WorldWideScience

Sample records for plastid-encoded chlorophyll a-apoproteins

  1. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  2. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  3. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    Science.gov (United States)

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  4. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Directory of Open Access Journals (Sweden)

    Seabra Ana R

    2010-08-01

    Full Text Available Abstract Background Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS, occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. Results This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2 in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. Conclusions This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate

  5. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Science.gov (United States)

    Savage, Linda J; Imre, Kathleen M; Hall, David A; Last, Robert L

    2013-01-01

    The Chloroplast 2010 Project (http://www.plastid.msu.edu/) identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/). Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles were identified.

  6. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  7. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.

    Science.gov (United States)

    Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas

    2017-01-01

    Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.

  9. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2016-06-27

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of Photosystem I, in transgenic potato and tobacco plants

    NARCIS (Netherlands)

    Nap, Jan; VANSPANJE, M; Dirkse, W.G.; BAARDA, G; Mlynarova, L; Loonen, A.; GRONDHUIS, P; STIEKEMA, WJ

    We have isolated cDNA and genomic clones for the potato (Solanum tuberosum) apoprotein 2 of the light harvesting complex of Photosystem 1, designated Lhca3.St.l. The protein shows all characteristics of the family of chlorophyll a/b-binding proteins. Potato Lhca3.1 gene expression occurs

  11. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins.

    Science.gov (United States)

    Johnson, E M; Schnabelrauch, L S; Sears, B B

    1991-01-01

    Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.

  12. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    Science.gov (United States)

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  13. Nuclear-cytoplasmic conflict in pea (Pisum sativum L. is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits.

    Directory of Open Access Journals (Sweden)

    Vera S Bogdanova

    Full Text Available In crosses of wild and cultivated peas (Pisum sativum L., nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized.

  14. Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.

    Science.gov (United States)

    Palm, Daniel M; Agostini, Alessandro; Tenzer, Stefan; Gloeckle, Barbara M; Werwie, Mara; Carbonera, Donatella; Paulsen, Harald

    2017-03-28

    Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.

  15. Efficient Plastid Transformation in Arabidopsis.

    Science.gov (United States)

    Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal

    2017-09-01

    Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Arabidopsis EMB1990 Encoding a Plastid-Targeted YlmG Protein Is Required for Chloroplast Biogenesis and Embryo Development

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2018-02-01

    Full Text Available In higher plants, embryo development originated from fertilized egg cell is the first step of the life cycle. The chloroplast participates in many essential metabolic pathways, and its function is highly associated with embryo development. However, the mechanisms and relevant genetic components by which the chloroplast functions in embryogenesis are largely uncharacterized. In this paper, we describe the Arabidopsis EMB1990 gene, encoding a plastid-targeted YlmG protein which is required for chloroplast biogenesis and embryo development. Loss of the EMB1990/YLMG1-1 resulted in albino seeds containing abortive embryos, and the morphological development of homozygous emb1990 embryos was disrupted after the globular stage. Our results showed that EMB1990/YLMG1-1 was expressed in the primordia and adaxial region of cotyledon during embryogenesis, and the encoded protein was targeted to the chloroplast. TEM observation of cellular ultrastructure showed that chloroplast biogenesis was impaired in emb1990 embryo cells. Expression of certain plastid genes was also affected in the loss-of-function mutants, including genes encoding core protein complex subunits located in the thylakoid membrane. Moreover, the tissue-specific genes of embryo development were misexpressed in emb1990 mutant, including genes known to delineate cell fate decisions in the SAM (shoot apical meristem, cotyledon and hypophysis. Taken together, we propose that the nuclear-encoded YLMG1-1 is targeted to the chloroplast and required for normal plastid gene expression. Hence, YLMG1-1 plays a critical role in Arabidopsis embryogenesis through participating in chloroplast biogenesis.

  17. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA.

    Science.gov (United States)

    Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian

    2013-12-01

    Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. Physiological and biochemical studies on the yellowing of spruce trees in higher altitudes. Pt. 1. Protection of pigments in the light-harvesting Chl-a/b-protein against photooxidation - the role of apoprotein and pigment organisation

    Energy Technology Data Exchange (ETDEWEB)

    Siefermanns-Harms, D.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    The light-harvesting Chl-a/b-protein complex (LHC) from Spinacea oleracia, Lactuca sativa and Picea abies is stable under strong white light (> 350 nm, 1000 w/m/sub 2/). Therefore, LHC preparations were used to examine requirements for the protection of LHC-bound pigments from photooxidation. - The presence of carotenoids in the LHC and their arrangement in close proximity with the chlorophylls are not sufficient for pigment protection under light. - An intact LHC apoprotein is required to protect the pigments from photooxidation. Evidently, the intact LHC apoprotein represents a barrier for O/sub 2/ limiting O/sub 2/ access to the microenvironment of the pigments. - The composition of the pigment fraction destroyed under light depends on the state of the LHC. If only the integrity of the apoprotein is impaired, both, chlorophylls and carotenoids are subjected to photooxidation.

  19. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29 : Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms

    NARCIS (Netherlands)

    Giuffra, Elisabetta; Zucchelli, Giuseppe; Sandona, Dorianna; Croce, Roberta; Cugini, Daniela; Garlaschi, Flavio M.; Bassi, Roberto; Jennings, Robert C.

    1997-01-01

    The minor photosystem II antenna complex CP29(Lhcb-4) has been reconstituted in vitro with the Lhcb-4 apoprotein, overexpressed in Escherichia coli, and the native pigments. Modulation of the pigment composition during reconstitution yields binding products with markedly different chlorophyll a/b

  1. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  2. Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.

    2016-01-01

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001

  3. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions

    Directory of Open Access Journals (Sweden)

    Patricia Horn

    2017-12-01

    Full Text Available As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia, for which the highest paternal leakage has been observed. The variety white 115 (W115 served as recipient and Pink Wave (PW and the transplastomic variant PW T16, encoding the uidA reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid. Keywords: Paternal plastid inheritance, Transgene confinement, Greenhouse, Field trial, Pollen mediated gene flow

  4. A Cyanobacterial Chlorophyll Synthase-HliD Complex Associates with the Ycf39 Protein and the YidC/Alb3 Insertase[W][OPEN

    Science.gov (United States)

    Chidgey, Jack W.; Linhartová, Markéta; Komenda, Josef; Jackson, Philip J.; Dickman, Mark J.; Canniffe, Daniel P.; Koník, Peter; Pilný, Jan; Hunter, C. Neil; Sobotka, Roman

    2014-01-01

    Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls. PMID:24681617

  5. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  6. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana.

    Science.gov (United States)

    Morikawa, Kazuya; Shiina, Takashi; Murakami, Shinya; Toyoshima, Yoshinori

    2002-03-13

    Sigma factor binding proteins are involved in modifying the promoter preferences of the RNA polymerase in bacteria. We found the nuclear encoded protein (SibI) that is transported into chloroplasts and interacts specifically with the region 4 of Sig1 in Arabidopsis. SibI and its homologue, T3K9.5 are novel proteins, which are not homologous to any protein of known function. The expression of sibI was tissue specific, light dependent, and developmentally timed. We suggest the transcriptional regulation by sigma factor binding proteins to function in the plastids of higher plant.

  7. A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4

    NARCIS (Netherlands)

    Pascal, Andy; Caffarri, Stefano; Croce, Roberta; Sandonà, Dorianna; Bassi, Roberto; Robert, Bruno

    2002-01-01

    Mutant proteins from light-harvesting complexes of higher plants may be obtained by expressing modified apoproteins in Escherichia coli, and reconstituting them in the presence of chlorophyll and carotenoid cofactors. This method has allowed, in particular, the engineering of mutant LHCs in which

  8. Cellular uptake and processing of surfactant lipids and apoprotein SP-A by rat lung

    International Nuclear Information System (INIS)

    Young, S.L.; Wright, J.R.; Clements, J.A.

    1989-01-01

    The intracellular pathways and the kinetics of metabolism of surfactant apoprotein and lipid, which may be recycled from the alveolar space, are largely unknown. We used a lipid-apoprotein complex made from liposomes of pure lipids in a ratio found in mammalian pulmonary surfactant plus surfactant apoprotein (SP-A, Mr = 26,000-36,000) to test some possible relationships in the recycling of these major surfactant components between intrapulmonary compartments. After intratracheal instillation of 80 microliters of an apoprotein-liposome mixture with separate radiolabels in the lipid and the apoprotein, rats were killed at times from 8 min to 4 h later. The lungs were lavaged with saline, and subcellular fractions were isolated on discontinuous sucrose density gradients. Both the [ 14 C]lipid radiolabel and the 125 I-apoprotein radiolabel demonstrated a time-dependent increase in radioactivity recovered in a lamellar body-enriched fraction. Uptake of the radiolabels into other subcellular fractions did not exhibit a clear-cut time dependence; more of the protein than the lipid radiolabel was found in the Golgi-rich and microsomal fractions. We conclude that both the lipid and apoprotein portions of lung surfactant are taken up by lung cells and are incorporated into secretory granules of the cells

  9. Membrane composition and physiological activity of plastids from an oenothera plastome mutator-induced chloroplast mutant.

    Science.gov (United States)

    Johnson, E M; Sears, B B

    1990-01-01

    Plastids were isolated from a plastome mutator-induced mutant (pm7) of Oenothera hookeri and were analyzed for various physiological and biochemical attributes. No photosynthetic electron transport activity was detected in the mutant plastids. This is consistent with previous ultrastructural analysis showing the absence of thylakoid membranes in the pm7 plastids and with the observation of aberrant processing and accumulation of chloroplast proteins in the mutant. In comparison to wild type, the mutant tissue lacks chlorophyll, and has significant differences in levels of four fatty acids. The analyses did not reveal any differences in carotenoid levels nor in the synthesis of several chloroplast lipids. The consequences of the altered composition of the chloroplast membrane are discussed in terms of their relation to the aberrant protein processing of the pm7 plastids. The pigment, fatty acid, and lipid measurements were also performed on two distinct nuclear genotypes (A/A and A/C) which differ in their compatibility with the plastid genome (type I) contained in these lines. In these cases, only chlorophyll concentrations differed significantly.

  10. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  11. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  12. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts

    International Nuclear Information System (INIS)

    Bhaya, D.; Castelfranco, P.A.

    1985-01-01

    Isolated developing plastids from greening cucumber cotyledons or from photoperiodically grown pea seedlings incorporated 14 C-labeled 5-aminolevulinic acid (ALA) into chlorophyll (Chl). Incorporation was light dependent, enhanced by S-adenosylmethionine, and linear for 1 hr. The in vitro rate of Chl synthesis from ALA was comparable to the in vivo rate of Chl accumulation. Levulinic acid and dioxoheptanoic acid strongly inhibited Chl synthesis but not plastid protein synthesis. Neither chloramphenicol nor spectinomycin affected Chl synthesis, although protein synthesis was strongly inhibited. Components of thylakoid membranes from plastids incubated with [ 14 C]ALA were resolved by electrophoresis and then subjected to autoradiography. This work showed that (i) newly synthesized Chl was assembled into Chl-protein complexes and (ii) the inhibition of protein synthesis during the incubation did not alter the labeling pattern. Thus, there was no observable short-term coregulation between Chl synthesis (from ALA) and the synthesis of membrane proteins in isolated plastids

  13. Membrane Composition and Physiological Activity of Plastids from an Oenothera Plastome Mutator-Induced Chloroplast Mutant 1

    Science.gov (United States)

    Johnson, Ellen M.; Sears, Barbara B.

    1990-01-01

    Plastids were isolated from a plastome mutator-induced mutant (pm7) of Oenothera hookeri and were analyzed for various physiological and biochemical attributes. No photosynthetic electron transport activity was detected in the mutant plastids. This is consistent with previous ultrastructural analysis showing the absence of thylakoid membranes in the pm7 plastids and with the observation of aberrant processing and accumulation of chloroplast proteins in the mutant. In comparison to wild type, the mutant tissue lacks chlorophyll, and has significant differences in levels of four fatty acids. The analyses did not reveal any differences in carotenoid levels nor in the synthesis of several chloroplast lipids. The consequences of the altered composition of the chloroplast membrane are discussed in terms of their relation to the aberrant protein processing of the pm7 plastids. The pigment, fatty acid, and lipid measurements were also performed on two distinct nuclear genotypes (A/A and A/C) which differ in their compatibility with the plastid genome (type I) contained in these lines. In these cases, only chlorophyll concentrations differed significantly. PMID:16667256

  14. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis.

