scholarship and various sources of research and policy evidence (including examples from the field of HIV/AIDS), the paper demonstrates the methodological feasibility of intersectionality and in particular, the wide-ranging benefits of de-centering gender through intersectional analyses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Intersectionality and the Canadian Museum for Human Rights

    Science.gov (United States)

    Dhamoon, Rita Kaur; Hankivsky, Olena

    2015-01-01

    In this commentary, the authors propose than an intersectionality perspective can transform understandings of the contentious content of the Canadian Museum for Human Rights (CMHR). The use of an intersectionality perspective starts from the position that such discourses as racialization, gendering, capitalism, and ableism are mutually…

  14. Intersection of Three Planes Revisited--An Algebraic Approach

    Science.gov (United States)

    Trenkler, Götz; Trenkler, Dietrich

    2017-01-01

    Given three planes in space, a complete characterization of their intersection is provided. Special attention is paid to the case when the intersection set does not exist of one point only. Besides the vector cross product, the tool of generalized inverse of a matrix is used extensively.

  15. The discursive intersection of the government of others and the government of self in the face of climate change

    DEFF Research Database (Denmark)

    Lindegaard, Laura Bang

    2016-01-01

    both a boundary and a constitutive moment of government, and, secondly, the realisation that governmentality is somehow intertwined with the continuous becoming of ethical subjects, or, in other words, with continuously negotiated practices of subjectivation. The chapter pursues and enforces...... categorisation analysis and conversation analysis. To demonstrate the benefits of this approach, the chapter provides an in-depth analysis of focus group data from sessions in a small Danish village in which citizens accomplish the contested discursive intersection of, on the one hand, a municipal strategy aimed...

  16. MULTIAGENT PLANNING OF INTERSECTION PASSAGE BY AUTONOMOUS VEHICLES

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2016-09-01

    Full Text Available We propose a traffic management system for autonomous vehicles that are agents at the intersection. In contrast to the known solutions based on the usage of semiautonomous control systems in assembly with the control unit, this algorithm is based on the principles of decentralized multiagent control. The best travel plan for intersection passage is produced by means of optimization methods jointly by all agents belonging to a dynamic collaboration of autonomous vehicles. The order of road intersection optimal for a given criterion is determined by the agents in the process of information exchange about themselves and environment. Our experiments show that this protocol can reduce significantly the traffic density as compared to the traditional systems of traffic management. Moreover, the effectiveness of the proposed algorithm increases with increasing density of road traffic. In addition, the absence of the critical object, that is the control unit, in the control system, reduces significantly the effectiveness of possible failures and hacker attacks on the intersection control system.

  17. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  18. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  19. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  20. Stability of boundary layer flow based on energy gradient theory

    Science.gov (United States)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  1. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  2. Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires

    Directory of Open Access Journals (Sweden)

    K. Malekzadeh

    Full Text Available In this paper, free vibration response of a hybrid composite plate was studied. Effects of some geometrical, physical and material parameters on response of the composite plates embedded with shape memory alloy (SMA wires were investigated, which have not been reported in the literature thus far. Some of these parameters included important factors affecting free vibration response of the smart hybrid composite plates. The SMA wires were embedded within the layers of the composite laminate. First-order shear deformation theory (FSDT was utilized to obtain the governing equations of hybrid composite plates. Transverse shear and rotary inertia effects of the plate were taken into consideration. For simply-supported boundary conditions, systematic closed form solutions were obtained by Navier's technique. It was established that dynamic behavior of the smart hybrid composite plate depended on various parameters such as volume fraction, temperature dependent recovery stress and tensile pre-strain of SMA wires and aspect ratio of the laminated hybrid plate.

