WorldWideScience

Sample records for plate avalanche chambers

  1. Avalanche and streamer mode operation of resistive plate chambers

    International Nuclear Information System (INIS)

    Cardarelli, R.; Makeev, V.; Santonico, R.

    1996-01-01

    A resistive plate chamber was operated at voltages increasing in steps of 200 V over a 3 kV interval and the transition between the avalanche and streamer modes was studied. The avalanche amplitude was observed to be exponentially dependent on the operating voltage up to a value, characteristic of the gas, where the avalanche saturation occurs and delayed streamer signals start to appear. Signal waveforms, charge and timing distributions are reported. (orig.)

  2. Study of an avalanche-mode resistive plate chamber

    International Nuclear Information System (INIS)

    Ying, J.; Ban, Y.; Liu, H.T.; Zhu, Z.M.; Zhu, Z.Y.; Chen, T.; Ma, J.G.; Ye, Y.L.

    2000-01-01

    Resistive plate chambers (RPCs) are widely used to detect high-energy charged particles, especially muons, due to the high gain, moderate time and spatial resolution, simple design and low cost of these detectors. While the simple streamer mode is adequate for cosmic-ray and low-rate accelerator experiments, the avalanche mode is required for high-rate experiments such as CMS at LHC. In this paper construction of a medium-sized double-gap RPC made of Chinese materials is reported. The experimental set-up of cosmic-ray and muon beam tests are introduced. The avalanche mode was clearly observed. Good efficiency and time resolution were obtained from the beam test at CERN under normal irradiation conditions. At very high radiation background the chamber efficiency decreases, indicating the necessity to change the resistivity value of the Chinese bakelites. (author)

  3. Progresses in the simulation of Resistive Plate Chambers in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P

    1999-08-01

    New results about the simulation of Resistive Plate Chambers are reported; particular emphasis is put in the understanding of charge spectra in regions where deviations from the pure avalanche mode of operation can be present.

  4. Space-charge limitation of avalanche growth in narrow-gap resistive plate chambers

    CERN Document Server

    Williams, M C S

    2004-01-01

    A big advance in resistive plate chamber technology happened in 1996 with the advent of the multigap resistive plate chamber (MRPC). The MRPC allows us to easily construct detectors with many small gas gaps and thus we obtain good timing together with high detection efficiency. Using this technology, it is now common to build detectors with gas gaps of 200-300 mum in width. This paper examines space-charge limited avalanche growth; this becomes a dominant effect for narrow gap resistive plate chambers. This effect controls gas gain and explains the reason for the excellent behaviour of MRPCs built with this gas gap.

  5. Avalanche fluctuations within the multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Lamas Valverde, J.; Veenhof, R.J.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    The multigap resistive plate chamber (MRPC) was originally designed to have improved time resolution (compared to the wide gap RPC), but also to keep the good high rate behaviour and ease of construction associated with the wide gap RPC. However in addition we observed a very long efficiency plateau, even at high rates. Here we consider fluctuations in avalanche growth, and show that the inherent ''averaging'' of these fluctuations can account for the enhanced performance of the multigap RPC. (orig.)

  6. The simulation of resistive plate chambers in avalanche mode: charge spectra and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. E-mail: Marcello.abbrescia@ba.infn.it; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P

    1999-07-21

    A model to simulate the avalanche formation process and the induced signal in a Resistive Plate Chamber is presented. A first investigation of the effects of various parameters on the performance of this detector is reported. (author)

  7. Local and global performance of double-gap resistive plate chambers operated in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P.; Sergueev, S

    1999-09-21

    Two large double-gap resistive plate chambers, with 2 and 3 mm gap widths, were tested to study their response uniformity when operated in avalanche mode. The effects of mechanical tolerances and the presence of the spacers is thoroughly examined. Results on efficiency and time resolution are presented. We find that average performance and response uniformity over the whole chamber surface are fully adequate to the requirements of future collider experiments. (author)

  8. Performance and simulation of a double-gap resistive plate chamber in the avalanche mode

    CERN Document Server

    Ahn Sung Hwan; Hong Byung Sik; Hong Seong Jong; Ito, M; Kang, T I; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee Hyup Woo; Lee, K B; Lee Kyong Sei; Lee Seok Jae; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee June Tak; Ryu, M S; Sim Kwang Souk

    2004-01-01

    We present a detailed analysis of the time and the charge signals of a prototype double-gap resistive plate chamber for the endcap region of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The chamber was built with relatively low-resistivity bakelite. The time and the charge results demonstrate that the high- voltage plateau, which satisfies various CMS requirements for the efficiency, the noise cluster rate, the fraction of the large signal, and the streamer probability, can be extended at least up to 400 V with the present design. In addition, a simple avalanche multiplication model is studied in detail. The model can reproduce the experimental charge spectra reasonably well. The charge information enables us to estimate the effective Townsend coefficient in avalanche-mode operation.

  9. Calorimeter detector consisting of a KMgF3 scintillator and parallel-plate avalanche chamber

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.; Turchanovich, L.K.; Vasil'chenko, V.G.

    1989-01-01

    Scintillations of a KMgF 3 crystal have been detected in the parallel-plate avalanche chamber with a TEA gaseous photocathode, the scintillation signal is shown to be much higher than the direct ionization one. The characteristic properties of the calorimeters on the basis of such structure with electrical and optical readout are discussed. 10 refs.; 4 figs

  10. Space charge limited avalanche growth in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Kaidalov, A.B.; Kisselev, S.M.; Alici, A.; Basile, M.; Cifarelli, L.; Anselmo, F.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Baek, Y.; Kim, D.H.; Cosenza, F.; Caro, A. De; Pasquale, S. De; Bartolomeo, A. Di; Girard, M. Fusco; Guida, M.; Hatzifotiadou, D.; Kim, D.W.; Laurenti, G.; Lee, K.; Lee, S.C.; Lioublev, E.; Luvisetto, M.L.; Margotti, A.; Martemiyanov, A.N.; Nania, R.; Noferini, F.; Otiougova, P.; Pierella, F.; Polozov, P.A.; Scapparone, E.; Scioli, G.; Sellitto, S.B.; Smirnitski, A.V.; Tchoumakov, M.M.; Valenti, G.; Vicinanza, D.; Voloshin, K.G.; Williams, M.C.S.; Zagreev, B.V.; Zampolli, C.; Zichichi, A.

    2004-01-01

    Abstract The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 μm. There has been an intense R and D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R and D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 μm gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 μm gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth. (orig.)

  11. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  12. Effects of SF$_{6}$ on the avalanche mode operation of a real-sized double-gap resistive plate chamber for the Compact Muon Solenoid experiment

    CERN Document Server

    Ahn Sung Hwan; Hong, B; Hong, S J; Ito, M; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S; Kang, T I

    2005-01-01

    We present the design and the test, results for a real-sized prototype resistive plate chamber by using cosmic-ray muons for the forward region of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). In particular, we investigate the effects of adding SF/sub 6/ to the gas mixture for the avalanche mode operation of a resistive plate chamber. A small fraction of SF/sub 6/ is very effective in suppressing streamer signals in a resistive plate chamber. The shapes of the muon detection efficiency and the muon cluster size remain similar, but are shifted to higher operating voltage by SF/sub 6/. The noise cluster rate and size are not influenced by SF/sub 6/.

  13. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  14. High counting rate resistive-plate chamber

    International Nuclear Information System (INIS)

    Peskov, V.; Anderson, D.F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast ( 5 counts/mm 2 . A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (≥10 10 Ω·cm) materials. In practice RPCs are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm 2 , leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases

  15. Automatic scanning of Cerenkov light photograms from a multistep avalanche chamber using a television digitizer

    International Nuclear Information System (INIS)

    Vascon, M.; Zanella, G.

    1980-01-01

    A television digitizer and its application to automatic scanning of Cerenkov imaging using the multistep avalanche chamber in front of optical spark chamber are described. The results are of interest in the adoption of the automatic scanning of photographic plates of these events or for the on-line application of the television digitizer itself. (orig.)

  16. The physics of Resistive Plate Chambers

    CERN Document Server

    Riegler, Werner

    2004-01-01

    Over the last 3 years we investigated theoretical aspects of Resistive Plate Chambers (RPC) in order to clarify some of the outstanding questions on space charge effects, high efficiency of small gap RPCs, charge spectra, signal shape and time resolution. In a series of reports we analyzed RPC performance including all detector aspects covering primary ionization, avalanche multiplication, space charge effects, signal induction in presence of resistive materials, crosstalk along detectors with long strips and front-end electronics. Using detector gas parameters entirely based on theoretical predictions and physical models for avalanche development and space charge effects we are able to reproduce measurements for 2 and 0.3 mm RPCs to very high accuracy without any additional assumptions. This fact gives a profound insight into the workings of RPCs and also underlines the striking difference in operation regime when compared to wire chambers. A summary of this work as well as recent results on three-dimensiona...

  17. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  18. Beam test results of a resistive plate chamber made of Chinese bakelites

    CERN Document Server

    Ying, J; Ban, Y; Liu Hong Tao; Zhu, Z M; Zhu, Z Y; Chen, T; Ma Jing Guo; Qian, S J

    2001-01-01

    The detailed beam test results of the first Chinese made avalanche mode resistive plate chamber are reported. The experimental set-ups at CERN GIF area are introduced. The detection efficiency, position resolution and time resolution of the chamber fulfil requirements as muon trigger for the future LHC experiments, while the rate capability is not good enough if the chamber is used at forward region. The applicability and the further possible improvements of the chamber are discussed. (12 refs).

  19. A new type of resistive plate chamber: The multigap RPC

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    This Letter describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap). (orig.)

  20. A new type of resistive plate chamber the multigap RPC

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    This paper describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap).

  1. Detector Physics of Resistive Plate Chambers

    CERN Document Server

    Lippmann, Christian; Riegler, W

    2003-01-01

    Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1ns up to a flux of several kHz/cm2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650m2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176m2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in stream...

  2. Recombination: An important effect in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Doroud, K.; Afarideh, H.; Hatzifotiadou, D.; Rahighi, J.; Williams, M.C.S.; Zichichi, A.

    2009-01-01

    We have simulated the gas avalanche in a multigap resistive plate chamber (MRPC). The results were then compared with our data from the MRPC . Up to now, the total amount of charge produced in a gas gap is considered to be given by the total number of positive ions generated by the gas avalanches. However, the total charge generated by the simulation program is much too large and is in conflict with our data. Our data indicate that nearly 100% of the negative ions recombine with the positive ions. The recombination effect dramatically reduces the amount of charge in the gas gap: a very important feature for MRPC technology especially for the rate capability.

  3. New gas mixtures for Resistive Plate Chambers operated in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy); Cassano, V; Nuzzo, S; Piscitelli, G; Vadruccio, D; Zaza, S [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy)

    2012-01-01

    The possibility of using gas mixtures containing Helium, to overcome some of the problems encountered with standard gas mixture employed up to now for Resistive Plate Chambers, is studied here. New and interesting experimental results are reported, opening a possible original path of investigation in this field.

  4. Streamer free operation of a 2 mm gap resistive plate chamber with $C_{2}F_{5}H$

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Williams, M C S; Zichichi, A

    1999-01-01

    It is necessary to operate the resistive plate chamber (RPC) in avalanche mode to obtain high efficiency at elevated particle fluxes. We examine this mode of operation with a 2 mm gap RPC using gas mixtures containing C/sub 2/F/sub 4/H/sub 2/ and C/sub 2/F/sub 5/H. In order to explain the data we propose that the avalanche growth is strongly limited by space charge effects. (10 refs).

  5. Positron camera with high-density avalanche chambers

    International Nuclear Information System (INIS)

    Manfrass, D.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hennig, K.

    1988-01-01

    The results of an extensive investigation of the properties of high-density avalanche chambers (HIDAC) are presented. This study has been performed in order to optimize the layout of HIDAC detectors, since they are intended to be applied as position sensitive detectors for annihilation radiation in a positron emission tomograph being under construction. (author)

  6. Multi-stage low-pressure avalanche chamber

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Peshekhonov, V.D.; Smykov, L.P.

    1985-01-01

    A multi-stage avalanche-chamber filled with isobutane operating at the pressure of 6 torr is described. The chamber comprises an amplifying gap, drift gap and multiwire proportional chamber with interelectrode gaps equal to 4 mm. The anode plane of the proportional chamber is winded of wire 2 μm in diameter with 2 mm pitch. The cathode are winded orthogonally to anode wires of wire 50 μm in diameter with 1 mm pitch. Drift and preamplifier gaps are formed by grid electrodes made of wire 50 μm in diameter with dimension of the cell equal to 1x1 mm. Width of the drift gap is 5 mm, width of the preamplification gap is 3 or 9 mm. Coordinate data are removed from the cathodes of the proportional chamber by means of delay lines. Sensitive square of the chamber equals 240x180 mm. Gas gain coefficient is 3x10 6 at its square nonuniformity equal to approximately 3%. Spatial resolution by both coordinates equals 170 μm; spatial resolution for isotropic α-emitters located close to the preamplifier gap is equal to 500 μm

  7. Aging study for resistive plate chambers of the CMS muon trigger detector

    CERN Document Server

    Abbrescia, M; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Altieri, S; Belli, G; Bruno, G; Guida, R; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P

    2003-01-01

    A long-term aging test of a Resistive Plate Chamber (RPC) was carried out with an intense gamma **1**3**7Cs source. The detector was operated in avalanche mode and had the bakelite surface treated with linseed oil. After the irradiation the estimated dose, charge and fluence were approximately equal to the expected values after 10 years of operation in the CMS barrel region. During and after the irradiation, the RPC performance was monitored with cosmic muons and showed no relevant aging effects. Moreover, no variation of the bakelite resistance was observed.

  8. Aging study for resistive plate chambers of the CMS muon trigger detector

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-12-01

    A long-term aging test of a Resistive Plate Chamber (RPC) was carried out with an intense gamma {sup 137}Cs source. The detector was operated in avalanche mode and had the bakelite surface treated with linseed oil. After the irradiation the estimated dose, charge and fluence were approximately equal to the expected values after 10 years of operation in the CMS barrel region. During and after the irradiation, the RPC performance was monitored with cosmic muons and showed no relevant aging effects. Moreover, no variation of the bakelite resistance was observed.

  9. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  10. A microstrip gas avalanche chamber with two-dimensional readout

    International Nuclear Information System (INIS)

    Angelini, F.; Bellazzini, R.; Brez, A.; Massai, M.M.; Spandre, G.; Torquati, M.R.

    1989-01-01

    A microstrip gas avalanche chamber with a 200 μm anode pitch has been built and successfully tested in our laboratory. A gas gain of 10 4 and an energy resolution of 18% (FWHM) at 6 keV have been measured using a gas mixture of argon-CO 2 at atmospheric pressure. A preliminary measurement of the positional sensitivity indicates that a spatial resolution of 50 μm can be obtained. (orig.)

  11. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  12. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  13. Study of influence of gas mixture composition on the multistep avalanche chambers characteristics

    International Nuclear Information System (INIS)

    Abdushukurov, D.A.; Zanevskij, Yu.V.; Peshekhonov, V.D.

    1987-01-01

    The influence of the concentration of organic quenchers on the operation of multistep avalanche chambers /MSAC/ has been studied. An empirical dependence of the gas amplification factor of MSAC on the quencher concentration has been derived. Measures are considered to increase the stability of the MSAC operation. To improve the MSAC operation argon + n-heptane, neon + methane and neon + argon + methane mixtures are suggested

  14. Initial investigations of the performance of a microstrip gas-avalanche chamber fabricated on a thin silicon-dioxide substrate

    International Nuclear Information System (INIS)

    Biagi, S.F.; Jackson, J.N.; Jones, T.J.; Taylor, S.

    1992-01-01

    We report on the construction of a micro-strip gas-avalanche chamber, designed such that the effective thickness of the insulating dielectric is ≅ 3 μm. Experimental results are presented on the initial observation of pulses from the chamber originating from the energy depositions of X-rays from an Fe 55 source. (orig.)

  15. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  16. The resistive plate chambers for CMS and their simulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. E-mail: marcello.abbrescia@ba.infn.it; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2001-09-21

    In this paper some results obtained by the CMS Resistive Plate Chamber collaboration during its five years long period of research and development are reported. The importance of the simulation in the design of the Resistive Plate Chambers for CMS is stressed.

  17. On the high gain operation of low-pressure microdot gas avalanche chambers

    International Nuclear Information System (INIS)

    Breskin, A.

    1997-01-01

    Microdot avalanche chambers (MDOT) equipped with thin semitransparent Cr photocathodes, were characterized with UV photons at low gas pressure. Gains superior to 10 4 were reached with gas multiplication at the dots. In a mode where preamplification in the gas volume precedes the additional dot multiplication, gains superior to 10 6 were measured at 30-60 torr of propane. The fast amplification mechanism results in narrow high amplitude pulses with 2-3 ns rise time, visible with no further electronic amplification means. We present here our preliminary results and briefly discuss potential applications. (orig.)

  18. Systematic test on fast time resolution parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Chen Yu; Li Guangwu; Gu Xianbao; Chen Yanchao; Zhang Gang; Zhang Wenhui; Yan Guohong

    2011-01-01

    Systematic test on each detect unit of parallel plate avalanche counter (PPAC) used in the fission multi-parameter measurement was performed with a 241 Am α source to get the time resolution and position resolution. The detectors work at 600 Pa flowing isobutane and with-600 V on cathode. The time resolution was got by TOF method and the position resolution was got by delay line method. The time resolution of detect units is better than 400 ps, and the position resolution is 6 mm. The results show that the demand of measurement is fully covered. (authors)

  19. Testing of a resistive plate chamber using NINO-ASIC based front end electronics

    International Nuclear Information System (INIS)

    Mondal, M.; Saini, J.; Ahammed, Z.; Chattopadhyay, S.; Ganai, R.; Barai, C.

    2017-01-01

    The Resistive Plate Chamber (RPC) has shown promising results while testing with the NINO FEE board. It has shown ∼ 80% efficiency in detecting cosmic muons with a noise rate of ∼ 40 Hz/cm 2 . The low threshold in the NINO board may be a possible reason for high noise rate. We plan to test the RPC for different gas mixtures to achieve an efficiency above 95%. The calibration of the NINO onboard threshold with input pulse amplitude need to be done. The time resolution of RPC is ∼ 2.66 ns at 12 kV for avalanche mode gas mixture. The minimum time resolution of the RPC has to determined by measuring the time spectra over the full plateau region of voltages. The signal charge has to be measured by time over- threshold for slewing correction. As J7 input of the board was not working properly, efficiency and noise rate data for the particular input has not been measured

  20. Angular dependence of the parallel plate ionization chambers of Ipen

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.

    1989-08-01

    The ionization chambers with parallel plates designed and constructed at IPEN for the dosimetry of soft X-radiation fields were studied in relation to thein angular dependence between O and +- 90 0 . The objective of this study is to verify the chambers response variation for small positioning errors during the field dosimetry used in Radiotherapy. The results were compared with those of commercial parallel plate ionization chambers used as secondary and testiary standards. (author) [pt

  1. A simple and accurate method for bidimensional position read-out of parallel plate avalanche counters

    International Nuclear Information System (INIS)

    Breskin, A.; Zwang, N.

    1977-01-01

    A simple method for bidimensional position read-out of Parallel Plate Avalanche counters (PPAC) has been developed, using the induced charge technique. An accuracy better than 0.5 mm (FWHM) has been achieved for both coordinates with 5.5. MeV α-particles at gas pressures of 10-40 torr. (author)

  2. A model of breakdown in parallel-plate detectors

    International Nuclear Information System (INIS)

    Fonte, P.

    1996-01-01

    Parallel-plate avalanche chambers (PPAC's) have many desirable properties, such as a fast, large area particle detector. However, the maximum gain is limited by a form of violent breakdown that limits the usefulness of this detector, despite its other evident qualities. The exact nature of this phenomenon is not yet sufficiently clear to sustain possible improvements. A previous experimental study is complemented in the present work by a quantitative model of the breakdown phenomenon in PPAC's, based on the streamer theory. The model reproduces well the peculiar behavior of the external current observed in PPAC's and resistive-plate chambers. Other breakdown properties measured in PPAC's are also well reproduced

  3. Mean secondary electron yield of avalanche electrons in the channels of a microchannel plate detector

    International Nuclear Information System (INIS)

    Funsten, H.O.; Suszcynsky, D.M.; Harper, R.W.

    1996-01-01

    By modeling the statistical evolution of an avalanche created by 20 keV protons impacting the input surface of a z-stack microchannel plate (MCP) detector, the mean secondary electron yield γ C of avalanche electrons propagating through a MCP channel is measured to equal 1.37 for 760 V per MCP in the z stack. This value agrees with other studies that used MCP gain measurements to infer γ C . The technique described here to measure γ C is independent of gain saturation effects and simplifying assumptions used in the segmented dynode model, both of which can introduce errors when inferring γ C through gain measurements. copyright 1996 American Institute of Physics

  4. Resistive plate chamber neutron and gamma sensitivity measurement with a {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F

    2003-06-21

    A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a {sup 252}Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF{sub 2} scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0.63{+-}0.02)x10{sup -3} (average energy 2 MeV) and a gamma sensitivity of (14.0{+-}0.5)x10{sup -3} (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.

  5. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  6. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.

    2002-01-01

    An investigation was carried out into the performance of parallel-plate chambers in 60 Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60 C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental k Q factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the

  7. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  8. A very large multigap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Kim, D W; Lamas-Valverde, J; Lee, S C; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    We have built and tested a very large multigap resistive plate chamber (MRPC). We discuss the suitability of the multigap RPC for the construction of large area modules. We give details of the construction technique and results from a scan across the surface of the chamber. We also report on the implementation of `half-strip resolution', where we improve the spatial resolution by a factor 2 without increasing the number of read-out channels. (9 refs).

  9. HF production in CMS-Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Guida, R.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Trentadue, R.; Cavallo, N.; Fabozzi, F.; Paolucci, P.; Piccolo, D.; Polese, G.; Sciacca, C.; Belli, G.; Necchi, M.; Ratti, S.; Riccardi, C.; Torre, P.; Vitulo, P.; Anguelov, T.; Genchev, V.; Panev, B.; Piperov, S.; Sultanov, G.; Vankov, P.; Litov, L.; Pavlov, B.; Petkov, P.

    2006-01-01

    The formation of highly reactive compounds in the gas mixture during Resistive Plate Chambers (RPCs) operation at the CERN Gamma Irradiation Facility (GIF) is studied. Results from two different types of chambers are discussed: 50 x 50 cm 2 RPC prototypes and two final CMS-RB1 chambers. The RB1 detectors were also connected to a closed loop gas system. Gas composition, possible additional impurities as well as fluoride ions have been monitored in different gamma irradiation conditions both in open and closed loop mode. The chemical composition of the RPC electrode surface has also been analyzed using an electron microscope equipped with an EDS/X-ray

  10. Resistive Plate Chambers commissioning and performance results for 2015

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The Resistive Plate Chamber (RPC) detector system at the Compact Muon Solenoid experiment at the LHC confers robustness and redundancy to the muon trigger. During the first long shutdown of the LHC (2013-2014) the CMS muon RPC system has been upgraded with 144 double-gap chambers on the forth forward stations. A total of 1056 double-gap chambers cover the pseudo-rapidity region up to 1.6. The main detector parameters are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC (13 TeV and 25 ns bunch spacing). Resistive Plate Chambers (RPC) performance results for 2015 with pp collisions at 13 TeV are presented. These results include the occupancy, efficiency of newly installed detectors after applying new working point, history plots for the RPC relevant variables such as: Cluster Size, Efficiency, percentage of inactive detector during operation and Rates and overall system noise. RPC variables are studied as funct...

  11. Fabrication of resistive plate chamber using bakelite

    International Nuclear Information System (INIS)

    Neog, Himangshu; Bhuyan, M.R.; Biswas, S.; Mohanty, B.; Mohanty, Rudranarayan; Rudra, Sharmili; Sahu, P.K.; Sahu, S.

    2014-01-01

    Now a days Resistive Plate Chamber (RPC) is one of the most important detectors in the High Energy Physics (HEP) experiments. RPC is a gas filled detector utilizing a constant and uniform electric field produced between two parallel electrode plates made of a material with high bulk resistivity e.g. glass or bakelite. RPC has good time resolution (1-2 ns) and spatial resolution (∼ cm). The high resistance of RPC plate limits the spark size produced after the ionization of gas due to the passing charged particle. This contribution discusses building of a RPC using bakelite (local sources) and the measurement of the surface resistivity of the detector

  12. Studies of gaseous multiplication coefficient in isobutane using a resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Lima, Iara B.; Vivaldini, Tulio C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: Due to the increasing demands concerning High Energy Physics, Nuclear Medicine and other Nuclear Applications about gaseous detectors operating in high electric fields, many efforts have been done about the choice of filling gases that fulfill these requirements. In this context, the electron transport parameters in gases, as the gaseous multiplication coefficient, play an important role not only for detector design but also for simulation and modeling of discharges, allowing the validation of electron impact cross-sections. In the present work the preliminary measurements of gaseous multiplication coefficient, as function of the reduced electric field (from 36V/cm.Torr until 93V/cm.Torr), for isobutane are presented. Among several filling gases, isobutane is widely used in resistive plate chambers RPCs, and other gaseous detectors, due to its timing properties. Although its characteristics, there is a lack of swarm parameters data in literature for this gas, mainly at high electric fields. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. Considering the ratio between the current (I), measured in avalanche mode, and the primary ionization current (I{sub 0}), the effective multiplication coefficient can be determined, since alpha = d{sup -1}ln(I/I{sub 0}), where d is the gap between the electrodes. In our configuration, the experimental setup consists of two parallel plates enclosure in a stainless steel chamber at gas flow regime. The anode, is made of a high resistivity (2.10{sup 12}{omega}.cm) glass (3mm thick and 14mm diameter), while the cathode is of aluminium (40mm diameter). Primary electrons are produced by irradiating the cathode with a nitrogen laser (LTB MNL200-LD) and are accelerated toward the anode by means of a high voltage power supply (Bertan 225-30). In order to validate the technique and to analyze effects of non-uniformity, results for

  13. Monitoring the Resistive Plate Chambers in the Muon Spectrometer of ATLAS.

    CERN Document Server

    Al-Qahtani, Shaikha

    2017-01-01

    A software was developed to monitor the resistive plate chambers. The purpose of the program is to detect any weak or dead chambers and locate them for repair. The first use of the program was able to spot several chambers with problems to be investigated.

  14. Improvements to parallel plate flow chambers to reduce reagent and cellular requirements

    Directory of Open Access Journals (Sweden)

    Larson Richard S

    2001-09-01

    Full Text Available Abstract Background The parallel plate flow chamber has become a mainstay for examination of leukocytes under physiologic flow conditions. Several design modifications have occurred over the years, yet a comparison of these different designs has not been performed. In addition, the reagent requirements of many designs prohibit the study of rare leukocyte populations and require large amounts of reagents. Results In this study, we evaluate modifications to a newer parallel plate flow chamber design in comparison to the original parallel plate flow chamber described by Lawrence et al. We show that modifications in the chamber size, internal tubing diameters, injection valves, and a recirculation design may dramatically reduce the cellular and reagent requirements without altering measurements. Conclusions These modifications are simple and easily implemented so that study of rare leukocyte subsets using scarce or expensive reagents can occur.

  15. The micro-gap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Lamas-Valverde, J; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    Previously we have found that the freon C/sub 2/F/sub 5/H has very good properties when used in a resistive plate chamber (RPC) with a single gap of 2 mm. In this paper we report on the performance of a multigap RPC consisting of 4 gaps of 0.8 mm filled with a gas mixture containing this freon. (7 refs).

  16. An avalanche counter and encoder system for counting and mapping radioactive specimens

    International Nuclear Information System (INIS)

    Britten, R.J.