    Science.gov (United States)

    Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D

    2018-01-01

    Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division

  15. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions.

    Science.gov (United States)

    Horn, Patricia; Nausch, Henrik; Baars, Susanne; Schmidtke, Jörg; Schmidt, Kerstin; Schneider, Anja; Leister, Dario; Broer, Inge

    2017-12-01

    As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia , for which the highest paternal leakage has been observed. The variety white 115 (W115) served as recipient and Pink Wave (PW) and the transplastomic variant PW T16, encoding the uid A reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid.

  16. Genetic analysis of sunflower chlorophyll mutants

    International Nuclear Information System (INIS)

    Mashkina, E.V.; Guskov, E.P.

    2001-01-01

    The method of getting the chlorophyll mutations in sunflower was developed by Y.D. Beletskii in 1969 with the use of N-nitroso-N-methylurea (NMH). Certain concentrations of NMH are known to induce plastid mutations in growing seeds, and their yield depends on the duration of the exposure. The given work presented studies on the influence of rifampicin (R) and 2,4-dinitrophenol (DNP) on the genetic activity NMH, as an inductor of plastid and nuclear mutations

  17. Divergence of RNA polymerase ? subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    OpenAIRE

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP ? subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled an...

  18. Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal; Blazier, J Chris; Jansen, Robert K

    2015-03-01

    Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Yuling; Asano, Tomoya; Fujiwara, Makoto T; Yoshida, Shigeo; Machida, Yasunori; Yoshioka, Yasushi

    2009-05-01

    Plastids are maintained in cells by proliferating prior to cell division and being partitioned to each daughter cell during cell division. It is unclear, however, whether cells without plastids are generated when plastid division is suppressed. The crumpled leaf (crl) mutant of Arabidopsis thaliana is a plastid division mutant that displays severe abnormalities in plastid division and plant development. We show that the crl mutant contains cells lacking detectable plastids; this situation probably results from an unequal partitioning of plastids to each daughter cell. Our results suggest that crl has a partial defect in plastid expansion, which is suggested to be important in the partitioning of plastids to daughter cells when plastid division is suppressed. The absence of cells without detectable plastids in the accumulation and replication of chloroplasts 6 (arc6) mutant, another plastid division mutant of A. thaliana having no significant defects in plant morphology, suggests that the generation of cells without detectable plastids is one of the causes of the developmental abnormalities seen in crl plants. We also demonstrate that plastids with trace or undetectable amounts of chlorophyll are generated from enlarged plastids by a non-binary fission mode of plastid replication in both crl and arc6.

  20. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  1. Stable plastid transformation in lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Lelivelt, Cilia L C; McCabe, Matthew S; Newell, Christine A; Desnoo, C Bastiaan; van Dun, Kees M P; Birch-Machin, Ian; Gray, John C; Mills, Kingston H G; Nugent, Jacqueline M

    2005-08-01

    Although plastid transformation in higher plants was first demonstrated in the early 1990s it is only recently that the technology is being extended to a broader range of species. To date, the production of fertile transplastomic plants has been reported for tobacco, tomato, petunia, soybean, cotton and Lesquerella fendleri (Brassicaceae). In this study we demonstrate a polyethylene glycol-mediated plastid transformation system for lettuce that generates fertile, homoplasmic, plastid-transformed lines. Transformation was achieved using a vector that targets genes to the trnA/trnI intergenic region of the lettuce plastid genome employing the aadA gene as a selectable marker against spectinomycin. Spectinomycin resistance and heterologous gene transcription were shown in T(1) plants derived from self-pollinated primary regenerants demonstrating transmission of the plastid-encoded transgene to the first seed generation. Crossing with male sterile wild-type lettuce showed that spectinomycin resistance was not transmitted via pollen. Constructs containing the gfp gene showed plastid-based expression of green fluorescent protein. The lettuce plastid could have potential both as a production and a delivery system for edible human therapeutic proteins.

  2. Cuscuta europaea plastid apparatus in various developmental stages

    Science.gov (United States)

    Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, Ľudmila; Blehová, Alžbeta

    2013-01-01

    It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in “get together” tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host. PMID:23438585

  3. The complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum.

    Directory of Open Access Journals (Sweden)

    Behzad Imanian

    2010-05-01

    Full Text Available In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a 'dinotom'. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexity suggesting an early stage of integration. Although the evolution of these endosymbionts has attracted considerable interest, the plastid genome has not been examined in detail, and indeed no tertiary plastid genome has yet been sequenced.Here we describe the complete plastid genomes of two closely related dinotoms, Durinskia baltica and Kryptoperidinium foliaceum. The D. baltica (116470 bp and K. foliaceum (140426 bp plastid genomes map as circular molecules featuring two large inverted repeats that separate distinct single copy regions. The organization and gene content of the D. baltica plastid closely resemble those of the pennate diatom Phaeodactylum tricornutum. The K. foliaceum plastid genome is much larger, has undergone more reorganization, and encodes a putative tyrosine recombinase (tyrC also found in the plastid genome of the heterokont Heterosigma akashiwo, and two putative serine recombinases (serC1 and serC2 homologous to recombinases encoded by plasmids pCf1 and pCf2 in another pennate diatom, Cylindrotheca fusiformis. The K. foliaceum plastid genome also contains an additional copy of serC1, two degenerate copies of another plasmid-encoded ORF, and two non-coding regions whose sequences closely resemble portions of the pCf1 and pCf2 plasmids.These results suggest that while the plastid genomes of two dinotoms share very similar gene content and genome organization with that of the free-living pennate diatom P. tricornutum, the K. folicaeum plastid genome has absorbed two exogenous plasmids. Whether this took place before or after the tertiary

  4. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  5. Mediated Plastid RNA Editing in Plant Immunity

    Science.gov (United States)

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  6. Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Burki, Fabien; Hirakawa, Yoshihisa; Keeling, Patrick J

    2012-09-01

    Nucleus-encoded plastid-targeted proteins of photosynthetic organisms are generally equipped with an N-terminal presequence required for crossing the plastid membranes. The acquisition of these presequences played a fundamental role in the establishment of plastids. Here, we report a unique case of two non-homologous proteins possessing completely identical presequences consisting of a bipartite plastid-targeting signal in the coccolithophore Emiliania huxleyi. We further show that this presequence is highly conserved in five additional proteins that did not originally function in plastids, representing de novo plastid acquisitions. These are among the most recent cases of presequence spreading from gene to gene and shed light on important evolutionary processes that have been usually erased by the ancient history of plastid evolution. We propose a mechanism of acquisition involving genomic duplications and gene replacement through non-homologous recombination that may have played a more general role for equipping proteins with targeting information.

  7. Polymorphism in Apoprotein-C III gene and coronary heart disease

    International Nuclear Information System (INIS)

    Hussain, Syed S.; Buraiki, J.; Dzimiri, N.; Butt, Abdul Isalm; Vencer, L.; Basco, M.C.; Khan, B.

    1999-01-01

    The aim of this study was to look into the association, if any, apoprotein-CIII variant allele with hypertriglyceridemia, hypercholesterolemia and coronary heart disease (CHD). The prevalence of a C to G substitution in the 3 untranslated regions of apoprotein-CIII was studied in a sample of 92 angiographed Saudi subjects, consisting of 65 males and 27 females. The subjects were genotyped by amplification followed by digestion of the gene fragment containing the polymorphic site with Sac I restriction enzyme. The variant allele of apoprotein-CIII was found to be associated neither with hypertriglyceridemia nor with hypercholesterolemia. However, a significant association of this allele (P<0.01) was found with coronary heart disease, independent of other risk factors such as smoking, diabetes and hypertension. An estimation of odds ratio using logistic regression with various risk factors in the model showed that the individuals with this rare allele were 3.4 times more at risk of developing coronary disease. This estimation of risk held even after analyzing a subset of individuals above 45 years of age. While the association between apoprotein-CIII variant allele and dyslipidemia could not be established in this study, the relationship between this marker and CHD was highlighted in the studied subjects. (author)

  8. Polymorphism in Apoprotein-C III gene and coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed S; Buraiki, J; Dzimiri, N; Butt, Abdul Isalm; Vencer, L; Basco, M C; Khan, B [Dept. of Biological and Medical Research, Cardiovascular diseases and Biomedical Statistics and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    1999-07-01

    The aim of this study was to look into the association, if any, apoprotein-CIII variant allele with hypertriglyceridemia, hypercholesterolemia and coronary heart disease (CHD). The prevalence of a C to G substitution in the 3 untranslated regions of apoprotein-CIII was studied in a sample of 92 angiographed Saudi subjects, consisting of 65 males and 27 females. The subjects were genotyped by amplification followed by digestion of the gene fragment containing the polymorphic site with Sac I restriction enzyme. The variant allele of apoprotein-CIII was found to be associated neither with hypertriglyceridemia nor with hypercholesterolemia. However, a significant association of this allele (P<0.01) was found with coronary heart disease, independent of other risk factors such as smoking, diabetes and hypertension. An estimation of odds ratio using logistic regression with various risk factors in the model showed that the individuals with this rare allele were 3.4 times more at risk of developing coronary disease. This estimation of risk held even after analyzing a subset of individuals above 45 years of age. While the association between apoprotein-CIII variant allele and dyslipidemia could not be established in this study, the relationship between this marker and CHD was highlighted in the studied subjects. (author)

  9. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  10. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger; Zenger, Kyall R; Jerry, Dean R; Heimann, Kirsten

    2015-01-01

    as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases

  11. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  12. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae: A Comparative Analysis and Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Jie Cai

    Full Text Available Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.

  13. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana

    Science.gov (United States)

    Espineda, Cromwell E.; Linford, Alicia S.; Devine, Domenica; Brusslan, Judy A.

    1999-01-01

    Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. PMID:10468639

  14. Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signalling and photomorphogenesis

    Directory of Open Access Journals (Sweden)

    Sookyung eOh

    2014-04-01

    Full Text Available Light perception by photoreceptors impacts plastid transcription, development, and differentiation. This photoreceptor-dependent activity suggests a mechanism for photoregulation of gene expression in the nucleus and plastid that serves to coordinate expression of critical genes of these two organelles. This coordinate expression is required for proper stoichiometric accumulation of components needed for assembly of plastids, photosynthetic light-harvesting complexes and components such as phytochromes. Chloroplast-targeted sigma factors, which function together with the plastid-encoded RNA polymerase to regulate expression of plastid-encoded genes, and nuclear-encoded plastid development factors, such as GLK1 and GLK2, are targets of phytochrome regulation. Such phytochrome-dependent functions are hypothesized to allow light-dependent regulation, and feasibly tuning, of plastid components and function in response to changes in the external environment, which directly affects photosynthesis and the potential for light-induced damage. When the size and protein composition of the light-harvesting complexes are not tuned to the external environment, imbalances in electron transport can impact the cellular redox state and cause cellular damage. We show that phytochromes specifically regulate the expression of multiple factors that function to modulate plastid transcription and, thus, provide a paradigm for coordinate expression of the nuclear and plastid genomes in response to changes in external light conditions. As phytochromes respond to changes in the prevalent wavelengths of light and light intensity, we propose that specific phytochrome-dependent molecular mechanisms are used during light-dependent signaling between the nucleus and chloroplast during photomorphogenesis to coordinate chloroplast development with plant developmental stage and the external environment.

  15. Production Of Cellulase In Plastids Of Transgenic Plants

    Science.gov (United States)

    Lamppa, Gayle

    2002-08-06

    A genetic construct encoding a fusion protein including endogluconase E1 and a transit peptide is used to transform plants. The plants produce cellulase by expressing the genetic construct. The cellulase is targeted to plastids and can be collected and purified.

  16. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  17. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus × domestica Borkh.) during development

    Science.gov (United States)

    Schaeffer, Scott M.; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie

    2017-01-01

    Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids—chromoplasts—are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant ‘Granny Smith’, carotenoid-predominant ‘Golden Delicious’, and anthocyanin-predominant ‘Top Red Delicious’. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems. PMID:28698906

  18. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis.

    Science.gov (United States)

    Lin, Yao-Pin; Wu, Meng-Chen; Charng, Yee-Yung

    2016-12-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein.

    Science.gov (United States)

    Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, L'udmila; Blehová, Alžbeta

    2013-05-01

    It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in "get together" tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host.