  3. Flows around a moving flat plate simulated by the method of cellular automata. Seru outoman ho ni yoru ido heiban mawari no nagare

    Energy Technology Data Exchange (ETDEWEB)

    Tsutahara, M; Tomiyama, A; Kimura, T; Murata, H [Kobe University, Kobe (Japan). Faculty of Engineering

    1993-08-25

    In order to analyze the field of flow containing a moving boundary by the method of cellular automaton, the method of giving the boundary conditions in the case where a wall is moving at a constant velocity in the normal direction was examined. This method is used to simulate the movement of continuous fluid by statistically treating the movement of many discrete particles which repeat translation and collision. The collision law of particles at grid points is formulated so as to conserve mass(number of particles) and momentum for the purpose of satisfying the governing equation of flow. The object is the flow in the case where a flat plate moves in the normal direction inside the fluid enclosed by rectangular walls and the plate was assumed that it is first in a standing condition, then starts to move from left to right at a speed of V and stops in front of the right wall. Three boundary conditions, surrounding wall, plate in the standing condition and moving plate, were considered. Flow rates were calculated concerning the translation and collision and each divided mean-field-approximation region(space having a magnitude of capable of averaging operation of particles). Effectiveness of proposed boundary conditions was confirmed by a visualization experiment. 3 refs., 14 figs.

  4. Downstream evolution of an open MHD magnetotail boundary

    International Nuclear Information System (INIS)

    Sanchez, E.R.; Siscoe, G.L.; Summers, D.

    1990-01-01

    The authors use the rotational discontinuity-slow expansion fan model for an open magnetotail boundary to obtain a quantitative three-dimensional picture of the complete magnetotail boundary. Its configuration and physical properties are inferred for different orientations of the field as well as different reconnection rates by representing the high-latitude plasma mantle with a self-similar slow expansion wave. Some of those properties follow: (1) The tail boundary geometry appears to be stable against moderate variations of the upstream parameters. (2) The transition between the open and closed portions of the tail boundary takes place at increasingly higher latitudes tailward, thus narrowing the open window in the same direction. For the magnetosheath values considered (n 0 = 10 7 m -3 , V 0 = 3 x 10 5 m s -1 , B 0 = 10 nT, T = 10 6 degree K) and for a purely southward field an initial 90 degree latitudinal width of the open window in the near-Earth environment evolves into 55 degree at x ≅ -150 R E . (3) Portions of the plasma mantle become separated from the magnetosheath by a tangential discontinuity as larger distances down the tail are considered, with a thin strip of plasma sheet plasma (≅2 R E in the radial direction, at x ≅ -150 R E ) intruding in between. (4) The internal boundary of the mantle is relatively flat in the near-Earth tail but becomes increasingly V shaped tailward. Its intersection with the geomagnetic equator conforms to a U-shaped form with an antiearthward concavity. The tail boundary geometry when the external field has some inclination away from the vertical is investigated. A duskward or dawnward shift of the entire open tail boundary takes place, and the expansion fan is thickest on the sector toward which the shift occurred

  5. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  6. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  7. Estimating rear-end accident probabilities at signalized intersections: a comparison study of intersections with and without green signal countdown devices.

    Science.gov (United States)

    Ni, Ying; Li, Keping

    2014-01-01

    Rear-end accidents are the most common accident type at signalized intersections, because the diversity of actions taken increases due to signal change. Green signal countdown devices (GSCDs), which have been widely installed in Asia, are thought to have the potential of improving capacity and reducing accidents, but some negative effects on intersection safety have been observed in practice; for example, an increase in rear-end accidents. A microscopic modeling approach was applied to estimate rear-end accident probability during the phase transition interval in the study. The rear-end accident probability is determined by the following probabilities: (1) a leading vehicle makes a "stop" decision, which was formulated by using a binary logistic model, and (2) the following vehicle fails to stop in the available stopping distance, which is closely related to the critical deceleration used by the leading vehicle. Based on the field observation carried out at 2 GSCD intersections and 2 NGSCD intersections (i.e., intersections without GSCD devices) along an arterial in Suzhou, the rear-end probabilities at GSCD and NGSCD intersections were calculated using Monte Carlo simulation. The results suggested that, on the one hand, GSCDs caused significantly negative safety effects during the flashing green interval, especially for vehicles in a zone ranging from 15 to 70 m; on the other hand, GSCD devices were helpful in reducing rear-end accidents during the yellow interval, especially in a zone from 0 to 50 m. GSCDs helped shorten indecision zones and reduce rear-end collisions near the stop line during the yellow interval, but they easily resulted in risky car following behavior and much higher rear-end collision probabilities at indecision zones during both flashing green and yellow intervals. GSCDs are recommended to be cautiously installed and education on safe driving behavior should be available.