    1988-01-01

    A parallel plate counter utilizes avalanche event counting over a large area with the ability to locate radioactive sources in two dimensions. One novel embodiment comprises a gas-filled chamber formed by a stretched stainless steel window cathode spaced from a flat semiconductive anode surface between which a high voltage is applied. When a beta ray, for example, enters the chamber, an ionization event occurs and the avalanche effect multiplies the event and results in charge collection on the anode surface for a limited period of time before the charge leaks away. An encoder system, comprising a symmetrical array of planar conductive surfaces separated from the anode by a dielectric material, couples charge currents the amplitude of which define the relative position of the ionization event. A number of preferred encoder system embodiments are disclosed including a novel matrix or grid pattern of electrical paths connected to voltage dividers and charge sensitive integrating amplifiers. The amplitude of coupled current delivered to the amplifiers defines the location of the event, and spatial resolution for a given signal-to-noise ratio can be controlled by changing the number of such amplifiers. (author) 11 figs

  17. An ion beam tracking system based on a parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Carter, I. P.; Ramachandran, K.; Dasgupta, M.; Hinde, D. J.; Rafiei, R.; Luong, D. H.; Williams, E.; Cook, K. J.; McNeil, S.; Rafferty, D. C.; Harding, A. B.; Muirhead, A. G.; Tunningley, T.

    2013-01-01

    A pair of twin position-sensitive parallel plate avalanche counters have been developed at the Australian National University as a tracking system to aid in the further rejection of unwanted beam particles from a 6.5 T super conducting solenoid separator named SOLEROO. Their function is to track and identify each beam particle passing through the detectors on an event-by-event basis. In-beam studies have been completed and the detectors are in successful operation, demonstrating the tracking capability. A high efficiency 512-pixel wide-angle silicon detector array will then be integrated with the tracking system for nuclear reactions studies of radioactive ions. (authors)

  18. Construction and performance of a prototype multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Ahn, S. H.; Hong, B.; Hong, S. J.

    2002-01-01

    We present the design, construction, and performance of a prototype multigap resistive plate chamber made of glass plates. A time resolution of 580 ps with a detection efficiency above 95 % was achieved at the working high-voltage plateau with cosmic ray muons

  19. Rate effects in resistive plate chambers

    International Nuclear Information System (INIS)

    Lippmann, C.; Riegler, W.; Kalweit, A.

    2006-01-01

    The resistive plates in RPCs cause a drop of the electric field in the gas gap at high particle rates or large gas gain, which affects efficiency and time resolution. This effect is typically estimated by assuming the particle flux to be a DC current that causes a voltage drop when it passes through the resistive plate. In an improved model by Abbrescia (Nucl. Instr. Meth. A 533 (2004) 7), the fluctuation of the field in the gas gap is modelled by assuming that the avalanche partially discharges a small capacitor which gets recharged with a time constant characteristic for the given RPC. In our approach, the effect is calculated by using the exact analytic solution for the time dependent electric field of a point charge sitting on the surface of a resistive plate in an RPC. This is, by definition, the best possible approximation to reality. The solution is obtained using the quasi-static approximation of Maxwell's equations. The formulas are presented as integral representations with 'cured' integrands, which allow easy numerical evaluation for Monte Carlo simulations. The solutions show that the charges in RPCs are 'destroyed' with a continuous distribution of time constants which are related in a very intuitive way to some limiting cases. Using these formulas we present a Monte Carlo simulation of rate effects, proving the applicability of this approach. Finally, we compare the Monte Carlo results to analytical calculations, similar to the ones proposed by Gonzalez-Diaz et al. (see proceedings of this conference)

  20. Resistive Plate Chamber Performance During the CMS Magnet Test Cosmic Challenge

    CERN Document Server

    Trentadue, R

    2008-01-01

    The CMS detector at the CERN Large Hadron Collider (LHC) is equipped with a redundant muon system based on Drift Tubes Chambers (barrel region) and Cathode Strip Chamber (endcap region), and Resistive Plate Chamber (RPC). During the summer and fall 2006 a first integrated test of an entire CMS slice was performed at the SX5 experimental surface hall. The RPC chambers were operated with cosmic rays. The results on the RPC performance are reported.

  1. Resistive Plate Chambers for hadron calorimetry: Tests with analog readout

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Repond, Jose [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: repond@hep.anl.gov; Underwood, David [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Xia, Lei [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-07-21

    Resistive Plate Chambers (RPCs) are being developed for use in a hadron calorimeter with very fine segmentation of the readout. The design of the chambers and various tests with cosmic rays are described. This paper reports on the measurements with multi-bit (or analog) readout of either a single larger or multiple smaller readout pads.

  2. Resistive plate chambers performances at cosmic rays fluxes

    International Nuclear Information System (INIS)

    Abbrescia, M.; Iaselli, G.

    1995-01-01

    In this paper detailed curves showing the behaviour of resistive plate chambers efficiency and time resolution as a function of temperature and operating voltage are presented. The results show that the operating voltage scales well according to the rule: operating voltage/gas density=constant. (orig.)

  3. Investigations of single-electron avalanches in a proportional drift tube

    International Nuclear Information System (INIS)

    Anderson, W.S.; Armitage, J.C.; Chevreau, P.; Heinrich, J.G.; Lu, C.; McDonald, I.; McDonald, K.T.; Miller, B.; Secrest, D.; Weckel, J.

    1990-01-01

    Detailed information on single-electron drift and avalanche behavior has a basic interest in an investigation of gas-chamber performance. Its timing, avalanche distribution, attachment by the working gas mixtures, etc., provide various criteria for choosing the best suitable gas mixture under a specific experimental circumstance. Investigations of single-electron avalanches in a proportional drift tube have been carried out with a pulsed N 2 laser. The study consists of two aspects: timing properties, and fluctuations in the gas avalanche

  4. Plate-out rates of radon progeny and particles in a spherical chamber

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Chen, B.T.

    1990-01-01

    In indoor and mining environments, deposition or ''plate-out'' of radon progeny onto walls occurs simultaneously with attachment of the radon progeny to airborne particles. Attachment and plate-out processes affect the atmosphere in which radon exposures takes place by reducing concentrations and shifting activity size distributions. Both processes have important consequences in determining the deposition pattern and initial dose of inhaled radon progeny. Theoretical deposition models show that turbulence and natural convection in a room are the major factors that influence plate-out rates. Here we describe plate-out measurements for radon progeny and aerosol particles in a spherical chamber under controlled laboratory conditions. The temperature and velocity profiles in still and turbulent air were monitored. A 161-liter spherical aluminum chamber was used to study the mixing. During mixing, air velocity was detected when rotational speeds were higher than 500 rpm. Monodisperse silver aerosols and polystyrene latex particles in the size range of 5 nm to 2 μm were used in the deposition study. Radon-220 progeny were generated by passing Rn-220 gas into the chamber and letting the gas decay into 212 Pb. The deposition rates of the particles and radon progeny ( 212 Pb) in the chamber were determined by monitoring the concentration decay of the aerosol as a function of time

  5. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  6. Large-scale performance studies of the Resistive Plate Chamber fast tracker for the ATLAS 1st-level muon trigger

    CERN Document Server

    Cattani, G; The ATLAS collaboration

    2009-01-01

    In the ATLAS experiment, Resistive Plate Chambers provide the first-level muon trigger and bunch crossing identification over large area of the barrel region, as well as being used as a very fast 2D tracker. To achieve these goals a system of about ~4000 gas gaps operating in avalanche mode was built (resulting in a total readout surface of about 16000 m2 segmented into 350000 strips) and is now fully operational in the ATLAS pit, where its functionality has been widely tested up to now using cosmic rays. Such a large scale system allows to study the performance of RPCs (both from the point of view of gas gaps and readout electronics) with unprecedented sensitivity to rare effects, as well as providing the means to correlate (in a statistically significant way) characteristics at production sites with performance during operation. Calibrating such a system means fine tuning thousands of parameters (involving both front-end electronics and gap voltage), as well as constantly monitoring performance and environm...

  7. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  8. Resistive Plate Chambers for Imaging Calorimetry - the DHCAL

    CERN Document Server

    Repond, Jose

    2014-01-01

    The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.

  9. Avalanche localization and its effects in proportional counters

    International Nuclear Information System (INIS)

    Fischer, J.; Okuno, H.; Walenta, A.H.

    1977-11-01

    Avalanche development around the anode wire in a gas proportional counter is investigated. In the region of proportional gas amplification, the avalanche is found to be well localized on one side of the anode wire, where the electrons arrive along the field lines from the point of primary ionization. Induced signals on electrodes surrounding the anode wire are used to measure the azimuthal position of the avalanche on the anode wire. Practical applications of the phenomena such as left-right assignment in drift chambers and measurement of the angular direction of the primary ionization electrons drifting towards the anode wire are discussed

  10. Parallel Plate Chambers and their possible use in LHC experiments

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; D'Alessandro, R.; Dajko, G.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Maggi, F.; Malinin, A.; Martinez-Laso, L.; Meschini, M.; Molnar, J.; Pojidaev, V.; Szoncso, F.; Wulz, C.E.

    1995-01-01

    Present status of Parallel Plate Chambers (PPC) is reviewed. After a description of this detector, results from tests concerning PPC efficiency uniformity, radiation hardness, and behaviour in electromagnetic calorimetry are presented. Some possible utilizations in LHC experiments are mentioned. (orig.)

  11. Prediction of picosecond voltage collapse and electromagnetic wave generation in gas avalanche switches

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.; Duong-Van, M.; Villa, F.

    1988-01-01

    A picosecond speed switch, the Gas Avalanche Switch (GAS), has been proposed for GeV linear accelerators. The medium is gas at high pressure (100 - 700 atm). An avalanche discharge is induced between pulse-charged high voltage electrodes by electron deposition from a fast laser pulse. Avalanche electrons move to the positive electrode, causing the applied voltage to collapse in picoseconds. A two-dimensional (2D) electromagnetic electron fluid computer code calculates the avalanche evolution and voltage collapse in air for an infinite parallel plate capacitor with a 0.1 mm spacing. Calculations are done for an accelerator switch geometry consisting of a 0.7 mm wide by 0.8 mm high, rectangular, high voltage center electrode (CE) between the grounded plates of a parallel plate line of 2 mm spacing. Several variations of CE elevation and initial electron deposition are investigated The 2D character of the outgoing TEM waves is shown

  12. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  13. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  14. Discrimination capability of avalanche counters detecting different ionizing particles

    International Nuclear Information System (INIS)

    Prete, G.; Viesti, G.; Padua Univ.

    1985-01-01

    The discrimination capability of avalanche counters to detect different ionizing particles has been studied using a 252 Cf source. Pulse height, pulse-height resolution and timing properties have been measured as a function of the reduced applied voltage for parallel-plate and parallel-grid avalanche counters. At the highest applied voltages, space charge effects shift the pulse-height signal of the avalanche counter away from being linearly proportional to the stopping power of the detected particles and cause the pulse-height resolution to deteriorate. To optimize the avalanche counter capability, without loss of time resolution, it appears better to operate the detector at voltages well below the breakdown threshold. Measurements with 32 S ions are also reported. (orig.)

  15. First results on irradiation of ceramic parallel plate chambers with gammas and neutrons

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; Dajko, G.; D'Alessandro, R.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Molnar, J.; Pojidaev, V.; Salicio, J.M.; Tanko, L.; Vesztergombi, G.

    1996-01-01

    Ceramic parallel plate chambers were irradiated with gamma rays and neutrons. Results on radiation resistance are presented after 60 Mrad gamma and 0.5.10 16 neutrons per cm 2 irradiation of the detector surface. Results of activation analysis of chambers made of two different ceramic materials are also presented. (orig.)

  16. Avalanche transistor pulser for fast-gated operation of micro-channel plate image-intensifiers

    International Nuclear Information System (INIS)

    Lundy, A.; Parker, J.R.; Lunsford, J.S.; Martin, A.D.

    1977-01-01

    Transistors operated in the avalanche mode are employed to generate a 1000 volt 10 to 30 nsec wide pulse with less than 4 nsec rise and fall times. This pulse is resistively attenuated to approximately equal to 270 volts and drives the image intensifier tube which is a load of approximately equal to 200 pf. To reduce stray inductance and capacitance, transistor chips were assembled on a thick-film hybrid substrate. Circuit parameters, operating conditions, and coupling to the microchannel plate image-intensifier (MCPI 2 ) tube are described. To provide dc operating voltages and control of transient voltages on the MCPI 2 tube a resistance-capacitance network has been developed which (a) places the MCPI 2 output phosphor at ground, (b) provides programmable gains in ''f-stop'' steps, and (c) minimizes voltage transients on the MCPI 2 tube

  17. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.

    1993-01-01

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  18. Azimuthal spread of the avalanche in proportional chambers

    International Nuclear Information System (INIS)

    Okuno, H.; Fischer, J.; Radeka, V.; Walenta, A.H.

    1978-10-01

    The angular distribution of the avalanche around the anode wire in the gas proportional counter is determined by measuring the distribution of positive ions arriving on cathode strips surrounding the anode wire for each single event. The shape and width of the distribution depend on such factors as the gas gain, the anode diameter, the counting gas and the primary ionization density. Effects of these factors are studied systematically, and their importance for practical counter applications is discussed

  19. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  20. Simulation of the CMS Resistive Plate Chambers

    CERN Document Server

    Hadjiiska, R; Pavlov, B; Petkov, P; Dimitrov, A; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Lellouch, J; Marinov, A; Ocampo, A; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Yazgan, E; Zaganidis, N; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M; Sultanov, G; Ban, Y; Cai, J; Xue, Z; Ge, Y; Li, Q; Qian, S; Avila, C; Chaparro, L F; Gomez, J P; Moreno, B Gomez; Oliveros, A F Osorio; Sanabria, J C; Assran, Y; Sharma, A; Abbrescia, M; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Benussi, L; Bianco, S; Colafranceschi, S; Piccolo, D; Carrillo, C; Iorio, O; Buontempo, S; Paolucci, P; Vitulo, P; Berzano, U; Gabusi, M; Kang, M; Lee, K S; Park, S K; Shin, S; Kim, M S; Seo, H; Goh, J; Choi, Y; Shoaib, M

    2013-01-01

    The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $\\sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.

  1. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Test and characterization of multigap resistive plate chambers for the EEE project

    CERN Document Server

    Bossini, E

    2016-01-01

    The Extreme Energy Events project is based on the deployment of cosmic-ray telescopes in Italian high schools with the active contribution of students and teachers. Each telescope is made by three Multigap Resistive Plate Chambers readout by strips. With around 50 telescopes already built and others under construction, specific systems to test and characterize the chambers are needed. In this article I will present a flexible and software-configurable solution to perform chamber efficiency studies with a set of scintillators and hardware to automatically scan detector strips to identify electrical issues. Both systems can provide accurate information but at the same time they can be easily operated by students.

  4. The HARP resistive plate chambers: Characteristics and physics performance

    International Nuclear Information System (INIS)

    Ammosov, V.; Boyko, I.; Chelkov, G.; Dedovitch, D.; Dumps, R.; Dydak, F.; Elagin, A.; Gapienko, V.; Gostkin, M.; Guskov, A.; Kroumchtein, Z.; Koreshev, V.; Linssen, L.; Nefedov, Yu.; Nikolaev, K.; Semak, A.; Sviridov, Yu.; Usenko, E.; Wotschack, J.; Zaets, V.; Zhemchugov, A.

    2007-01-01

    The HARP Resistive Plate Chamber (RPC) system was designed for time-of-flight measurement in the large-angle acceptance region of the HARP spectrometer. It comprised 46 four-gap glass RPCs covering an area of ∼8m 2 . The design of the RPCs, their operation, intrinsic properties, and system performance are described. The intrinsic time resolution of the RPCs is better than 130ps leading to a system time resolution of ∼175ps

  5. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    Science.gov (United States)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  6. On aging problem of glass Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Bhide, S.S.; Datar, V.M.; Kalmani, S.D.; Mondal, N.K.; Pant, L.M.; Satyanarayana, B.; Shinde, R.R.

    2006-01-01

    Resistive Plate Chambers (RPCs) were chosen to be the active elements for a 50kton neutrino detector, which is proposed to be built by the India-based Neutrino Observatory (INO) collaboration. As part of the detector R and D programme, we have built a large number of prototype RPCs and studied their characteristics. While, the results obtained by us are in agreement with those reported in the literature, the RPCs were observed to suffer severe damage when operated continuously for a few months. We summarise here our studies on this problem

  7. Measurement of the spark probability in single gap parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Golovkin, V.; Kholodenko, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.

    1996-01-01

    We present results on the measurements of the spark probability with CO 2 and CF 4 /CO 2 (80/20) mixture, at atmospheric pressure, using 1.5 mm gas gap parallel plate chambers, working at a gas gain ranging from 4.5 x 10 2 to 3.3 x 10 4 . (orig.)

  8. Long-term performance of double gap resistive plate chambers under gamma irradiation

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Guarrasi, L.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Riccardi, C.; Torre, P.; Viola, L.; Vitulo, P.

    2002-01-01

    In this paper, we describe a dedicated test to study possible long-term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm 2 gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to 60 Co gamma energies is measured

  9. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    CERN Document Server

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  10. Properties of a six-gap timing resistive plate chamber with strip readout

    International Nuclear Information System (INIS)

    Ammosov, V.V.; Gapienko, V.A.; Semak, A.A.; Sviridov, Yu.M.; Zaets, V.G.; Gavrishchuk, O.P.; Kuz'min, N.A.; Sychkov, S.Ya.; Usenko, E.A.; Yukaev, A.I.

    2009-01-01

    Six-gap glass timing resistive plate chamber with strip readout was tested using IHEP U-70 PS test beam. The time resolution of ∼ 45 ps at efficiency larger than 98% was achieved. Position resolution along strip was estimated to be ∼1 cm

  11. Simulation of Resistive Plate Chamber sensitivity to neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. E-mail: saverio.altieri@pv.infn.it; Belli, G.; Bruno, G.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The Resistive Plate Chambers (RPCs) sensitivity to neutrons has been simulated using GEANT code with MICAP and FLUKA interfaces. The calculations have been performed as a function of the neutrons energy in the range 0.02 eV-1 GeV. To evaluate the response of the detector in the LHC background environment, the neutron energy spectrum expected in the CMS muon barrel has been taken into account; a hit rate due to neutrons of about 0.6 Hz cm{sup -2} has been estimated for a 250x250 cm{sup 2} RPC in the RB1 station.

  12. Long-term performance of double gap resistive plate chambers under gamma irradiation

    CERN Document Server

    Abbrescia, M; Guarrasi, L; Iaselli, Giuseppe; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Altieri, S; Belli, G; Bruno, G; Gianini, G; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P

    2002-01-01

    In this paper, we describe a dedicated test to study possible long- term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm /sup 2/ gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to /sup 60/Co gamma energies is measured. (9 refs).

  13. Long-term performance of double gap resistive plate chambers under gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Guarrasi, L.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Riccardi, C.; Torre, P.; Viola, L.; Vitulo, P

    2002-01-21

    In this paper, we describe a dedicated test to study possible long-term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm{sup 2} gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to {sup 60}Co gamma energies is measured.

  14. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  15. Electron equilibrium for parallel plate ionization chambers in gamma radiation fields

    International Nuclear Information System (INIS)

    Caldas, L.; Albuquerque, M. da P.P.

    1989-08-01

    Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt

  16. Effect of temperature on the multi-gap resistive plate chamber operation

    International Nuclear Information System (INIS)

    Zhao, Y.E.; Wang, X.L.; Liu, H.D.; Chen, H.F.; Li, C.; Wu, J.; Xu, Z.Z.; Shao, M.; Zeng, H.; Zhou, Y.

    2005-01-01

    In order to obtain a quantitative understanding of the influence of temperature on the multi-gap resistive plate chamber (MRPC) operation, we tested the performance of a 6-gap, 6.1x20 cm 2 active area MRPC with cosmic rays at different temperatures. Results of measurements of noise rate, dark current and detection efficiency are presented

  17. Project, construction and calibration of parallel plate ionization chambers for x-radiation

    International Nuclear Information System (INIS)

    Albuquerque, M.P.P.

    1989-01-01

    Two pairs of parallel-plate ionization chambers were projected and constructed. In each pair one of the chambers has a collecting electrode and a guard ring made of graphite and the other, of aluminium. The difference between both pairs is that in only one case screws were used to fix the chamber components. The chambers are made of Lucite with aluminized Mylar entrance windows; they have circular form and are unsealed. All chamber components are easily available. The main chamber characteristics were determined, applying the tests of current leakage, repetitively and long term stability. The energy and angular dependence, and the polarity effect were also studied, obtaining the saturation curves and determining the build-up effect for gamma radiation detection. The chambers were calibrated with low and intermediate energy X-radiation, gamma radiation of sup(60)Co an sup(137)Cs, and beta radiation of sup(90)Sr + sup(90)Y. The obtained results show the viability of utilization of these chambers in radiation dosimetry and the results were compared with those of imported commercial ionization chambers of the secondary standard type. The great difference between the energy dependence of the chambers according to the collecting electrode material, allowed the formation of a Tandem system (constituted by a chamber pair A, C), for the determination of the effective energy and the exposure rate in air of unknown X-radiation fields, in the case of low intermediate energy ranges. (author)

  18. Studies of light emission by continuously sensitive avalanche chambers

    International Nuclear Information System (INIS)

    Charpak, G.; Dominik, W.; Fabre, J.P.; Gaudaen, J.; Sauli, F.; Suzuki, M.

    1988-01-01

    The optimal conditions for the optical recording of images of electron avalanches between parallel meshes have been studied. The emission spectra of gas mixtures have been investigated, where triethylamine (TEA), tetrakis(dimethylamine)ethylene (TMAE), and nitrogen, are used as the photon-emitting agents. For a given charge gain, the photon intensity decreases with electric field. This favours amplification between parallel meshes instead of wires. The use of intensified CCD cameras permits the recording of the local energy loss along the tracks. (orig.)

  19. Proportional chambers and multiwire drift chambers at high rates

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1977-01-01

    The high event and particle rates expected for ISABELLE intersecting storage rings raise the question whether PWC's and drift chambers, now widely in use in experiments, still can operate under such conditions. Various effects depend on the number of avalanches produced per length of wire N and the size of the avalanche Q, i.e., on the number of positive ions created in an avalanche. Therefore the important parameter for the following discussion is the product QN. The minimum Q is determined by the type and noise level of preamplifiers used. Examples are given for a typical low noise amplifier as well as for a typical integrated ''cheap'' amplifier. The rate/wire length N depends on the chamber arrangement, wire spacing, etc. In multiwire drift chambers, a single wire shows space-charge effects reducing the pulse height by 1% at a rate of N = 7 x 10 3 mm -1 sec -1 . At a rate of N approximately equal to 10 5 mm -1 sec -1 an efficiency loss of the order of 1% was noticed. The aging effect due to deposits on the anode wire can be reduced using low noise amplifiers and low gas gain to such an extent that a lifetime of about half a year at ISABELLE can be expected. The use of conventional cheap preamplifiers will result in a typical lifetime of about 30 days. Improvements are probable. The time resolution of Δt/sub r/ = 4 nsec fwhm seems adequate for event rates of 10 7 sec -1 . The memory time Δt/sub m/ greater than or equal to 100 nsec may cause serious problems for pattern recognition depending on layout and readout. The use of induced signals on cathode pads, thus reading out shorter parts of the wire, can solve the problem

  20. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  1. CMS Resistive Plate Chambers performance at $\\sqrt{s}=$13 TeV

    CERN Document Server

    Cabrera Mora, Andres Leonardo

    2016-01-01

    During 2015, the Large Hadron Collider (LHC) at CERN has reached the record-breaking center-of-mass energy of 13 TeV for proton-proton collisions. The LHC restarted operations successfully after a two-year technical stop, known as Long Shutdown 1 (LS1), needed for servicing and consolidating the CERN accelerator complex. The Compact Muon Solenoid detector, a general-purpose detector at LHC, benefited from LS1 by performing crucial tasks necessary to operate the detector at higher energies. In particular, the Resistive Plate Chamber (RPC) system, one of the three muon detector technologies in CMS, was serviced, re-commissioned, and upgraded with 144 new chambers to enhance muon trigger efficiency. The CMS RPC system confers robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region $ \\lvert\\eta\\rvert \\leq$1.6. The CMS RPC collaboration has exploited early data samples at 13 TeV for detector performance studies. These data allowed for a first characte...

  2. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  7. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  8. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  9. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, E.; Hendrikx, J.; Fagre, D. B.

    2013-12-01

    avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  10. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  11. Development of linseed oil-free bakelite resistive plate chambers

    International Nuclear Information System (INIS)

    Biswas, S.; Bhattacharya, S.; Bose, S.; Chattopadhyay, S.; Saha, S.; Viyogi, Y.P.

    2009-01-01

    In this paper we would like to present a few characteristics of the Resistive Plate Chambers (RPCs) made of a particular grade of bakelite paper laminates (P-120, NEMA LI-1989 Grade XXX), produced and commercially available in India. This particular grade is used for high voltage insulation in humid conditions. The chambers are tested with cosmic rays in the streamer mode using argon, tetrafluroethane and isobutane in 34:59:7 mixing ratio. In the first set of detectors made with such grade, a thin coating of silicone fluid on the inner surfaces of the bakelite was found to be necessary for operation of the detector. Those silicone coated RPCs were found to give satisfactory performance with stable efficiency of >90% continuously for a long period as reported earlier. Results of the crosstalk measurement of these silicone coated RPC will be presented in this paper. Very recently RPCs made with the same grade of bakelite but having better surface finish are found to give equivalent performance even without any coating inside. Preliminary results of this type of RPCs are also being presented.

  12. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  13. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Comparing Novel Multi-Gap Resistive Plate Chamber Models

    Science.gov (United States)

    Stien, Haley; EIC PID Consortium Collaboration

    2016-09-01

    Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  15. Application of PSpice circuit simulator in development of resistive plate chamber detector

    International Nuclear Information System (INIS)

    Wang Yaping; Cai Xu

    2008-01-01

    An electrical model was presented for resistive plate chamber (RPC) detector. The readout signals of RPC detector were studied with PSpice simulation based on the model. The simulation results show a good agreement with real data and authoritative data. Physical performance of RPC detector can be predicted by the PSpice simulation, so this is an efficient means to optimize RPC detector's research and development. (authors)

  16. γ-converting plate system for neutrino-deuterium exposures in the FNAL 15-foot bubble chamber

    International Nuclear Information System (INIS)

    Hanlon, J.; Mann, W.A.; Sommars, S.; Wald, H.

    1978-01-01

    During May 18-20 of this year the hydrogen-filled 15-foot bubble chamber at Fermilab was operated with an array of four half-inch thick stainless steel plates mounted in downstream portions of the fiducial volume. Notes from the test run, and results from a Monte Carlo study of efficiencies of the plate array for detection of photons and positrons in final states produced in a wide-band neutrino--deuterium exposure, are presented

  17. Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, M.; Cowan, T.E.; Kempe, M.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Elekes, Z. [MTA ATOMKI, Debrecen (Hungary); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T.; Caesar, C. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt, Darmstadt (Germany); Bemmerer, D.; Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Prokofiev, A.V. [Uppsala University, The Svedberg Laboratory, Uppsala (Sweden); Reifarth, R. [Johann Wolfgang Goethe - Universitaet, Frankfurt am Main (Germany); Zilges, A. [Universitaet zu Koeln, Koeln (Germany); Zuber, K. [Technische Universitaet Dresden, Dresden (Germany); Collaboration: R3B Collaboration

    2014-07-15

    Composite detectors made of stainless-steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175 MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment. (orig.)

  18. Single-electron pulse-height spectra in thin-gap parallel-plate chambers

    CERN Document Server

    Fonte, Paulo J R; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    Single-electron pulse-height spectra were measured in 0.6 and 1.2 mm parallel-plate chambers developed for the TOF system of the ALICE /LHC-HI experiment. Mixtures of Ar with ethane, isobutane, and SF/sub 6/ were studied. The observed spectrum shows a clear peak for all gases, suggesting efficient single-electron detection in thin parallel-plate structures. The pulse-height spectrum can be described by the weighted sum of an exponential and a Polya distribution, the Polya contribution becoming more important at higher gains. Additionally, it was found that the maximum gain, above 10/sup 6/, is limited by the appearance of streamers and depends weakly on the gas composition. The suitability of each mixture for single-electron detection is also quantitatively assessed. (8 refs).

  19. Study and realization of a parallel plate avalanche counter used for time of flight and localization measurements

    International Nuclear Information System (INIS)

    Pellegrin, P.O.