  20. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    Science.gov (United States)

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  1. A sea slug’s guide to plastid symbiosis

    Directory of Open Access Journals (Sweden)

    Jan de Vries

    2014-12-01

    Full Text Available Some 140 years ago sea slugs that contained chlorophyll-pigmented granules similar to those of plants were described. While we now understand that these “green granules” are plastids the slugs sequester from siphonaceous algae upon which they feed, surprisingly little is really known about the molecular details that underlie this one of a kind animal-plastid symbiosis. Kleptoplasts are stored in the cytosol of epithelial cells that form the slug’s digestive tubules, and one would guess that the stolen organelles are acquired for their ability to fix carbon, but studies have never really been able to prove that. We also do not know how the organelles are distinguished from the remaining food particles the slugs incorporate with their meal and that include algal mitochondria and nuclei. We know that the ability to store kleptoplasts long-term has evolved only a few times independently among hundreds of sacoglossan species, but we have no idea on what basis. Here we take a closer look at the history of sacoglossan research and discuss recent developments. We argue that, in order to understand what makes this symbiosis work, we will need to focus on the animal’s physiology just as much as we need to commence a detailed analysis of the plastids’ photobiology. Understanding kleptoplasty in sacoglossan slugs requires an unbiased multidisciplinary approach.

  2. RNase P RNA from the Recently Evolved Plastid of Paulinella and from Algae

    Directory of Open Access Journals (Sweden)

    Pilar Bernal-Bayard

    2014-11-01

    Full Text Available The RNase P RNA catalytic subunit (RPR encoded in some plastids has been found to be functionally defective. The amoeba Paulinella chromatophora contains an organelle (chromatophore that is derived from the recent endosymbiotic acquisition of a cyanobacterium, and therefore represents a model of the early steps in the acquisition of plastids. In contrast with plastid RPRs the chromatophore RPR retains functionality similar to the cyanobacterial enzyme. The chromatophore RPR sequence deviates from consensus at some positions but those changes allow optimal activity compared with mutated chromatophore RPR with the consensus sequence. We have analyzed additional RPR sequences identifiable in plastids and have found that it is present in all red algae and in several prasinophyte green algae. We have assayed in vitro a subset of the plastid RPRs not previously analyzed and confirm that these organelle RPRs lack RNase P activity in vitro.

  3. ATP-dependent molecular chaperones in plastids--More complex than expected.

    Science.gov (United States)

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix

    2015-09-01

    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis[OPEN

    Science.gov (United States)

    2016-01-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. PMID:27920339

  5. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    Science.gov (United States)

    Somerville, C.R.; Nawrath, C.; Poirier, Y.

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.

  6. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  7. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus × domestica Borkh.) during development.

    Science.gov (United States)

    Schaeffer, Scott M; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie; Dhingra, Amit

    2017-10-01

    Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex

  8. Surfactant Apoprotein D in Preterm Neonates with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    S. A. Perepelitsa

    2009-01-01

    Full Text Available Objective: to study the production of surfactant apoprotein D in preterm neonates with acute respiratory distress syndrome (ARDS during artificial ventilation (AV. Subjects and methods. The paper presents the results of studying the production of surfactant protein D (SP-D in various biological fluids in 44 preterm neonates. Two groups of newborn infants were identified according to the clinical manifestations of ARDS. The study group comprised 25 infants with the severe course of the disease, in this connection the preventive administration of the exogenous surfactant Curosurf and AV were made in all the neonates at birth. The control group included 19 preterm babies without signs of ARDS. Results. The study has demonstrated that in parturients and preterm neonatal infants, surfactant apoprotein D is detectable in various biological fluids: amniotic fluid, the gastric aspirate obtained just after birth, residual umbilical cord blood, serum following 8 hours of birth, and bronchoalveolar fluid. Despite the low gestational age of the neonates, the lung surfactant system is able to produce SP-D, as evidenced by its high content in the amniotic fluid and residual umbilical cord blood of preterm neonates. The production of apoprotein D in preterm neonates considerably reduces in the next few hours after birth. Conclusion. The findings suggest that fetal tissues generate SP-D, which improves pulmonary gas exchange in preterm neonates in the first hours after birth and that alveolar-capillary membrane dysfunctions are transient in the neonates on AV. Key words: preterm neonates, acute respiratory distress syndrome, surfactant, surfactant apoprotein D.

  9. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  10. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  11. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement.

    Science.gov (United States)

    Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K

    2016-04-18

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.

  12. An FTIR study on the chlorophyll and apoprotein aggregation states in LHCII due to solvent effects

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2012-07-01

    Full Text Available Photosynthesis provides us with the most abundant and efficient light-harvesting systems found in nature. The photosynthetic process is very much dependent on the aggregation state of the chlorophylls and secondary conformational structure...

  13. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown.

    Science.gov (United States)

    Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil

    2012-06-01

    Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.

  14. Does the mode of plastid inheritance influence plastid genome architecture?

    Directory of Open Access Journals (Sweden)

    Kate Crosby

    Full Text Available Plastid genomes show an impressive array of sizes and compactnesses, but the forces responsible for this variation are unknown. It has been argued that species with small effective genetic population sizes are less efficient at purging excess DNA from their genomes than those with large effective population sizes. If true, one may expect the primary mode of plastid inheritance to influence plastid DNA (ptDNA architecture. All else being equal, biparentally inherited ptDNAs should have a two-fold greater effective population size than those that are uniparentally inherited, and thus should also be more compact. Here, we explore the relationship between plastid inheritance pattern and ptDNA architecture, and consider the role of phylogeny in shaping our observations. Contrary to our expectations, we found no significant difference in plastid genome size or compactness between ptDNAs that are biparentally inherited relative to those that are uniparentally inherited. However, we also found that there was significant phylogenetic signal for the trait of mode of plastid inheritance. We also found that paternally inherited ptDNAs are significantly smaller (n = 19, p = 0.000001 than those that are maternally, uniparentally (when isogamous, or biparentally inherited. Potential explanations for this observation are discussed.

  15. [Beclobrate (Turec) in the treatment of primary hyperlipoproteinemia. I. Effect on cholesterol, lipid and apoprotein levels].

    Science.gov (United States)

    Sznajd, J; Idzior-Waluś, B; Zabiński, J; Wybrańska, I; Korzus, G; Iwanejko, J

    1990-01-01

    The effects of a new fibric acid derivative--beclobrate (Turec, Zyma) on serum lipid and apoprotein concentrations in 63 patients with primary hyperlipoproteinemia were examined. Beclobrate was given in the evening, 100 mg, once daily. After 3 months of beclobrate treatment mean total cholesterol concentration in serum decreased from 9.35 to 7.73 mmol/l (17.3%), mean LDL-cholesterol concentration from 6.32 to 5.38 mmol/l (14.9%), mean HDL-cholesterol concentration increased by 0.21 mmol/l (15.3% of initial value). The greatest decrease was observed in triglyceride concentration--by 50% of the initial value. Apoprotein B concentration decreased by 19.7%, apoprotein A1 and A2 concentration increased by 20.3% and 26.8% respectively. Higher initial values of total cholesterol and triglyceride concentration in serum were associated with greater concentration decrease after beclobrate treatment.

  16. A Plastid Terminal Oxidase Associated with Carotenoid Desaturation during Chromoplast Differentiation1

    Science.gov (United States)

    Josse, Eve-Marie; Simkin, Andrew J.; Gaffé, Joël; Labouré, Anne-Marie; Kuntz, Marcel; Carol, Pierre

    2000-01-01

    The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, this PTOX gene is impaired in the tomato ghost mutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development. PMID:10938359

  17. Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein[W][OA

    Science.gov (United States)

    Kahlau, Sabine; Bock, Ralph

    2008-01-01

    Plastid genes are expressed at high levels in photosynthetically active chloroplasts but are generally believed to be drastically downregulated in nongreen plastids. The genome-wide changes in the expression patterns of plastid genes during the development of nongreen plastid types as well as the contributions of transcriptional versus translational regulation are largely unknown. We report here a systematic transcriptomics and translatomics analysis of the tomato (Solanum lycopersicum) plastid genome during fruit development and chloroplast-to-chromoplast conversion. At the level of RNA accumulation, most but not all plastid genes are strongly downregulated in fruits compared with leaves. By contrast, chloroplast-to-chromoplast differentiation during fruit ripening is surprisingly not accompanied by large changes in plastid RNA accumulation. However, most plastid genes are translationally downregulated during chromoplast development. Both transcriptional and translational downregulation are more pronounced for photosynthesis-related genes than for genes involved in gene expression, indicating that some low-level plastid gene expression must be sustained in chromoplasts. High-level expression during chromoplast development identifies accD, the only plastid-encoded gene involved in fatty acid biosynthesis, as the target gene for which gene expression activity in chromoplasts is maintained. In addition, we have determined the developmental patterns of plastid RNA polymerase activities, intron splicing, and RNA editing and report specific developmental changes in the splicing and editing patterns of plastid transcripts. PMID:18441214

  18. [Effect of melafen on expression of Elip1 and Elip2 genes encoding chloroplast light-induced stress proteins in barley].

    Science.gov (United States)

    Osipenkova, O V; Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2008-01-01

    The effect of melafen, a plant growth regulator of a new generation, on the growth, pigment composition, and expression of nuclear genes Elip1 and Elip2 encoding chloroplast light-stress proteins in barley (Hordeum vulgare L) seedlings was studied. It is shown that the height of seedlings treated with melafen at concentrations of 0.5 x 10(-10) and 0.5 x 10(-8) M increased by approximately 10 and 20%, respectively, as compared to the control. At high concentrations (10(-5) and 10(-3) M), melafen had no effect on the growth of seedlings. The content of chlorophylls and carotenoids in chloroplasts barely differed from the control at all melafen concentrations tested. Reverse transcription-polymerase chain reaction (RT-PCR) showed that melafen did not influence the expression of the nuclear gene encoding the low-molecular-weight plastid stress protein ELIP1. At the same time, the expression of the nuclear gene encoding the high-molecular-weight light-inducible stress protein ELIP2 in the plants treated with melafen at a concentration of 0.5 x 10(-8) M, increased by approximately 70 %. At higher concentrations, melafen suppressed the Elip2 gene expression. Thus, melafen affects the expression of the Elip2 gene, which is involved in the regulation of chlorophyll synthesis and chloroplast biogenesis, which, in turn, may lead to changes in the resistance of plants to light-induced stress.

  19. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.

    Science.gov (United States)

    Yerramsetty, Pradeep; Stata, Matt; Siford, Rebecca; Sage, Tammy L; Sage, Rowan F; Wong, Gane Ka-Shu; Albert, Victor A; Berry, James O

    2016-06-29

    RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in

  20. Metabolic and Molecular Events Occurring during Chromoplast Biogenesis

    Directory of Open Access Journals (Sweden)

    Wanping Bian

    2011-01-01

    Full Text Available Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. However, thanks to transcriptomics and proteomics approaches, novel information is now available. Data of proteomic and biochemical analysis revealed the importance of lipid metabolism and carotenoids biosynthetic activities. The loss of photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during tomato fruit ripening.

  1. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    International Nuclear Information System (INIS)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-01

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.

  2. The Magnesium Chelation Step in Chlorophyll Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Dilworth, Ph.D Chemical Sciences, Geosciences and Biosciences Division Office of Basis Energy Sciences, greg.dilworth@science.doe.gov

    2001-01-17

    The progress described in this report encompasses work supported by DOE grant DE-FG09-89ER13989 for the period 2/15/92 to the present 6/14/94. The goals of the project were to continue investigating the enzymology of Mg-chelatase and to investigate the co-regulation of heme and chlorophyll formation in intact plastids. During this period the laboratory had additional support (two years) from USDA to investigate heme metabolism in chloroplasts. This report is arranged so that the progress is described by reference to manuscripts which are published, under review or in preparation.

  3. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    Science.gov (United States)

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  4. Plastid Phylogenomic Analyses Resolve Tofieldiaceae as the Root of the Early Diverging Monocot Order Alismatales.