  8. Valgus osteotomy of the tibia with a Puddu plate combined with anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Albuquerque Roberto Freire da Mota e

    2003-01-01

    Full Text Available Anterior knee instability associated with a varus deformity is a complex condition with several treatment possibilities. Among these, anterior cruciate ligament (ACL associated to a simultaneous valgus tibial osteotomy is a increasing indication. This simultaneous procedure adds technical issues to those related to the isolated surgeries. Thus, the osteotomy plane and location of fixation hardware shouldn?t conflict with tibial tunnel and ACL graft fixation. Authors analyze the relations between a opening tibial valgus osteotomy stabilized with a Puddu plate and ACL reconstruction with a patellar tendon graft fixated with interference screws in 10 human cadaver knees. A straight oblique tibial osteotomy starting on the medial tibial cortex and oriented laterally and proximally was performed on all knees with a 10mm opening medially and stabilized with a Puddu plate on the most posterior aspect of the medial tibia, and a tibial tunnel drilled 50° to tibial plateau. With this technique there was no intersection between tibial tunnel or interference screw and the osteotomy or the plate fixation screws.

  9. Plate boundary deformation of the Pacific plate. Two case studies. (1) Crustal structure of the northwestern Vizcaino block and Gorda escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. (2) A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms and stress observations

    Science.gov (United States)

    Leitner, Beate

    Two examples of Pacific rim plate boundary deformation are presented. In the first part of the thesis crustal models are derived for the northwestern part of the Vizcaino block in California using marine seismic and gravity data collected by the Mendocino Triple Junction Seismic Experiment. A northwest-southeast trending kink in the Moho is imaged and interpreted to have formed under compression by reactivation of preexisting thrust faults in the paleoaccretionary prism at the seaward margin of the Vizcaino block. The study suggests that the deformation resulted from mainly north-south compression between the Pacific-Juan de Fuca plates across the Mendocino transform fault and predates late Pliocene Pacific-North America plate convergence. In the second part, 195 earthquakes recorded during the duration of the Southern Alps Passive Seismic Experiment (SAPSE) are analysed. Precise earthquake locations and focal mechanisms provide unprecedented detail of the seismotectonics in the central South Island. The short term (6 month) SAPSE seismicity is compared with long term (8 years) seismicity recorded by the New Zealand National Seismic network and the Lake Pukaki network. The seismicity rate of the Alpine fault is low, but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Changes of the depth of the seismogenic zone, generally uniform at about 10--12 km, occur only localised over distances smaller than 30 km, suggesting that thermal perturbations must be of similar scale. This implies that the thermal effects of the uplift of the Southern Alps do not change the seismogenic depth significantly and are not in accordance with most of the present thermal models. Both the Hope and Porters Pass fault zones are seismically active and deformation is accommodated near the fault zones and in the adjacent crust. North of Mt Cook, a triangular shaped region along the Alpine fault is characterised by absence of earthquakes. We interpret this

  10. Experiments in a boundary layer subjected to free stream turbulence. Part 1: Boundary layer structure and receptivity

    International Nuclear Information System (INIS)

    Westin, K.J.A.; Boiko, A.V.; Klingmann, B.G.B.; Kozlov, V.V.; Alfredsson, P.H.

    1993-12-01

    The modification of the mean and fluctuating characteristics of a flat plate boundary layer subjected to nearly isotropic free stream turbulence (FST) is studied experimentally using hot-wire anemometry. The study is focussed on the region upstream of the transition onset, where the fluctuations inside the boundary layer are dominated by elongated flow structures which grow downstream both in amplitude and length. Their downstream development and scaling is investigated, and the results are compared to those obtained by previous authors. This allows some conclusions about the parameters which are relevant for the modelling of the transition process. The mechanisms underlying the transition process and the relative importance of the Tollmien-Schlichting wave instability in this flow are treated in an accompanying paper. 25 refs

  11. Inequalities for dual quermassintegrals of mixed intersection bodies

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the. Minkowski inequality for mixed intersection bodies. Then, we give the ...