    1985-01-01

    A parallel Plates Avalanche Counter (P.P.A.C.) allowing high resolution training and localization is studied. It is designed to be placed on the beam trajectory-including the magnetic spectrometer of SARA accelerator at ISN Grenoble. Two purposes are searched: firstly to improve the time-of-flight measurement due to the very high intrinsic time resolution (it can be less than 150 ps), secondly to measure with accuracy the scattering angle of the particle on the target, due to its localization. The detector thickness has been reduced to set aside as unimportant the disturbance produced on the particle trajectory. The theoretical aspect of the detector operation and a quantitative study of the disturbances it causes on particle energy are presented. The set-up and its necessary surroundings are described with experimental results of its characteristics [fr

  20. Performance of Resistive Plate Chambers installed during the first long shutdown of the CMS experiment

    CERN Document Server

    Shopova, M.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Sultanov, G.; Rodozov, M.; Stoykova, S.; Assran, Y.; Sayed, A.; Radi, A.; Aly, S.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Cimmino, A.; Crucy, S.; Rios, A.A.O.; Tytgat, M.; Zaganidis, N.; Gul, M.; Fagot, A.; Bhatnagar, V.; Singh, J.; Kumari, R.; Mehta, A.; Ahmad, A.; Awan, I.M.; Shahzad, H.; Hoorani, H.; Asghar, M.I.; Muhammad, S.; Ahmed, W.; Shah, M.A.; Cho, S.W.; Choi, S.Y.; Hong, B.; Kang, M.H.; Lee, K.S.; Lim, J.H.; Park, S.K.; Kim, M.S.; Laktineh, I.B.; Lagarde, F.; Gouzevitch, M.; Grenier, G.; Pedraza, I.; Bernardino, S. Carpinteyro; Estrada, C. Uribe; Carrillo Moreno, S.; Valencia, F. Vazquez; Pant, L.M.; Buontempo, S.; Cavallo, N.; Fabozzi, F.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Lanza, G.; Esposito, M.; Braghieri, A.; Magnani, A.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Montagna, P.; Ban, Y.; Qian, S.J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Dimitrov, A.; Litov, L.; Petkov, P.; Pavlov, B.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J.C.; Crotty, I.; Vaitkus, J.

    2016-01-01

    The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region) and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. During the first long shutdown (LS1) of the LHC (2013-2014) the CMS muon system has been upgraded with 144 newly installed RPCs on the forth forward stations. The new chambers ensure and enhance the muon trigger efficiency in the high luminosity conditions of the LHC Run2. The chambers have been successfully installed and commissioned. The system has been run successfully and experimental data has been collected and analyzed. The performance results of the newly installed RPCs will be presented.

  1. Comparison of CMS Resistive Plate Chambers performance during LHC RUN-1 and RUN-2

    CERN Document Server

    INSPIRE-00207984

    2016-01-01

    The Resistive Plate Chambers detector system at the CMS experiment at the LHC provides robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region < 1.6. The main detector parameters and environmental conditions are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC with center-of-mass energy of 13 TeV. First results of overall detector stability with 2015 data and comparisons with data from the LHC RUN-1 period at 8 TeV are presented.

  2. Comparison of CMS Resistive Plate Chambers performance during LHC RUN-1 and RUN-2

    CERN Document Server

    Shah, Mehar Ali

    2016-01-01

    The Resistive Plate Chambers detector system at the CMS experiment at the LHC provides robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region lt 1.6. The main detector parameters and environmental conditions are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC with center-of-mass energy of 13 TeV. First results of overall detector stability with 2015 data and comparisons with data from the LHC RUN-1 period at 8 TeV are presented.

  3. Performance test of the Multi-gap Resistive Plate Chamber (MRPC) with cosmic ray

    Science.gov (United States)

    Ikeda, Michihiko; Akieda, Tomomi; Tomita, Shoko; Ninomiya, Aki

    2014-09-01

    MRPC is a gaseous ionization detector, which a good timing resolution has been used practically in the nuclear and particle physics experiment. A mixed gas of SF6 and Fleon 134a was flowed through the gaps between high resistive plates (500 μm thickness glass). A high electric field of ~2 ×106 [V/m] was applied between the plates. A charged particle passes through the MRPC and causes avalanche amplification. We constructed a relatively small MRPC with a readout pad (20 mm × 50 mm). The development is motivated by feasibility study of the MRPC as a photon tagger at the Research Center for Electron Photon Science (ELPH), Tohoku University. The photon tagger needs a good timing resolution (<100 ps), therefore we studied the small size MRPC, while a large sized MRPCs are widely used in nuclear and particle experiments. The MRPC can operate under the strong magnetic field and thus it can be a good candidate as an electron detector placed in the magnet. We tested the HV dependence of time resolution of the MRPC with cosmic rays. The MRPC will be demonstrated at the open campus of the Tohoku University as an example of nuclear experimental detectors. We will measure the zenith angle and velocity distributions of cosmic ray.

  4. Performance of Resistive Plate Chambers for the muon detection at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G., E-mail: Giuseppe.Iaselli@ba.infn.it; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S. P.; Viola, L.; Vitulo, P

    1999-08-01

    The latest results, still preliminary, of tests dedicated to study the performance of Resistive Plate Chamber for the CMS experiment are presented. Full efficiency with a 2 ns time resolution in conditions of incident flux up to 2 kHz/cm{sup 2} has been obtained. Detector uniformity has been studied and found to be well within the constraints due to the large surfaces used in the experiment. An aging test is currently being carried out and shows no significant performance variation with time.

  5. Performance Study of the CMS Barrel Resistive Plate Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  6. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shingo; Namekata, Naoto, E-mail: nnao@phys.cst.nihon-u.ac.jp; Inoue, Shuichiro [Institute of Quantum Science, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Tsujino, Kenji [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  7. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Norde, Willem; Sjollema, Jelmer

    2011-01-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition

  8. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    International Nuclear Information System (INIS)

    Lu, Changguo

    2003-01-01

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement

  9. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  10. A large-area glass-resistive plate chamber with multistrip readout

    CERN Document Server

    Petrovici, M; Hildenbrand, K D; Augustinski, G; Ciobanu, M; Cruceru, I; Duma, M; Hartmann, O; Koczón, P; Kress, T; Marquardt, M; Moisa, D; Petris, M; Schröder, C; Simion, V; Stoicea, G; Weinert, J

    2002-01-01

    A completely new configuration of a glass resistive-plate chamber (GRPC) was built and tested. It consists of a double two-gap structure of electrodes with an active area of about 400 cm sup 2 and is read out via a central multistrip printed circuit board. In measurements with a sup 6 sup 0 Co source and p, d particles of 1.5 A GeV time resolutions better than 80 ps, position resolution along the strips of 5-6 mm and efficiencies larger than 95% were obtained using available fast standard electronics. These results open the possibility of constructing compact TOF detectors of high resolution and high granularity.

  11. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  12. STUDY ON SIMULATION METHOD OF AVALANCHE : FLOW ANALYSIS OF AVALANCHE USING PARTICLE METHOD

    OpenAIRE

    塩澤, 孝哉

    2015-01-01

    In this paper, modeling for the simulation of the avalanche by a particle method is discussed. There are two kinds of the snow avalanches, one is the surface avalanche which shows a smoke-like flow, and another is the total-layer avalanche which shows a flow like Bingham fluid. In the simulation of the surface avalanche, the particle method in consideration of a rotation resistance model is used. The particle method by Bingham fluid is used in the simulation of the total-layer avalanche. At t...

  13. First Townsend coefficient of organic vapour in avalanche counters

    International Nuclear Information System (INIS)

    Sernicki, J.

    1990-01-01

    A new concept is presented in the paper for implementing the proven method of determining the first Townsend coefficient (α) of gases using an avalanche counter. The A and B gas constants, interrelated by the expression α/p=A exp[-B/(K/p)], are analyzed. Parallel-plate avalanche counters (PPAC) with an electrode spacing d from 0.1 to 0.4 cm have been employed for the investigation, arranged to register low-energy alpha particles at n-heptane vapour pressures of p≥5 Torr. An in-depth discussion is given, covering the veracity and the behaviour vs K/p, of the n-heptane A and B constants determined at reduced electric-field intensity values ranging from 173.5 to 940 V/cm Torr; the constants have been found to depend upon d. The results of the investigation are compared to available data of the α coefficient of organic vapours used in avalanche counters. The PPAC method of determining α reveals some imperfections at very low values of the pd product. (orig.)

  14. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  15. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  16. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  17. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. The parallel plate avalanche counter: a simple, rugged, imaging X-ray counter

    International Nuclear Information System (INIS)

    Joensen, K.D.; Budtz-Joergensen, C.; Bahnsen, A.; Madsen, M.M.; Olesen, C.; Schnopper, H.W.

    1995-01-01

    A two-dimensional parallel gap proportional counter has been developed at the Danish Space Research Institute. Imaging over the 120 mm diameter active area is obtained using the positive ion component of the avalanche signals as recorded by a system of wedge- and strip-electrodes. An electronically simple, but very effective background rejection is obtained by using the fast electron component of the avalanche signal. Gas gains up to 8x10 5 have been achieved. An energy-resolution of 16% and a sub-millimeter spatial resolution have been measured at 5.9 keV for an operating gas gain of 10 5 . In principle, the position coordinates are linear functions of electronic readouts. The present model, however, exhibits non-linearities, caused by imperfections in the wedge and strip-electrode pattern. These non-linearities are corrected by using a bilinear correction algorithm. We conclude that the rugged construction, the simple electronics, the effectiveness of the background rejection and the actual imaging performance makes this a very attractive laboratory detector for low and intermediate count rate imaging applications. ((orig.))

  19. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    Science.gov (United States)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  20. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  1. Study of gas mixtures and ageing of the multigap resistive plate chamber used for the ALICE TOF

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Cosenza, F; D'Antone, I; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guerzoni, M; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lioublev, E; Lee, K; Lee, S C; Luvisetto, M L; Margotti, A; Martemyanov, A N; Massera, F; Meneghini, S; Michinelli, R; Nania, R; Otiougova, P; Pancaldi, G; Pesci, A; Pilastrini, R; Pinazza, O; Polozov, P A; Rizzi, M; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Serra, S; Smirnitsky, A V; Tchoumakov, M M; Ugolini, E; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A; Zucchini, A; Zuffa, M

    2004-01-01

    We present in this paper a study of the ALICE-TOF Multigap Resistive Plate Chamber (MRPC) performance by using several gas mixtures. We also present a search for possible ageing effects, by studying two MRPCs irradiated at the CERN Gamma Irradiation Facility.

  2. Parallel plate detectors

    International Nuclear Information System (INIS)

    Gardes, D.; Volkov, P.

    1981-01-01

    A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr

  3. DEVELOPMENT AND USE OF A PARALLEL-PLATE FLOW CHAMBER FOR STUDYING CELLULAR ADHESION TO SOLID-SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    A parallel-plate flow chamber is developed in order to study cellular adhesion phenomena. An image analysis system is used to observe individual cells exposed to flow in situ and to determine area, perimeter, and shape of these cells as a function of time and shear stress. With this flow system the

  4. Computational and experimental progress on laser-activated gas avalanche switches for broadband, high-power electromagnetic pulse generation

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.; Villa, F.

    1991-01-01

    This paper discusses the gas avalanche switch, a high-voltage, picosecond-speed switch, which has been proposed. The basic switch consists of pulse-charged electrodes, immersed in a high-pressure gas. An avalanche discharge is induced in the gas between the electrodes by ionization from a picosecond-scale laser pulse. The avalanching electrons move toward the anode, causing the applied voltage to collapse in picoseconds. This voltage collapse, if rapid enough, generates electromagnetic waves. A two-dimensional (2D), finite difference computer code solves Maxwell's equations for transverse magnetic modes for rectilinear electrodes between parallel plate conductors, along with electron conservation equations for continuity, momentum, and energy. Collision frequencies for ionization and momentum and energy transfer to neutral molecules are assumed to scale linearly with neutral pressure. Electrode charging and laser-driven electron deposition are assumed to be instantaneous. Code calculations are done for a pulse generator geometry, consisting of an 0.7 mm wide by 0.8 mm high, beveled, rectangular center electrode between grounded parallel plates at 2 mm spacing in air

  5. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  6. Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Cosenza, F; D'Antone, I; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guerzoni, M; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lioublev, E; Lee, K; Lee, S C; Luvisetto, M L; Margotti, A; Martemyanov, A N; Massera, F; Meneghini, S; Michinelli, R; Nania, R; Otiougova, P; Pancaldi, G; Pesci, A; Pilastrini, R; Pinazza, O; Polozov, P A; Rizzi, M; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Serra, S; Smirnitsky, A V; Tchoumakov, M M; Ugolini, E; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A; Zucchini, A; Zuffa, M

    2004-01-01

    For the identification of particles in the momentum range 0.5-2.5 GeV /c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows: double stack MRPCs with glass resistive plates and 5 gas gaps of 250 mum per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution sigma are better than 50 ps, with an efficiency of 99.9% and a long, more than 1.5kV, streamer-free plateau.

  7. Operation of the multigap resistive plate chamber using a gas mixture free of flammable components

    CERN Document Server

    Akindinov, A; Antonioli, P; Arcelli, S; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lee, K; Lee, S C; Lioublev, E; Luvisetto, M L; Margotti, A; Martemyanov, A N; Nania, R; Noferini, F; Otiougova, P; Pesci, A; Pinazza, O; Polozov, P A; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Smirnitsky, A V; Tchoumakov, M M; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A

    2004-01-01

    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C//4H//1//0 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparable.

  8. The multigap resistive plate chamber as time-of-flight detector for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Lamas V, J.

    2002-01-01

    The multigap resistive plate chamber (MRPC) is a suitable candidate for the time-of-flight system for the STAR experiment at RHIC at the BNL. A time resolution of 50 ps with an efficiency of 98% has been measured with MRPCs composed of 6 gas gaps of 220 μm. Results obtained during the year 2000 are reported here

  9. Feasibility tests of a high resolution sampling radial drift chamber

    International Nuclear Information System (INIS)

    Huth, J.

    1985-01-01

    The design concept and results of feasibility tests for a vertex detector intended for use in the TPC-PEP4/9 experiment are presented. The detector is based on a slow radial drift in dimethyl ether. High resolution localization of the avalanches at the sense wire is accomplished with nearby pickup wires and the utilization of waveform sampling electronics. The avalanche angular coordinate measurements, combined with knowledge of the electric field distribution and drift velocity permit reconstruction of the trajectory using essentially all track information. Measurements with a test chamber constructed to study characteristics of avalanche localization indicate that the recoverable track information in one centimeter of dimethyl ether at 1.5 atm is equivalent to 30 measurements of 40 μm accuracy. (orig.)

  10. The EEE Project: Cosmic rays, multigap resistive plate chambers and high school students

    CERN Document Server

    Abbrescia, M.; Antolini, R; Avanzini, C; Baldini Ferroli, R; Bencivenni, G; Bossini, E; Bressan, E; Chiavassa, A; Cicalo, C; Cifarelli, L; Coccia, E; De Gruttula, D; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Doroud, K; Dreucci, M; Fabbri, FL; Frolov, V; Garbini, M; Gemme, G; Gnesi, I; Gustavino, C; Hatzifotiadu, D; La Rocca, P; Li, S; Moro, R; Miozzi, S; Massai, M; Maggiora, A; Librizzi, F; Piragino, G; Pilo, F; Perasso, L; Paoletti, R; Righini, GC; Scapparone, E; Sartorelli, G; Romano, F; Serci, S; Selvi, M; Scribano, A; Riggi, F; Regano, A; Squarcia, S; Spandre, G; Toselli, F; Taiuti, M; Zichichi, A; Zouyevski, R; Williams, MCS; Votano, L; Siddi, E; Panareo, M

    2012-01-01

    The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

  11. Response of multi-strip multi-gap resistive plate chamber using pulsed electron beam

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Rahaman, A.; Ray, J.; Chatterjee, S.; Bemmerer, D.; Elekes, Z.; Kempe, M.; Sobiella, M.; Stach, D.; Wagner, A.; Yakorev, D.; Leifels, Y.; Simon, H.

    2011-01-01

    A prototype of Multi-strip Multi-gap Resistive Plate Chamber (MMRPC) with active area 40 cm x 20 cm has been developed at SINP, Kolkata. Electron response of the developed detector was studied using the electron linac ELBE at Forschungszentrum Dresden-Rossendorf. The development of this detector started with the aim of developing a neutron detector but this ultrafast timing detector can be used efficiently for the purpose of medical imaging, security purpose and detection of minimum ionising particle. In this article detailed analysis of electron response to our developed MMRPC will be presented

  12. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  13. Performance of CMS Resistive Plate Chambers in CRAFT and early 2015 collisions at 13 TeV

    CERN Document Server

    CMS Collaboration

    2015-01-01

    Resistive Plate Chambers (RPC) performance results with cosmics data at 3.8 T and p-p collision data at 13 TeV for 2015 are presented. These results include plots of relevant RPC variables such as occupancy, cluster size, efficiency and residuals. RPC cluster size, measured with cosmic rays at 3.8 T during 2015, is presented and compared with 2012 results. During the first long shutdown of the LHC (2013-2014) the CMS muon system has been upgraded with 144 double-gap chambers on the forth forward stations. During the commissioning period, the system has been successfully run and experimental data has been collected and analyzed in details. Occupancy and efficiency results of newly installed chambers using 13 TeV p-p data are reported. The results of the 2015 HV Scan, performed at 0 T magnetic field, are presented and compared with the 2012 HV scan results at 3.8 T. These results are comparable since RPC efficiency is independent of the magnetic field surrounding the chambers.

  14. Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Alici, A.; Anselmo, F.

    2004-01-01

    For the identification of particles in the momentum range 0.5-2.5GeV/c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows : double stack MRPCs with glass resistive plates and 5 gas gaps of 250μm per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution σ are better than 50ps, with an efficiency of 99.9% and a long, more than 1.5kV, streamer-free plateau

  15. Performance, operation and detector studies with the ATLAS Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Aielli, G; Bindi, M; Polini, A

    2013-01-01

    Resistive Plate Chambers provide the barrel region of the ATLAS detector with an independent muon trigger and a two-coordinate measurement. The chambers, arranged in three concentric double layers, are operated in a strong magnetic toroidal field and cover a surface area of about 4000 m 2 . During 2011 the LHC has provided proton-proton collisions at 7 TeV in the center-of-mass frame with a steady increase in instantaneous luminosity, summing up to about 5 fb −1 . The operational experience for this running period is presented along with studies of the detector performance as a function of luminosity, environmental conditions and working point settings. Non-event based information including in particular the large number of gas gap currents, individually monitored with nA accuracy, have been used to study the detector behavior with growing luminosity and beam currents. These data are shown to provide, when calibrated, an independent luminosity measurement and a crucial handle for understanding the ATLAS backgrounds well beyond the scope of muon triggering and detection. The measurements presented here allow to plan a strategy for the data taking in the next years and make some predictions about the detector performance at higher luminosities. They also improve the knowledge on RPC detector physics.

  16. A comparison of the wide gap and narrow gap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Valverde, J.L.; Neupane, S.; Peskov, V.; Singh, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances. (orig.)

  17. A comparison of the wide gap and narrow gap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Peskov, Vladimir; Singh, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances.

  18. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  19. Avalanche hazard and control in Kazakhstan

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2014-01-01

    Full Text Available In Kazakhstan, area of 124 thousand km2 is prone to the avalanche hazard. Avalanches are released down in mountain regions situated along the eastern boundary of Kazakhstan. Systematic studies of avalanches here were started in 1958 by explorer I.S. Sosedov; later on, I.V. Seversky continued these investigations in Institute of Geography of the Kazakh Soviet Republic. Actually, he founded the Kazakh school of the avalanche studies. In 1970–1980s, five snow-avalanche stations operated in Kazakhstan: two in Il’ Alatau, two in Zhetysu Alatau, and one in the Altai. At the present time, only two stations and two snow-avalanche posts operate, and all of them are located in Il’ Alatau.Since 1951 to 2013, 75 avalanches took place in Kazakhstan, releases of them caused significant damages. For this period 172 people happened to be under avalanches, among them 86 perished. Large avalanche catastrophes causing human victims and destructions took place in Altai in 1977 and in Karatau in 1990. In spring of 1966, only in Il’ Alatau avalanches destroyed more 600 ha of mature fir (coniferous forest, and the total area of forest destroyed here by avalanches amounts to 2677 ha or 7% of the total forest area.For 48 years of the avalanche observations, there were 15 winters with increased avalanche activity in the river Almatinka basin when total volume of released snow exceeded annual mean value of 147 thousand m3. During this period, number of days with winter avalanches changed from three (in season of 1973/1974 to 28 (1986/1987, the average for a year is 16 days for a season. Winter with the total volume of snow 1300 thousand m3 occur once in 150 years. Individual avalanches with maximal volume of 350 thousand m3 happen once in 80 years.Preventive avalanche releases aimed at protection of roads and settlements are used in Kazakhstan since 1974. These precautions are taken in Il’ Alatau, Altai, and on Kalbinsky Range. Avalanches are released with the

  20. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber

    NARCIS (Netherlands)

    Chin, Yeen; Busscher, HJ; Evans, R; Noar, J; Pratten, J

    Decalcification is a commonly recognized complication of orthodontic treatment with fixed appliances. A technology, based on a parallel plate flow chamber, was developed to investigate early biofilm formation of a strain of Streptococcus sanguis on the surface of four orthodontic bonding materials:

  1. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  2. Multigap resistive plate chambers for EAS study in the EEE Project

    CERN Document Server

    An, S; Badalà, A; Zichichi, A

    2007-01-01

    The EEE (Extreme Energy Events) Project, conceived by its leader Antonino Zichichi, is an experiment to study very high-energetic air showers (EAS) through the detection of the shower's muon component using a network of tracking detectors, installed in Italian high schools. The single tracking telescope is composed of three large area () Multi-gap Resistive Plate Chambers (MRPCs). The data collected by the telescopes will be used for studies of air showers and also for the search of time correlations between sites which are far apart. The first telescope, recently installed in the Liceo B. Touschek in Grottaferrata (Rome), is successfully running, and other telescopes are going to be installed in a short time in other towns, opening up the way for the first search of long-distance coincidences over a total area of .

  3. Effect of the linseed oil surface treatment on the performance of resistive plate chambers

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Ranieri, A.; Romano, F.; Arena, V.; Bonomi, G.; Braj, A.; Gianini, G.; Liguori, G.; Ratti, S.P.; Riccardi, C.; Viola, L.; Vitulo, P.

    1997-01-01

    Results on the behaviour of several bakelite resistive plate chambers (RPCs) without the linseed oil treatment of the internal electrodes will be presented. Efficiency, collected charge and cluster size distributions will be compared to the ones of a standard oiled RPC. Currents and single rate are the quantities most affected by the surface treatment of the electrodes beyond the optical/mechanical properties. A factor 4 less in currents and at least a factor 10 less in single rate is achieved using standard oiled RPCs operated in streamer mode. (orig.)

  4. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  5. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  6. Light from electron avalanches and background rejection in X-ray astronomy

    International Nuclear Information System (INIS)

    Siegmund, O.H.W.; Sanford, P.W.; Mason, I.M.; Culhane, J.L.; Cockshott, R.

    1980-01-01

    A modified version of the parallel plate imaging proportional counter, developed to register images of cosmic x-ray sources in the focal planes of x-ray telescopes, has been constructed to investigate the application of risetime discrimination to the scintillation pulses caused by the electron avalanche process. It is shown that efficient background event rejection (> 90%) is achieved and the application of this system for x-ray astronomy is discussed. (U.K.)

  7. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  8. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  9. A probabilistic model for snow avalanche occurrence

    Science.gov (United States)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  10. Spatial shape of avalanches

    Science.gov (United States)

    Zhu, Zhaoxuan; Wiese, Kay Jörg

    2017-12-01

    In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x ) 〉 ℓ given ℓ , as well as its fluctuations encoded in the second cumulant 〈S2(x ) 〉 ℓ c. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.

  11. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1991-01-01

    An ionization exposure of 0.5 C per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reduction of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (orig.)

  12. Some studies on the pulse-height loss due to capacitive decay in the detector-circuit of parallel plate ionization chambers

    International Nuclear Information System (INIS)

    Sharma, S.L.; Anil Kumar, G.; Choudhury, R.K.

    2006-01-01

    Pulse-type ionization chambers are invariably operated in the electron-sensitive mode where the capacitive decay in the detector-circuit during the electron collection produces loss in the pulse-height. In order to understand and appreciate the effect of this capacitive decay on the detector response, we have carried out Monte Carlo simulations of the response of two-electrode parallel plate ionization chambers with and without the capacitive decay keeping shaping time so large that the ballistic deficit is negligibly small. These simulations have been carried out incorporating the physical processes, namely, emission of charged particles from a point radioactive source, the generation of charge carriers in the active volume, separation and acceleration of the charge carriers, transport of the charge carriers, induction of charges on the electrodes, pulse processing by preamplifier-amplifier network, etc. These simulations have shown that the concerned capacitive decay produces appreciable loss in the pulse-height, if the detector-circuit time constant is of the order of maximum electron collection time. We have also carried out measurements on the pulse-height loss due to the capacitive decay in the detector-circuit during the electron collection for a two-electrode parallel plate ionization chamber. The experimental data on the pulse-height loss match reasonably well with the theoretical predictions

  13. Calibration of snow avalanche mathematical models using the data of real avalanches in the Ile (Zailiyskiy Alatau Range

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2017-01-01

    Full Text Available The calibration of the dry friction and turbulent friction coefficients is necessary for computer simulation of avalanches. The method of back calculation based on data on actual avalanches is used for this purpose. The article presents the results of the calibration of the Eglit’s and RAMMS models for Ile Alatau range condi‑ tions. The range is located in Kazakhstan. The data on six avalanches in the same avalanche site were used. Five avalanches were dry, and one avalanche was wet. Avalanches volume varied from 2000 to 12000  m3. Maximum speed avalanches were between 15 and 30  m/s, the flow height  – from 3 to 10  m. Series of back calculations with different values of the friction coefficients was made to obtain the calibrated coeffi‑ cients. The calibrated coefficients were chosen under condition of the best fit with real avalanches. The cal‑ ibrated coefficients were following. For the Eglit’s model for dry avalanches of the volume 2000–5000  m3 μ = 0.46÷0.48, k = 0.005–0.006, and the volume 8000–12000 m3 μ = 0.38÷0.42, k = 0.002÷0.003. For RAMMS model for dry avalanches of the volume of 2000–5000 m3 μ (dry friction coefficient = 0.35÷0.4, ξ (viscous friction coefficient = 1500÷2000 m/s2, and the volume 8,000–12,000 m3 μ = 0.3÷0.35, ξ = 2000÷3000 m/s2. For wet avalanches of the volume 12,000 m3 μ = 0.35, ξ = 1500 m/s2. The work on the calibration will be con‑ tinued to obtain the friction coefficients for the Eglit’s and RAMMS models. The additional data on real ava‑ lanches will be needed for this purpose.

  14. Avalanches and Criticality in Driven Magnetic Skyrmions

    Science.gov (United States)

    Díaz, S. A.; Reichhardt, C.; Arovas, D. P.; Saxena, A.; Reichhardt, C. J. O.

    2018-03-01

    We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.

  15. Nano-multiplication region avalanche photodiodes and arrays

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  16. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  17. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  18. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1990-11-01

    An ionization exposure of 0.5 coulombs per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reductions of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (Author) (13 refs., 3 tabs., 11 figs.)

  19. Storage and methyl jasmonate in postharvest conservation of roses cv. Avalanche

    Directory of Open Access Journals (Sweden)

    Elka Fabiana Aparecida Almeida

    2017-07-01

    Full Text Available The use of methyl jasmonate has demonstrated its efficiency to extend the vase life of cut flowers. The objective of this study was to evaluate the effect of methyl jasmonate associated with storage at low temperatures on the postharvest quality of Rosa cv. Avalanche stems. The treatments consisted of 125, 250, 500 and 1000 μM of methyl jasmonate, besides the control with distilled water. The flower buds were sprayed with 4 mL of the solution, according to the treatments, and then kept in a cold chamber (1 °C for periods of 2 and 6 days. Subsequently, the stems were taken to the postharvest laboratory at a temperature of 16 °C. Better quality, higher fresh weight and water absorption were observed in flower stems stored for 2 days. The application of methyl jasmonate caused less turgescence and greater darkening of roses. It was possible to conclude that two days is the best storage time at 1 °C and the use of methyl jasmonate does not maintain the quality of roses cv. Avalanche after harvest.