    Science.gov (United States)

    Luo, Yang; Ma, Peng-Fei; Li, Hong-Tao; Yang, Jun-Bo; Wang, Hong; Li, De-Zhu

    2016-04-06

    The predominantly aquatic order Alismatales, which includes approximately 4,500 species within Araceae, Tofieldiaceae, and the core alismatid families, is a key group in investigating the origin and early diversification of monocots. Despite their importance, phylogenetic ambiguity regarding the root of the Alismatales tree precludes answering questions about the early evolution of the order. Here, we sequenced the first complete plastid genomes from three key families in this order:Potamogeton perfoliatus(Potamogetonaceae),Sagittaria lichuanensis(Alismataceae), andTofieldia thibetica(Tofieldiaceae). Each family possesses the typical quadripartite structure, with plastid genome sizes of 156,226, 179,007, and 155,512 bp, respectively. Among them, the plastid genome ofS. lichuanensisis the largest in monocots and the second largest in angiosperms. Like other sequenced Alismatales plastid genomes, all three families generally encode the same 113 genes with similar structure and arrangement. However, we detected 2.4 and 6 kb inversions in the plastid genomes ofSagittariaandPotamogeton, respectively. Further, we assembled a 79 plastid protein-coding gene sequence data matrix of 22 taxa that included the three newly generated plastid genomes plus 19 previously reported ones, which together represent all primary lineages of monocots and outgroups. In plastid phylogenomic analyses using maximum likelihood and Bayesian inference, we show both strong support for Acorales as sister to the remaining monocots and monophyly of Alismatales. More importantly, Tofieldiaceae was resolved as the most basal lineage within Alismatales. These results provide new insights into the evolution of Alismatales as well as the early-diverging monocots as a whole. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta.

    Science.gov (United States)

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; de Pamphilis, Claude W

    2007-10-24

    Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  6. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-10-01

    Full Text Available Abstract Background Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Results Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Conclusion Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  7. Parallel loss of plastid introns and their maturase in the genus Cuscuta.

    Science.gov (United States)

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; Leebens-Mack, Jim; dePamphilis, Claude W

    2009-06-19

    Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  8. Parallel loss of plastid introns and their maturase in the genus Cuscuta.

    Directory of Open Access Journals (Sweden)

    Joel R McNeal

    2009-06-01

    Full Text Available Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

  9. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    Science.gov (United States)

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained

  10. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.

    Directory of Open Access Journals (Sweden)

    Štěpánka Hrdá

    Full Text Available Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.

  11. Quantitative proteomic analysis of intact plastids.

    Science.gov (United States)

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.

  12. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  13. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.

    Science.gov (United States)

    Qiu, Huan; Lee, Jun Mo; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-06-01

    Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage. © 2017 Phycological Society of America.

  14. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Directory of Open Access Journals (Sweden)

    Corre Erwan

    2009-10-01

    Full Text Available Abstract Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including

  15. Plastome-Genome Interactions Affect Plastid Transmission in Oenothera

    Science.gov (United States)

    Chiu, W. L.; Sears, B. B.

    1993-01-01

    Plastids of Oenothera, the evening primrose, can be transmitted to the progeny from both parents. In a constant nuclear background, the frequency of biparental plastid transmission is determined by the types of plastid genomes (plastomes) involved in the crosses. In this study, the impact of nuclear genomes on plastid inheritance was analyzed. In general, the transmission efficiency of each plastome correlated strongly with its compatibility with the nuclear genome of the progeny, suggesting that plastome-genome interactions can influence plastid transmission by affecting the efficiency of plastid multiplication after fertilization. Lower frequencies of plastid transmission from the paternal side were observed when the pollen had poor vigor due to an incompatible plastome-genome combination, indicating that plastome-genome interactions may also affect the input of plastids at fertilization. Parental traits that affect the process of fertilization can also have an impact on plastid transmission. Crosses using maternal parents with long styles or pollen with relatively low growth capacity resulted in reduced frequencies of paternal plastid transmission. These observations suggest that degeneration of pollen plastids may occur as the time interval between pollination and fertilization is lengthened. PMID:8462856

  16. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica.

    Science.gov (United States)

    Mujer, C V; Andrews, D L; Manhart, J R; Pierce, S K; Rumpho, M E

    1996-10-29

    The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern blot analysis of total DNA from E. chlorotica indicated that algal genes, i.e., rbcL, rbcS, psaB, psbA, and 16S rRNA are present in the animal. These genes are typically localized to the plastid genome in higher plants and algae except rbcS, which is nuclear-encoded in higher plants and green (chlorophyll a/b) algae. Our analysis suggests, however, that similar to the few other chromophytes (chlorophyll a/c) examined, rbcS is chloroplast encoded in V. litorea. Levels of psbA transcripts remained constant in E. chlorotica starved for 2 and 3 months and then gradually declined over the next 5 months corresponding with senescence of the animal in culture and in nature. The RNA synthesis inhibitor 6-methylpurine reduced the accumulation of psbA transcripts confirming active transcription. In contrast to psbA, levels of 16S rRNA transcripts remained constant throughout the starvation period. The levels of the photosystem II proteins, D1 and CP43, were high at 2 and 4 months of starvation and remained constant at a lower steady-state level after 6 months. In contrast, D2 protein levels, although high at 2 and 4 months, were very low at all other periods of starvation. At 8 months, de novo synthesis of several thylakoid membrane-enriched proteins, including D1, still occurred. To our knowledge, these results represent the first molecular evidence for active transcription and translation of algal chloroplast genes in an animal host and are discussed in relation to the endosymbiotic

  17. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits 1

    Science.gov (United States)

    Marano, María Rosa; Carrillo, Néstor

    1992-01-01

    The size distribution of plastid transcripts during chromoplast differentiation in ripening tomato (Lycopersicon esculentum L.) fruits was determined using northern blot analysis. Hybridization of total cellular RNA from leaves and fruits with several tobacco chloroplast DNA probes showed distinct transcript patterns in chloroplasts and chromoplasts. We also compared transcriptional rates by probing immobilized DNA fragments of small size (representing about 85% of the plastid genome) with run-on transcripts from tomato plastids. The relative rates of transcription of the various DNA regions were very similar in chloro- and chromoplasts. Parallel determination of the steady-state levels of plastid RNA showed no strict correlation between synthesis rate and RNA accumulation. Differences in the relative abundance of transcripts between chloro- and chromoplasts were not very pronounced and were limited to a small number of genes. The results indicate that the conversion of chloroplasts to chromoplasts at the onset of tomato fruit ripening proceeds with no important variations in the relative transcription rates and with only moderate changes in the relative stability of plastid-encoded transcripts. Images Figure 1 Figure 4 PMID:16653091

  18. The myth of interconnected plastids and related phenomena.

    Science.gov (United States)

    Schattat, Martin H; Barton, Kiah A; Mathur, Jaideep

    2015-01-01

    Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.

  19. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.

    Science.gov (United States)

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-08-22

    The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression

  20. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2007-08-01

    Full Text Available Abstract Background The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. Results The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c a significant reduction of RNA editing. Conclusion Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards

  1. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    Directory of Open Access Journals (Sweden)

    Palmer Jeffrey D

    2006-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts, where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. Conclusion The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and

  2. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    Science.gov (United States)

    Rice, Danny W; Palmer, Jeffrey D

    2006-01-01

    Background Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts), where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. Conclusion The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and cryptophyte plastids to the

  3. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    International Nuclear Information System (INIS)

    Taylor, T.; Weintraub, B.D.

    1985-01-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing [ 14 C]alanine and [ 3 H] glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, [ 14 C]alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. [ 3 H]Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function

  4. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    Science.gov (United States)

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  5. Why does biparental plastid inheritance revive in angiosperms?

    Science.gov (United States)

    Zhang, Quan; Sodmergen

    2010-03-01

    It is widely believed that plastid and mitochondrial genomes are inherited through the maternal parent. In plants, however, paternal transmission of these genomes is frequently observed, especially for the plastid genome. A male gametic trait, called potential biparental plastid inheritance (PBPI), occurs in up to 20% of angiosperm genera, implying a strong tendency for plastid transmission from the male lineage. Why do plants receive organelles from the male parents? Are there clues in plastids that will help to elucidate the evolution of plants? Reconstruction of the ancestral state of plastid inheritance patterns in a phylogenetic context provides insights into these questions. In particular, a recent report demonstrated the unilateral occurrence of PBPI in angiosperms. This result implies that nuclear cytoplasmic conflicts, a basic driving force for altering the mode of organelle inheritance, might have arisen specifically in angiosperms. Based on existing evidence, it is likely that biparental inheritance may have occurred to rescue angiosperm species with defective plastids.

  6. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate

    KAUST Repository

    Gornik, Sebastian G.; Febrimarsa,; Cassin, Andrew M.; MacRae, James I.; Ramaprasad, Abhinay; Rchiad, ‍ Zineb; McConville, Malcolm J.; Bacic, Antony; McFadden, Geoffrey I.; Pain, Arnab; Waller, Ross F.

    2015-01-01

    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes - notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium - highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis-life after the organelle. © 2015, National Academy of Sciences. All rights reserved.

  7. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate

    KAUST Repository

    Gornik, Sebastian G.

    2015-04-20

    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes - notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium - highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite\\'s host. Hematodinium sp. thus represents a further dimension of endosymbiosis-life after the organelle. © 2015, National Academy of Sciences. All rights reserved.

  8. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-22

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence[OPEN

    Science.gov (United States)

    Christ, Bastien; Das, Aditi; Hörtensteiner, Stefan

    2016-01-01

    Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants. PMID:27655840

  10. Plastid and Stromule Morphogenesis in Tomato

    Science.gov (United States)

    PYKE, KEVIN A.; HOWELLS, CAROLINE A.

    2002-01-01

    By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead‐like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed. PMID:12466096

  11. Indicators: Chlorophyll a

    Science.gov (United States)

    Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.

  12. Carotenoid Metabolism in Plants: The Role of Plastids.

    Science.gov (United States)

    Sun, Tianhu; Yuan, Hui; Cao, Hongbo; Yazdani, Mohammad; Tadmor, Yaakov; Li, Li

    2018-01-08

    Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the Haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds.

    Science.gov (United States)

    Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2012-06-01

    Pyruvate carboxylase (PYC) catalyzes the β-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic β-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.

  14. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid.

    Science.gov (United States)

    Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp

    2017-02-01

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid ( Dc MP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus . Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named Dc MP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus , (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  15. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Science.gov (United States)

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid

  16. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Directory of Open Access Journals (Sweden)

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  17. Citrus plastid-related gene profiling based on expressed sequence tag analyses

    Directory of Open Access Journals (Sweden)

    Tercilio Calsa Jr.

    2007-01-01

    Full Text Available Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark or in reproductive organs (flowers and fruits. Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC.

  18. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    Science.gov (United States)

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  20. Plastids: the Green Frontiers for Vaccine Production

    Directory of Open Access Journals (Sweden)

    Mohammad Tahir eWaheed

    2015-11-01

    Full Text Available Infectious diseases pose an increasing risk to health, especially in developing countries. Vaccines are available to either cure or prevent many of these diseases. However, there are certain limitations related to these vaccines, mainly the costs, which make these vaccines mostly unaffordable for people in resource poor countries. These costs are mainly related to production and purification of the products manufactured from fermenter-based systems. Plastid biotechnology has become an attractive platform to produce biopharmaceuticals in large amounts and cost-effectively. This is mainly due to high copy number of plastids DNA in mature chloroplasts, a characteristic particularly important for vaccine production in large amounts. An additional advantage lies in the maternal inheritance of plastids in most plant species, which addresses the regulatory concerns related to transgenic plants. These and many other aspects of plastids will be discussed in the present review, especially those that particularly make these green biofactories an attractive platform for vaccine production. A summary of recent vaccine antigens against different human diseases expressed in plastids will also be presented.

  1. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  2. A contemplation on the secondary origin of green algal and plant plastids

    Directory of Open Access Journals (Sweden)

    Eunsoo Kim

    2014-12-01

    Full Text Available A single origin of plastids and the monophyly of three “primary” plastid-containing groups – the Chloroplastida (or Viridiplantae; green algae+land plants, Rhodophyta, and Glaucophyta – are widely accepted, mainstream hypotheses that form the basis for many comparative evolutionary studies. This “Archaeplastida” hypothesis, however, thus far has not been unambiguously confirmed by phylogenetic studies based on nucleocytoplasmic markers. In view of this as well as other lines of evidence, we suggest the testing of an alternate hypothesis that plastids of the Chloroplastida are of secondary origin. The new hypothesis is in agreement with, or perhaps better explains, existing data, including both the plastidal and nucleocytoplasmic characteristics of the Chloroplastida in comparison to those of other groups.

  3. The plastid genomes of flowering plants.

    Science.gov (United States)

    Ruhlman, Tracey A; Jansen, Robert K

    2014-01-01

    The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.