  12. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  13. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  14. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    Science.gov (United States)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  15. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    Science.gov (United States)

    1943-04-01

    ft) \\ axp <— b) Tha solution with the positiv « exponent must bo Ignored as it is Infinite at y • ». As the outor boundary con- dition, then, 0...34’.»*•* *’"**’ "• .F *- ^’•--i»-v 40 When quantitative work was attempted, It became ap- parent that the complicated sound field In the tunnel wae a decided...gradients decreased ampllfica damping) of .the oscillations while pos creased amplification. A quantitative this effect was therefore undertaken w

  16. Outlook from the intersections

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1995-01-01

    I review a number of the physics themes of the Fifth Conference on the Intersections of Particle and Nuclear Physics, discussing the significance and promise of current work at the interface of these fields. copyright 1995 American Institute of Physics

  17. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  18. Plate with a hole obeys the averaged null energy condition

    International Nuclear Information System (INIS)

    Graham, Noah; Olum, Ken D.

    2005-01-01

    The negative energy density of Casimir systems appears to violate general relativity energy conditions. However, one cannot test the averaged null energy condition (ANEC) using standard calculations for perfectly reflecting plates, because the null geodesic would have to pass through the plates, where the calculation breaks down. To avoid this problem, we compute the contribution to ANEC for a geodesic that passes through a hole in a single plate. We consider both Dirichlet and Neumann boundary conditions in two and three space dimensions. We use a Babinet's principle argument to reduce the problem to a complementary finite disk correction to the perfect mirror result, which we then compute using scattering theory in elliptical and spheroidal coordinates. In the Dirichlet case, we find that the positive correction due to the hole overwhelms the negative contribution of the infinite plate. In the Neumann case, where the infinite plate gives a positive contribution, the hole contribution is smaller in magnitude, so again ANEC is obeyed. These results can be extended to the case of two plates in the limits of large and small hole radii. This system thus provides another example of a situation where ANEC turns out to be obeyed when one might expect it to be violated

  19. The solution of certain loss of contact between a plate and unilateral supports

    Directory of Open Access Journals (Sweden)

    Sompornjaroensuk Yos

    2007-01-01

    Full Text Available This paper examines the loss of contact between a square plate and the unilateral supports under uniformly distributed load. Since the plate is rested on the unilateral supports, it will have the regions of lost contact between a plate and the supports due to the absence of restraining corner force at the plate corners. This leads to the mixed boundary conditions and these conditions are then written in the form of dual-series equations which can further be reduced to a Fredholm integral equation by taking advantage of finite Hankel transform technique. Numerical results are given for the deflections of free edge and deflections along the middle line of the plate with deferent values of the Poisson’s ratio. In addition, the deflection surface is also presented. From the investigation, it can be indicated that the loss of contact is decreased upon the increasing Poisson’s ratio.

  20. The Intersection of Gender and Age: An Exploration

    Science.gov (United States)

    Gander, Michelle

    2014-01-01

    The understanding of gender inequality for women entering work has not been subject to significant research or theorizing. This small study indicated that young women entering the workplace are subject to direct discrimination and by using an intersectionality approach this paper proposes that the intersection of gender and young age results in…

  1. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    Science.gov (United States)

    2015-07-29

    5 - 1 - SENSITIZATION OF NATURALLY AGED ALUMINUM 5083 ARMOR PLATE INTRODUCTION Aluminum -magnesium alloys are important for both ship...boundaries [3,4]. The magnesium-rich phase (normally β-Al3Mg2) is highly anodic with respect to the surrounding aluminum phase, thus is susceptible... alloys , and with varying amounts of debris scattered about the surface consistent with corrosion product, Figure 2b, that often forms over time within

  2. Intersectionality as a Framework for Inclusive Environments

    Science.gov (United States)

    Nunez, A. M.