  20. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, Marcello; Benussi, Luigi; Bianco, Stefano; Cauwenbergh, Simon Marc D; Ferrini, Mauro; Muhammad, Saleh; Passamontic, L; Pierluigi, Daniele; Piccolo, Davide; Primavera, Federica; Russo, Alessandro; Savianoc, G; Tytgat, Michael

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade several tests are ongoing to measure the performance of the detector in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard cms electronic setup are under test. In this talk preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze and with CO2 based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  1. Gallium-based avalanche photodiode optical crosstalk

    International Nuclear Information System (INIS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-01-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time

  2. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malinin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-01-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO2 (100%) and CF4/CO2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author) 23 refs

  3. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, G.L.; Bizzeti, A.; choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malininin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-12-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO 2 (100%) and CF 4 /CO 2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author)

  4. Energy and dissipated work in snow avalanches

    Science.gov (United States)

    Bartelt, P.; Buser, O.

    2004-12-01

    Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.

  5. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  6. Response of resistive plate chamber to e+/e- at E < 100 MeV

    International Nuclear Information System (INIS)

    Rhee, J T; Jamil, M; Chun, Christopher; Yin, Bingzhu; Jeon, Y J

    2006-01-01

    Resistive plate chambers (RPCs) will be installed as one of the important tracking detectors both in the endcap and barrel area CMS muon stations. These stations will be exposed to high gamma, neutron and positron/electron background radiation environment during the LHC machine operation. For the safe operation of these detectors, it is necessary to monitor these kinds of radiation. A simulation test has been carried out with the RPC at e + /e - fluxes using the dose and fluence equivalent to LHC 10 years operation. The simulation studies of RPC to e + /e - of energy 0.1 < E < 100 MeV have been performed using the GEANT 3.21 and GEANT4 Monte Carlo packages. By employing these two packages, good agreement of the simulation results is attained

  7. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    International Nuclear Information System (INIS)

    Abbrescia, M.; Muhammad, S.; Saviano, G.; Auwegem, P. Van; Cauwenbergh, S.; Tytgat, M.; Benussi, L.; Bianco, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Ferrini, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO 2 and CF 3 I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  8. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  9. Curing pasted plates for lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Napoleon, E.S.

    1987-02-15

    This paper covers various aspects of the hydroset process and final drying of battery plates in a controlled chamber. Through the use of such chambers, battery makers are obtaining finished plates of consistent quality in 48 h or less, including final drying. Added benefits include: (i) reduced free-lead in plates; (ii) reduced floor space requirements; (iii) better knitting of paste to grid; (iv) reduced inventories; (v) reduced battery rejects.

  10. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber

    NARCIS (Netherlands)

    Roosjen, A; Boks, NP; van der Mei, HC; Busscher, HJ; Norde, W

    2005-01-01

    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber.

  11. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  12. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)

    2007-06-15

    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  13. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    Science.gov (United States)

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are

  14. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber Part II : Use of fluorescence imaging

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem; Krom, Bastiaan P.; Sjollema, Jelmer

    2011-01-01

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011)76).

  15. Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN

    International Nuclear Information System (INIS)

    Kim, M.S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J.W.; Kang, M.; Kwon, J.H.; Lee, K.S.; Lee, S.K.; Park, S.K.

    2014-01-01

    The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time

  16. Measuring neuronal avalanches in disordered systems with absorbing states

    Science.gov (United States)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  17. Spatial determination of magnetic avalanche ignition points

    International Nuclear Information System (INIS)

    Jaafar, Reem; McHugh, S.; Suzuki, Yoko; Sarachik, M.P.; Myasoedov, Y.; Zeldov, E.; Shtrikman, H.; Bagai, R.; Christou, G.

    2008-01-01

    Using time-resolved measurements of local magnetization in the molecular magnet Mn 12 -ac, we report studies of magnetic avalanches (fast magnetization reversals) with non-planar propagating fronts, where the curved nature of the magnetic fronts is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. We find that although in most samples the avalanches ignite at the long ends, as found in earlier studies, there are crystals in which ignition points are distributed throughout an entire weak region near the center, with a few avalanches still originating at the ends

  18. Spatial determination of magnetic avalanche ignition points

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, Reem; McHugh, S.; Suzuki, Yoko [Physics Department, City College of the City University of New York, New York, NY 10031 (United States); Sarachik, M.P. [Physics Department, City College of the City University of New York, New York, NY 10031 (United States)], E-mail: sarachik@sci.ccny.cuny.edu; Myasoedov, Y.; Zeldov, E.; Shtrikman, H. [Department Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Bagai, R.; Christou, G. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2008-03-15

    Using time-resolved measurements of local magnetization in the molecular magnet Mn{sub 12}-ac, we report studies of magnetic avalanches (fast magnetization reversals) with non-planar propagating fronts, where the curved nature of the magnetic fronts is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. We find that although in most samples the avalanches ignite at the long ends, as found in earlier studies, there are crystals in which ignition points are distributed throughout an entire weak region near the center, with a few avalanches still originating at the ends.

  19. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  20. Real time avalanche detection for high risk areas.

    Science.gov (United States)

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  1. Irradiation chamber for photoactivation patient treatment system

    International Nuclear Information System (INIS)

    Lee, K.H.; Troutner, V.H.; Goss, J.; King, M.J.

    1988-01-01

    A flat plate irradiation chamber is described for use in a patient treatment system for altering cells, including treating the cells with a photoactivatable agent and passing the cells and the agent through a field of photoactivating radiation whereby the agent is caused to be activated and to affect the cells. The agent and the cells are contained in the irradiation chamber during irradiation. The flat plate irradiation chamber comprises: a rigid top sheet matably joined with a rigid bottom sheet, forming therebetween a rigid serpentine pathway for conducting the cells through the field of radiation; and pump block means for holding tubing means in fluid communication with the serpentine pathway and adapted for engaging a peristaltic pump whereby rotation of the pump causes the cells to flow through the serpentine pathway, and wherein the chamber is removable from the system and disposable

  2. UV laser beam profile measurement by means of the photoelectric effect on the wires of a proportional chamber

    International Nuclear Information System (INIS)

    Prokoviev, O.; Seiler, P.G.

    1989-01-01

    A simple technique to measure the profiles of pulsed UV laser beams is described. Irradiating a cathode wire of a proportional chamber with UV laser shots results in signals from the anode wire whose amplitudes are proportional to the UV light intensity. Profile scanning is performed by shifting the chamber across the beam. The chamber can also be used with reversed polarities. This leads to avalanches developing outwardly from the signal wire. In this case we observe a quadratic dependence of the pulse height on the UV light intensity. (orig.)

  3. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  4. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied

  5. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  6. "Diamond" over-coated Microstrip Gas Chambers for high rate operation

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Hoch, M; Manzin, G; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe the recent developments on the diamond-like carbon (DLC) over-coated Microstrip Gas Chambers made on drawn glass substrates. MSGC surface coating with thin DLC layer of stable and controlled resistivity was proposed to overcome the limitation of detector operation due to surface charging-up under avalanches. This brings also advantages for the detector manufacturing technology. The thin layer, deposited on top of a manufactured MSGC (over-coating), demonstrates excellent mechanical properties and very good stability. We report on recent measurements with DLC over-coated MSGCs of various surface resistivities (ranging from 1013W/r to 1016W/r) on D-263 and AF45 glass substrates. Over-coated MSGCs exhibit good rate capability for the resistivity of the surface around 1015W/r. Stable operation up to 50 mC/cm of accumulated charge from avalanches has been demonstrated.

  7. Characterizing the nature and variability of avalanche hazard in western Canada

    Science.gov (United States)

    Shandro, Bret; Haegeli, Pascal

    2018-04-01

    The snow and avalanche climate types maritime, continental and transitional are well established and have been used extensively to characterize the general nature of avalanche hazard at a location, study inter-seasonal and large-scale spatial variabilities and provide context for the design of avalanche safety operations. While researchers and practitioners have an experience-based understanding of the avalanche hazard associated with the three climate types, no studies have described the hazard character of an avalanche climate in detail. Since the 2009/2010 winter, the consistent use of Statham et al. (2017) conceptual model of avalanche hazard in public avalanche bulletins in Canada has created a new quantitative record of avalanche hazard that offers novel opportunities for addressing this knowledge gap. We identified typical daily avalanche hazard situations using self-organizing maps (SOMs) and then calculated seasonal prevalence values of these situations. This approach produces a concise characterization that is conducive to statistical analyses, but still provides a comprehensive picture that is informative for avalanche risk management due to its link to avalanche problem types. Hazard situation prevalence values for individual seasons, elevations bands and forecast regions provide unprecedented insight into the inter-seasonal and spatial variability of avalanche hazard in western Canada.

  8. Rock avalanche occurrence in the San Juan province (Argentina): an analysis of their spatial distribution and main forcing factors

    Science.gov (United States)

    Penna, Ivanna; Tonini, Marj; Vega Orozco, Carmen D.; Longchamp, Céline; Derron, Marc-Henri; Jaboyedoff, Michel

    2013-04-01

    Rock avalanches are frequent phenomena in the Argentinean Andes and a particular high concentration of these events is observed in the Northwest (~25°S) and in the Central Andes from 30°S until the transition with the Patagonian Andes (~38°S). Tectonic deformation and seismicity are generally proposed as main driving factors, with weather and lithologic conditions playing a subordinate role. From 28°S to 33°S, the subhorizontal subduction of the Nazca plate drives higher shortening rates than in the surrounding areas, and an intense seismicity. Main morphotectonic units in this regions are the Cordillera and Precordillera, separated by the Barreal-Calingasta depression. In the southern central part of the flat subduction area (30°30'°-32°30'S), it is observed high valley incision and maximum local relief of 2900 m, while in the Precordillera main fluvial courses developed in the inter-thrust valleys, where local relief is up to 2400 m. In both mountain ranges, we recognized 34 rock avalanches deposits with volumes up to 0.3 km3. There is no apparent lithologic control on detachments, which involved sedimentary, volcanic and granite rocks, even though ~20% of them were favored by layering orientation. However, about 50% of the inventoried rock avalanches with the greatest volumes, developed along tectonic structures or less than 1 km far from them. The main objective of the present study is to explore the spatial distribution of rock avalanche deposits, and compare it with the instrumental seismicity and landscape conditions by means of statistical tools (e.g. exploratory data analyses, Ripley's K-function). Those analyses allow to highlight the spatial correlation between the geological events. Moreover, to visually display the detected cluster spatial patterns we elaborated kernel density maps. Our findings revealed that most of the rock avalanches show a high spatial aggregation mainly between 31°20'S-31°50'S. Main concentration of bedrock landslides

  9. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  10. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  11. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    Science.gov (United States)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  12. Criticality and avalanches in neural networks

    International Nuclear Information System (INIS)

    Zare, Marzieh; Grigolini, Paolo

    2013-01-01

    Highlights: • Temporal criticality is used as criticality indicator. • The Mittag–Leffler function is proposed as a proper form of temporal complexity. • The distribution of avalanche size becomes scale free in the supercritical state. • The scale-free distribution of avalanche sizes is an epileptic manifestation. -- Abstract: Experimental work, both in vitro and in vivo, reveals the occurrence of neural avalanches with an inverse power law distribution in size and time duration. These properties are interpreted as an evident manifestation of criticality, thereby suggesting that the brain is an operating near criticality complex system: an attractive theoretical perspective that according to Gerhard Werner may help to shed light on the origin of consciousness. However, a recent experimental observation shows no clear evidence for power-law scaling in awake and sleeping brain of mammals, casting doubts on the assumption that the brain works at criticality. This article rests on a model proposed by our group in earlier publications to generate neural avalanches with the time duration and size distribution matching the experimental results on neural networks. We now refine the analysis of the time distance between consecutive firing bursts and observe the deviation of the corresponding distribution from the Poisson statistics, as the system moves from the non-cooperative to the cooperative regime. In other words, we make the assumption that the genuine signature of criticality may emerge from temporal complexity rather than from the size and time duration of avalanches. We argue that the Mittag–Leffler (ML) exponential function is a satisfactory indicator of temporal complexity, namely of the occurrence of non-Poisson and renewal events. The assumption that the onset of criticality corresponds to the birth of renewal non-Poisson events establishes a neat distinction between the ML function and the power law avalanches generating regime. We find that

  13. Right-left ambiguity resolution using field corrector readout in a large planar drift chamber

    International Nuclear Information System (INIS)

    Peyaud, B.; Rander, J.; Tarte, G.

    1980-02-01

    Induced signals on field corrector wires are used to resolve the right-left ambiguity in a large planar drift chamber. Efficient separation is obtained for +-3 cm drift cells, 4 meters long. Technical problems of the method, in particular the severe geometrical constraints, are discussed. Important features of the avalanche asymmetry can be inferred from the measurements

  14. Timing measurements at ELBE on multigap resistive plate chamber prototypes for NeuLAND

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Bemmerer, Daniel; Cowan, Tom; Stach, Daniel; Wagner, Andreas [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Elvers, Michael; Zilges, Andreas [Universitaet Koeln (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector for fast neutrons (0.2-1 GeV) at the R3B experiment at FAIR aims for high time and spatial resolutions ({sigma}{sub t}<100 ps, {sigma}{sub x,y,z}<1 cm). The detector will consist of about 60 sequences of a stacked structure from iron converter material and multigap resistive plate chambers (MRPC's). The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPC's, with excellent timing properties. As part of the ongoing development of the NeuLAND detector, MRPC prototypes designed for this application have been studied at the superconducting electron linac ELBE in Dresden with its picosecond time structure. The ELBE experiments show that the prototypes studied so far have efficiency {>=}90% for minimum ionizing particles in a 2 x 2 gap structure and fulfill the called for time resolution.

  15. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  16. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  17. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  18. Performance of low-resistivity single and dual-gap RPCs for LHCb

    CERN Document Server

    Adinolfi, M; Messi, R; Pacciani, L; Paoluzi, L; Santovetti, E

    2000-01-01

    Resistive plate chambers (RPC) are strong candidates for the outer regions of the LHCb muon detector. We have tested single-gap and dual-gap detectors built with low-resistivity phenolic plates ( rho =9*10/sup 9/ Omega cm) and operated in avalanche mode. Measurements have been performed over a wide range of beam intensities and on the GIF at CERN. The results are presented and discussed, with special emphasis on the detection efficiency. (6 refs).

  19. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  20. Picture chamber for radiographic system

    International Nuclear Information System (INIS)

    1977-01-01

    The picture chamber for a radiographic system is characterised by a base, a first electrode carried in the base, an X-ray irradiation window provided with an outer plate and an inner plate and a conducting surface which serves as a second electrode, which has a plate gripping it at each adjacent edge and which has at the sides a space which is occupied by a filling material, maintained at a steady pressure, by means of the mounting against the base and wherein the inner plate lies against the first electrode and which is provided with a split, and with means for the separation of the split in the area of the inner plate so that a fluid may be retained in the split. (G.C.)

  1. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  2. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  3. Dealing with the white death: avalanche risk management for traffic routes.

    Science.gov (United States)

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  4. Research highlights under Contract DE-AC02-76ER03072, February 1, 1981-July 31, 1981

    International Nuclear Information System (INIS)

    Shoemaker, F.C.

    1981-01-01

    Research projects are highlighted including: a study of rare muon induced reactions; a search for eta/sub c/ mesons; hadronic production of charmed particles; production of high-mass dimuons by pions; forward production of massive particles; the crystal ball project at SPEAR; parallel plate avalanche chamber development; and tests of quantum mechanics

  5. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  6. An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization

    International Nuclear Information System (INIS)

    Tang Yin; Cai Qing; Chen Dun-Jun; Lu Hai; Zhang Rong; Zheng You-Dou; Yang Lian-Hong; Dong Ke-Xiu

    2017-01-01

    To enhance the avalanche ionization, we designed a new separate absorption and multiplication AlGaN solar-blind avalanche photodiode (APD) by using a high/low-Al-content AlGaN heterostructure as the multiplication region instead of the conventional AlGaN homogeneous layer. The calculated results show that the designed APD with Al 0.3 Ga 0.7 N/Al 0.45 Ga 0.55 N heterostructure multiplication region exhibits a 60% higher gain than the conventional APD and a smaller avalanche breakdown voltage due to the use of the low-Al-content Al 0.3 Ga 0.7 N which has about a six times higher hole ionization coefficient than the high-Al-content Al 0.45 Ga 0.55 N. Meanwhile, the designed APD still remains a good solar-blind characteristic by introducing a quarter-wave AlGaN/AlN distributed Bragg reflectors structure at the bottom of the device. (paper)

  7. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Transient events in bright debris discs: Collisional avalanches revisited

    Science.gov (United States)

    Thebault, P.; Kral, Q.

    2018-01-01

    Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an

  9. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  10. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  11. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  12. Scale testing of a partially confined blast chamber

    CSIR Research Space (South Africa)

    Grundling, W

    2012-10-01

    Full Text Available in pressure readings. A scale model of the blast chamber, Emily, was constructed with the addition of a pendulum plate hanging concentrically covering 65% of the open area. PURPOSE OF SCALED BLAST CHAMBER The purpose of this particular test is to evaluate... PHASE Illustrated in Figure 3 and 4 are the results obtained during testing of the scaled blast chamber. In both cases the pressure dissipates over time, showing pulsating behaviour as the shockwaves reflect off the chamber walls. By looking...

  13. Terrain Classification of Norwegian Slab Avalanche Accidents

    Science.gov (United States)

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart

    2016-01-01

    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  14. The effect of discharge chamber geometry on the characteristics of low-pressure RF capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V.A. [Ecole Polytech, Lab Phys and Technol Plasmas, F-91128 Palaiseau, (France); Booth, J.P. [Lam Res Corp, Fremont, CA 94538 (United States); Landry, K. [Unaxis, F-38100 Grenoble, (France); Douai, D. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance, (France); Cassagne, V. [Riber, F-95873 Bezons, (France); Yegorenkov, V.D. [Kharkov Natl Univ, Dept Phys, UA-61077 Kharkov, (Ukraine)

    2007-07-01

    We report the measured extinction curves and current voltage characteristics (CVCs) in several gases of RF capacitive discharges excited at 13.56 MHz in chambers of three different geometries: 1) parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'); 2) parallel plates surrounded by a metallic cylinder ('asymmetric confined'); and 3) parallel plates inside a much larger metallic chamber ('asymmetric unconfined'), similar to the gaseous electronics conference reference cell. The extinction curves and the CVCs show differences between the symmetric, asymmetric confined, and asymmetric unconfined chamber configurations. In particular, the discharges exist over a much broader range of RF voltages and gas pressures for the asymmetric unconfined chamber. For symmetric and asymmetric confined discharges, the extinction curves are close to each other in the regions near the minima and at lower pressure, but at higher pressure, the extinction curve of the asymmetric confined discharge runs at a lower voltage than the one for the discharge in a symmetric chamber. In the particular cases of an 'asymmetric unconfined chamber' discharge or 'asymmetric confined' one, the RF discharge experiences the transition from a 'weak-current' mode to a 'strong-current' one at lower RF voltages than is the case for a 'symmetric parallel-plate' discharge. (authors)

  15. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  16. Statistical evaluation of waveform collapse reveals scale-free properties of neuronal avalanches

    Directory of Open Access Journals (Sweden)

    Aleena eShaukat

    2016-04-01

    Full Text Available Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX, which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.

  17. Measurement of profile and intensity of proton beam by an integrating current transformer and a segmented parallel-plate ion chamber for the AGS-spallation target experiment (ASTE)

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Nakashima, Hiroshi; Takada, Hiroshi

    2001-03-01

    Profile and intensity of proton beams incident to a mercury target were measured for the experiments under AGS-spallation Target Experiment (ASTE) collaboration. Protons of 1.94, 12 and 24 GeV energy were measured for a temperature, pressure wave and neutronics in the mercury target. For the beam profile measurement, segmented parallel-plate ion chamber (CHIDORI) was used as the online detector. Imaging plates (IP) were also used for the profile measurement with aluminum activation foils as the image converter. An integrating current transformer (ICT) and activation method by Cu foil were used for the measurement of beam intensity. The beam profile obtained by CHIDORI gives a good agreement with the results with the IP. The beam intensity obtained by ICT agrees with the data obtained by the activation technique within ±3% for 12 and 24 GeV cases. Furthermore, these results show in good agreement with those obtained by the monitor of segmented wire ionization chamber (SWIC) and secondary emission chamber (SEC) installed by the AGS team. Therefore, a reliable beam monitor technique was established, so that the analysis of the experiment such as temperature and pressure wave can be normalized by the number of incident protons. (author)

  18. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  19. The Large Hadron Collider (LHC): The Energy Frontier

    Science.gov (United States)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  20. Automated identification of potential snow avalanche release areas based on digital elevation models

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2013-05-01

    Full Text Available The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  1. Automated identification of potential snow avalanche release areas based on digital elevation models

    Science.gov (United States)

    Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani

    2013-05-01

    The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  2. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  3. Avalanches near a solid insulator in nitrogen gas at atmospheric pressure

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Sudarshan, T.S.; Department of Electrical and Computer Engineering, University of South Carolina, Columbia, South Carolina 29208)

    1989-01-01

    The pulsed Townsend (PT) technique was used to record the growth of avalanches near a solid insulator in nitrogen gas at 0.1 MPa. Several other nonconventional techniques for releasing initiatory electrons at the cathode are discussed. In this paper, experimental results of avalanches initiated by illuminating a fast (0.6-ns) nitrogen laser onto the cathode triple junction are presented. Data were recorded with plexiglas, Teflon, high-density polyethylene, low-density polyethylene, Delrin, etc. Effect of surface condition, variation of the distance between insulator surface and the avalanche initiation region, and the effect of a large number of previous avalanches on the avalanche characteristics at a particular voltage were studied. The Townsend primary ionization coefficient, hereafter referred to as growth coefficient (α), and drift velocity (V/sub e/) were evaluated through the PT technique. Results indicate that the avalanche growth in the vicinity of a solid insulator is less than that in an identical plain gas gap. Existence of a nonuniform field as a result of surface charges on the insulator and/or field modifications due to the avalanche space charge are believed to be responsible for this behavior

  4. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  5. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  6. Beyond Critical Exponents in Neuronal Avalanches

    Science.gov (United States)

    Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin

    2011-03-01

    Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.

  7. A novel approach to evaluate and compare computational snow avalanche simulation

    Directory of Open Access Journals (Sweden)

    J.-T. Fischer

    2013-06-01

    Full Text Available An innovative approach for the analysis and interpretation of snow avalanche simulation in three dimensional terrain is presented. Snow avalanche simulation software is used as a supporting tool in hazard mapping. When performing a high number of simulation runs the user is confronted with a considerable amount of simulation results. The objective of this work is to establish an objective, model independent framework to evaluate and compare results of different simulation approaches with respect to indicators of practical relevance, providing an answer to the important questions: how far and how destructive does an avalanche move down slope. For this purpose the Automated Indicator based Model Evaluation and Comparison (AIMEC method is introduced. It operates on a coordinate system which follows a given avalanche path. A multitude of simulation runs is performed with the snow avalanche simulation software SamosAT (Snow Avalanche MOdelling and Simulation – Advanced Technology. The variability of pressure-based run out and avalanche destructiveness along the path is investigated for multiple simulation runs, varying release volume and model parameters. With this, results of deterministic simulation software are processed and analysed by means of statistical methods. Uncertainties originating from varying input conditions, model parameters or the different model implementations are assessed. The results show that AIMEC contributes to the interpretation of avalanche simulations with a broad applicability in model evaluation, comparison as well as examination of scenario variations.

  8. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  9. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  10. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.

    Directory of Open Access Journals (Sweden)

    Tiago L Ribeiro

    2010-11-01

    Full Text Available Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB animals is still missing, thus raising doubts about their relevance for brain function.To address this issue, we employed chronically implanted multielectrode arrays (MEA to record avalanches of action potentials (spikes from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN. We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus.Altogether, the data provide a comprehensive link between behavior

  11. Beam test results of the first full-scale prototype of CMS RE 1/2 resistive plate chamber

    International Nuclear Information System (INIS)

    Ying Jun; Ban Yong; Ye Yanlin; Cai Jianxin; Qian Sijin; Wang Quanjin; Liu Hongtao

    2005-01-01

    The authors reported the muon beam test results of the first full-scale prototype of CMS RE 1/2 Resistive Plate Chamber (RPC). The bakelite surface is treated using a special technology without oil to make it smooth enough. The full scale RE 1/2 RPC with honeycomb supporting frame is strong and thin enough to be fitted to the limited space of CMS design for the inner Forward RPC. The muon beam test was performed at CERN Gamma Irradiation Facility (GIF). The detection efficiency of this full scale RPC prototype is >95% even at very high irradiation background. The time resolution (less than 1.2 ns) and spatial resolution are satisfactory for the muon trigger device in future CMS experiments. The noise rate is also calculated and discussed

  12. New focal plane detector system for the broad range spectrometer

    International Nuclear Information System (INIS)

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60

  13. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

    Science.gov (United States)

    de Arcangelis, L.

    2012-05-01

    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in

  14. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Barsuk, S; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Dabrowski, W; Mindur, B; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Balossino, I; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  15. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K

    2000-01-01

    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  16. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  17. Design and characterization of single photon avalanche diodes arrays

    Science.gov (United States)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  18. Relation of the runaway avalanche threshold to momentum space topology

    Science.gov (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  19. Conceptual design study of the hylife lithium waterfall laser fusion chamber. FY 1978 annual report to Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    1978-01-01

    Conceptual design studies of the target chamber defined the general configuration and dimensions of the chamber and the inlet plenum, orifice plate, and nozzle plate concepts required to generate the desired lithium jet fall. Preliminary studies were performed of the target chamber interfaces with the liquid lithium supply system, the laser system, the pellet injection system, and the target chamber mounting and support system. Target chamber environmental effects resulting from typical thermonuclear burns were evaluated. The outlet region of the target chamber was outlined conceptually, and preliminary design considerations were given to the annular graphite reflector regions of the target chamber and the associated liquid lithium coolant passages

  20. Magnetic avalanches in manganese-acetate, "magnetic deflagration"

    Science.gov (United States)

    Suzuki, Yoko

    Mn12-acetate, first synthesized in 1980 by Lis, is one example of a class of many molecules called single molecule magnets (SMMs) or molecular nanomagnets. These molecules have several atomic spins strongly coupled together within each molecule. They exhibit interesting quantum mechanical phenomena at low temperatures such as quantum tunneling of magnetization, which was first found with Mn12-acetate in 1996 by Friedman, et al. , and Berry phase oscillations which were measured in Fe8 (another SMM) in 1999 by Wernsdorfer, et al. In addition to possible application as memory storage and qubits for quantum computers, these systems provide the means for studies of mesoscopic physics as well as the interactions of the molecules with their environment, such as phonon, photon, nuclear spin, intermolecular dipole, and exchange interactions. Mn12-acetate has twelve Mn ions magnetically coupled in the center of the molecule yielding a giant spin of S = 10 at low temperature. It also has a large uniaxial anisotropy of 65 K. Below 3 K, magnetization curves show strong hysteresis due to the anisotropy barrier. At thesis temperatures, the spin relaxes through the barrier by quantum tunneling of magnetization, which produces regularly-spaced multiple resonant steps in the hysteresis curve. Magnetic avalanches, first detected by Paulsen et al., also occur for some samples only at low temperature, leading to a very fast single-step reversal of the full magnetization, which clearly differs from relaxation by tunneling. In this thesis, I present the results of detailed experimental studies of two aspects of magnetic avalanche phenomenon: "conditions for the triggering of avalanches" and "propagation of the avalanche front". In the first study, we find the magnetic fields at which avalanches occur are stochastically distributed in a particular range of fields. For the second study, we conducted local time-resolved measurements. The results indicate the magnetization avalanches spread

  1. The construction and performance of a large cylindrical wire chamber with cathode readout

    International Nuclear Information System (INIS)

    Deiters, K.; Donat, A.; Friebel, W.; Heller, R.; Kirsch, S.; Krankenhagen, R.; Lange, W.; Leiste, R.; Lohmann, W.; Lustermann, W.; Peng, Y.; Roeser, U.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Wilhelmi, M.