  4. Plastid-to-Nucleus Retrograde Signals Are Essential for the Expression of Nuclear Starch Biosynthesis Genes during Amyloplast Differentiation in Tobacco BY-2 Cultured Cells1[W][OA

    Science.gov (United States)

    Enami, Kazuhiko; Ozawa, Tomoki; Motohashi, Noriko; Nakamura, Masayuki; Tanaka, Kan; Hanaoka, Mitsumasa

    2011-01-01

    Amyloplasts, a subtype of plastid, are found in nonphotosynthetic tissues responsible for starch synthesis and storage. When tobacco (Nicotiana tabacum) Bright Yellow-2 cells are cultured in the presence of cytokinin instead of auxin, their plastids differentiate from proplastids to amyloplasts. In this program, it is well known that the expression of nucleus-encoded starch biosynthesis genes, such as ADP-Glucose Pyrophosphorylase (AgpS) and Granule-Bound Starch Synthase (GBSS), is specifically induced. In this study, we investigated the roles of plastid gene expression in amyloplast differentiation. Microarray analysis of plastid genes revealed that no specific transcripts were induced in amyloplasts. Nevertheless, amyloplast development accompanied with starch biosynthesis was drastically inhibited in the presence of plastid transcription/translation inhibitors. Surprisingly, the expression of nuclear AgpS and GBSS was significantly repressed by the addition of these inhibitors, suggesting that a plastid-derived signal(s) that reflects normal plastid gene expression was essential for nuclear gene expression. A series of experiments was performed to examine the effects of intermediates and inhibitors of tetrapyrrole biosynthesis, since some of the intermediates have been characterized as candidates for plastid-to-nucleus retrograde signals. Addition of levulinic acid, an inhibitor of tetrapyrrole biosynthesis, resulted in the up-regulation of nuclear AgpS and GBSS gene expression as well as starch accumulation, while the addition of heme showed opposite effects. Thus, these results indicate that plastid transcription and/or translation are required for normal amyloplast differentiation, regulating the expression of specific nuclear genes by unknown signaling mechanisms that can be partly mediated by tetrapyrrole intermediates. PMID:21771917

  5. Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful

    OpenAIRE

    E. Khaleghi; K. Arzani; N. Moallemi; M. Barzegar

    2012-01-01

    This study was conducted to determine effect of water stress on chlorophyll content and chlorophyll fluorescence parameter in young `Dezful- olive trees. Three irrigation regimes (40% ETcrop, 65% ETcrop and 100% ETcrop) were used. After irrigation treatments were applied, some of biochemical parameters including chlorophyll a, b, total chlorophyll, chlorophyll fluorescence and also chlorophyll content index (C.C.I) were measured. Results of Analysis of variance showed that irrigation treatmen...

  6. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae.

    Directory of Open Access Journals (Sweden)

    Michael S DePriest

    Full Text Available The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta.

  7. The Plastid Genome of the Red Macroalga Grateloupia taiwanensis (Halymeniaceae)

    Science.gov (United States)

    DePriest, Michael S.; Bhattacharya, Debashish; López-Bautista, Juan M.

    2013-01-01

    The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta) is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta. PMID:23894297

  8. Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Tadini, Luca; Ferrari, Roberto; Lehniger, Marie-Kristin; Mizzotti, Chiara; Moratti, Fabio; Resentini, Francesca; Colombo, Monica; Costa, Alex; Masiero, Simona; Pesaresi, Paolo

    2018-04-23

    AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR) containing protein family have emerged as key regulators of the organelle post-transcriptional processing and to be essential for proper plant embryo development. In this study, we report the functional characterization of the AtPPR4 (At5g04810) gene encoding a plastid nucleoid PPR protein. In-situ hybridization analysis reveals the presence of AtPPR4 transcripts already at the transition stage of embryo development. As a consequence, embryos lacking the AtPPR4 protein arrest their development at the transition/early-heart stages and show defects in the determination of the provascular tissue and organization of SAM. This complex phenotype is due to the specific role of AtPPR4 in the trans-splicing of the plastid rps12 transcripts, as shown by northern and slot-blot hybridizations, and the consequent defect in 70S ribosome accumulation and plastid protein synthesis, in agreement with the role proposed for the maize orthologue, ZmPPR4.

  9. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    Science.gov (United States)

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  10. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution.

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G

    2008-04-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.

  11. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution†

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V.; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G.

    2008-01-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor. PMID:18299283

  12. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development.

    Science.gov (United States)

    Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2017-09-05

    A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.

  13. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang

    2010-01-01

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  14. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gilkerson Jonathan

    2012-07-01

    Full Text Available Abstract Background Transcription of plastid-encoded genes requires two different DNA-dependent RNA polymerases, a nuclear-encoded polymerase (NEP and plastid-encoded polymerase (PEP. Recent studies identified two related pfkB-type carbohydrate kinases, named FRUCTOKINASE-LIKE PROTEIN (FLN1 and FLN2, as components of the thylakoid bound PEP complex in both Arabidopsis thaliana and Sinapis alba (mustard. Additional work demonstrated that RNAi-mediated reduction in FLN expression specifically diminished transcription of PEP-dependent genes. Results Here, we report the characterization of Arabidopsis FLN knockout alleles to examine the contribution of each gene in plant growth, chloroplast development, and in mediating PEP-dependent transcription. We show that fln plants have severe phenotypes with fln1 resulting in an albino phenotype that is seedling lethal without a source of exogenous carbon. In contrast, fln2 plants display chlorosis prior to leaf expansion, but exhibit slow greening, remain autotrophic, can grow to maturity, and set viable seed. fln1 fln2 double mutant analysis reveals haplo-insufficiency, and fln1 fln2 plants have a similar, but more severe phenotype than either single mutant. Normal plastid development in both light and dark requires the FLNs, but surprisingly skotomorphogenesis is unaffected in fln seedlings. Seedlings genetically fln1-1 with dexamethasone-inducible FLN1-HA expression at germination are phenotypically indistinguishable from wild-type. Induction of FLN-HA after 24 hours of germination cannot rescue the mutant phenotype, indicating that the effects of loss of FLN are not always reversible. Examination of chloroplast gene expression in fln1-1 and fln2-1 by qRT-PCR reveals that transcripts of PEP-dependent genes were specifically reduced compared to NEP-dependent genes in both single mutants. Conclusions Our results demonstrate that each FLN protein contributes to wild type growth, and acting additively are

  16. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  17. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  18. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation

    Science.gov (United States)

    dePamphilis, Claude W.; Young, Nelson D.; Wolfe, Andrea D.

    1997-01-01

    The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism. PMID:9207097

  19. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  20. Stable plastid transformation in Scoparia dulcis L.

    Science.gov (United States)

    Muralikrishna, Narra; Srinivas, Kota; Kumar, Kalva Bharath; Sadanandam, Abbagani

    2016-10-01

    In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR / t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.

  1. One-electron oxidation of photosynthetic pigments in micelles. Bacteriochlorophyll a, chlorophyll a, chlorophyll b, and pheophytin a

    International Nuclear Information System (INIS)

    Chauvet, J.P.

    1981-01-01

    Chlorophyll a, chlorophyll b, and bacteriochlorophyll a in aqueous micellar solutions of Trition X 100 (2%) are readily oxidized by pulse-radiolytically generated N 3 ., Br 2 - ., and (SCN) 2 - . radicals at nearly diffusion-controlled rates. The kinetic study suggests that pigment molecules occupy multiple sites in the micelle. Pheophytin a is only oxidized by N 3 . and Br 2 - . radicals. The absolute spectra and the molar extinction coefficients of chlorophyll a, bacteriochlorophyll a, chlorophyll b, and pheophytin a cations have been determined. The chlorophyll a cation has been observed in the presence of pigment aggregates

  2. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Science.gov (United States)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  3. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis.

    Science.gov (United States)

    Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis

    2017-03-01

    The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-12-01

    Full Text Available Abstract Background The genus Cuscuta L. (Convolvulaceae, commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Results Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Conclusion Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some

  5. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae).

    Science.gov (United States)

    McNeal, Joel R; Arumugunathan, Kathiravetpilla; Kuehl, Jennifer V; Boore, Jeffrey L; Depamphilis, Claude W

    2007-12-13

    The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient

  6. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    Science.gov (United States)

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  7. Plastid Proteomic Analysis in Tomato Fruit Development.

    Directory of Open Access Journals (Sweden)

    Miho Suzuki

    Full Text Available To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein and HrBP1 (harpin binding protein-1 in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.

  8. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity.

    Science.gov (United States)

    Xiong, Wei; Shen, Gaozhong; Bryant, Donald A

    2017-03-01

    The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803 ) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA 6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA 6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA 6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.

  9. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    Science.gov (United States)

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  10. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    Directory of Open Access Journals (Sweden)

    Elena L Peredo

    Full Text Available The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas, the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR separating the large single copy (LSC from the small single copy (SSC regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(PH dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms.

  11. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds.

    Science.gov (United States)

    Malik, Meghna R; Yang, Wenyu; Patterson, Nii; Tang, Jihong; Wellinghoff, Rachel L; Preuss, Mary L; Burkitt, Claire; Sharma, Nirmala; Ji, Yuanyuan; Jez, Joseph M; Peoples, Oliver P; Jaworski, Jan G; Cahoon, Edgar B; Snell, Kristi D

    2015-06-01

    Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    Science.gov (United States)

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast

  13. Instability of plastid DNA in the nuclear genome.

    Directory of Open Access Journals (Sweden)

    Anna E Sheppard

    2009-01-01

    Full Text Available Functional gene transfer from the plastid (chloroplast and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes.

  14. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  15. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning

    Science.gov (United States)

    2013-01-01

    Background Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. Results In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, Nterminal-Center-Cterminal composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction

  16. In vivo Assembly in Escherichia coli of Transformation Vectors for Plastid Genome Engineering

    Directory of Open Access Journals (Sweden)

    Yuyong Wu

    2017-08-01

    Full Text Available Plastid transformation for the expression of recombinant proteins and entire metabolic pathways has become a promising tool for plant biotechnology. However, large-scale application of this technology has been hindered by some technical bottlenecks, including lack of routine transformation protocols for agronomically important crop plants like rice or maize. Currently, there are no standard or commercial plastid transformation vectors available for the scientific community. Construction of a plastid transformation vector usually requires tedious and time-consuming cloning steps. In this study, we describe the adoption of an in vivo Escherichia coli cloning (iVEC technology to quickly assemble a plastid transformation vector. The method enables simple and seamless build-up of a complete plastid transformation vector from five DNA fragments in a single step. The vector assembled for demonstration purposes contains an enhanced green fluorescent protein (GFP expression cassette, in which the gfp transgene is driven by the tobacco plastid ribosomal RNA operon promoter fused to the 5′ untranslated region (UTR from gene10 of bacteriophage T7 and the transcript-stabilizing 3′UTR from the E. coli ribosomal RNA operon rrnB. Successful transformation of the tobacco plastid genome was verified by Southern blot analysis and seed assays. High-level expression of the GFP reporter in the transplastomic plants was visualized by confocal microscopy and Coomassie staining, and GFP accumulation was ~9% of the total soluble protein. The iVEC method represents a simple and efficient approach for construction of plastid transformation vector, and offers great potential for the assembly of increasingly complex vectors for synthetic biology applications in plastids.

  17. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids

    Czech Academy of Sciences Publication Activity Database

    Hrdá, Š.; Fousek, Jan; Szabová, J.; Vlček, Čestmír; Hampl, V.

    2012-01-01

    Roč. 7, č. 3 (2012), e33746 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP506/11/1320 Institutional support: RVO:68378050 Keywords : euglenid plastid * Eutreptiella * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  18. Photosynthetic and Heterotrophic Ferredoxin Isoproteins Are Colocalized in Fruit Plastids of Tomato1

    Science.gov (United States)

    Aoki, Koh; Yamamoto, Miyuki; Wada, Keishiro

    1998-01-01

    Fruit tissues of tomato (Lycopersicon esculentum Mill.) contain both photosynthetic and heterotrophic ferredoxin (FdA and FdE, respectively) isoproteins, irrespective of their photosynthetic competence, but we did not previously determine whether these proteins were colocalized in the same plastids. In isolated fruit chloroplasts and chromoplasts, both FdA and FdE were detected by immunoblotting. Colocalization of FdA and FdE in the same plastids was demonstrated using double-staining immunofluorescence microscopy. We also found that FdA and FdE were colocalized in fruit chloroplasts and chloroamyloplasts irrespective of sink status of the plastid. Immunoelectron microscopy demonstrated that FdA and FdE were randomly distributed within the plastid stroma. To investigate the significance of the heterotrophic Fd in fruit plastids, Glucose 6-phosphate dehydrogenase (G6PDH) activity was measured in isolated fruit and leaf plastids. Fruit chloroplasts and chromoplasts showed much higher G6PDH activity than did leaf chloroplasts, suggesting that high G6PDH activity is linked with FdE to maintain nonphotosynthetic production of reducing power. This result suggested that, despite their morphological resemblance, fruit chloroplasts are functionally different from their leaf counterparts. PMID:9765529

  19. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    Science.gov (United States)

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  20. Interdependency of formation and localisation of the Min complex controls symmetric plastid division.