    2016-12-01

    To create more inclusive environments for the advancement of scientific inquiry, it is critical to consider the role of intersectionality. Originating in activism and legal scholarship grounded in the realities of women of color, the concept of intersectionality emphasizes how societal power dynamics shape the differential construction of life opportunities of diverse demographic groups across a variety of social identities, contexts, and historical conditions. Importantly, intersectionality also recognizes that individuals can simultaneously hold privileged and marginalized identities. For example, while white women scientists are less represented in leadership and decision-making positions than their male counterparts, but they typically do not experience the marginalization of being mistaken for cleaning staff at their institutions, as many African American and Latina scientists report. Thus, white women are relatively privileged in this context. This case and national survey data demonstrate the critical importance of recognizing that the intersection of racial and gender identities creates complex and multi-faceted challenges for diverse women scientists in navigating the organizational culture of science. Educational research indicates that interventions seeking to create more inclusivity in science should take into account the relationships between various social identities, contexts, and broader historical conditions that affect the advancement of historically underrepresented minority groups. Therefore, this presentation will provide a conceptual framework of intersectionality to guide interventions to encourage all scientists to recognize the distinctive intellectual and social contributions of those from diverse gender, race, class, disability, sexual orientation, and other identity backgrounds. It will also address how this framework can be applied to develop programs, policies, and practices that transform organizational cultures to be more inclusive

  3. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  4. Revisiting Street Intersections Using Slot-Based Systems.

    Directory of Open Access Journals (Sweden)

    Remi Tachet

    Full Text Available Since their appearance at the end of the 19th century, traffic lights have been the primary mode of granting access to road intersections. Today, this centuries-old technology is challenged by advances in intelligent transportation, which are opening the way to new solutions built upon slot-based systems similar to those commonly used in aerial traffic: what we call Slot-based Intersections (SIs. Despite simulation-based evidence of the potential benefits of SIs, a comprehensive, analytical framework to compare their relative performance with traffic lights is still lacking. Here, we develop such a framework. We approach the problem in a novel way, by generalizing classical queuing theory. Having defined safety conditions, we characterize capacity and delay of SIs. In the 2-road crossing configuration, we provide a capacity-optimal SI management system. For arbitrary intersection configurations, near-optimal solutions are developed. Results theoretically show that transitioning from a traffic light system to SI has the potential of doubling capacity and significantly reducing delays. This suggests a reduction of non-linear dynamics induced by intersection bottlenecks, with positive impact on the road network. Such findings can provide transportation engineers and planners with crucial insights as they prepare to manage the transition towards a more intelligent transportation infrastructure in cities.

  5. Direct Numerical Simulation and Experimental Validation of Hypersonic Boundary-Layer Receptivity and Instability

    National Research Council Canada - National Science Library

    Zhong, Xiaolin

    2007-01-01

    .... During the three-year period, we have conducted extensive DNS studies on the receptivity of hypersonic boundary layer flows over a sharp wedge, a flat plate, a blunt cone, and the FRESH aeroshell...

  6. Multiphase flow in geometrically simple fracture intersections

    Science.gov (United States)

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  7. A numerical investigation of turbulent flow in an 18-plate nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yu, R.; Lightstone, M.F.

    2003-01-01

    A numerical simulation of the fluid flow in the core of the McMaster Nuclear Reactor (MNR) was performed. The standard k - ε turbulence model together with a two-layer wall boundary model was used in the current study. A two-dimensional numerical model for the MNR 18-plate nuclear fuel assembly was developed using the advanced commercial computational fluid dynamics (CFD) code CFX-TASCflow. The numerical predictions were compared with experimental data for the MNR 18-plate assembly at the same flow conditions. In general, the code over predicts the pressure drop for the range of the mass flow rate investigated, however, the difference decreases as the mass flow rate (or Reynolds number) increases. Errors of less than 4% were obtained for mass flows greater than 4.0 kg/s. The comparison shows that the predicted flow distribution and velocities are very close to the measured data for the high Reynolds number flows. It is found that the k - ε model with the two-layer wall boundary model can predict the flow in the vertical parallel plate channels in the low Reynolds number region (Re=3000 to 10,000) very well. (author)

  8. MOTORCYCLE CRASH PREDICTION MODEL FOR NON-SIGNALIZED INTERSECTIONS

    Directory of Open Access Journals (Sweden)