    1991-12-01

    The construction and performance of two large coaxial cylindrical multiwire proportional chambers with cathode readout, denoted as Z-Detector, forming the outer part of the L3 central tracking detector, are described. Three self supporting cylinders of about 1 m length and 1 m diameter, constructed as a sandwich of Kapton foil and foam, form the mechanical frame. It represents 2% of a radiation length. In each chamber one cathode layer is subdivided in helical strips and the other one in rings. The readout of the charges induced on the cathode strips and the other one in rings. The readout of the charges induced on the cathode strips provides the avalanche position along the beam (z-) direction. The detector has been running in the L3 experiment at LEP for nearly two years. The resolution of the z-measurement is 320 μm, the double track resolution is about 10 mm. The efficiency of each chamber is 96%. (orig.)

  2. La Carte de Localisation Probable des Avalanches (CPLA

    Directory of Open Access Journals (Sweden)

    Gilles BORREL

    1994-12-01

    Full Text Available La Carte de Localisation Probable des Avalanches (CPLA indique l’enveloppe des limites extrêmes connues atteintes par les avalanches, ainsi que les travaux de protection associés. Il s’agit d’un document informatif et non d’une carte de risque. Depuis 1990, les données thématiques sont numérisées.

  3. Simulation of RPC performance for 511 keV photon detection

    CERN Document Server

    Lippmann, C; Riegler, W

    2009-01-01

    Measurements of the time resolution of timing Resistive Plate Chambers (RPCs) reveal some differences when comparing the results for 511 keV photons and for particle beams. The subject is of interest, since timing RPCs are currently considered for Positron Emission Tomography (PET), where the sensitivity of the system depends largely on the time resolution of the detector. In this publication we discuss possible explanations, in particular the statistical fluctuations of the deposited charge and the Compton electron flight time distributions. Moreover, we rediscuss the reduction of the Townsend coefficient due to the space charge effect inside the avalanches as a function of the avalanche size. We shall see that the dependence assumed by different analytic models differs significantly from what is predicted by detailed Monte Carlo avalanche simulations.

  4. Phase avalanches in near-adiabatic evolutions

    International Nuclear Information System (INIS)

    Vertesi, T.; Englman, R.

    2006-01-01

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes

  5. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    Science.gov (United States)

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range.

  6. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  7. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Bründl

    2004-01-01

    Full Text Available After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc. in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  8. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  9. Preliminary test of 5-gap glass multi-gap resistive plate chamber for photon detection for time of flight positron emission tomography (TOF-PET) imaging

    International Nuclear Information System (INIS)

    Ganai, R.; Mondal, M.; Mehta, S.; Chattopadhyay, S.

    2016-01-01

    Multi-gap Resistive Plate Chamber (MRPC) is a type of gas detector which uses constant and uniform electric field in between several high resistive electrodes and works on the principle of gas ionisation. In MRPC a particular gas gap is divided into several parts with the help of thin high resistive electrodes. Division of the gas gap helps to improve the time resolution of the detector significantly. MRPCs with time resolution of ∼15 ps have been reported

  10. The influence of air humidity on an unsealed ionization chamber in a linear accelerator

    International Nuclear Information System (INIS)

    Blad, B.; Nilsson, P.; Knoeoes, T.

    1996-01-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions. (author)

  11. Analysis and interpretation of the performance degradation of glass Resistive Plate Chambers operated in streamer mode

    CERN Document Server

    Calcaterra, A; Patteri, P; Piccolo, M; Della Mea, G; Restello, S; Ferri, F; Musella, P; Redaelli, N; Tabarelli de Fatis, T; Tinti, G; Mannocchi, G; Trinchero, G

    2007-01-01

    The long-term stability of Resistive Plate Chambers (RPCs) with glass electrodes was studied for one year with a dedicated test station hosting about 10 m2 of detectors. RPCs were operated in streamer mode with a ternary gas mixture containing argon (27%), isobutane (9%) and tetrafluoroethane (64%). Environmental conditions were kept under control and, in particular, the water pollution in the gas, deemed responsible for the degradation of glass RPC performance, was monitored never to exceed 30 ppm in the exhaust line. Evidence for a substantial aging of the detectors was observed, resulting in a loss of efficiency correlated to an increased rate of spurious streamers. This can be ascribed to the chemical attack of the glass surface by hydrofluoric acid formed in the streamer process, as confirmed by detailed morphological and chemical analyses of the electrode surface. Our results strengthen the indication that the instability of glass RPCs in the long term is related to the use of fluorocarbons as quenching...

  12. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    Science.gov (United States)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  13. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard

    International Nuclear Information System (INIS)

    Jimenez C, L.F.

    1995-01-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)

  14. Effusion plate using additive manufacturing methods

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Ostebee, Heath Michael; Wegerif, Daniel Gerritt

    2016-04-12

    Additive manufacturing techniques may be utilized to construct effusion plates. Such additive manufacturing techniques may include defining a configuration for an effusion plate having one or more internal cooling channels. The manufacturing techniques may further include depositing a powder into a chamber, applying an energy source to the deposited powder, and consolidating the powder into a cross-sectional shape corresponding to the defined configuration. Such methods may be implemented to construct an effusion plate having one or more channels with a curved cross-sectional geometry.

  15. New method for determining avalanche breakdown voltage of silicon photomultipliers

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.

    2017-01-01

    The avalanche breakdown and Geiger mode of the silicon p-n junction is considered. A precise physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDE rel ) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDE rel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts. [ru

  16. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    Science.gov (United States)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  17. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    Science.gov (United States)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  18. High voltage short plus generation based on avalanche circuit

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi

    2006-01-01

    Simulate the avalanche circuit in series with PSPICE module, design the high voltage short plus generation circuit by avalanche transistor in series for the sweep deflection circuit of streak camera. The output voltage ranges 1.2 KV into 50 ohm load. The rise time of the circuit is less than 3 ns. (authors)

  19. Development of Cloud Chamber by Using Peltier Device

    International Nuclear Information System (INIS)

    Woo, Jong Kwan; Kwon, Jin Young; Park, Sang Tae

    2011-01-01

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10 -5 ml.mm -3 . Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  20. Development of Cloud Chamber by Using Peltier Device

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong Kwan [Jae Hyun High School, Seoul (Korea, Republic of); Kwon, Jin Young [Jeon Min High School, Daejeon (Korea, Republic of); Park, Sang Tae [Dept. of Physics Education, Kongju National University, Kongju (Korea, Republic of)

    2011-09-15

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10{sup -5}ml.mm{sup -3}. Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  1. A new web-based system to improve the monitoring of snow avalanche hazard in France

    Science.gov (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  2. Evaluation and operationalization of a novel forest detrainment modeling approach for computational snow avalanche simulation

    Science.gov (United States)

    Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.

    2013-12-01

    Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure

  3. Rock avalanches clusters along the northern Chile coastal scarp

    Science.gov (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  4. Semi-automated high-efficiency reflectivity chamber for vacuum UV measurements

    Science.gov (United States)

    Wiley, James; Fleming, Brian; Renninger, Nicholas; Egan, Arika

    2017-08-01

    This paper presents the design and theory of operation for a semi-automated reflectivity chamber for ultraviolet optimized optics. A graphical user interface designed in LabVIEW controls the stages, interfaces with the detector system, takes semi-autonomous measurements, and monitors the system in case of error. Samples and an optical photodiode sit on an optics plate mounted to a rotation stage in the middle of the vacuum chamber. The optics plate rotates the samples and diode between an incident and reflected position to measure the absolute reflectivity of the samples at wavelengths limited by the monochromator operational bandpass of 70 nm to 550 nm. A collimating parabolic mirror on a fine steering tip-tilt motor enables beam steering for detector peak-ups. This chamber is designed to take measurements rapidly and with minimal oversight, increasing lab efficiency for high cadence and high accuracy vacuum UV reflectivity measurements.

  5. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    Science.gov (United States)

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  6. Intermittent flow under constant forcing: Acoustic emission from creep avalanches

    Science.gov (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang

    2018-01-01

    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  7. The performance of a hybrid spark chamber beta-ray camera

    International Nuclear Information System (INIS)

    Aoyama, Takahiko; Watanabe, Tamaki

    1978-01-01

    This paper describes the performance of a hybrid spark chamber for measuring β-ray emitting radionuclide distribution on a plane source, which was developed to improve the instability of usual self-triggering spark chambers. The chamber consists of a parallel plate spark chamber gap and a parallel plate proportional chamber gap composed of mesh electrodes in the same gas space, and is operated by flowing gas, a mixture of argon and ethanol saturated vapor at 0 0 C, continuously through it. Instability is due to the occurrence of spurious sparks not caused by incident particles and it became conspicuous in the small intensity of incident particles. The hybrid spark chamber enabled us to obtain good counting plateau, that is, good stability for especially small intensity of β-rays and even for the background by setting up gas multiplication in the proportional chamber gap moderately high. Good spatial resolution less than 1 mm was obtained for 3 H and 14 C by keeping the distance between the chamber cathode and the source less than 1 mm. In order to obtain good spatial resolution, it is desirable to keep the overvoltage as small as possible while small overvoltage results in the deterioration of the uniformity of sensitivity. It was found by theoretical estimation and experiment that for a given large overvoltage the spatial resolution was improved by increasing the gas multiplication in the proportional chamber gap. The hybrid spark chamber has a relatively long dead time. When there being a number of active spots having different activities in a detection area, the sparking efficiency of a weak active spot also decreases by large counting loss due to the total strong activity. (auth.)

  8. Test beam analysis of the first CMS drift tube muon chamber

    CERN Document Server

    Albajar, C; Arce, P; Autermann, C; Bellato, M; Benettoni, M; Benvenuti, Alberto C; Bontenackels, M; Caballero, J; Cavallo, F R; Cerrada, M; Cirio, R; Colino, N; Conti, E; de la Cruz, B; Dal Corso, F; Dallavalle, G M; Fernández, C; Fernández de Troconiz, J; Fouz-Iglesias, M C; García-Abia, P; García-Raboso, A; Gasparini, F; Gasparini, U; Giacomelli, P; Gonella, F; Gulmini, M; Hebbeker, T; Hermann, S; Höpfner, K; Jiménez, I; Josa-Mutuberria, I; Lacaprara, S; Marcellini, S; Mariotti, C; Maron, G; Maselli, S; Meneguzzo, Anna Teresa; Monaco, V; Montanari, A; Montanari, C; Montecassiano, F; Navarria, Francesco Luigi; Odorici, F; Passaseo, M; Pegoraro, M; Peroni, C; Perrotta, A; Puerta, J; Reithler, H; Romero, A; Romero, L; Ronchese, P; Rossi, A; Rovelli, T; Sacchi, R; Sowa, M; Staiano, A; Toniolo, N; Torassa, E; Vaniev, V; Vanini, S; Ventura, Sandro; Villanueva, C; Willmott, C; Zotto, P L; Zumerle, G

    2004-01-01

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory.

  9. Test beam analysis of the first CMS drift tube muon chamber

    International Nuclear Information System (INIS)

    Albajar, C.; Amapane, N.; Arce, P.; Autermann, C.; Bellato, M.; Benettoni, M.; Benvenuti, A.; Bontenackels, M.; Caballero, J.; Cavallo, F.R.; Cerrada, M.; Cirio, R.; Colino, N.; Conti, E.; Cruz, B. de la; Corso, F. dal; Dallavalle, G.M.; Fernandez, C.; Troconiz, J.F. de; Fouz, M.C.; Garcia-Abia, P.; Garcia-Raboso, A.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Gonella, F.; Gulmini, M.; Hebbeker, T.; Hermann, S.; Hoepfner, K.; Jimenez, I.; Josa, I.; Lacaprara, S.; Marcellini, S.; Mariotti, C.; Maron, G.; Maselli, S.; Meneguzzo, A.T.; Monaco, V.; Montanari, A.; Montanari, C.; Montecassiano, F.; Navarria, F.L.; Odorici, F.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Perrotta, A.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.; Rovelli, T.; Sacchi, R.; Sowa, M.; Staiano, A.; Toniolo, N.; Torassa, E.; Vaniev, V.; Vanini, S.; Ventura, S.; Villanueva, C.; Willmott, C.; Zotto, P.; Zumerle, G.

    2004-01-01

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory

  10. Test beam analysis of the first CMS drift tube muon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Albajar, C.; Amapane, N.; Arce, P.; Autermann, C.; Bellato, M.; Benettoni, M.; Benvenuti, A.; Bontenackels, M.; Caballero, J.; Cavallo, F.R.; Cerrada, M.; Cirio, R.; Colino, N.; Conti, E.; Cruz, B. de la; Corso, F. dal; Dallavalle, G.M.; Fernandez, C.; Troconiz, J.F. de E-mail: jorge.troconiz@uam.es; Fouz, M.C.; Garcia-Abia, P.; Garcia-Raboso, A.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Gonella, F.; Gulmini, M.; Hebbeker, T.; Hermann, S.; Hoepfner, K.; Jimenez, I.; Josa, I.; Lacaprara, S.; Marcellini, S.; Mariotti, C.; Maron, G.; Maselli, S.; Meneguzzo, A.T.; Monaco, V.; Montanari, A.; Montanari, C.; Montecassiano, F.; Navarria, F.L.; Odorici, F.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Perrotta, A.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.; Rovelli, T.; Sacchi, R.; Sowa, M.; Staiano, A.; Toniolo, N.; Torassa, E.; Vaniev, V.; Vanini, S.; Ventura, S.; Villanueva, C.; Willmott, C.; Zotto, P.; Zumerle, G

    2004-06-11

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory.

  11. Stellar Winds and Dust Avalanches in the AU Mic Debris Disk

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Eugene; Fung, Jeffrey, E-mail: echiang@astro.berkeley.edu, E-mail: jeffrey.fung@berkeley.edu [Department of Astronomy, University of California at Berkeley, Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2017-10-10

    We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ∼35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.

  12. Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC

    International Nuclear Information System (INIS)

    Colafranceschi, S.; Sharma, A.; Chudasama, R.; Pant, L.M.; Mohanty, A.K.; Sehgal, R.; Sehgal, S.T.; Thomas, R.G.; Bhandari, V.; Chand, S.; Kumar, A.; Kumar, S.; Singh, A.; Singh, V.; Aly, S.; Aly, R.; Elkafrawy, T.; Ibrahim, A.; Radi, A.; Sayed, A.

    2014-01-01

    During 2013 and 2014 (Long Shutdown LS1) the CMS experiment is upgrading the forward region installing a fourth layer of RPC detectors in order to complete and improve the muon system performances in the view of the foreseen high luminosity run of LHC. The new two endcap disks consists of 144 double-gap RPC chambers assembled at three different production sites: CERN, Ghent (Belgium) and BARC (India). The chamber components as well as the final detectors are subjected to full series of tests established in parallel at all the production sites. All assembly and test operations have been engineered in order to standardize and improve detector production. In this work the complete chamber construction, quality control procedures and preliminary results will be detailed

  13. Time lapse photography as an approach to understanding glide avalanche activity

    Science.gov (United States)

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2012-01-01

    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  14. A system for mapping radioactive specimens

    International Nuclear Information System (INIS)

    Britten, R.J.; Davidson, E.H.

    1988-01-01

    A system for mapping radioactive specimens comprises an avalanche counter, an encoder, pre-amplifier circuits, sample and hold circuits and a programmed computer. The parallel plate counter utilizes avalanche event counting over a large area with the ability to locate radioactive sources in two dimensions. When a beta ray, for example, enters a chamber, an ionization event occurs and the avalanche effect multiplies the event and results in charge collection on the anode surface for a limited period of time before the charge leaks away. The encoder comprises a symmetrical array of planar conductive surfaces separated from the anode by a dielectric material. The encoder couples charge currents, the amlitudes of which define the relative position of the ionization event. The amplitude of coupled current, delivered to pre-amplifiers, defines the location of the event. (author) 12 figs

  15. Development and Evaluation of the Muon Trigger Detector Using a Resistive Plate Chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon; Kim, Yong Kyun; Kang, Jeong Soo; Kim, Young Jin; Choi, Ihn Jea; Kim, Chong; Hong, Byung Sik

    2011-01-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system

  16. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  17. Long term performance studies of large oil-free bakelite resistive plate chamber

    International Nuclear Information System (INIS)

    Ganai, R.; Roy, A.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.; Shiroya, M.K.; Agarwal, K.

    2016-01-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ∼ 0.83 ns at the point of measurement at ∼ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  18. Long term performance studies of large oil-free bakelite resistive plate chamber

    Science.gov (United States)

    Ganai, R.; Roy, A.; Shiroya, M. K.; Agarwal, K.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.

    2016-09-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ~ 0.83 ns at the point of measurement at ~ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  19. La carte de localisation des phénomènes d'avalanche (CLPA : enjeux et perspectives The Localization Map of Avalanche Phenomena (CLPA in French: stakes and prospects

    Directory of Open Access Journals (Sweden)

    Mylène Bonnefoy, Gilles Borrel, Didier Richard, Laurent Bélanger et Mohamed Naaim

    2010-09-01

    Full Text Available Après presque quarante ans d’existence, la carte de localisation des phénomènes d'avalanche (CLPA constitue aujourd’hui un outil incontournable pour la prise en compte du risque d’avalanche dans l’aménagement et la gestion des territoires de montagne. Pour optimiser la sécurité des zones urbanisées, ce dispositif a su se rénover par une mise à jour régulière et étendue des données et l'étude de nouvelles zones, mais aussi par une meilleure diffusion auprès des opérationnels et du public concernés. Les auteurs nous rappellent ici l'évolution du fonctionnement de la CLPA et l'intérêt d'élargir la valorisation de ses données dans de nouveaux outils scientifiques.The Localization Map of Avalanche Phenomena (CLPA in French was created in 1971 as a response to the deadly avalanche occurred in Val d’Isère (February 1970, 39 persons killed. The aim is to inventory and to memorize areas where avalanches occurred in the past in order to keep in memory precisely greatest limits of those avalanches. The CLPA was rapidly considered as an essential element for developing plan in mountain areas. After the other catastrophic avalanche, which occurred in the Montroc Village (Chamonix in February 1999, it was recommended “the mutual valuation of the EPA and the CLPA integrated into an information system containing the information on avalanches and the information on the other natural risks in mountain”. The ministry in charge of environment decided therefore to continue and to modernize the CLPA, mission that was assigned to the Cemagref with the ONF collaboration. This modernization was based on the end of maps and testimonies records digitizing, on the compilation of summary notes concerning main avalanches information in reference to a mountain massif, on the institution of a durable updating of the map and on the possibility of having all information on line on the website www.avalanches.fr. Information recorded in the

  20. THEORY AND PRACTICE OF INDIVIDUAL SNOW AVALANCHE RISK ASSESSMENT IN THE RUSSIAN ARCTIC

    Directory of Open Access Journals (Sweden)

    Aleksandr Shnyparkov

    2012-01-01

    Full Text Available In recent years, the Government of the Russian Federation considerably increased attention to the exploitation of the Russian Arctic territories. Simultaneously, the evaluation of snow avalanches danger was enhanced with the aim to decrease fatalities and reduce economic losses. However, it turned out that solely reporting the degree of avalanche danger is not sufficient. Instead, quantitative information on probabilistic parameters of natural hazards, the characteristics of their effects on the environment and possibly resulting losses is increasingly needed. Such information allows for the estimation of risk, including risk related to snow avalanches. Here, snow avalanche risk is quantified for the Khibiny Mountains, one of the most industrialized parts of the Russian Arctic: Major parts of the territory have an acceptable degree of individual snow avalanche risk (<1×10-6. The territories with an admissible (10-4–10-6 or unacceptable (>1×10-4 degree of individual snow avalanche risk (0.5 and 2% of the total area correspond to the Southeast of the Khibiny Mountains where settlements and mining industries are situated. Moreover, due to an increase in winter tourism, some traffic infrastructure is located in valleys with an admissible or unacceptable degree of individual snow avalanches risk.

  1. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1994-01-01

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n) 0 . The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density N st.p , defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as N st.p ∝ p 21/4 τ -3/4 . This pressure scaling disagrees with the p 3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density n e of free electrons becomes larger than the density N st.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  2. NINO An ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber

    CERN Document Server

    Anghinolfi, F; Martemyanov, A N; Usenko, E; Wenninger, Horst; Williams, M C S; Zichichi, A

    2004-01-01

    For the full exploitation of the excellent timing properties of the Multigap Resistive Plate Chamber (MRPC), front-end electronics with special characteristics are needed. These are (a) differential input, to profit from the differential signal from the MRPC (b) a fast amplifier with less than 1 ns peaking time and (c) input charge measurement by Time-Over-Threshold for slewing correction. An 8- channel amplifier and discriminator chip has been developed to match these requirements. This is the NINO ASIC, fabricated with 0.25 omegam CMOS technology. The power requirement at 40mW/channel is low. Results on the performance of the MRPCs using the NINO ASIC are presented. Typical time resolution a of the MRPC system is in the 50 ps range, with an efficiency of 99.9%.

  3. Stretched exponentials and power laws in granular avalanching

    Science.gov (United States)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  4. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska

    2017-10-01

    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  5. A test and calibration setup for mass-produced proportional chambers

    International Nuclear Information System (INIS)

    Burov, S.; Galaktionov, Yu.; Kamyshkov, Yu.

    1987-01-01

    The L3 experiment, presently being installed at (CERN) will use a 300 Hadron Calorimeter made of depleted uranium plates interleaved with about 8.000 proportional chambers. The review of experience in the use of gamma radioactivity of depleted uranium for the test of the chambers which are now being built at ITEP is given. The depleted uranium radioactivity and the response of a proportional chamber are discussed. A description of the test setup is given and a method to test the uniformity of the chamber response is discussed. Finally, a procedure for the L3 hadron calorimeter calibration in situ using uranium radioactivity is proposed

  6. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  7. Performance of a resistive plate chamber equipped with a new prototype of amplified front-end electronics

    CERN Document Server

    Marchisone, Massimiliano

    2016-01-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. At forward rapidity a muon spectrometer detects muons from low mass mesons, quarkonia, open heavy-flavor hadrons as well as weak bosons. A muon selection based on transverse momentum is made by a trigger system composed of 72 resistive plate chambers (RPCs). For the LHC Run 1 and the ongoing Run 2 the RPCs have been equipped with a non-amplified FEE called ADULT. However, in view of an increase in luminosity expected for Run 3 (2021-2023) the possibility to use an amplified FEE has been explored in order to improve the counting rate limitation and to prevent the aging of the detector, by reducing the charge per hit. A prototype of this new electronics (FEERIC) has been developed and tested first with cosmic rays before equipping one RPC in the ALICE cavern with it. In this talk the most important performance indicators - efficiency, dark current, dark rate, cluster size and total charge - of an RPC equipped with this new FEE will be r...

  8. Emplacement of rock avalanche material across saturated sediments, Southern Alp, New Zealand

    Science.gov (United States)

    Dufresne, A.; Davies, T. R.; McSaveney, M. J.

    2012-04-01

    The spreading of material from slope failure events is not only influenced by the volume and nature of the source material and the local topography, but also by the materials encountered in the runout path. In this study, evidence of complex interactions between rock avalanche and sedimentary runout path material were investigated at the 45 x 106 m3 long-runout (L: 4.8 km) Round Top rock avalanche deposit, New Zealand. It was sourced within myolinitic schists of the active strike-slip Alpine Fault. The narrow and in-failure-direction elongate source scarp is deep-seated, indicating slope failure was triggered by strong seismic activity. The most striking morphological deposit features are longitudinal ridges aligned radially to source. Trenching and geophysical surveys show bulldozed and sheared substrate material at ridge termini and laterally displaced sedimentary strata. The substrate failed at a minimum depth of 3 m indicating a ploughing motion of the ridges into the saturated material below. Internal avalanche compression features suggest deceleration behind the bulldozed substrate obstacle. Contorted fabric in material ahead of the ridge document substrate disruption by the overriding avalanche material deposited as the next down-motion hummock. Comparison with rock avalanches of similar volume but different emplacement environments places Round Top between longer runout avalanches emplaced over e.g. playa lake sediments and those with shorter travel distances, whose runout was apparently retarded by topographic obstacles or that entrained high-friction debris. These empirical observations indicate the importance of runout path materials on tentative trends in rock avalanche emplacement dynamics and runout behaviour.

  9. First results of the cosmic rays test of the RPC of the ATLAS muon spectrometer at LHC

    CERN Document Server

    Alviggi, M G; Caprio, M A; Carlino, G; De Asmundis, R; Della Pietra, M; Della Volpe, D; Iengo, P; Patricelli, S; Sekhniaidze, G

    2004-01-01

    The trigger for the Barrel Muon Spectrometer of the ATLAS experiment at LHC will be given by means of Resistive Plate Chambers working in avalanche mode. Before being mounted on the experimental apparatus each RPC chamber will undergo detailed quality control tests. A dedicated cosmic rays test station with good tracking resolution is operational in Naples University and INFN laboratory. All working parameters of RPCs are monitored and measured. Moreover, the uniformity of the efficiency on the whole surface is measured. A brief description of the test station and results for the first 148 Units will be presented.

  10. Performance of a parallel plate volume calorimeter prototype

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.; Sikler, F.

    1995-01-01

    An iron/gas parallel plate volume calorimeter prototype, working in the avalanche mode, has been tested using electrons of 20 to 150 GeV/c momentum with high voltages varying from 5400 to 5600 V (electric fields ranging from 36 to 37 KV/cm), and a gas mixture of CF4/CO, (80/20%). The collected charge was measured as a function of the high voltage and of the electron energy. The energy resolution was also measured. Comparisons are made with Monte-Carlo predictions. Agreement between data and simulation allows the calculation of the expected performance of a full size calorimeter. (Author)

  11. Performance of a parallel plate volume calorimeter prototype

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, G.L.; Bizzeti, A.

    1995-09-01

    An iron/gas parallel plate volume calorimeter prototype, working in the avalanche mode, has been tested using electrons of 20 to 150 GeV/c momentum with high voltages varying from 5400 to 5600 V (electric fields ranging from 36 to 37 KV/cm), and a gas mixture of CF 4 /CO 2 (80/20%). The collected charge was measured as a function of the high voltage and of the electron energy. The energy resolution was also measured. Comparisons are made with Monte-Carlo predictions. Agreement between data and simulation allows the calculation of the expected performance of a full size calorimeter

  12. Nanomechanics of slip avalanches in amorphous plasticity

    Science.gov (United States)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  13. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. X., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Zu, X. T., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Xiang, X. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, W. G.; Yuan, X. D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, K., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu [Department of Materials Engineering and Sciences, University of Michigan, 413B Space Research Building, Ann Arbor, Michigan 48109-2143 (United States); Gao, F. [Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352 (United States)

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  14. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon

    2014-01-01

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  15. The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy

    Directory of Open Access Journals (Sweden)

    P. Deline

    2011-12-01

    Full Text Available We describe a 0.5 Mm3 rock avalanche that occurred in 2008 in the western Alps and discuss possible roles of controlling factors in the context of current climate change. The source is located between 2410 m and 2653 m a.s.l. on Mont Crammont and is controlled by a densely fractured rock structure. The main part of the collapsed rock mass deposited at the foot of the rock wall. A smaller part travelled much farther, reaching horizontal and vertical travel distances of 3050 m and 1560 m, respectively. The mobility of the rock mass was enhanced by channelization and snow. The rock-avalanche volume was calculated by comparison of pre- and post-event DTMs, and geomechanical characterization of the detachment zone was extracted from LiDAR point cloud processing. Back analysis of the rock-avalanche runout suggests a two stage event.

    There was no previous rock avalanche activity from the Mont Crammont ridge during the Holocene. The 2008 rock avalanche may have resulted from permafrost degradation in the steep rock wall, as suggested by seepage water in the scar after the collapse in spite of negative air temperatures, and modelling of rock temperatures that indicate warm permafrost (T > −2 °C.

  16. Development and evaluation of the muon trigger detector using a resistive plate chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon

    2010-08-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction experiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications,such as diagnosis and customs inspection system

  17. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    Science.gov (United States)

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  18. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1983-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdown are eliminated up to 7 /sub μ/A average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  19. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1982-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdowns are eliminated up to 7 μA average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  20. In-beam evaluation of a medium-size Resistive-Plate WELL gaseous particle detector

    CERN Document Server

    Moleri, L.