    Science.gov (United States)

    Maple, Jodi; Møller, Simon G

    2007-10-01

    Plastid division represents a fundamental biological process essential for plant development; however, the molecular basis of symmetric plastid division is unclear. AtMinE1 plays a pivotal role in selection of the plastid division site in concert with AtMinD1. AtMinE1 localises to discrete foci in chloroplasts and interacts with AtMinD1, which shows a similar localisation pattern. Here, we investigate the importance of Min protein complex formation during the chloroplast division process. Dissection of the assembly of the Min protein complex and determination of the interdependency of complex assembly and localisation in planta allow us to present a model of the molecular basis of selection of the division site in plastids. Moreover, functional analysis of AtMinE1 in bacteria demonstrates the level of functional conservation and divergence of the plastidic MinE proteins.

  1. Study of apoprotein among atomic bomb survivors

    International Nuclear Information System (INIS)

    Takayama, Sadamatsu; Tokunaga, Yutaka; Ishibashi, Shinzo; Mito, Kazuyo; Ito, Chikako; Kato, Masafumi.

    1988-01-01

    In an effort to examine the relationship between A-bomb exposure and arteriosclerosis, the serum concentrations of apoproteins (Apo) were measured in a total of 192 A-bomb survivors, consisting of 28 A-bomb survivors exposed at ≤2,000 m from the hypocenter (the exposed group) and 110 A-bomb survivors exposed at ≥3,000 m and entering the city 9 days or later after A-bombing (the control group). No definitive difference in average serum concentrations of Apo A-I and A-II was found between the exposed and control groups; nor did average serum concentrations of Apo B and B/A-I differ between the groups. According to the age group, Apo A-I was significantly higher in men over the age of 70 in the exposed group than the control group. Apo B tended to be higher in men over the age of 50 in the exposed group than the control group. As for men in the control group, there was a significant negative correlation between age group and both Apo A-I and A-II; however, this tendency was not seen in the exposed group. For women, no correlation between Apo and age group was found in either the exposed or control group. There was a tendency among men towards a higher incidence of hypoapoproteinemia A-I in the exposed group than the control group. The incidence of hyperapoproteinemia B was significantly higher as well for men in the exposed group than the control group. (Namekawa, K.)

  2. Plastome Evolution in the Sole Hemiparasitic Genus Laurel Dodder (Cassytha) and Insights into the Plastid Phylogenomics of Lauraceae.

    Science.gov (United States)

    Wu, Chung-Shien; Wang, Ting-Jen; Wu, Chia-Wen; Wang, Ya-Nan; Chaw, Shu-Miaw

    2017-10-01

    To date, little is known about the evolution of plastid genomes (plastomes) in Lauraceae. As one of the top five largest families in tropical forests, the Lauraceae contain many species that are important ecologically and economically. Lauraceous species also provide wonderful materials to study the evolutionary trajectory in response to parasitism because they contain both nonparasitic and parasitic species. This study compared the plastomes of nine Lauraceous species, including the sole hemiparasitic and herbaceous genus Cassytha (laurel dodder; here represented by Cassytha filiformis). We found differential contractions of the canonical inverted repeat (IR), resulting in two IR types present in Lauraceae. These two IR types reinforce Cryptocaryeae and Neocinnamomum-Perseeae-Laureae as two separate clades. Our data reveal several traits unique to Cas. filiformis, including loss of IRs, loss or pseudogenization of 11 ndh and rpl23 genes, richness of repeats, and accelerated rates of nucleotide substitutions in protein-coding genes. Although Cas. filiformis is low in chlorophyll content, our analysis based on dN/dS ratios suggests that both its plastid house-keeping and photosynthetic genes are under strong selective constraints. Hence, we propose that short generation time and herbaceous lifestyle rather than reduced photosynthetic ability drive the accelerated rates of nucleotide substitutions in Cas. filiformis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    Science.gov (United States)

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  4. On being the right size as an animal with plastids

    NARCIS (Netherlands)

    C. Rauch (Cessa); P. Jahns (Peter); A.G.M. Tielens (Aloysius); D.B. Gould (Douglas ); W.F. Martin (William F.)

    2017-01-01

    textabstractPlastids typically reside in plant or algal cells—with one notable exception. There is one group of multicellular animals, sea slugs in the order Sacoglossa, members of which feed on siphonaceous algae. The slugs sequester the ingested plastids in the cytosol of cells in their digestive

  5. On Being the Right Size as an Animal with Plastids

    NARCIS (Netherlands)

    Rauch, Cessa; Jahns, Peter; Tielens, Aloysius G M; Gould, Sven B; Martin, William F

    2017-01-01

    Plastids typically reside in plant or algal cells-with one notable exception. There is one group of multicellular animals, sea slugs in the order Sacoglossa, members of which feed on siphonaceous algae. The slugs sequester the ingested plastids in the cytosol of cells in their digestive gland,

  6. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    Science.gov (United States)

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  7. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome.

    Science.gov (United States)

    Miller, John J; Delwiche, Charles F

    2015-06-01

    Emiliania huxleyi is a haptophyte alga of uncertain phylogenetic affinity containing a secondarily derived, chlorophyll c containing plastid. We sought to characterize its relationships with other taxa by quantifying the bipartitions in which it was included from a group of single protein phylogenetic trees in a way that allowed for variation in taxonomic content and accounted for paralogous sequences. The largest number of sequences supported a phylogenetic relationship of E. huxleyi with the stramenopiles, in particular Aureococcus anophagefferens. Far fewer nuclear sequences gave strong support to the placement of this coccolithophorid with the cryptophyte, Guillardia theta. The majority of the sequences that did support this relationship did not have plastid related functions. These results suggest that the haptophytes may be more closely allied with the heterokonts than with the cryptophytes. Another small set of genes associated E. huxleyi with the Viridiplantae with high support. While these genes could have been acquired with a plastid, the lack of plastid related functions among the proteins for which they code and the lack of other organisms with chlorophyll c containing plastids within these bipartitions suggests other explanations may be possible. This study also identified several genes that may have been transferred from the haptophyte lineage to the dinoflagellates Karenia brevis and Karlodinium veneficum as a result of their haptophyte derived plastid, including some with non-photosynthetic functions. Published by Elsevier B.V.

  8. Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae).

    Science.gov (United States)

    Park, Jeong-Mi; Manen, Jean-François; Schneeweiss, Gerald M

    2007-06-01

    Plastid sequences are among the most widely used in phylogenetic and phylogeographic studies in flowering plants, where they are usually assumed to evolve like non-recombining, uniparentally transmitted, single-copy genes. Among others, this assumption can be violated by intracellular gene transfer (IGT) within cells or by the exchange of genes across mating barriers (horizontal gene transfer, HGT). We report on HGT of a plastid region including rps2, trnL-F, and rbcL in a group of non-photosynthetic flowering plants. Species of the parasitic broomrape genus Phelipanche harbor two copies of rps2, a plastid ribosomal gene, one corresponding to the phylogenetic position of the respective species, the other being horizontally acquired from the related broomrape genus Orobanche. While the vertically transmitted copies probably reside within the plastid genome, the localization of the horizontally acquired copies is not known. With both donor and recipient being parasitic plants, a possible pathway for the exchange of genetic material is via a commonly attacked host.

  9. Isolation of chlorophyll a from spinach leaves

    Directory of Open Access Journals (Sweden)

    E.D. Dikio

    2008-08-01

    Full Text Available An efficient method for separating chlorophyll a from spinach leaves by column chromatography and solvent extraction techniques has been developed. The purity and identity of the chlorophyll a have been confirmed by UV-Vis, IR and mass spectrometry. Yields from 100 g of freeze-dried spinach were 23 – 24 mg of chlorophyll a.

  10. Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Directory of Open Access Journals (Sweden)

    J. Caesar

    2018-03-01

    Full Text Available Chlorophyll concentrations of biological soil crust (biocrust samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual. Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  11. A phylogenetic analysis of the genus Psathyrostachys (Poaceae) based on one nuclear gene, three plastid genes, and morphology

    DEFF Research Database (Denmark)

    Petersen, Gitte; Seberg, Ole; Baden, Claus

    2004-01-01

    A phylogenetic analysis of the small, Central Asian genus Psathyrostachys Nevski is presented. The analysis is based on morphological characters and nucleotide sequence data from one nuclear gene, DMC1, and three plastid genes, rbcL, rpoA, and rpoC2. Separate analyses of the three data partitions...... (morphology, nuclear sequences, and plastid sequences) result in mostly congruent trees. The plastid and nuclear sequences produce completely congruent trees, and only the trees based on plastid sequences and morphological characters are incongruent. Combined analysis of all data results in a fairly well......-resolved strict consensus tree: Ps. rupestris is the sister to the remaining species, which are divided into two clades: one including Ps. fragilis and Ps. caduca, the other including Ps. juncea, Ps. huashanica, Ps. lanuginosa, Ps. stoloniformis, and Ps. kronenburgii. Pubescent culms and more than 20 mm long...

  12. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    OpenAIRE

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to ...

  13. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  15. A complete plastid phylogeny of Daucus – concordance to nuclear results, and markers necessary for phylogenetic resolution

    Science.gov (United States)

    Premise of study: Our purposes were to (1) obtain a well-resolved plastid counterpart to the 94 gene nuclear ortholog gene phylogeny of Arbizu et al. (2014, Amer. J. Bot. 101:1666-1685; and Syst. Bot., in press), and (2) to investigate various classes and numbers of plastid markers necessary for a c...

  16. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    Science.gov (United States)

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous

  17. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.

    Science.gov (United States)

    Brunkard, Jacob O; Burch-Smith, Tessa M

    2018-04-13

    Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Nitrogen control of chloroplast development: Progress report

    International Nuclear Information System (INIS)

    Schmidt, G.W.

    1987-11-01

    A manifestation of nitrogen deficiency in vascular plants and algae is chlorosis, indicating that chloroplast biogenesis can be strongly restricted by direct or indirect effects of nitrogen assimilation products. To define the molecular basis of nitrogen responses we are using Chlamydomonas reinhardtii. Depending on the levels of ammonium, steady-state deficiency conditions are established such that the cellular levels of chlorophylls and xanthophylls are depressed. Chloroplasts in nitrogen-deficient cells contain appreciable levels of carbon assimilation enzyme and thylakoids with high electron transport activities. However, the light harvesting complexes are nearly absent and Photosystem I exhibits unusual characteristics. Studies of rates of protein synthesis by in vivo pulse-chase labeling and levels of RNAs encoded by the chloroplast and nuclear genomes have been initiated: the accumulation of transcripts for the nuclear light-harvesting apoproteins is dramatically altered qualitatively and quantitatively; there is no major effect on chloroplast RNAs but, in general, these are inefficiently utilized for protein synthesis until nitrogen is provided to the cultures. Supplying nitrogen results in an almost immediate release of chloroplast mRNAs from a translational arrest but the stimulation of the accumulation of nuclear transcripts for light-harvesting apoproteins does not occur until after a 1-2 hour lag

  19. Nitrogen control of chloroplast development: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1987-11-01

    A manifestation of nitrogen deficiency in vascular plants and algae is chlorosis, indicating that chloroplast biogenesis can be strongly restricted by direct or indirect effects of nitrogen assimilation products. To define the molecular basis of nitrogen responses we are using Chlamydomonas reinhardtii. Depending on the levels of ammonium, steady-state deficiency conditions are established such that the cellular levels of chlorophylls and xanthophylls are depressed. Chloroplasts in nitrogen-deficient cells contain appreciable levels of carbon assimilation enzyme and thylakoids with high electron transport activities. However, the light harvesting complexes are nearly absent and Photosystem I exhibits unusual characteristics. Studies of rates of protein synthesis by in vivo pulse-chase labeling and levels of RNAs encoded by the chloroplast and nuclear genomes have been initiated: the accumulation of transcripts for the nuclear light-harvesting apoproteins is dramatically altered qualitatively and quantitatively; there is no major effect on chloroplast RNAs but, in general, these are inefficiently utilized for protein synthesis until nitrogen is provided to the cultures. Supplying nitrogen results in an almost immediate release of chloroplast mRNAs from a translational arrest but the stimulation of the accumulation of nuclear transcripts for light-harvesting apoproteins does not occur until after a 1-2 hour lag.