    S. HARNEN

    2003-01-01

    Full Text Available This paper attempts to develop a prediction model for motorcycle crashes at non-signalized intersections on urban roads in Malaysia. The Generalized Linear Modeling approach was used to develop the model. The final model revealed that an increase in motorcycle and non-motorcycle flows entering an intersection is associated with an increase in motorcycle crashes. Non-motorcycle flow on major road had the greatest effect on the probability of motorcycle crashes. Approach speed, lane width, number of lanes, shoulder width and land use were also found to be significant in explaining motorcycle crashes. The model should assist traffic engineers to decide the need for appropriate intersection treatment that specifically designed for non-exclusive motorcycle lane facilities.

  9. Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer

    Science.gov (United States)

    Monschke, Jason; White, Edward

    2015-11-01

    Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.

  10. Evaluation of j-turn intersection design performance in Missouri.

    Science.gov (United States)

    2013-12-01

    Research shows that a high percentage of crashes that take place on high-speed rural expressways occur at intersections with : minor roads. One low-cost alternative design for improving the safety of at-grade intersections on such expressways is the ...

  11. Pyrolysis and Boundary Layer Combustion of a Non-Charring Solid Plate Under Forced Flow

    National Research Council Canada - National Science Library

    Ananth, Ramagopal

    2003-01-01

    Solutions of Navier-Stokes (NS) equations were obtained for burning rate Nu and temperature distributions for a flat PMMA plate using an iterative method to impose steady-state, pyrolysis kinetics at the surface...

  12. We Are Still Here: Re-Centring the Quintessential Subject of Intersectionality

    OpenAIRE

    Chantler, Khatidja; Thiara, R

    2017-01-01

    This paper argues that “Black woman” should remain the quintessential subject of intersectionality as we are concerned that racialization has been submerged within intersectionality debates. Drawing on research and policy related to violence against women in minoritized communities in the UK, we (re)interrogate the explanatory power and effects of intersectionality.

  13. At the cross-roads: an on-road examination of driving errors at intersections.

    Science.gov (United States)

    Young, Kristie L; Salmon, Paul M; Lenné, Michael G

    2013-09-01

    A significant proportion of road trauma occurs at intersections. Understanding the nature of driving errors at intersections therefore has the potential to lead to significant injury reductions. To further understand how the complexity of modern intersections shapes behaviour of these errors are compared to errors made mid-block, and the role of wider systems failures in intersection error causation is investigated in an on-road study. Twenty-five participants drove a pre-determined urban route incorporating 25 intersections. Two in-vehicle observers recorded the errors made while a range of other data was collected, including driver verbal protocols, video, driver eye glance behaviour and vehicle data (e.g., speed, braking and lane position). Participants also completed a post-trial cognitive task analysis interview. Participants were found to make 39 specific error types, with speeding violations the most common. Participants made significantly more errors at intersections compared to mid-block, with misjudgement, action and perceptual/observation errors more commonly observed at intersections. Traffic signal configuration was found to play a key role in intersection error causation, with drivers making more errors at partially signalised compared to fully signalised intersections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Numerical Investigation of an Oscillating Flat Plate Airfoil

    Science.gov (United States)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  15. The 2011 Tohoku-oki Earthquake related to a large velocity gradient within the Pacific plate