    2016-09-27

    In-beam evaluation of a fully-equipped medium-size 30$\\times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.

  1. Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010

    Science.gov (United States)

    Naaim, Mohamed

    2017-04-01

    Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.

  2. Construction of the Cleo III drift chamber

    International Nuclear Information System (INIS)

    Csorna, S.; Marka, S.; Dickson, M.; Dombrowski, S. von; Peterson, D.; Thies, P.; Glenn, S.; Thorndike, E.H.; Kravchenko, I.

    1998-01-01

    The CLEO III group is constructing a new chamber to be installed as part of the staged luminosity upgrade program at the Cornell electron storage ring and compatible with the interaction region optics. Although having less radial extent than the current CLEO II tracking system, CLEO III will have equivalent momentum resolution because of material reduction in the drift chamber inner skin and gas. The thin inner skin requires special attention to the end-plate motion due to wire creep. During stringing, use of a robot will fully automate the wire handling on the upper end. (author)

  3. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  4. Information processing occurs via critical avalanches in a model of the primary visual cortex

    International Nuclear Information System (INIS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Tragtenberg, M. H. R.; Pinto, L. T.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit. (paper)

  5. Avalanches in the Bean critical-state model

    International Nuclear Information System (INIS)

    Barford, W.

    1997-01-01

    A macroscopic equation of motion for the flux density in dirty type-II superconductors is introduced. The flux density is subject to various types of spatially varying pinning force. When there is no stick-slip dynamics, i.e., when the static pinning force equals the dynamic pinning force, it is shown that in both one and two dimensions an increase in the surface magnetic field leads to an overall height change and hence to a change in magnetization equal to the change in the surface magnetic field. More interesting behavior occurs on introducing stick-slip dynamics, i.e., when the static pinning force exceeds the dynamic pinning force. In this limit a distribution of avalanche sizes over four orders of magnitude is found for a 100x100 lattice. Apart from the anomalous behavior at large sizes, this is shown to fit a distribution of the form P(s)∼s -ν exp(-s/α), where s is the avalanche size. The anomalous behavior for large sizes corresponds to avalanches which involve most of the lattice and, hence, cause the flux to open-quotes slide over the edge,close quotes as detected by a change in the edge magnetization. copyright 1997 The American Physical Society

  6. Status of the construction of the KLOE Drift Chamber

    International Nuclear Information System (INIS)

    Dell'Agnello, S.

    1997-01-01

    A status report on the construction of the drift chamber for the KLOE experiment at the LNF DAΦNE Φ-factory is given. Physics requirements, detector design performance and its key mechanical features and components are briefly reviewed. The program currently consists of (i) the preparation of final detector components, complemented by (ii) extensive tests of prototypes of critical mechanical parts (like the end plates) and the ''test construction'' of a 1:1 chamber prototype. These two sub-programs are pursued in parallel. Single-component prototype checks include surveys of their shape and size, of accuracy of wire-hole drilling, measurements of their displacement or buckling under nominal load. The ''test construction'' is the debugging of mechanical assembly, survey and alignment of mechanics and of wire-stringing robotics, the actual stringing of a sample 2000 holes drilled on the prototype end plates, the measurement of electrical properties of strung wires, as well as of their mechanical tension. These extensive tests have been successfully completed; they represent an effective hands-on training of the construction group, and will allow a prompt and steady start of the drift chamber wire stringing as all necessary components became available at LNF. (orig.)

  7. Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D`Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeusky, R.

    2016-11-01

    The Extreme Energy Events (EEE) Project is devoted to the study of Extensive Atmospheric Showers through a network of muon telescopes, installed in High Schools, with the further aim of introducing young students to particle and astroparticle physics. Each telescope is a tracking detector composed of three Multi-gap Resistive Plate Chambers (MRPC) with an active area of 1.60 × 0.80 m2. Their characteristics are similar to the ones built for the Time Of Flight array of the ALICE Experimentat LHC . The EEE Project started with a few pilot towns, where the telescopes have been taking data since 2008, and it has been constantly extended, reaching at present more than 50 MRPCs telescopes. They are spread across Italy with two additional stations at CERN, covering an area of around 3 × 105 km2, with a total surface area for all the MRPCs of 190 m2. A comprehensive description of the MRPCs network is reported here: efficiency, time and spatial resolution measured using cosmic rays hitting the telescopes. The most recent results on the detector and physics performance from a series of coordinated data acquisition periods are also presented.

  8. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    Science.gov (United States)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  9. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    A. Casteller

    2008-05-01

    Full Text Available The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1 to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2 to highlight the potential of Nothofagus pumilio tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  10. Massive Formation of Equiaxed Crystals by Avalanches of Mushy Zone Segments

    Science.gov (United States)

    Ludwig, A.; Stefan-Kharicha, M.; Kharicha, A.; Wu, M.

    2017-06-01

    It is well known that the growth and motion of equiaxed crystals govern important microstructural features, especially in larger castings such as heavy ingots. To determine the origin of the equiaxed crystals, heterogeneous nucleation, and/or fragmentation of dendrite arms from columnar regions are often discussed. In the present study, we demonstrate that under certain conditions relatively large areas of mushy regions slide downward and form spectacular crystal avalanches. These avalanches crumble into thousands of dendritic fragments, whereby the larger fragments immediately sediment and the smaller proceed to behave as equiaxed crystals. Traces of such crystal avalanches can be seen by conspicuous equiaxed layers in the lower part of the casting. From the arguments in the discussion, it is believed that such a phenomenon may occur in alloys which reveal an upward solutal buoyancy in the interdendritic mush. This would include certain steels and other alloys such as Cu-Al, Pb-Sn, or Ni-Al-alloys. Moreover, the occurrence of crystal avalanches contribute to the formation of V-segregations.

  11. A concept for optimizing avalanche rescue strategies using a Monte Carlo simulation approach.

    Directory of Open Access Journals (Sweden)

    Ingrid Reiweger

    Full Text Available Recent technical and strategical developments have increased the survival chances for avalanche victims. Still hundreds of people, primarily recreationists, get caught and buried by snow avalanches every year. About 100 die each year in the European Alps-and many more worldwide. Refining concepts for avalanche rescue means to optimize the procedures such that the survival chances are maximized in order to save the greatest possible number of lives. Avalanche rescue includes several parameters related to terrain, natural hazards, the people affected by the event, the rescuers, and the applied search and rescue equipment. The numerous parameters and their complex interaction make it unrealistic for a rescuer to take, in the urgency of the situation, the best possible decisions without clearly structured, easily applicable decision support systems. In order to analyse which measures lead to the best possible survival outcome in the complex environment of an avalanche accident, we present a numerical approach, namely a Monte Carlo simulation. We demonstrate the application of Monte Carlo simulations for two typical, yet tricky questions in avalanche rescue: (1 calculating how deep one should probe in the first passage of a probe line depending on search area, and (2 determining for how long resuscitation should be performed on a specific patient while others are still buried. In both cases, we demonstrate that optimized strategies can be calculated with the Monte Carlo method, provided that the necessary input data are available. Our Monte Carlo simulations also suggest that with a strict focus on the "greatest good for the greatest number", today's rescue strategies can be further optimized in the best interest of patients involved in an avalanche accident.

  12. Investigation of avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Si Mohand, D.; Benhammou, Y.; Depasse, P.; Goyot, M.; Ille, B.; Linard, E.; Martin, F.; Musienko, Y.

    1996-06-01

    Some characteristics and performances of a set of nine Hamamatsu avalanche photodiodes have been investigated. These APDs have equipped a small 3x3 PbWO{sub 4} crystal matrix in X3 beam during the summer of 1995. This note summarizes the main results of this work. An electromagnetic calorimeter with a high resolution is necessary to search for the Higgs if it has a mass between 80 and 160 GeV. A PbWO{sub 4} crystal option has been chosen by the CMS collaboration to achieve this task. The light is collected and converted into an electric charge by an Avalanche Photodiode (APD) followed by a fast preamplifier. The advantage of the APDs is that they are not sensitive to the strong magnetic field when compared to photomultipliers and they are a small nuclear counter effect when compared to PIN diodes. In this study, we have tested nine low capacitance Hamamatsu APDs (S5345) received in spring, 1995 with an area of 0.2 cm{sup 2}. We have measured the capacitance and dark current for each APD. The gain measurements have also been done with gamma sources, continuous and pulsed light. The gain sensitivity versus bias and temperature have also been investigated succinctly. (author). 8 refs., 16 figs., 1 tab.

  13. Investigation of avalanche photodiodes

    International Nuclear Information System (INIS)

    Si Mohand, D.; Benhammou, Y.; Depasse, P.; Goyot, M.; Ille, B.; Linard, E.; Martin, F.; Musienko, Y.

    1996-06-01

    Some characteristics and performances of a set of nine Hamamatsu avalanche photodiodes have been investigated. These APDs have equipped a small 3x3 PbWO 4 crystal matrix in X3 beam during the summer of 1995. This note summarizes the main results of this work. An electromagnetic calorimeter with a high resolution is necessary to search for the Higgs if it has a mass between 80 and 160 GeV. A PbWO 4 crystal option has been chosen by the CMS collaboration to achieve this task. The light is collected and converted into an electric charge by an Avalanche Photodiode (APD) followed by a fast preamplifier. The advantage of the APDs is that they are not sensitive to the strong magnetic field when compared to photomultipliers and they are a small nuclear counter effect when compared to PIN diodes. In this study, we have tested nine low capacitance Hamamatsu APDs (S5345) received in spring, 1995 with an area of 0.2 cm 2 . We have measured the capacitance and dark current for each APD. The gain measurements have also been done with gamma sources, continuous and pulsed light. The gain sensitivity versus bias and temperature have also been investigated succinctly. (author). 8 refs., 16 figs., 1 tab

  14. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    Directory of Open Access Journals (Sweden)

    C. Vera Valero

    2018-03-01

    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  15. A pixel chamber to monitor the beam performances in hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, R.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Marchetto, F. E-mail: marchetto@to.infn.it; Peroni, C.; Sanz Freire, C.J.; Simonetti, L

    2004-03-01

    In this paper we describe the design, construction, and tests of a parallel plate ionization chamber with the anode segmented in (32x32) square pixels. The performance of the read out and data acquisition systems is also discussed. The design of the chamber has been finalized to be used as a beam monitor for therapeutical treatments. Position and flux resolution obtained with a carbon ion beam are presented.

  16. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    International Nuclear Information System (INIS)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V.E.

    2014-01-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams. - Highlights: • An ionization chamber with a novel design was characterized for x-ray beam dosimetry. • This ionization chamber was evaluated in diagnostic radiology qualities. • The characterization tests results were within the recommended limits. • Monte Carlo simulations were employed to evaluate the design of the dosimeter. • The developed prototype is a good alternative for calibration laboratories and clinics

  17. Hybrid phase transition into an absorbing state: Percolation and avalanches

    Science.gov (United States)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  18. High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tanioka, K. [NHK Science and Technical Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510 (Japan)], E-mail: tanioka.k-jg@nhk.or.jp

    2009-09-01

    We have been studying a very sensitive image sensor since the early 1980s. In 1985, the author found for the first time that an experimental pickup tube with an amorphous selenium photoconductive target exhibits high sensitivity with excellent picture quality because of a continuous and stable avalanche multiplication phenomenon. We named the pickup tube with an amorphous photoconductive layer operating in the avalanche-mode 'HARP': High-gain Avalanche Rushing amorphous Photoconductor. A color camera equipped with the HARP pickup tubes has a maximum sensitivity of 11 lx at F8. This means that the HARP camera is about 100 times as sensitive as that of CCD camera for broadcasting. This ultrahigh-sensitivity HARP pickup tube is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications, including medical diagnoses, biotech research, and nighttime surveillance. In addition, since the HARP target can convert X-rays into electrons directly, it should be possible to exploit this capability to produce X-ray imaging devices with unparalleled levels of resolution and sensitivity.

  19. Microchannel plate assembly parameters with micron gaps

    International Nuclear Information System (INIS)

    Demchenkova, A.A.

    1987-01-01

    Performance of chevron microchannel plate assembly with 5 and 15 μm gaps between them has been investigated. The assembly is placed into a vacuum chamber under pressure -6 Torr and irradiated by neutral He and Ar atom beams with 1.5 and 3 keV energies as well as by ultraviolet photons with 147 nm wave length. Dependence of the gain and amplitude resolution on power voltage in plates are measured. The results obtained have shown that microchannel plates permit to obtain the gain up to 3x10 7 and amplitude resolution up to 30% when detecting both atomic particles and ultraviolet photons. The assembly can be effectively used in those cases when it is necessary to use microchannel plates with curved channels

  20. Determination of the Townsend primary ionization coefficient using a parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Tsumaki, Koji

    1988-01-01

    Gas multiplication factors were obtained from the observed fast pulse of a parallel plate avalache counter and the Townsend primary ionization coefficients for methane and isobutane were determined from the data over the ranges E/P = 150-228 V/cm·Torr and 183-411 V/cm·Torr, respectively. The results for methane agreed well with the values obtained by Heylen. (author)

  1. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    Science.gov (United States)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  2. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions

    International Nuclear Information System (INIS)

    Lu Jiang; Tian Xiaoli; Lu Shuojin; Zhou Hongyu; Zhu Yangjun; Han Zhengsheng

    2013-01-01

    The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching (UIS) conditions is measured. This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT, which occur at different current conditions. The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor, which leads to the deterioration of the avalanche reliability of power MOSFETs. However, the results of the IGBT show two different failure behaviors. At high current mode, the failure behavior is similar to the power MOSFETs situation. But at low current mode, the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result. (semiconductor devices)

  3. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  4. Scaling behavior of individual barkhausen avalanches in nucleation-mediated magnetization reversal processes

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Fischer, Peter; Kim, Dong-Hyun; Shin, Sung-Chul

    2009-11-09

    We report the scaling behavior of Barkhausen avalanches along the hysteresis loop of a CoCrPt alloy film with perpendicular magnetic anisotropy for every field step of 200 Oe. Individual Barkhausen avalanches are directly observed via high-resolution soft X-ray microscopy with a spatial resolution of 15 nm. The Barkhausen avalanches exhibit a power-law scaling behavior, where the scaling exponent of the power-law distribution drastically changes from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the applied magnetic field approaches the coercivity of the CoCrPt film. We infer that this is due to the coupling of adjacent domains.

  5. One-dimensional curved wire chamber for powder x-ray crystallography

    International Nuclear Information System (INIS)

    Ortendahl, D.; Perez-Mendez, V.; Stoker, J.; Beyermann, W.

    1978-01-01

    A xenon filled single anode wire chamber with delay line readout has been constructed for use in powder x-ray crystallography using 8 to 20 keV x-rays. The entire chamber including the anode wire and the delay line which forms part of the cathode plane is a section of a circular arc whose center is the powder specimen. The anode wire--38 μm gold-plated tungsten--is suspended in a circular arc by the interaction of a current flowing through it and magnetic field provided by two permanent magnets, above and below the wire, extending along the active length of the chamber. When filled with xenon to 3 atmospheres the chamber has uniform sensitivity in excess of 80% at 8 keV and a spatial resolution better than 0.3 mm

  6. Angle sensitive single photon avalanche diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  7. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  8. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  9. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  10. Evaluating terrain based criteria for snow avalanche exposure ratings using GIS

    Science.gov (United States)

    Delparte, Donna; Jamieson, Bruce; Waters, Nigel

    2010-05-01

    Snow avalanche terrain in backcountry regions of Canada is increasingly being assessed based upon the Avalanche Terrain Exposure Scale (ATES). ATES is a terrain based classification introduced in 2004 by Parks Canada to identify "simple", "challenging" and "complex" backcountry areas. The ATES rating system has been applied to well over 200 backcountry routes, has been used in guidebooks, trailhead signs and maps and is part of the trip planning component of the AVALUATOR™, a simple decision-support tool for backcountry users. Geographic Information Systems (GIS) offers a means to model and visualize terrain based criteria through the use of digital elevation model (DEM) and land cover data. Primary topographic variables such as slope, aspect and curvature are easily derived from a DEM and are compatible with the equivalent evaluation criteria in ATES. Other components of the ATES classification are difficult to extract from a DEM as they are not strictly terrain based. An overview is provided of the terrain variables that can be generated from DEM and land cover data; criteria from ATES which are not clearly terrain based are identified for further study or revision. The second component of this investigation was the development of an algorithm for inputting suitable ATES criteria into a GIS, thereby mimicking the process avalanche experts use when applying the ATES classification to snow avalanche terrain. GIS based classifications were compared to existing expert assessments for validity. The advantage of automating the ATES classification process through GIS is to assist avalanche experts with categorizing and mapping remote backcountry terrain.

  11. A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.

    2013-12-01

    Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical

  12. Critical state transformation in hard superconductors resulting from thermomagnetic avalanches

    International Nuclear Information System (INIS)

    Chabanenko, V.V.; Kuchuk, E.I.; Rusakov, V.F.; Abaloszewa, I.; Nabialek, A.; Perez-Rodriguez, F.

    2016-01-01

    The results of experimental investigations of magnetic flux dynamics in finite superconductors, obtained using integral and local measurements methods, are presented. Local methods were aimed at clarifying the role of demagnetizing factor in dynamic formation of a complex magnetic structure of the critical state of hard superconductors. To understand the reasons for cardinal restructuring of the induction, we further analyzed the literature data of flux dynamics visualization during avalanches, obtained by magneto-optical methods. New features in the behavior of the magnetic flux during and after the avalanche were discovered. Two stages of the formation of the induction structures in the avalanche area were established, i.e. of homogeneous and heterogeneous filling with the magnetic flux. The mechanism of the inversion of the induction profile was considered. Oscillations in the speed of the front of the magnetic flux were revealed. Transformation of the critical state near the edge of the sample was analyzed. The role of thermal effects and of de-magnetizing factor in the dissipative flux dynamics was shown. Generalized information allowed, in the framework of the Bean concept, to present a model the transformation of the picture of the induction of the critical state and of the superconducting currents of a finite superconductor as a result of flux avalanches for two regimes - of screening and trapping of the magnetic flux.

  13. Avalanches in a Bose-Einstein condensate

    NARCIS (Netherlands)

    Schuster, J.; Marte, A.; Amtage, S.; Sang, B.; Rempe, G.; Beijerinck, H.C.W.

    2001-01-01

    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87Rb condensate. We show that the collisional opacity of an ultracold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under

  14. Signal coupling and signal integrity in multi-strip resistive plate chambers used for timing applications

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Diego, E-mail: D.Gonzalez-Diaz@gsi.de [GSI Helmholtzcenter for Heavy Ion Research, Darmstadt (Germany); Technical University, Darmstadt (Germany); Department of Engineering Physics, Tsinghua University, Beijing (China); Chen Huangshan; Wang Yi [Technical University, Darmstadt (Germany)

    2011-08-21

    We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range f=0.1-3.5GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100 ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 m scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to their inherent unbalance between capacitive and inductive coupling. A practical way to restore this symmetry has been introduced (hereafter 'electrostatic compensation'), allowing for a cross-talk suppression factor up to x12 and a rise-time reduction by 200 ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1 GHz for propagation along 2 m in typical float glass-based RPCs. It is further shown that 'electrostatic compensation' can be achieved for an arbitrary number of strips as long as the nature of the coupling is 'short-range', that is an almost exact assumption for typical strip-line RPCs. This work extends the bandwidth of previous studies by a factor ofx20.

  15. α spectrometry grid ionization chamber: improvement of the characteristics

    International Nuclear Information System (INIS)

    Le Du, R.; Miltenberger, B.

    1968-01-01

    The rise time of the signals obtained with a grid ionization chamber depends on the orientation in the chamber and on the mobility of the ionization components. Our grid chambers are fitted with an electronic system which analyses the signals due to the electronic ionization components which are collected on the plate and on the source holder. By obtaining coincidence between these two signals, it is possible to select paths of any given orientation. Using this principle we have built an electronic collimator which does not have the disadvantages of a mechanical collimator for alpha spectra studies, and which, further, considerably reduces the background of the chamber. Simultaneously with the study of the improvement of a spectra with our device, we have been able to dissociate the contributions of back-diffusion and of self-absorption phenomena to the activity of an alpha source; some results will be presented. (authors) [fr

  16. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    Science.gov (United States)

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  17. Avalanche effect in the planar array of superheated superconductors

    International Nuclear Information System (INIS)

    Meagher, G.; Pond, J.; Kotlicki, A.; Turrell, B.G.; Eska, G.; Drukier, A.K.

    1996-01-01

    An avalanche effect has been observed in a cryogenic detector based on the planar array of superheated superconductors (PASS). The indium PASS, fabricated by photolithography on a mylar substrate, consisted of 40 well-separated lines each containing about 175 spheres of diameter 18 μm and separation 20 μm with those at the end being shielded by superconducting wire. The magnetic field was applied in the PASS plane parallel to the lines. Avalanche events in which several granules changed their state from superconducting to normal were triggered by the nucleation of the transition in a single grain by an alpha particle. (author)

  18. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.

    2007-01-01

    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential......, but a characteristic event size cannot be inferred, because the mean values of these quantities increase as L-alpha with alpha similar to 3/2. In contrast with results obtained in 2D models, we do not see simply connected avalanches. The exponent suggests a fractal shape of the avalanches, which is also evidenced...

  19. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  20. Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland

    Science.gov (United States)

    Techel, F.; Zweifel, B.; Winkler, K.

    2015-09-01

    Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - bergportal.ch and camptocamp.org. Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the

  1. Progress in the use of avalanche photodiodes for readout for calorimeters

    International Nuclear Information System (INIS)

    Fenker, H.; Morgan, K.; Regan, T.

    1991-09-01

    During the past year the Superconducting Super Collider Tracking Group has progressed from acquisition of its first avalanche photodiode (APD) to installation of a 96-channel array of the devices. The work was motivated by the desire to learn how to use APDs as the sensitive elements in a fiber tracking detector, moderated by the presence of limited resources and the absence of activity within groups outside the SSC Laboratory on such a project. We chose, therefore, to team up with an ongoing research effort which intended to evaluate both pre-shower and shower-maximum detectors and various means of sensing the light produced. The pre-shower detector is made of layers of scintillating fibers similar to a fiber tracker. The shower-maximum detector uses optical fibers to transmit the light from scintillating plates to the readout devices. Our contribution has been to develop the APD array for use in this test from concept to operation. Currently, the equipment is installed in Fermilab's MP beamline awaiting delivery to the final 36 APDs and exposure to the beam. 9 refs., 18 figs

  2. Fractal multiplication of electron avalanches and streamers: new mechanism of electrical breakdown?

    International Nuclear Information System (INIS)

    Ficker, T

    2007-01-01

    Long-lasting problems concerning peculiar statistical behaviour of high populated electron avalanches have been analysed. These avalanches are precursors of streamer breakdown in gases. The present streamer theory fails in explaining severe systematic deviations from the Furry statistics that is believed to be a governing statistical law. Such a deviated behaviour of high populated avalanches seems to be a consequence of a special pre-breakdown mechanism that is rather different from that known so far in discharge physics. This analysis tends towards formulating a modified theoretical concept supplementing the streamer theory by a new statistical view of pre-streamer states. The correctness of the concept is corroborated by a series of experiments

  3. Alpha- and gamma-detection by the avalanche detectors with metal-resistor-semiconductor structure

    International Nuclear Information System (INIS)

    Vetokhin, S.S.; Evtushenko, V.P.; Zalesskij, V.B.; Malyshev, S.A.; Chudakov, V.A.; Shunevich, S.A.

    1992-01-01

    Possibility to use silicon avalanche photodetectors with metal-resistor-semiconductor structure with 0.12 cm 2 photosensitive area as detectors of α-particles, as well as, photodetector of γ-quanta scintillation detector is shown. When detection of α-particles the energy resolution reaches 10%. R energy resolution for avalanche photodetector-CsI(Tl) scintillator system cooled up to - 60 deg C at 59 keV ( 241 Am) and 662 keV ( 137 Cs) energy of γ-quanta constitutes 60% and 80%, respectively. R minimal value in the conducted experiments is determined by the degree of irregularity of avalanche amplification along the photodetector area

  4. Lowering effect of radioactive irradiation on breakdown voltage and electron avalanche pulse characteristics

    International Nuclear Information System (INIS)

    Kawahashi, Akira; Nakano, Toru; Hosokawa, Tatsuzo; Miyoshi, Yosinori.

    1976-01-01

    In the time resolving measurement of the growing process and breakdown of electron avalanche in a gap of uniform electric field, the phenomenon that DC breakdown voltage slightly lowered was observed when β ray was irradiated as the initial electron source, as compared with unirradiated condition. Beta source used is 90 Sr- 90 Y of 2 mCi in radiative equilibrium. The experimental results and the examination are described in detail. In brief, the remarkable superposition of succeeding avalanche pulse over the preceeding avalanche pulse waveform was observed under the gap condition in which the breakdown voltage decreased in β-ray irradiation. Thus this superposition of avalanche pulses is considered as one of the causes of the breakdown voltage reduction. When β source is used as the initial electron source, the number of supplied initial electrons is very large as compared with unity, and at the same time, a great number of initial electrons can be supplied within the diffusion radius r of avalanche. Then the effect of initial electron number n 0 was considered by employing a diagram for breakdown scheme. The transition from Townsend type breakdown to streamer type breakdown occurs owing to increasing n 0 , and in that condition, the breakdown voltage lowers slightly. (Wakatsuki, Y)

  5. Volcanic avalanche fault zone with pseudotachylite and gouge in French Massif Central

    Science.gov (United States)

    Bernard, Karine; van Wyk de Vries, Benjamin

    2017-11-01

    Structures and textures with sedimentological variations at different scales of the lithofacies assemblage help us to constrain the basal kinematic transition from non-depositional to depositional conditions during volcanic avalanche emplacement. In the well-exposed impact-sheared contact along volcanic avalanche fault zone in the French Massif Central, we observe how the granular textures of the pseudotachylite and fault gouge have recorded the propagation of shock wave with granular oscillatory stress. Sequential events of basal aggradation along avalanche fault zone have been established related to fractal D-values, temperature pressure regime and oscillatory stress during slow wave velocity. A typical lithofacies assemblage with a reverse grading shows the pseudotachylite and fault gouge. A cataclastic gradient is characterised by the fractal D-values from 2.7 in jigsaw breccias with pseudotachylite partial melt, to 2.6 in the polymodal gouge. Shock, brecciation and comminution produce cataclastic shear bands in the pseudotachylite and quartz microstructures along the basal contact of the volcanic debris-avalanche deposit. Gouge microstructures show granular segregation, cataclasis with antithetic rotational Riedel shear, and an arching effect between the Riedel shear bands. X-ray microtomography provided 3D microfabrics along the clastic vein in the sandy-gouge. From the available statistical dataset, a few equations have been developed implicating the same cataclastic origin with a co-genetic evolution of lithofacies. An impact wave during primary shear propagation may contribute to produce hydroclastic matrix, pseudotachylite partial melt and proximal gouge thixotropy with v 50m/s and a T < 654 °C. The interseismic period with oscillatory stress is related to crushed clasts and basaltic melt around 800 °C, Riedel shear bands with granular segregation along the fault gouge. The secondary shock by matrix-rich avalanche (ΔP = 10GPa, T ≥ 1000-1500

  6. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  7. Design of ITER neutron monitor using micro fission chambers

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Ebisawa, Katsuyuki; Ando, Toshiro; Kasai, Satoshi; Johnson, L.C.; Walker, C.

    1998-08-01

    We are designing micro fission chambers, which are pencil size gas counters with fissile material inside, to be installed in the vacuum vessel as neutron flux monitors for ITER. We found that the 238 U micro fission chambers are not suitable because the detection efficiency will increase up to 50% in the ITER life time by breading 239 Pu. We propose to install 235 U micro fission chambers on the front side of the back plate in the gap between adjacent blanket modules and behind the blankets at 10 poloidal locations. One chamber will be installed in the divertor cassette just under the dome. Employing both pulse counting mode and Campbelling mode in the electronics, we can accomplish the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution, and eliminate the effect of gamma-rays. We demonstrate by neutron Monte Carlo calculation with three-dimensional modeling that we avoid those detection efficiency changes by installing micro fission chambers at several poloidal locations inside the vacuum vessel. (author)

  8. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    Science.gov (United States)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  9. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  10. Completion of installation of DT and RPC chambers before Cosmic Challenge

    CERN Multimedia

    Mimmo Dattola

    2006-01-01

    All the drift tube ("DT") and resistive plate chambers ("RPC") packages foreseen to be installed in the central barrel ring ("YB0") before the magnet test have been installed (some are missing in the photograph but have since been installed). These silver-coloured rectangular boxes in the gaps between the steel of the rings (red in the image) detect muons. Chambers for Sectors 4 and 5 (sector 1 is at the 9 o'clock position and the counting is clockwise) as well as a couple of chambers in the support "feet" (sectors 9 and 11) will be installed after the magnet test. Chambers for sectors 1 and 7 will be installed in the underground cavern ("UXC") - the latter will be in the places used for the lifting and lowering of the ring.