  20. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  1. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    Science.gov (United States)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  2. The chloroplast min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Peng; Zhang, Jie; Su, Jianbin; Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hongbin

    2013-01-01

    The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts.

  3. The chloroplast min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS. Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3 and arc12 (VIGS-ALB3 plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3 plants, but organized into multiple rings in parc6 (VIGS-ALB3 and presented fragmented filaments in arc12 (VIGS-ALB3 plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts.

  4. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  5. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

    Science.gov (United States)

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyungsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-06-30

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

  6. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  7. A database of chlorophyll a in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Baird, Mark E.; Beard, Jason; Bonham, Pru; Burford, Michele; Clementson, Lesley; Coad, Peter; Crawford, Christine; Dela-Cruz, Jocelyn; Doblin, Martina A.; Edgar, Steven; Eriksen, Ruth; Everett, Jason D.; Furnas, Miles; Harrison, Daniel P.; Hassler, Christel; Henschke, Natasha; Hoenner, Xavier; Ingleton, Tim; Jameson, Ian; Keesing, John; Leterme, Sophie C.; James McLaughlin, M.; Miller, Margaret; Moffatt, David; Moss, Andrew; Nayar, Sasi; Patten, Nicole L.; Patten, Renee; Pausina, Sarah A.; Proctor, Roger; Raes, Eric; Robb, Malcolm; Rothlisberg, Peter; Saeck, Emily A.; Scanes, Peter; Suthers, Iain M.; Swadling, Kerrie M.; Talbot, Samantha; Thompson, Peter; Thomson, Paul G.; Uribe-Palomino, Julian; van Ruth, Paul; Waite, Anya M.; Wright, Simon; Richardson, Anthony J.

    2018-02-01

    Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.

  8. Plastid ribosomal protein S5 plays a critical role in photosynthesis, plant development, and cold stress tolerance in arabidopsis

    Science.gov (United States)

    Plastid ribosomal proteins (RPs) are essential components for protein synthesis machinery and exert diverse roles in plant growth and development. Mutations in plastid RPs lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood and th...

  9. Chlorophyll-a specific volume scattering function of phytoplankton.

    Science.gov (United States)

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  10. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics.We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp and P. yezoensis (191,975 bp, the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211-213 protein-coding genes (including 29-31 unknown-function ORFs, 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146 was much smaller than that of Porphyra purpurea and P. haitanensis (0.250, and P. yezoensis (0.251; this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved.These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing the largest coding capacity and ancient gene

  11. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    Science.gov (United States)

    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...

  12. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    Science.gov (United States)

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  13. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2009-10-01

    Full Text Available Abstract Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori

  14. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  15. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive

    NARCIS (Netherlands)

    Christa, Gregor; Zimorski, Verena; Woehle, Christian; Tielens, Aloysius G M; Wägele, Heike; Martin, William F; Gould, Sven B

    2014-01-01

    Several sacoglossan sea slugs (Plakobranchoidea) feed upon plastids of large unicellular algae. Four species--called long-term retention (LtR) species--are known to sequester ingested plastids within specialized cells of the digestive gland. There, the stolen plastids (kleptoplasts) remain

  16. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope.

    Directory of Open Access Journals (Sweden)

    Preetinder K Dhanoa

    Full Text Available BACKGROUND: Tail-anchored (TA proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34 and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9. Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. CONCLUSIONS/SIGNIFICANCE: Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie

  17. Plastid transformation in potato: Solanum tuberosum.

    Science.gov (United States)

    Valkov, Vladimir T; Gargano, Daniela; Scotti, Nunzia; Cardi, Teodoro

    2014-01-01

    Although plastid transformation has attractive advantages and potential applications in plant biotechnology, for long time it has been highly efficient only in tobacco. The lack of efficient selection and regeneration protocols and, for some species, the inefficient recombination using heterologous flanking regions in transformation vectors prevented the extension of the technology to major crops. However, the availability of this technology for species other than tobacco could offer new possibilities in plant breeding, such as resistance management or improvement of nutritional value, with no or limited environmental concerns. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum). By optimizing the tissue culture system and using transformation vectors carrying homologous potato flanking sequences, we obtained up to one transplastomic shoot per bombardment. Such efficiency is comparable to that usually achieved in tobacco. The method described in this chapter can be used to regenerate potato transplastomic plants expressing recombinant proteins in chloroplasts as well as in amyloplasts.

  18. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    Science.gov (United States)

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  19. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  20. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  1. Plastid-like Seq in mt Genome - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available deletions in the plastid DNA sequence (Number of deletion sites is shown in parentheses) Insertion Number o...f nucleotide insertions in the plastid DNA sequence (Number of insertion sites is shown in parentheses) Homo

  2. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

    KAUST Repository

    Waller, Ross F.

    2015-12-08

    The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.

  3. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

    KAUST Repository

    Waller, Ross F.; Gornik, Sebastian G.; Koreny, Ludek; Pain, Arnab

    2015-01-01

    The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.

  4. Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining.

    Science.gov (United States)

    Borucki, Wojciech; Bederska, Magdalena; Sujkowska-Rybkowska, Marzena

    2015-05-01

    We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.

  5. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Science.gov (United States)

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  6. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Jesus R. Millan-Almaraz

    2012-08-01

    Full Text Available Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images.

  7. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence.

    Science.gov (United States)

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-06-01

    Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree

  8. Chlorophyll d: the puzzle resolved

    DEFF Research Database (Denmark)

    Larkum, Anthony W D; Kühl, Michael

    2005-01-01

    Chlorophyll a (Chl a) has always been regarded as the sole chlorophyll with a role in photochemical conversion in oxygen-evolving phototrophs, whereas chlorophyll d (Chl d), discovered in small quantities in red algae in 1943, was often regarded as an artefact of isolation. Now, as a result...... of discoveries over the past year, it has become clear that Chl d is the major chlorophyll of a free-living and widely distributed cyanobacterium that lives in light environments depleted in visible light and enhanced in infrared radiation. Moreover, Chl d not only has a light-harvesting role but might also...... replace Chl a in the special pair of chlorophylls in both reactions centers of photosynthesis. Udgivelsesdato: 2005-Aug...

  9. Photosynthetic bark: use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma, A.; Skidmore, A.K.; Bie, de C.A.J.M.; Bongers, F.; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  10. Photosynthetic bark : use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma Gebrekidan, A.; Skidmore, A.K.; de Bie, C.A.J.M.; Bongers, Frans; Schlerf, Martin; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  11. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  12. Plastid phylogenomics and adaptive evolution of Gaultheria series Trichophyllae (Ericaceae), a clade from sky islands of the Himalaya-Hengduan Mountains.

    Science.gov (United States)

    Zhang, Ming-Ying; Fritsch, Peter W; Ma, Peng-Fei; Wang, Hong; Lu, Lu; Li, De-Zhu

    2017-05-01

    Gaultheria series Trichophyllae Airy Shaw is an angiosperm clade of high-alpine shrublets endemic to the Himalaya-Hengduan Mountains and characterized by recent species divergence and convergent character evolution that has until recently caused much confusion in species circumscription. Although multiple DNA sequence regions have been employed previously, phylogenetic relationships among species in the group have remained largely unresolved. Here we examined the effectiveness of the plastid genome for improving phylogenetic resolution within the G. series Trichophyllae clade. Plastid genomes of 31 samples representing all 19 recognized species of the series and three outgroup species were sequenced with Illumina Sequencing technology. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) phylogenetic analyses were performed with various datasets, i.e., that from the whole plastid genome, coding regions, noncoding regions, large single-copy region (LSC) and inverted-repeat region a (IRa). The partitioned whole plastid genome with inverted-repeat region b (IRb) excluded was also analyzed with ML and BI. Tree topologies based on the whole plastid genome, noncoding regions, and LSC region datasets across all analyses, and that based on the partitioned dataset with ML and BI analyses, are identical and generally strongly supported. Gaultheria series Trichophyllae form a clade with three species and one variety that is sister to a clade of the remaining 16 species; the latter comprises seven main subclades. Interspecific relationships within the series are strongly supported except for those based on the coding-region and IRa-region datasets. Eight divergence hotspot regions, each possessing >5% percent variable sites, were screened across the whole plastid genome of the 28 individuals sampled in the series. Results of morphological character evolution reconstruction diagnose several clades, and a hypothesis of adaptive evolution for plant habit is

  13. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    Science.gov (United States)

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These

  14. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    Directory of Open Access Journals (Sweden)

    Ruhlman Tracey

    2006-08-01

    Full Text Available Abstract Background Carrot (Daucus carota is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP and maximum likelihood (ML were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap for the sister relationship of

  15. Investigation into the Physiological Significance of the Phytohormone Abscisic Acid in Perkinsus marinus, an Oyster Parasite Harboring a Nonphotosynthetic Plastid.

    Science.gov (United States)

    Sakamoto, Hirokazu; Suzuki, Shigeo; Nagamune, Kisaburo; Kita, Kiyoshi; Matsuzaki, Motomichi

    2017-07-01

    Some organisms have retained plastids even after they have lost the ability to photosynthesize. Several studies of nonphotosynthetic plastids in apicomplexan parasites have shown that the isopentenyl pyrophosphate biosynthesis pathway in the organelle is essential for their survival. A phytohormone, abscisic acid, one of several compounds biosynthesized from isopentenyl pyrophosphate, regulates the parasite cell cycle. Thus, it is possible that the phytohormone is universally crucial, even in nonphotosynthetic plastids. Here, we examined this possibility using the oyster parasite Perkinsus marinus, which is a plastid-harboring cousin of apicomplexan parasites and has independently lost photosynthetic ability. Fluridone, an inhibitor of abscisic acid biosynthesis, blocked parasite growth and induced cell clustering. Nevertheless, abscisic acid and its intermediate carotenoids did not affect parasite growth or rescue the parasite from inhibition. Moreover, abscisic acid was not detected from the parasite using liquid chromatography mass spectrometry. Our findings show that abscisic acid does not play any significant roles in P. marinus. © 2016 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  16. Plastid genome evolution across the genus Cuscuta (Convolvulaceae): two clades within subgenus Grammica exhibit extensive gene loss.

    Science.gov (United States)

    Braukmann, Thomas; Kuzmina, Maria; Stefanovic, Sasa

    2013-02-01

    The genus Cuscuta (Convolvulaceae, the morning glory family) is one of the most intensely studied lineages of parasitic plants. Whole plastome sequencing of four Cuscuta species has demonstrated changes to both plastid gene content and structure. The presence of photosynthetic genes under purifying selection indicates that Cuscuta is cryptically photosynthetic. However, the tempo and mode of plastid genome evolution across the diversity of this group (~200 species) remain largely unknown. A comparative investigation of plastid genome content, grounded within a phylogenetic framework, was conducted using a slot-blot Southern hybridization approach. Cuscuta was extensively sampled (~56% of species), including groups previously suggested to possess more altered plastomes compared with other members of this genus. A total of 56 probes derived from all categories of protein-coding genes, typically found within the plastomes of flowering plants, were used. The results indicate that two clades within subgenus Grammica (clades 'O' and 'K') exhibit substantially more plastid gene loss relative to other members of Cuscuta. All surveyed members of the 'O' clade show extensive losses of plastid genes from every category of genes typically found in the plastome, including otherwise highly conserved small and large ribosomal subunits. The extent of plastid gene losses within this clade is similar in magnitude to that observed previously in some non-asterid holoparasites, in which the very presence of a plastome has been questioned. The 'K' clade also exhibits considerable loss of plastid genes. Unlike in the 'O' clade, in which all species seem to be affected, the losses in clade 'K' progress phylogenetically, following a pattern consistent with the Evolutionary Transition Series hypothesis. This clade presents an ideal opportunity to study the reduction of the plastome of parasites 'in action'. The widespread plastid gene loss in these two clades is hypothesized to be a

  17. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    Science.gov (United States)

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to be silent when assayed by the in vitro systems. The regulatory step, therefore, was ascribed to DNA templates. The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant. The presence of 5-methylcytosine detected by isoschizomeric endonucleases and Southern hybridization was correlated with the undetectable transcription activity of each gene in the run-on assay and in vitro transcription experiments. It is thus concluded that the suppression of transcription mediated by DNA methylation is one of the mechanisms governing gene expression in plastids converting from chloroplasts to chromoplasts. Images Fig. 1 Fig. 2 Fig. 3. Fig. 4. Fig. 5. PMID:2303026

  18. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  19. Characterization of chlorophyll binding to LIL3.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Eichacker, Lutz Andreas

    2018-01-01

    The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.