    Science.gov (United States)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    We conduct seismic tomography using arrival time data picked by the high sensitivity seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We used earthquakes off the coast outside the seismic network around the source region of the 2011 Tohoku-oki Earthquake with the centroid depth estimated from moment tensor inversion by NIED F-net (broadband seismograph network) as well as earthquakes within the seismic network determined by Hi-net. The target region, 20-48N and 120-148E, covers the Japanese Islands from Hokkaido to Okinawa. A total of manually picked 4,622,346 P-wave and 3,062,846 S-wave arrival times for 100,733 earthquakes recorded at 1,212 stations from October 2000 to August 2009 is available for use in the tomographic method. In the final iteration, we estimate the P-wave slowness at 458,234 nodes and the S-wave slowness at 347,037 nodes. The inversion reduces the root mean square of the P-wave traveltime residual from 0.455 s to 0.187 s and that of the S-wave data from 0.692 s to 0.228 s after eight iterations (Matsubara and Obara, 2011). Centroid depths are determined using a Green's function approach (Okada et al., 2004) such as in NIED F-net. For the events distant from the seismic network, the centroid depth is more reliable than that determined by NIED Hi-net, since there are no stations above the hypocenter. We determine the upper boundary of the Pacific plate based on the velocity structure and earthquake hypocentral distribution. The upper boundary of the low-velocity (low-V) oceanic crust corresponds to the plate boundary where thrust earthquakes are expected to occur. Where we do not observe low-V oceanic crust, we determine the upper boundary of the upper layer of the double seismic zone within high-V Pacific plate. We assume the depth at the Japan Trench as 7 km. We can investigate the velocity structure within the Pacific plate such as 10 km beneath the plate boundary since the

  16. Switching Exciton Pulses Through Conical Intersections

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2014-11-01

    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

  17. Development of new finite element by source method. 2nd Report. Plate bending element; Source wo mochiita atarashii yugen yoso no kaihatsu. 2. Itamage yoso

    Energy Technology Data Exchange (ETDEWEB)

    Neki, I.; Tada, T. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-12-31

    This paper reports a method to develop a new finite element by source (FES) for a two-dimensional plane problem and a three-dimensional solid problem as a method to analyze ship body structures. The paper describes development of a plate bending element by using a similar method, and the fundamental principle thereof. The present method can prepare a finite element of an arbitrary shape by simply providing a contact point only on a boundary. It can also derive good calculation accuracy with less number of contact points and elements. These facts are shown by examples of analyses on a square plate, a triangle plate and a semi-circular plate. Particularly, since a plate bending problem has a large order of differential calculus in a governing equation, this method being a semi-analytical method derives a result with very good accuracy even with less number of contact points. A hypothetical boundary method or a hypothetical electric charge method presents not a very high accuracy even if a large number of contact points are provided. This is because the method hypothesizes only a bending moment vertical to the boundary, but does not consider a source of the moment relative to the boundary. In contrast, the present method hypothesizes both of bending and twisting as the sources, hence its accuracy is better than with the above two methods. 5 refs., 11 figs., 7 tabs.

  18. Development of new finite element by source method. 2nd Report. Plate bending element; Source wo mochiita atarashii yugen yoso no kaihatsu. 2. Itamage yoso

    Energy Technology Data Exchange (ETDEWEB)

    Neki, I; Tada, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-12-31

    This paper reports a method to develop a new finite element by source (FES) for a two-dimensional plane problem and a three-dimensional solid problem as a method to analyze ship body structures. The paper describes development of a plate bending element by using a similar method, and the fundamental principle thereof. The present method can prepare a finite element of an arbitrary shape by simply providing a contact point only on a boundary. It can also derive good calculation accuracy with less number of contact points and elements. These facts are shown by examples of analyses on a square plate, a triangle plate and a semi-circular plate. Particularly, since a plate bending problem has a large order of differential calculus in a governing equation, this method being a semi-analytical method derives a result with very good accuracy even with less number of contact points. A hypothetical boundary method or a hypothetical electric charge method presents not a very high accuracy even if a large number of contact points are provided. This is because the method hypothesizes only a bending moment vertical to the boundary, but does not consider a source of the moment relative to the boundary. In contrast, the present method hypothesizes both of bending and twisting as the sources, hence its accuracy is better than with the above two methods. 5 refs., 11 figs., 7 tabs.

  19. Identification of black spots for traffic injury in road intersections dependence of injury definition

    DEFF Research Database (Denmark)

    Lund Hansen, Dennis; Lauritsen, Jens M

    2010-01-01

    injury information has been available for about 20 years and in the current project the aim was to investigate whether different definitions of black spots (hot spots) would point at different intersections for further scrutiny. During the years 2002 to 2007 all 29 719 patient contacts due to traffic...... defined as The upper decile of injury generating intersections. Intersections with at least one death or hospitalised patient. The intersections covering the upper decile of injuries. Results The three definitions in combination identified 295 injury burdened intersections. Only three intersections were...... identified by all three definitions. All intersections fulfilling definition three were also included in definition one. Definition two covered 103 intersections, only 22 of these were identified by definition one. Conclusion The definition of Black spot has huge implications for identification...