  11. TH-AB-201-08: Ion Chamber Dose Measurements - Problems with the Temperature-Pressure Correction Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bourgouin, A [Carleton University, Ottawa, Ontario (Canada); McEwen, M [National Research Council, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate the behavior of ionization chambers over a wide pressure range. Methods: Three cylindrical and two parallel-plate designs of ion chamber were investigated. The ion chambers were placed in vessel where the pressure was varied from atmospheric (101 kPa) down to 5 kPa. Measurements were made using 60Co and high-energy electron beams. The pressure was measured to better than 0.1% and multiple data sets were obtained for each chamber at both polarities to investigate pressure cycling and dependency on the sign of the charge collected. Results: For all types of chamber, the ionization current, corrected using the standard PTP, showed a similar behaviour. Deviations from the standard theory were generally small for Co-60 but very significant for electron beams, up to 20 % below P = 10 kPa. The effect was found to be always larger when collecting negative charge, suggesting a dependence on free-electron collection. The most likely source of such electrons is low-energy electrons emitted from the electrodes. This signal would be independent of air pressure within the chamber cavity. The data was analyzed to extract this signal and it was found to be a non-negligible component of the ionization current at atmospheric pressure. In the case of the parallel plate chambers, the effect was approximately 0.25 %. For the cylindrical chambers the effect was larger - up to 1.2 % - and dependent on the chamber type, which would be consistent with electron emission from different wall materials. For the electron beams, the correction factor was dependent on the electron energy and approximately double that observed in 60Co. Conclusion: Measurements have indicated significant deviations of the standard pressure correction that are consistent with electron emission from chamber electrodes. This has implications for both primary standard and reference ion chamber-based dosimetry.

  12. SU-F-T-64: An Alternative Approach to Determining the Reference Air-Kerma Rate from Extrapolation Chamber Measurements

    International Nuclear Information System (INIS)

    Schneider, T

    2016-01-01

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of "1"2"5I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x_0. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit to the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x_1, x_2) is applied to the difference of charges measured at the two plate separations x_1 and x_2. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x_1 and x_2, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.

  13. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  14. Spatially Extended Avalanches in a Hysteretic Capillary Condensation System: Superfluid 4He in Nuclepore

    International Nuclear Information System (INIS)

    Lilly, M.P.; Wootters, A.H.; Hallock, R.B.

    1996-01-01

    Capacitive studies of hysteretic capillary condensation of superfluid 4 He in Nuclepore have shown that the initial draining of the pores occurs over a small range of the chemical potential with avalanches present as groups of pores drain. In the work reported here, the avalanches in this system are shown to be nonlocal events which involve pores distributed at low density across the entire sample. The nonlocal avalanche behavior is shown to be enabled by the presence of a superfluid film connection among the pores. copyright 1996 The American Physical Society

  15. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  16. On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2018-02-01

    Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  17. Reducing financial avalanches by random investments

    Science.gov (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  18. Avalanches in Mn12-Acetate: ``Magnetic Burning"

    Science.gov (United States)

    McHugh, Sean; Suzuki, Y.; Graybill, D.; Sarachik, M. P.; Avraham, N.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2006-03-01

    From local time-resolved measurements of fast reversal of the magnetization in single crystals of the molecular magnet Mn12-acetate, we have shown[1] that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. The propagation speed of the avalanche depends on the energy stored in each molecule, which can be controlled and tuned using an external magnetic field. We report studies of propagation speed with different external fields in Mn12-acetate. [1] Yoko Suzuki, M.P. Sarachik, E.M. Chudnovsky, S. McHugh, R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, H. Shtrikman, E. Zeldov, N.E. Chakov and G. Christou, Phys. Rev. Lett. 95, 147201 (2005).

  19. Using GIS and Google Earth for the creation of the Going-to-the-Sun Road Avalanche Atlas, Glacier National Park, Montana, USA

    Science.gov (United States)

    Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark

    2010-01-01

    Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.

  20. The development of structures in analogue and natural debris avalanches

    Science.gov (United States)

    Paguican, Engielle Mae; van Wyk de Vries, Benjamin; Mahar Francisco Lagmay, Alfredo; Grosse, Pablo

    2010-05-01

    All types of rockslide-debris avalanches present a plethora of internal structures that are also well observed on the surface. Many of these are seen as faults and folds that can be used to determine deformation history and kinematics. We present two sets of simple and well-constrained experiments of reduced basal friction laboratory rockslides, equivalent to a highly deformed simple shear layer, with plug-flow. These follow the original ramp-slide work of Shea and van Wyk de Vries (Geosphere, 2008). The experiments used a curved ramp where materials accelerate until reaching a gently-sloped depositional surface and a constantly inclined ramp with a more regular slope and longer slides. A detailed description of deposit structures, their sequential formation and morphology is then used to investigate the transport type and deformation chronology from slide initiation to runout stopping of avalanches. Results using a curved ramp show accumulation and thickening at where the slope decreases. The thickened mass then further remobilises and advances by secondary collapse of the mass. Such a stop-start process may be important in many mountainous avalanches where there are rapid changes in slope. The constantly inclined ramp shows shearing and extensional structures at the levees and a set of compression and extension structures in the middle. We noted that frontal accumulation during flow occurs as materials at the front move slower relative to those in the medial and proximal zones. This also leads to secondary frontal collapse, and helps to maintain a thicker mass that can flow further. Descriptions and analyses of these structures are then applied to the kinematics and dynamics of natural examples. We study the 2006 Guinsaugon Rockslide event in the Philippines and find that frontal accumulation and secondary avalanching had also occurred and were important in determining the distribution and runout of the mass. Frontal bulking and collapse may also have occurred at

  1. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  2. Avalanche photodiodes for ISABELLE detectors

    International Nuclear Information System (INIS)

    Strand, R.C.

    1979-01-01

    At ISABELLE some requirements for detecting bursts of photons are not met by standard photomultiplier tubes. The characteristics of immunity to magnetic fields, small size (few mm), low power consumption (approx. 100 mW), insensitivity to optical overloads, and wide dynamic range (approx. 60 dB) are achieved with difficulty, if at all, with PMTs. These are characteristics of the solid state avalanche photodiode (APD), the preferred detector for light-wave communications. Successful field tests with APD detectors stimulated the design of standard optical-fiber communication systems to replace wire carriers by the early 1980's. In other characteristics, i.e., counting rate, pulse-height resolution, effective quantum efficiency, detection efficiency, and reliability, bare APDs are equivalent to standard PMTs. APDs with currently available amplifiers cannot resolve single photoelectrons but they could provide reasonable detection efficiencies and pulse-height resolution for packets of approx. > 100 photons. Commercially available APDs can cost up to 100 times as much as PMTs per active area, but they are potentially much cheaper. Six topics are discussed: (1) detectors for light-wave communication and detectors for particles, (2) avalanche photodiodes, (3) commercially available APDs, (4) dynamic response of PMTs and bare APDs, (5) photon counting with cold APDs, and (6) conclusions and recommendations

  3. Study on the ionization chamber for thickness measurement

    International Nuclear Information System (INIS)

    Xue Shili; Miao Qiangwen

    1988-01-01

    The principle, construction and performances of ionization chambers for measuring the thickness of metal and nonmetal materials are introduced. With them the thickness of thin materials (thickness ranging from 10 to 6000 g/m 2 ), the surface layer thickness of composed materials and the thickness of steel plate (thickness ranging from 0 to 32 kg/m 2 ) are measured effectively

  4. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  5. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  6. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    Science.gov (United States)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the

  7. Studies on multigap resistive plate chamber prototypes for the new NeuLAND detector at the R3B experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, Michael; Endres, Janis; Zilges, Andreas [IKP, Universitaet Koeln (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Bemmerer, Daniel; Stach, Daniel; Wagner, Andreas; Yakorev, Dmitry [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector is part of the R3B experiment at FAIR and will detect neutrons between 0.2 and 1 GeV. The high energy neutrons are converted to charged particles, mainly protons, which are detected by Multigap Resistive Plate Chambers (MRPC). For the detector, a time resolution of {sigma}{sub t} < 100 ps and a position resolution of {sigma}{sub x,y,z} {approx}1 cm is required for given flight paths in the range from 10 to 35 m. An active area of 2 x 2 m{sup 2} of the neutron detector at a distance of 12.5 m to the target will match the angular acceptance of {+-}80 mrad for the neutrons defined by the gap of the superconducting dipole magnet. The salient features of the prototypes are described, as well as electrical measurements and studies with cosmic rays.

  8. Gas sampling calorimeter studies in proportional, saturated avalanche, and streamer modes

    International Nuclear Information System (INIS)

    Atac, M.; Bedeschi, F.; Yoh, J.; Morse, R.; Procario, M.

    1982-01-01

    Recently, satisfactory new results were obtained at SLAC from gas sampling calorimeters running in the saturated avalanche mode within the energy range of 1.5 to 17.5 GeV. To study the higher energy behavior of this mode, more tests were carried out in the M4 beamline at Fermilab. This paper contains results obtained from the MAC prototype electromagnetic and hadronic calorimeters running in the proportional, saturated avalanche, and the streamer regions for energies between 12 and 150 GeV

  9. Saturation curves of Tandem ionization chambers for Hp(10) measurement

    International Nuclear Information System (INIS)

    Vivolo, Vitor; Caldas, Linda V.E.

    2005-01-01

    It is very important that the radiation detectors measure doses with high precision and accuracy. The verification of the standard dosemeters such as ionization chambers is a very important step in quality control programs of calibration laboratories and in radioprotection procedures. In this work the polarity effect and ionic recombination of two ionization chambers were studied. Saturation curves were obtained using two identical in shape, parallel-plate ionization chambers developed at IPEN (radioprotection level), with collecting electrodes made of different materials (to obtain different energy dependences of their responses) in standard X radiation beams of low and medium energies. The tests were performed following international standard recommendations (IEC 60731). The results show that both ionization chambers were approved in the tests; the variation on the readings were lower than 1%, for bias voltage between - 400V and + 400V. The results of the polarity tests of the ionization chambers show that the response variation is within the standard IEC 60731 limits. The determined ionic recombination agrees with the recommendation of IAEA (TRS 398). Therefore, the ionization chambers tested in this work were approved. (author)

  10. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail: verma@nist.gov; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2016-03-28

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  11. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    Lukin, K.A.; Cerdeira, H.A.; Colavita, A.A.

    1995-06-01

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  12. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  13. Smartphone applications for communicating avalanche risk information - a review of existing practices

    Science.gov (United States)

    Charrière, M. K. M.; Bogaard, T. A.

    2015-11-01

    Every year, in all mountainous regions, people are victims of avalanches. One way to decrease those losses is believed to be informing about danger levels. The paper presents a study on current practices in the development of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of smartphone apps highlights the context of their development, how choices of content and visualization were made as well as how their effectiveness is evaluated. It appears that although the communicators agree on the message to disseminate, its representation triggers debate. Moreover, only simple evaluation processes are conducted but there is a clear awareness that further scientific efforts are needed to analyze the effectiveness of the smartphone apps. Finally, the current or planned possibility for non-experts users to report feedback on the snow and avalanches conditions open the doors to a transition of these apps from one-way communication tools to two-ways communication platforms. This paper also indicates the remaining challenges that avalanche risk communication is facing, although it is disputably the most advanced and standardized practice compared to other natural hazards. Therefore, this research is of interest for the entire field of natural hazards related risk communication.

  14. Indication chamber of liquid metal fired steam generators with double wall for heat transfer

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1982-01-01

    The double wall of the steam generator consists of inner and outer tubes anchored in a tube plate. Between the tubes are indication spaces which end in recesses formed at least in one of the tube plates and coaxial with the outer tubes. The recesses interconnected with channels form the indication chamber to which is connected at least one sensor of the alarm signal equipment. (B.S.)

  15. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    Science.gov (United States)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  16. PPC's (parallel plate chambers) y su aplicación en calorimetría a bajo angulo en experimentos en el LHC

    CERN Document Server

    Fouz-Iglesias, M C

    1997-01-01

    In the LHC working conditions especific detector requirements are fast response, high rate capability and radiation resistance. This is particularly important for detectors in the low angle regions such as the Very Forward Hadron Calorimeter ( VF ) of CMS , located at 11 m from the interaction point and covering the pseudorapidity region between 3 and 5. The major goals of this calorimeters are to improve the measured of the transverse energy ( Et) and the missing transverse energy ( Etmiss) ( important for Higgs searches, Top-quark physics, SUSY searches, etc) and the detection and reconstruction of forward jets characteristics of some importants process (such the TeV jets coming from the WW(ZZ) fusion Higgs production mechanism ). The requirements for this calorimeter are a moderate energy resolution and an adequate segmentation for forward jet tagging and reconstruction are needed. The purpose of this thesis is to show that calorimeters based on the Parallel Plate Chambers ( PPC. - Gaseous detector with pl...

  17. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  18. Universal Critical Dynamics in High Resolution Neuronal Avalanche Data

    Science.gov (United States)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; DeVille, R. E. Lee; Dahmen, Karin A.; Beggs, John M.; Butler, Thomas C.

    2012-05-01

    The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  19. A micropixel avalanche phototransistor for time of flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Abdullayev, K. [National Aviation Academy, Baku (Azerbaijan); Akberov, R. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Heydarov, N. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan); Mukhtarov, R. [National Aviation Academy, Baku (Azerbaijan); Nazarov, M.; Valiyev, R. [National Nuclear Research Center, Baku (Azerbaijan)

    2017-02-11

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs. - Highlights: • A new photo detector – micropixel avalanche phototransistor was developed. • MAPT has a matrix of microtransistors with fast output. • In these modules the duration of the leading edge of the signal from the photodetectors are not worse than 50–100 ps.

  20. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  1. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    Science.gov (United States)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb

  2. Optical fibers and avalanche photodiodes for scintillator counters

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Palmer, R.B.; Strand, R.C.

    1980-01-01

    Fine hodoscopes can be made of new scintillating optical fibers and one half inch end-on PMT's. An avalanche photodiode with small size and immunity to magnetic fields remains as a tempting new device to be proven as a photodetector for the fibers

  3. Stability of special ionizing chambers for using in programs of quality control in radiotherapy and radiodiagnostic

    International Nuclear Information System (INIS)

    Afonso, Luciana C.; Caldas, Linda V.E.; Costa, Alessandro M. da

    2004-01-01

    In this work the response stability of two special parallel-plate ionization chambers, developed at the Calibration Laboratory of IPEN, were tested. The chambers are face doubled, with internal collecting electrodes of different materials (graphite and aluminium), in tandem system, and with air volumes of 0.6 cm 3 and 2.5 cm 3 , for radiotherapy and diagnostic radiology levels, respectively. The results showed that the chambers kept constant their metrological characteristics presenting their usefulness for quality control programs in radiotherapy and diagnostic radiology. (author)

  4. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail: johan.abautret@ies.univ-montp2.fr; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  5. Developing an Experimental Simulation Method for Rock Avalanches: Fragmentation Behavior of Brittle Analogue Material

    Science.gov (United States)

    Thordén Haug, Øystein; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2013-04-01

    Gravitational mass movement on earth and other planets show a scale dependent behavior, of which the physics is not fully understood. In particular, the runout distance for small to medium sized landslides (volume dynamics control small and large landslides/rock avalanches. Several mechanisms have been proposed to explain this scale dependent behavior, but no consensus has been reached. Experimental simulations of rock avalanches usually involve transport of loose granular material down a chute. Though such granular avalanche models provide important insights into avalanche dynamics, they imply that the material fully disintegrate instantaneously. Observations from nature, however, suggests that a transition from solid to "liquid" occurs over some finite distance downhill, critically controlling the mobility and energy budget of the avalanche. Few experimental studies simulated more realistically the material failing during sliding and those were realized in a labscale centrifuge, where the range of volumes/scales is limited. To develop a new modeling technique to study the scale dependent runout behavior of rock avalanches, we designed, tested and verified several brittle materials allowing fragmentation to occur under normal gravity conditions. According to the model similarity theory, the analogue material must behave dynamically similar to the rocks in natural rock avalanches. Ideally, the material should therefore deform in a brittle manner with limited elastic and ductile strains up to a certain critical stress, beyond which the material breaks and deforms irreversibly. According to scaling relations derived from dimensional analysis and for a model-to-prototype length ratio of 1/1000, the appropriate yield strength for an analogue material is in the order of 10 kPa, friction coefficient around 0.8 and stiffness in the order of MPa. We used different sand (garnet, quartz) in combination with different matrix materials (sugar, salt, starch, plaster) to cement

  6. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  7. Swedish skiers knowledge, experience and attitudes towards off-piste skiing and avalanches

    OpenAIRE

    Mårtensson, Stefan; Wikberg, Per-Olov; Palmgren, Petter

    2013-01-01

    The winter of 2012/2013 was the most accident-prone season in the Swedish avalanche history with a total of seven dead Swedes. In April 2013 the Swedish Mountain Safety Council initiated a web-based survey aimed towards Swedish skiers. The aim was to identify the target group's knowledge, experience and attitudes towards off-piste skiing and avalanches. Respondents were asked to answer a total of 28 questions. 1047 Swedish off-piste skiers answered, and we analysed them in more detail. The Sw...

  8. Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction

    Directory of Open Access Journals (Sweden)

    C. Mitterer

    2013-02-01

    Full Text Available Wet-snow avalanches are notoriously difficult to predict; their formation mechanism is poorly understood since in situ measurements representing the thermal and mechanical evolution are difficult to perform. Instead, air temperature is commonly used as a predictor variable for days with high wet-snow avalanche danger – often with limited success. As melt water is a major driver of wet-snow instability and snow melt depends on the energy input into the snow cover, we computed the energy balance for predicting periods with high wet-snow avalanche activity. The energy balance was partly measured and partly modelled for virtual slopes at different elevations for the aspects south and north using the 1-D snow cover model SNOWPACK. We used measured meteorological variables and computed energy balance and its components to compare wet-snow avalanche days to non-avalanche days for four consecutive winter seasons in the surroundings of Davos, Switzerland. Air temperature, the net shortwave radiation and the energy input integrated over 3 or 5 days showed best results in discriminating event from non-event days. Multivariate statistics, however, revealed that for better predicting avalanche days, information on the cold content of the snowpack is necessary. Wet-snow avalanche activity was closely related to periods when large parts of the snowpack reached an isothermal state (0 °C and energy input exceeded a maximum value of 200 kJ m−2 in one day, or the 3-day sum of positive energy input was larger than 1.2 MJ m−2. Prediction accuracy with measured meteorological variables was as good as with computed energy balance parameters, but simulated energy balance variables accounted better for different aspects, slopes and elevations than meteorological data.

  9. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  10. Neuronal avalanches and learning

    International Nuclear Information System (INIS)

    Arcangelis, Lucilla de

    2011-01-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  11. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-01-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I FC by the mobile plate tuner. The I FC is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I FC and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I FC when we change the position of the mobile plate tuner.

  12. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Directory of Open Access Journals (Sweden)

    R. Sailer

    2002-01-01

    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  13. Plasma simulation of electron avalanche in a linear thyratron

    International Nuclear Information System (INIS)

    Kushner, M.J.

    1985-01-01

    Thyratrons typically operate at sufficiently small PD (pressure x electrode separation) that holdoff is obtained by operating on the near side of the Paschen curve, and by shielding the slot in the control grid so there is no straight line path for electrons to reach the anode from the cathode. Electron avalanche is initiated by pulsing the control grid to a high voltage. Upon collapse of voltage in the cathode-control grid space, the discharge is sustained by penetration of potential through the control grid slot into the cathode-control grid region. To better understand the electron avalanche process in multi-grid and slotted structures such as thyratrons, a plasma simulation code has been constructed. This effort is in support of a companion program in which a linear thyratron is being electrically and spectroscopically characterized

  14. Characterization of ionization chambers in double face for X-ray detection systems

    International Nuclear Information System (INIS)

    Costa, Alessandro M. da; Caldas, Linda V.O.

    2000-01-01

    Two identical parallel-plate ionization chambers with collecting electrodes of different materials (in order to obtain different energy dependences), developed at Instituto de Pesquisas Energeticas e Nucleares, were tested in low energy X-radiation beams, simulating a special ionization chamber, of double face, in a Tandem system. The purpose of this work is to justify a project of a double face detection system utilizing ionization chambers in Tandem. In relation to conventional methods, this kind of system will provide more efficient and precise absorbed dose in air measurements and radiation effective energy determinations. The results obtained in relation to characteristics of short- and long-term stabilities and angular and energy dependence show that the project is feasible and very appropriate. (author)

  15. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  16. Stability of the discretization of the electron avalanche phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Barbieri, Luca, E-mail: luca.barbieri@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Gondola, Marco, E-mail: marco.gondola@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Leon-Garzon, Andres R., E-mail: andresricardo.leon@polimi.it [CMIC Department “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano (Italy); Malgesini, Roberto, E-mail: roberto.malgesini@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy)

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  17. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  18. Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    Science.gov (United States)

    Moffat, N.; Bates, R.; Bullough, M.; Flores, L.; Maneuski, D.; Simon, L.; Tartoni, N.; Doherty, F.; Ashby, J.

    2018-03-01

    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm‑2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V.

  19. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'alessandro, R.; Ferrando, A.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LBC; based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (117 mn each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author)

  20. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bizzeti, A.; Civinini, C.; D' Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-07-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs.

  1. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs

  2. Assessing the value of real-time snow and avalanche information

    Science.gov (United States)

    Zeidler, Antonia; Adams, Marc; Schuster, Martin; Berner, Martin; Nagy, Wilhelm

    2017-04-01

    This poster presentation shows first results from a pilot study on exploring the possibilities of using existing and new information and communication technologies (ICT) for snow and avalanche assessments. Today, ICT solutions allow the utilisation of information at a high spatiotemporal resolution, due to the widespread availability of internet access, high computing power and affordable mobile devices. Therefore, there is an increasing request for up to date information on snow and avalanche decision-making. However, there are challenges that need to be addressed from different view points. These include topics in the field of technological feasibility of providing a stable network, exchanging trustworthy information and motivation of experts to participate. This contribution discusses the lessons-learnt, from the establishment of a platform to the user-experience.

  3. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Ahmadov, G.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Jafarova, E.; Ahmadov, G.; Sadygov, Z.; Olshevski, A.; Zerrouk, F.; Mukhtarov, R.

    2015-01-01

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  4. Avalanches of Singing Sand in the Laboratory

    Science.gov (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  5. Townsend coefficients of gases in avalanche counters

    International Nuclear Information System (INIS)

    Brunner, G.

    1978-01-01

    Though much work has been done by many authors in the last few years in the development and application of avalanche counters for ion radiation, it is based upon values of the Townsend coefficients as the essential gas parameter, which were determined many years ago for much lower reduced field strengths F/p than prevail in such counters. Therefore absolute determinations of α in vapours of methyl alcohol, cyclohexane, acetone, and n-heptene were performed under original conditions of avalanche counters. The values obtained do not differ by more than 30%-50% from the former values indeed, extrapolated over F/p for the first three mentioned substances, but the amounts of A and B in the usual representation α/p=A exp(-B(F/p)) are much greater for the stronger reduced fields. This is of importance for such counter properties as the dependence of pulse heights on pressure, voltage, electrode distance etc., which are governed by other combinations of A and B than α/p itself. A comparison of results for different ionic radiations shows a marked influence of the primary ionization density along the particle tracks which is hard to explain. (Auth.)

  6. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    International Nuclear Information System (INIS)

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-01-01

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 μm a-Se layer with a maximum gain of ∼300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor

  7. Avalanche weak layer shear fracture parameters from the cohesive crack model

    Science.gov (United States)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0

  8. Error diagrams and temporal correlations in a fracture model with characteristic and power-law distributed avalanches

    DEFF Research Database (Denmark)

    Moreno, Y.; Vázquez-Prada, M.; Pacheco, A.F.

    2003-01-01

    to the heterogeneity of the system. In one regime, a characteristic event is observed while for the second regime a power-law spectrum of avalanches is obtained reminiscent of self-organized criticality. We find that both regimes are different when predicting large avalanches and that, in the second regime...

  9. Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis

    Science.gov (United States)

    Shea, Thomas; van Wyk de Vries, Benjamin; Pilato, Martín

    2008-07-01

    We study the lithology, structure, and emplacement of two debris-avalanche deposits (DADs) with contrasting origins and materials from the Quaternary-Holocene Mombacho Volcano, Nicaragua. A clear comparison is possible because both DADs were emplaced onto similar nearly flat (3° slope) topography with no apparent barrier to transport. This lack of confinement allows us to study, in nature, the perfect case scenario of a freely spreading avalanche. In addition, there is good evidence that no substratum was incorporated in the events during flow, so facies changes are related only to internal dynamics. Mombacho shows evidence of at least three large flank collapses, producing the two well-preserved debris avalanches of this study; one on its northern flank, “Las Isletas,” directed northeast, and the other on its southern flank, “El Crater,” directed south. Other south-eastern features indicate that the debris-avalanche corresponding to the third collapse (La Danta) occurred before Las Isletas and El Crater events. The materials involved in each event were similar, except in their alteration state and in the amount of substrata initially included in the collapse. While “El Crater” avalanche shows no signs of substratum involvement and has characteristics of a hydrothermal weakening-related collapse, the “Las Isletas” avalanche involves significant substratum and was generated by gravity spreading-related failure. The latter avalanche may have interacted with Lake Nicaragua during transport, in which case its run-out could have been modified. Through a detailed morphological and structural description of the Mombacho avalanches, we provide two contrasting examples of non-eruptive volcanic flank collapse. We show that, remarkably, even with two distinct collapse mechanisms, the debris avalanches developed the same gross stratigraphy of a coarse layer above a fine layer. This fine layer provided a low friction basal slide layer. Whereas DAD layering and

  10. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  11. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  12. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    Science.gov (United States)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  13. Reinforced concrete structures loaded by snow avalanches : numerical and experimental approaches.

    Science.gov (United States)

    Ousset, I.; Bertrand, D.; Brun, M.; Limam, A.; Naaim, M.

    2012-04-01

    Today, due to the extension of occupied areas in mountainous regions, new strategies for risk mitigation have to be developed. In the framework of risk analysis, these latter have to take into account not only the natural hazard description but also the physical vulnerability of the exposed structures. From a civil engineering point of view, the dynamic behavior of column or portico was widely investigated especially in the case of reinforced concrete and steel. However, it is not the case of reinforced concrete walls for which only the in-plan dynamic behavior (shear behavior) has been studied in detail in the field of earthquake engineering. Therefore, the aim of this project is to study the behavior of reinforced concrete civil engineering structures submitted to out-of-plan dynamic loadings coming from snow avalanche interaction. Numerical simulations in 2D or 3D by the finite element method (FEM) are presented. The approach allows solving mechanical problems in dynamic condition involving none linearities (especially none linear materials). Thus, the structure mechanical response can be explored in controlled conditions. First, a reinforced concrete wall with a L-like shape is considered. The structure is supposed to represent a French defense structure dedicated to protect people against snow avalanches. Experimental pushover tests have been performed on a physical model. The experimental tests consisted to apply a uniform distribution of pressure until the total collapse of the wall. A 2D numerical model has been developed to simulate the mechanical response of the structure under quasi-static loading. Numerical simulations have been compared to experimental datas and results gave a better understanding of the failure mode of the wall. Moreover, the influence of several parameters (geometry and the mechanical properties) is also presented. Secondly, punching shear experimental tests have also been carried out. Reinforced concrete slabs simply supported have

  14. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures

    CERN Document Server

    Saveliev, V

    2000-01-01

    The development of a high quantum efficiency, fast photodetector, with internal gain amplification for the wavelength range 450-600 nm is one of the critical issues for experimental physics - registration of low-intensity light photons flux. The new structure of Silicon Avalanche Detectors with high internal amplification (10 sup 5 -10 sup 6) has been designed, manufactured and tested for registration of visible light photons and charge particles. The main features of Metal-Resistor-Semiconductor (MRS) structures are the high charge multiplication in nonuniform electric field near the 'needle' pn-junction and negative feedback for stabilization of avalanche process due to resistive layer.

  15. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  16. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement.

    Science.gov (United States)

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-10-15

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.

  17. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning

    Science.gov (United States)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft

    2018-01-01

    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  18. Surface Aggregation of Candida albicans on Glass in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions.

    Science.gov (United States)

    Millsap; Bos; Busscher; van der Mei HC

    1999-04-15

    Adhesive interactions between yeasts and bacteria are important in the maintenance of infectious mixed biofilms on natural and biomaterial surfaces in the human body. In this study, the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) approach has been applied to explain adhesive interactions between C. albicans ATCC 10261 and S. gordonii NCTC 7869 adhering on glass. Contact angles with different liquids and the zeta potentials of both the yeasts and bacteria were determined and their adhesive interactions were measured in a parallel-plate flow chamber.Streptococci were first allowed to adhere to the bottom glass plate of the flow chamber to different seeding densities, and subsequently deposition of yeasts was monitored with an image analysis system, yielding the degree of initial surface aggregation of the adhering yeasts and their spatial arrangement in a stationary end point. Irrespective of growth temperature, the yeast cells appeared uncharged in TNMC buffer, but yeasts grown at 37 degrees C were intrinsically more hydrophilic and had an increased electron-donating character than cells grown at 30 degrees C. All yeasts showed surface aggregation due to attractive Lifshitz-van der Waals forces. In addition, acid-base interactions between yeasts, yeasts and the glass substratum, and yeasts and the streptococci were attractive for yeasts grown at 30 degrees C, but yeasts grown at 37 degrees C only had favorable acid-base interactions with the bacteria, explaining the positive relationship between the surface coverage of the glass by streptococci and the surface aggregation of the yeasts. Copyright 1999 Academic Press.

  19. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard.; Diseno y construccion del sistema de interfaz para la camara de extrapolacion del patron secundario beta.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, L F

    1995-10-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: (a) Measures the ionization current or charge stored in the extrapolation chamber. (b) Adjusts the distance between the plates of the extrapolation chamber automatically. (c) Adjust the bias voltage of the extrapolation chamber automatically. (d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. (e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. (f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 {mu}m. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3% with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author).

  20. Calibration of PKA meters against ion chambers of two geometries

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Pereira, Marco A.G.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (KAP or PKA) is a quantity that is independent of the distance to the X-ray tube focal spot and that can be used in radiological exams to assess the effective dose in patients. Clinical KAP meters are generally fixed in tube output and they are usually calibrated on-site by measuring the air kerma with an ion chamber and by evaluating the irradiated area by means of a radiographic image. Recently, a device was marketed (PDC, Patient Dose Calibrator, Radcal Co.), which was designed for calibrating clinical KAP meters with traceability to a standard laboratory. This paper presents a metrological evaluation of two methods that can be used in standard laboratories for the calibration of this device, namely, against a reference 30 cc ionization chamber or a reference parallel plates monitor chamber. Lower energy dependence was also obtained when the PDC calibration was made with the monitor chamber. Results are also shown of applying the PDC in hospital environment to the cross calibration of a clinical KAP meter from a radiology equipment. Results confirm lower energy dependence of the PDC relatively to the tested clinical meter. (author)

  1. First characterisation of the "Rumi-Pana" rock avalanche deposits (Famatina Range, La Rioja, Argentina)

    Science.gov (United States)

    Santiago Pullarello, José; Derron, Marc-Henri; Penna, Ivanna; Leiva, Alicia; Jaboyadoff, Michel

    2017-04-01

    Active mountain fronts are subject to large scale slope collapses which have the capacity to run long distances on piedmont areas. Along time, fluvial activity and other gravitatory processes can intensively erode and mask primary features related to the collapses. Therefore, to reconstruct the history of their occurrence, further analyses are needed, e.g. sedimentologic analyses. This work focuses on the occurrence of large rock avalanches in the Vinchina region, La Rioja (28°43'27.81'' S / 68°00'25.42'' W) on the western side of the Famatina range(Argentina). Here, photointerpretation of high resolution satellite images (Google Earth) allowed us to identify two rock avalanches, main scarps developed at 2575 and 2750 m a.s.l. . There are no absolute ages for these deposits, however, comparing their preservation degree with those dated further north (in similar climatic and landscape dynamics contexts [i]), we can suggest these rock avalanches took place during the Pleistocene. We carried out a fieldwork survey in this remote area, including classical landslide mapping, structural analysis, deposits characterization and sampling. The deposits reach the valley bottom (at around 1700 m a.s.l.) with runouts about 5 and 5.3 km long. In one of the cases, the morphology of the deposit is well preserved, allowing to reconstruct accurately its extension. However, in the second case, the deposits are strongly eroded by courses draining the mountain front, therefore further analyses should be done to reconstruct its extension. In addition to morphologic interpretations, a multiscale grain-size analysis was done to differentiate rock avalanches from other hillslope deposits: (1) 3D surface models of surface plots (5x5m) have been built by SfM photogrammetry; 2) classical sieving and 3) laser grain-size analysis of deposits. Samples were collected on different parts of the slope, but also along cross sections through the avalanche deposit. This deposits characterization will

  2. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  3. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    International Nuclear Information System (INIS)

    Alisoy, H. Z.; Alagoz, B. B.; Alagoz, S.; Alisoy, G. T.

    2013-01-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics

  4. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    Science.gov (United States)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  5. Multiwire proportional chamber with a supporting line on anode wires

    International Nuclear Information System (INIS)

    Viktorov, V.A.; Golovkin, S.V.

    1980-01-01

    Results are presented of experimental investigations on a supporting line (wire) used in large-sized proportional chambers to compensate for electrostatic forces. The length of anode wires (gilded tungsten of 0.02 mm in diameter) in the chamber constituted 600 mm, the pitch 2 mm, the total number of channels 192. High-voltage electrodes are made of Cu-Be wire of 0.1 mm in diameter, the pitch is 2 mm. The gap between anode and cathode plates is 6 mm. The supporting line is an enamelled nichrome wire of 0.2 mm in diameter enclosed in an additional fluoroplastic insulation. The outside diameter was equal to 0.4 mm. The supporting line was placed through the centre of the chamber at right angles and immediately adjacent to anode wires with the tension of 2000 g. A negative compensating potential was applied to it. The controllable parameter was the chamber efficiency at variable paAameters: (1) an operating voltage in the chamber; (2) Vsub(c) - a compensating potential of the supporting line, and (3) a beam axis relative coordinate. The performed investigations showed that the supporting line of this type is simple and reliable in operation (electric breakdown occurs at Vsub(c) > 3.5 kV). The noneffective zone in the supporting region can be reduced to approximately 2.4 mm which constitutes approximately 0.3% of the chamber total sensitive region

  6. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  7. Trigger mechanisms of debris avalanche. Comparison between Bandai-san 1888 and the other cases

    Energy Technology Data Exchange (ETDEWEB)

    Ui, Tadahide

    1988-08-25

    This report describes a trial of classifying the trigger mechanisms of debris avalanche in a volcanic action, on the basis of a geography and the structure of the sedimentation. Reason of disintegration is diversified but the debris avalanche is caused by the destruction of the unstable mountain mass. In the case of the 1888 debris avalanche of Bandai-san, a small steam explosion at the end of the strato-volcanic activity caused the instability of a part of the mountain mass, inducing a landslide. At the active period of the volcano, a viscous magma penetrates into the volcano mass, sometimes deforming the mountain body and eventually reaching disintegration. Furthermore, an eroded valley on the surface of the volcano body develops and disintegrates and, also along the slope of the volcano, a disintegration towards the sea-bottom will occur. (4 figs, 4 tabs, 19 refs)

  8. The development of Micromegas for high particle-flux environments

    International Nuclear Information System (INIS)

    Giomataris, Y.; Mangeot, Ph.; Rebourgeard, Ph.; Robert, J.P.

    1996-01-01

    Detectors able to operate in high rate environments, with particle flux beyond 10 14 particles/mm 2 /s, are needed for future high energy physics projects and medical radiography. A new promising technique called Micromegas has been proposed. It consists of a 2-stage parallel-plate avalanche chamber of small amplification gap (100 μm) combined with a conversion-drift space. In this paper we present results obtained with such a detector and we see that the detector combines most of the qualities required for high-rate position-sensitive particle detection, particularly it shows excellent spatial and energy resolutions. (author)

  9. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  10. 3-D tracking in a miniature time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S.E., E-mail: sevahsen@hawaii.edu [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Hedges, M.T.; Jaegle, I.; Ross, S.J.; Seong, I.S.; Thorpe, T.N.; Yamaoka, J. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Kadyk, J.A.; Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2015-07-11

    The three-dimensional (3-D) detection of millimeter-scale ionization trails is of interest for detecting nuclear recoils in directional fast neutron detectors and in direction-sensitive searches for weakly interacting massive particles (WIMPs), which may constitute the Dark Matter of the universe. We report on performance characterization of a miniature gas target Time Projection Chamber (TPC) where the drift charge is avalanche-multiplied with Gas Electron Multipliers (GEMs) and detected with the ATLAS FE-I3 Pixel Application Specific Integrated Circuit (ASIC). We report on measurements of gain, gain resolution, point resolution, diffusion, angular resolution, and energy resolution with low-energy X-rays, cosmic rays, and alpha particles, using the gases Ar:CO{sub 2} (70:30) and He:CO{sub 2} (70:30) at atmospheric pressure. We discuss the implications for future, larger directional neutron and Dark Matter detectors. With an eye to designing and selecting components for these, we generalize our results into analytical expressions for detector performance whenever possible. We conclude by demonstrating the 3-D directional detection of a fast neutron source.

  11. The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling

    Science.gov (United States)

    Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.

    2008-12-01

    The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size

  12. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    International Nuclear Information System (INIS)

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-01-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d Se and the applied electric field E Se of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E Se dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E Se : (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy

  13. Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche

    Science.gov (United States)

    Luhr, James F.; Prestegaard, Karen L.

    1988-12-01

    About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de

  14. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  15. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Britvitch, I. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland)]. E-mail: Ilia.britvitch@psi.ch; Johnson, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Renker, D. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stoykov, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lorenz, E. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Max Planck Institute for Physics, 80805 Munich (Germany)

    2007-02-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.

  16. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    International Nuclear Information System (INIS)

    Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.

    2007-01-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate

  17. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  18. Large area avalanche MRS-photodiodes for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ermalitski, F A; Zalesski, V B

    1996-12-31

    Problems of application of avalanche photodiodes (APD) in readout systems of nuclear spectrometers are considered. APD`s with a large sensitive area of a diameter 1-5 mm and a high multiplication coefficient 200-1000 are created. MPS-photodiodes provide for the energy resolution 80% at temperature 231 K for detecting gamma-quanta with energy 662 keV. 4 refs.

  19. Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model

    Science.gov (United States)

    Batac, Rene; Longjas, Anthony; Monterola, Christopher

    2012-02-01

    Sandpile-based models have successfully shed light on key features of nonlinear relaxational processes in nature, particularly the occurrence of fat-tailed magnitude distributions and exponential return times, from simple local stress redistributions. In this work, we extend the existing sandpile paradigm into an inter-sandpile cascade, wherein the avalanches emanating from a uniformly-driven sandpile (first layer) is used to trigger the next (second layer), and so on, in a successive fashion. Statistical characterizations reveal that avalanche size distributions evolve from a power-law p(S)≈S-1.3 for the first layer to gamma distributions p(S)≈Sαexp(-S/S0) for layers far away from the uniformly driven sandpile. The resulting avalanche size statistics is found to be associated with the corresponding waiting time distribution, as explained in an accompanying analytic formulation. Interestingly, both the numerical and analytic models show good agreement with actual inventories of non-uniformly driven events in nature.

  20. Track resolution in the RPC chamber

    International Nuclear Information System (INIS)

    Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Liberti, B.; Santonico, R.

    2007-01-01

    A new very promising read out, in addition to the well-known charge centroid method, is proposed for improving the space resolution in the Resistive Plate Chamber (RPC) in the sub-millimeter range. The method is based on the read out of the signal propagating in the graphite electrode which was simulated using a distributed resistance-capacitance model in SPICE. The results show that a good space-time correlation in the diffusion process is only possible by suitable signal processing. Three RPC detectors with the new layout and dedicated electronics were tested. The measured space resolution was in the order of a few 100μm

  1. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz)

    1984-06-15

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm/sup 2/, developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed.

  2. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1984-01-01

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm 2 , developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed. (orig.)

  3. Posttraumatic stress and other health consequences of catastrophic avalanches: A 16-year follow-up of survivors.

    Science.gov (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Resnick, Heidi; Shipherd, Jillian C; Gudmundsdottir, Berglind

    2015-05-01

    To date, no study has investigated the effects of avalanches on survivor's health beyond the first years. The aim of this study was to examine long-term health status 16 years after exposure to avalanches using a matched cohort design. Mental health, sleep quality and somatic symptoms among avalanche survivors (n=286) and non-exposed controls (n=357) were examined. Results showed that 16% of survivors currently experience avalanche-specific PTSD symptoms (PDS score>14). In addition, survivors presented with increased risk of PTSD hyperarousal symptoms (>85th percentile) (aRR=1.83; 98.3% CI [1.23-2.74]); sleep-related problems (PSQI score>5) (aRR=1.34; 95% CI [1.05-1.70]); PTSD-related sleep disturbances (PSQI-A score≥4) (aRR=1.86; 95% CI [1.30-2.67]); musculoskeletal and nervous system problems (aRR 1.43; 99% CI 1.06-1.93) and gastrointestinal problems (aRR 2.16; 99% CI 1.21-3.86) compared to the unexposed group. Results highlight the need for treatment for long-term PTSD symptoms and sleep disruption in disaster communities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment

    International Nuclear Information System (INIS)

    Costa, A.M.; Caldas, L.V.E.

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy responses of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities. (author)

  5. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    Science.gov (United States)

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  6. heat flow in a finite isolated pulsed avalanche semiconductor diode

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... high-power high-efficiency avalanche semiconductor devices. The ... computed, and useful practical design curves for a specified operation .... iv. For spherical shells of radius, ρ(x,y,z) = √x2+y2+z2. > R, the heat source.

  7. Current oscillations in avalanche particle detectors with PNIPN-structure

    International Nuclear Information System (INIS)

    Lukin, K.A.

    1995-08-01

    The model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. This detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out

  8. Carbon wire chamber at sub-atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Charles, G., E-mail: charlesg@ipno.in2p3.fr; Audouin, L., E-mail: audouin@ipno.in2p3.fr; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-21

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  9. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs.

    Science.gov (United States)

    Diverio, Silvana; Barbato, Olimpia; Cavallina, Roberta; Guelfi, Gabriella; Iaboni, Martina; Zasso, Renato; Di Mari, Walter; Santoro, Michele Matteo; Knowles, Toby G

    2016-09-01

    Saving human lives is of paramount importance in avalanche rescue missions. Avalanche military dogs represent an invaluable resource in these operations. However, their performance can be influenced by several environmental, social and transport challenges. If too severe, these are likely to activate a range of responses to stress, which might put at risk the dogs' welfare. The aim of this study was to assess the physiological and behavioural responses of a group of military dogs to a Simulated Avalanche Search and Rescue mission (SASR). Seventeen avalanche dogs from the Italian Military Force Guardia di Finanza (SAGF dogs) were monitored during a simulated search for a buried operator in an artificial avalanche area (SASR). Heart rate (HR), body temperature (RBT) and blood samples were collected at rest the day before the trial (T0), immediately after helicopter transport at the onset of the SASR (T1), after the discovery of the buried operator (T2) and 2h later (T3). Heart rate (HR), rectal body temperature (RBT), cortisol, aspartate aminotransferase (AST), creatine kinase (CK), non-esterified fatty acids (NEFA) and lactate dehydrogenase (LDH) were measured. During the search mission the behaviour of each SAGF dog was measured by focal animal sampling and qualitatively assessed by its handler and two observers. Inter-rater agreement was evaluated. Snow and environmental variables were also measured. All dogs successfully completed their search for the buried, simulated victim within 10min. The SASR was shown to exert significant increases on RBT, NEFA and cortisol (Pdog's search mission ability was found only for motivation, signalling behaviour, signs of stress and possessive reward playing. More time signalling was related to shorter search time. In conclusion, despite extreme environmental and training conditions only temporary physiological and behavioural changes were recorded in the avalanche dogs. Their excellent performance in successful simulated SASR

  10. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  11. The Chimborazo sector collapse and debris avalanche : deposit characteristics as evidence of emplacement mechanisms

    OpenAIRE

    Bernard, B.; Vries de, B. V.; Barba, D.; Leyrit, H.; Robin, Claude; Alcaraz, S.; Samaniego, Pablo

    2008-01-01

    Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-1). This left a 4 km wide scar, removing 8.0 +/- 0.5 km(3) of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Rio Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km...

  12. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  13. Cataclysmic Rock Avalanche from El Capitan, Yosemite Valley, circa 3.6 ka

    Science.gov (United States)

    Stock, G. M.

    2008-12-01

    El Capitan in Yosemite Valley is one of the largest and most iconic granite faces in the world. Despite glacially steepened walls exceeding 90 degrees, a historic database shows relatively few rock falls from El Capitan in the past 150 years. However, a massive bouldery deposit beneath the southeast face suggests an earlier rock avalanche of unusually large size. Spatial analysis of airborne LiDAR data indicate that the rock avalanche deposit has a volume of ~2.70 x 106 m3, a maximum thickness of 18 m, and a runout distance of 660 m, roughly twice the horizontal extent of the adjacent talus. The deposit is very coarse on its distal edge, with individual boulder volumes up to 2500 m3. Cosmogenic 10Be exposure dates from boulders distributed across the deposit confirm this interpretation. Four 10Be samples are tightly clustered between 3.5 and 3.8 ka, with a mean age of 3.6 +/- 0.6 ka. A fifth sample gives a much older age of 22.0 ka, but a glacier occupied Yosemite Valley at this time, prohibiting deposition; thus, the older age likely results from exposure on the cliff face prior to failure. The similarity of ages and overall morphology suggest that the entire deposit formed during a single event. The mean exposure age coincides with inferred Holocene rupture of the northern Owens Valley and/or White Mountain fault(s) between 3.3 and 3.8 ka (Lee et al., 2001; Bacon and Pezzopane, 2007). This time coincidence, combined with the fact that historic rupture of the Owens Valley fault in A.D. 1872 generated numerous large rock falls in Yosemite Valley, strongly suggests that the El Capitan rock avalanche was triggered by a seismic event along the eastern margin of the Sierra Nevada circa 3.6 ka. As there is not an obvious "scar" on the expansive southeast face, the exact source area of the rock avalanche is not yet known. Detrital apatite U-Th/(He) thermochronometry can determine the elevation(s) from which rock fall boulders originate, but significant inter-sample age

  14. Data collapse and critical dynamics in neuronal avalanche data

    Science.gov (United States)

    Butler, Thomas; Friedman, Nir; Dahmen, Karin; Beggs, John; Deville, Lee; Ito, Shinya

    2012-02-01

    The tasks of information processing, computation, and response to stimuli require neural computation to be remarkably flexible and diverse. To optimally satisfy the demands of neural computation, neuronal networks have been hypothesized to operate near a non-equilibrium critical point. In spite of their importance for neural dynamics, experimental evidence for critical dynamics has been primarily limited to power law statistics that can also emerge from non-critical mechanisms. By tracking the firing of large numbers of synaptically connected cortical neurons and comparing the resulting data to the predictions of critical phenomena, we show that cortical tissues in vitro can function near criticality. Among the most striking predictions of critical dynamics is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function (data collapse). We show for the first time that this prediction is confirmed in neuronal networks. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  15. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Liu Fei; Yang Sen; Zhou Dong; Lu Hai; Zhang Rong; Zheng You-Dou

    2015-01-01

    In many critical civil and emerging military applications, low-level UV detection, sometimes at single photon level, is highly desired. In this work, a mesa-type 4H-SiC UV avalanche photodiode (APD) is designed and fabricated, which exhibits low leakage current and high avalanche gain. When studied by using a passive quenching circuit, the APD exhibits self-quenching characteristics due to its high differential resistance in the avalanche region. The single photon detection efficiency and dark count rate of the APD are evaluated as functions of discrimination voltage and over-drive voltage. The optimized operation conditions of the single photon counting APD are discussed. (paper)

  16. Avalanche diode having reduced dark current and method for its manufacture

    Science.gov (United States)

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  17. Secondary instability in drift wave turbulence as a mechanism for avalanche and zonal flow formation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Champeaux, S.; Malkov, M.

    2001-01-01

    We report on recent developments in the theory of secondary instability in drift-ITG turbulence. Specifically, we explore secondary instability as a mechanism for avalanche formation. A theory of radially extended streamer cell formation and self-regulation is presented. Aspects of streamer structure and dynamics are used to estimate the variance of the drift-wave induced flux. The relation between streamer cell structures and the avalanche concept is discussed, as are the implications of our results for transport modeling. (author)

  18. Ultralow noise midwave infrared InAs-GaSb strain layer superlattice avalanche photodiode

    International Nuclear Information System (INIS)

    Mallick, Shubhrangshu; Banerjee, Koushik; Ghosh, Siddhartha; Plis, Elena; Rodriguez, Jean Baptiste; Krishna, Sanjay; Grein, Christoph

    2007-01-01

    Eye-safe midwavelength infrared InAs-GaSb strain layer superlattice p + -n - -n homojunction avalanche photodiodes (APDs) grown by solid source molecular beam epitaxy were fabricated and characterized. Maximum multiplication gain of 1800 was measured at -20 V at 77 K. Excess noise factors between 0.8 and 1.2 were measured up to gain of 300. Gain of 200 was measured at 120 K. Exponential nature of the gain as a function of reverse bias along with low excess noise factor at higher gain confirms single carrier electron-only impact ionization in the avalanche regime. Decrease in the multiplication gain at higher temperatures correlates with standard APD characteristics

  19. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  20. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks

    Science.gov (United States)

    Knöpfel, Thomas; Leech, Robert

    2018-01-01

    Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654

  1. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  2. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  3. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  4. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    Science.gov (United States)

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  5. Tuning magnetization avalanches in Mn12-acetate

    Science.gov (United States)

    Wen, Bo; McHugh, S.; Ma, Xiang; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Christou, G.

    2009-03-01

    We report the results of a systematic study of magnetic avalanches (abrupt magnetization reversals) in the molecular magnet Mn12-acetate using a micron-sized Hall sensor array. Measurements were taken for: (a) fixed magnetic field (constant barrier against spin reversal); and (b) fixed energy release obtained by adjusting the barrier and δM. A detailed comparison with the theory of magnetic deflagration of Garanin and Chudnovsky [1] will be presented and discussed. [1] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 76, 054410 (2007)

  6. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Ruru; Fremout, A.; Tavernier, S.; Bruyndonckx, P.; Clement, D.; Loude, J.-F.; Morel, C.

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application

  7. Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey

    Science.gov (United States)

    Hayakawa, Yuichi S.; Yoshida, Hidetsugu; Obanawa, Hiroyuki; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi; Kontani, Ryoichi

    2018-02-01

    Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM-MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance-size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12-15 × 108 m3 gives a mean thickness of 60-75 m, which is much

  8. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  9. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  10. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  11. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings

  12. Snow avalanche hazard of the Krkonose National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Klimeš, Jan; Balek, Jan; Hájek, P.; Červená, L.; Lysák, J.

    2017-01-01

    Roč. 13, č. 2 (2017), s. 86-90 ISSN 1744-5647 R&D Projects: GA MV VG20132015115 Institutional support: RVO:67985891 Keywords : snow avalanches * hazard * inventory * hazard mitigation * Krkonoše Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.174, year: 2016

  13. Status of beam line detectors for the BigRIPS fragment separator at RIKEN RI Beam Factory. Issues on high rates and resolution

    International Nuclear Information System (INIS)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki

    2015-01-01

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns). (author)

  14. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  15. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  16. An efficient and cost-effective microchannel plate detector for slow neutron radiography

    Science.gov (United States)

    Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.

    2018-05-01

    A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.

  17. Cosmogenic Nuclide Exposure Dating of the Tiltill Rock Avalanche, Yosemite National Park

    Science.gov (United States)

    Ford, K. R.; Pluhar, C. J.; Stone, J. O.; Stock, G. M.; Zimmerman, S. R.

    2013-12-01

    Yosemite National Park serves as an excellent natural laboratory for studying rock falls and rock avalanches because these are the main processes modifying the nearly vertical slopes of this recently glaciated landscape. Mass wasting represents a significant hazard in the region and the database of previous rock falls and other mass wasting events in Yosemite is extensive, dating back to the mid-1800s. However, this record is too short to capture the recurrence characteristics and triggering mechanisms of the very largest events, necessitating studies of the geologic record of mass wasting. Rock falls and rock avalanches are readily dated by cosmogenic nuclide methods due to their instantaneous formation, and results can be tied to triggering events such as seismic activity (e.g. Stock et al., 2009). Here, we apply exposure dating to the Holocene Tiltill rock avalanche north of Hetch Hetchy Reservoir. The deposit comprises what appear to be two separate lobes of rock and debris, yielding a total volume of ~3.1 x 106 m3. Assuming an erosion rate of 0.0006 cm/yr and neglecting snowpack shielding, preliminary data suggest a mean exposure age of 11,000 + 600 year B.P. for both deposits, indicating that they were emplaced in a single event. The age of the Tiltill 'slide' is similar to earthquakes on the Owens Valley Fault between 10,800 + 600 and 10,200 + 200 cal year B.P. (Bacon, 2007) and the White Mountain Fault, ~10,000 cal year B.P. (Reheis, 1996; DePolo, 1989). Given that movement on the Owens Valley fault in 1872 caused a number of rock falls in Yosemite and the coincidence of ages between the Tiltill 'slide' and paleoseismic events, a large earthquake in Eastern Sierra Nevada may have triggered this event. Other trigger events are also possibilities, but only through compilation of a database of large rock avalanches can statistically significant groupings of events begin to demonstrate whether seismic triggering is a dominant process.

  18. Neutron beam test of multi-grid-type microstrip gas chamber

    International Nuclear Information System (INIS)

    Fujita, K.; Takahashi, H.; Siritiprussamee, P.; Niko, H.; Kai, M.; Nakazawa, M.; Ino, T.; Sato, S.; Yokoo, T.; Furusaka, M.; Kanazawa, M.

    2006-01-01

    Multi-grid-type microstrip gas chambers (M-MSGCs) are being developed for the next-generation pulsed neutron source. Two new concepts, a global-local-grouping (GLG) method and a graded cathode pattern readout method, were applied to the M-MSGC design for realizing higher counting rate than traditional 3 He proportional counters. One-dimensional detectors with 700 mm-long test plates were fabricated and tested with X-ray and neutron beams, which demonstrated position detection capability based on these concepts

  19. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  20. Radiation damage effect on avalanche photodiodes

    CERN Document Server

    Baccaro, S; Cavallari, F; Da Ponte, V; Deiters, K; Denes, P; Diemoz, M; Kirn, Th; Lintern, A L; Longo, E; Montecchi, M; Musienko, Y; Pansart, J P; Renker, D; Reucroft, S; Rosi, G; Rusack, R; Ruuska, D; Stephenson, R; Torbet, M J

    1999-01-01

    Avalanche Photodiodes have been chosen as photon sensors for the electromagnetic calorimeter of the CMS experiment at the LHC. These sensors should operate in the 4T magnetic field of the experiment. Because of the high neutron radiation in the detector extensive studies have been done by the CMS collaboration on the APD neutron radiation damage. The characteristics of these devices after irradiation have been analized, with particular attention to the quantum efficiency and the dark current. The recovery of the radiation induced dark current has been studied carefully at room temperature and at slightly lower and higher temperatures. The temperature dependence of the defects decay-time has been evaluated.