  20. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  1. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  2. Intersectionality and Liberal Education

    Science.gov (United States)

    Butler, Johnella E.

    2017-01-01

    Intersectionality--an integrated approach to analyzing the complex, matrix-like interconnections among patterns of discrimination based on race, gender, and other social identities, with the goal of highlighting how resulting inequalities are experienced--has many implications for exploring the relationship between knowledge and experience and for…

  3. Considering Intersectionality in Multiculturalism

    Science.gov (United States)

    Clark, Madeline

    2015-01-01

    The intersection of feminist theory and multiculturalism is discussed. Although Frisby makes several strong points, there are several aspects of his definition of multiculturalism that are simplistic. Expansion of ideas borrowed from feminism has potential to increase the nuance and accuracy of the conceptualization of multiculturalism.

  4. Potential recovery for Reissner--Mindlin and Kirchhoff--Love plate models using global Carleman estimates

    International Nuclear Information System (INIS)

    Osses, Axel; Palacios, Benjamín

    2013-01-01

    In this paper, we consider two linear plate models, namely the Reissner–Mindlin system (R–M) and the Kirchhoff–Love equation (K–L), which come from linear elasticity. We prove global Carleman inequalities for both models with boundary observations and under a suitable hypothesis on the parameters. We use these estimates to study the inverse problem of recovering a spatially dependent potential from knowledge of Neumann boundary data. We obtain L 2 -Lipschitz stability for K–L and H 1 -Lipschitz stability for R–M under the assumption that the potentials are equal at the boundary. (paper)

  5. A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Tahar Hassaine Daouadji

    2012-01-01

    Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.

  6. Exploring the promises of intersectionality for advancing women's health research

    Directory of Open Access Journals (Sweden)

    Clark Natalie

    2010-02-01

    Full Text Available Abstract Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning

  7. Exploring the promises of intersectionality for advancing women's health research.

    Science.gov (United States)

    Hankivsky, Olena; Reid, Colleen; Cormier, Renee; Varcoe, Colleen; Clark, Natalie; Benoit, Cecilia; Brotman, Shari

    2010-02-11

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  8. A finite-element for the analysis of shell intersections

    International Nuclear Information System (INIS)

    Koves, W.J.; Nair, S.

    1994-01-01

    The analysis of discontinuity stresses at shell intersections is a problem of great importance in several major industries. Some of the major areas of interest are pressure-containing equipment, such as reactors and piping, in the nuclear and fossil power industry; pressure vessels and heat exchangers in the petrochemical industry; bracing in offshore oil platforms; and aerospace structures. A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed that has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections. The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems

  9. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    International Nuclear Information System (INIS)

    Romppanen, A.-J.; Immonen, E.

    2013-12-01

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  10. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    Science.gov (United States)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  11. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  12. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  13. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  14. Fragmentation of α2 plates in a fully lamellar TiAl during creep

    International Nuclear Information System (INIS)

    Wang, J.G.; Hsiung, L.M.; Nieh, T.G.

    1999-01-01

    The fragmentation and spheroidization of α 2 laths in a fully-lamellar TiAl alloy during creep were examined. Three possible mechanisms, Rayleigh's perturbation model, subgrain boundary groove mechanism and intersection of deformation twins with α 2 lamellae were presented and discussed. During creep deformation, the pile-up of interfacial dislocations leads to a change of planar interface, which, in turn, causes a difference in local chemical potential, and further results in the spheroidization of α 2 lamellae. On the other hand, the deformation of the α 2 phase is expected to be induced by the high local stress concentration introduced by the pile up of interfacial dislocations. The dynamic recovery process may lead to the formation of subgrain boundaries in the α 2 lamellae, which results in the spheroidization and termination of α 2 lamellae with the aid of diffusion during creep

  15. EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  16. EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  17. EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  18. EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  19. EnviroAtlas - Cleveland, OH - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  20. EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...