  20. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  1. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    Science.gov (United States)

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  2. Chlorophyll: The wonder pigment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.

    Chlorophyll, the green plant pigment, a 'real life force' of living beings, besides synthesizing food, is a great source of vitamins, minerals and other phytochemicals. Adding chlorophyll rich food to our diet fortifies our body against health...

  3. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae and the utility of molecular markers.

    Directory of Open Access Journals (Sweden)

    Louis Graf

    Full Text Available Coccophora langsdorfii (Turner Greville (Fucales is an intertidal brown alga that is endemic to Northeast Asia and increasingly endangered by habitat loss and climate change. We sequenced the complete circular plastid and mitochondrial genomes of C. langsdorfii. The circular plastid genome is 124,450 bp and contains 139 protein-coding, 28 tRNA and 6 rRNA genes. The circular mitochondrial genome is 35,660 bp and contains 38 protein-coding, 25 tRNA and 3 rRNA genes. The structure and gene content of the C. langsdorfii plastid genome is similar to those of other species in the Fucales. The plastid genomes of brown algae in other orders share similar gene content but exhibit large structural recombination. The large in-frame insert in the cox2 gene in the mitochondrial genome of C. langsdorfii is typical of other brown algae. We explored the effect of this insertion on the structure and function of the cox2 protein. We estimated the usefulness of 135 plastid genes and 35 mitochondrial genes for developing molecular markers. This study shows that 29 organellar genes will prove efficient for resolving brown algal phylogeny. In addition, we propose a new molecular marker suitable for the study of intraspecific genetic diversity that should be tested in a large survey of populations of C. langsdorfii.

  4. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  5. The plastid and mitochondrial peptidase network and a comprehensive peptidase compendium for Arabidopsis thaliana

    Science.gov (United States)

    Plant plastids and mitochondria have dynamic proteomes. To maintain their protein homeostasis, a proteostasis network containing protein chaperones, peptidases and their substrate recognition factors exists, but many peptidases, their functional connections and substrates are poorly characterized. T...

  6. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera.

    Science.gov (United States)

    Park, Jeong-Mi; Manen, Jean-François; Colwell, Alison E; Schneeweiss, Gerald M

    2008-07-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.

  7. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  8. Identification of a single‐copy gene encoding a Type I chlorophyll a/b‐binding polypeptide of photosystem I in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Poul E; Kristensen, Michael; Hoff, Tine

    1992-01-01

    We have isolated and sequenced cDNA and genomic clones from Arabidopsis thaliana which specify a 241 residue protein with 84% sequence identity to a photosystem I Type I chlorophyll a/b-binding (CAB) protein from tomato. The open reading frame is interrupted by three introns which are found...... at equivalent positions as the corresponding introns in the tomato gene. Comparison to the amino acid sequence of other CAB proteins confirms that all CAB proteins share two regions of very high similarity. However, near the N-terminus and between the conserved regions this light-harvesting complex I (LHCI...

  9. Chlorophyll as a biomarker for early disease diagnosis

    Science.gov (United States)

    Manzoor Atta, Babar; Saleem, M.; Ali, Hina; Arshad, Hafiz Muhammad Imran; Ahmed, M.

    2018-06-01

    The current study was designed to identify the stage for the diagnosis of disease before visible symptoms appeared. Fluorescence spectroscopy has been employed to identify disease signatures for its early diagnosis in rice plant leaves. Bacterial leaf blight (BLB) diseased and healthy leaf samples were collected from the rice fields in September, 2017 which were then used to record spectra using an excitation wavelength at 410 nm. The spectral range of emission was set from 420 to 800 nm which covers the blue–green and the chlorophyll bands. It was found that diseased leaves have a narrower ‘chlorophyll a’ band than healthy ones, and furthermore, that the emission band at 730 nm was either declined or depleted in the sample with high infection symptoms. In contrast, the blue–green region was observed to increase due to the emergence of disease. As the band intensity of chlorophyll decreases during infection, this decrease in chlorophyll content and increase in the blue–green spectral region could provide a new approach for predicting BLB at an early stage. The important finding was that the chlorophyll degradation and rise in the blue–green region take place in leaves with BLB or during BLB infection. Principal component analysis has been applied to spectral data which successfully separated diseased samples from healthy ones even with very small spectral variations.

  10. Induction of chlorophyll chimeras and chlorophyll mutations in mungbean (Vigna radiata) cv. T44

    International Nuclear Information System (INIS)

    Singh, V.P.; Yadav, R.D.S.

    1993-01-01

    Uniform and healthy seeds of mungbean (Vigna radiata) cv. T44 were exposed to varying doses of gamma rays, ethyl methane sulphonate (EMS) and combination treatment of gamma rays with EMS. The data were recorded for seed germination, plant survival, frequency and spectrum of chlorophyll chimeras in M 1 and chlorophyll mutations in M 2 generation. Among all, the combination treatments were found most effective for inducing chlorophyll chimeras and chlorophyll mutations than the gamma rays or EMS alone. Of the mutants under reference, the albino, xantha and chlorina showed monogenic recessive while viridis exhibited digenic recessive inheritance. (author). 8 refs., 2 tabs

  11. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  12. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids

    Czech Academy of Sciences Publication Activity Database

    Janouškovec, J.; Horák, A.; Oborník, Miroslav; Lukeš, Julius; Keeling, P. J.

    2010-01-01

    Roč. 107, č. 24 (2010), s. 10949-10954 ISSN 0027-8424 R&D Projects: GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518 Keywords : Apicomplexa * Chromera velia * CCMP3155 * plastid evolution * chloroplast genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.771, year: 2010

  13. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    Science.gov (United States)

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  14. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus.

    NARCIS (Netherlands)

    Jang, G.F.; Hooser, J.P. van; Kuksa, V.; McBee, J.K.; He, Y.G.; Janssen, J.J.M.; Driessen, C.A.G.G.; Palczewski, K.

    2001-01-01

    In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a

  15. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera

    Science.gov (United States)

    Park, J.-M.; Manen, J.-F.; Colwell, A.E.; Schneeweiss, G.M.

    2008-01-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera. ?? 2008 The Botanical Society of Japan and Springer.

  16. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  17. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing1[C][W][OPEN

    Science.gov (United States)

    Zhang, Wei; Liu, Tianqi; Ren, Guodong; Hörtensteiner, Stefan; Zhou, Yongming; Cahoon, Edgar B.; Zhang, Chunyu

    2014-01-01

    Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn’t enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis. PMID:25059706

  18. Study of 660 nm laser-induced photoluminescence of chlorophyll-a and its applications

    International Nuclear Information System (INIS)

    Song, Y; Zhang, D X; Zhang, H J

    2007-01-01

    Based on the phenomenon of chlorophyll a photoluminescence, this paper introduces a new method to measure the chlorophyll a content, using 660nm laser diode as a new kind of light source to stimulate fluorescence as well as combining a fiber and spectrum technique. We analyze the characteristics of laser-induced fluorescence spectrum of chlorophyll a and then put forward the new method using two parameters, the relative fluorescence intensity and fluorescence intensity ratio F685/F735, to measure the chlorophyll a content in the water and green leaves respectively. The experimental results indicate that it is completely feasible to give a visual judgment for chlorophyll a content, according to the fluorescence emission spectrum of chlorophyll a. Subsequently, it is verified by three kinds of typical applications. All of these provide a new kind of light source to develop the chlorophyll a fluorometry and further give a technical foundation of on-spot monitoring the chlorophyll a content in the ocean or in green leaves

  19. Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium

    NARCIS (Netherlands)

    Pfreundt, U.; Stal, L.J.; Voss, B.; Hess, W.R.

    2012-01-01

    Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to

  20. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  1. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    Science.gov (United States)

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Ultrastructural study on dynamics of lipid bodies and plastids during ripening of chili pepper fruits.

    Science.gov (United States)

    Liu, Lin

    2013-03-01

    Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    Science.gov (United States)

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  5. Analysis of plastid number, size, and distribution in Arabidopsis plants by light and fluorescence microscopy.

    Science.gov (United States)

    Pyke, Kevin

    2011-01-01

    Methods are described which allow one to observe chloroplasts in mesophyll cells from leaves of Arabidopsis, determine their number per cell, measure their area, and determine a value for chloroplast coverage inside mesophyll cells. Non-green plastids can also be imaged either by using staining, or by exploiting fluorescent proteins targeted to the plastid in non-green parts of the plant, such as the roots, in transgenic Arabidopsis.

  6. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wang

    2018-02-01

    Full Text Available The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.

  7. Comprehensive chlorophyll composition in the main edible seaweeds.

    Science.gov (United States)

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2017-08-01

    Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    Science.gov (United States)

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  9. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  10. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic - Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences.

    Science.gov (United States)

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered.

  11. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  12. Demonstration of paternal inheritance of plastids in Picea (Pinaceae)

    International Nuclear Information System (INIS)

    Stine, M.

    1988-01-01

    Chloroplast DNA (cpDNA) was purified from Picea glauca, P. pungens, P. engelmannii, and P. omorika, and was digested with several restriction endonucleases. Interspecific restriction fragment length polymorphisms (RFLPs) of cpDNA were identified. The RFLPs were identified as cpDNA by the hybridization of cloned, 32 -P labeled, petunia cpDNA to the polymorphic bands, and by the lack of hybridization of a cloned and labeled mtDNA probe from maize. Chloroplast DNA RFLPs that showed no intraspecific variation when examined across the natural range for each species, were used as markers to follow the inheritance of plastids in interspecific hybrids. The inheritance of plastids was determined for F 1 -hybrids from reciprocal crosses of P. glauca and P. pungens, P. glauca and P. omorika, and F 1 -hybrids of P. engelmannii x pungens. All 31 F 1 -hybrids examined showed the cpDNA genotypes of the pollen parent, or the paternal species

  13. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Red Bell Pepper Chromoplasts Exhibit in Vitro Import Competency and Membrane Targeting of Passenger Proteins from the Thylakoidal Sec and ΔpH Pathways but Not the Chloroplast Signal Recognition Particle Pathway1

    Science.gov (United States)

    Summer, Elizabeth J.; Cline, Kenneth

    1999-01-01

    Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways. PMID:9952453

  15. Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae)

    Science.gov (United States)

    Straub, Shannon C.K.; Cronn, Richard C.; Edwards, Christopher; Fishbein, Mark; Liston, Aaron

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of intracellular HGT for a 2.4-kb segment of mitochondrial DNA to the rps2–rpoC2 intergenic spacer of the plastome. The transferred region contains an rpl2 pseudogene and is flanked by plastid sequence in the mitochondrial genome, including an rpoC2 pseudogene, which likely provided the mechanism for HGT back to the plastome through double-strand break repair involving homologous recombination. The plastome insertion is restricted to tribe Asclepiadeae of subfamily Asclepiadoideae, whereas the mitochondrial rpoC2 pseudogene is present throughout the subfamily, which confirms that the plastid to mitochondrial HGT event preceded the HGT to the plastome. Although the plastome insertion has been maintained in all lineages of Asclepiadoideae, it shows minimal evidence of transcription in A. syriaca and is likely nonfunctional. Furthermore, we found recent gene conversion of the mitochondrial rpoC2 pseudogene in Asclepias by the plastid gene, which reflects continued interaction of these genomes. PMID:24029811

  16. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  17. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  18. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  19. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  20. Chlorophyll as a measure of plant health: Agroecological aspects

    Directory of Open Access Journals (Sweden)

    Danijela Pavlović

    2014-03-01

    Full Text Available As photosynthesis is the basic process during which light energy is absorbed and converted into organic matter, the importance of the plant pigment chlorophyll (a and b forms as an intermediary in transformation of the absorbed solar energy and its activity in the process of photosynthesis and synthesis of organic substances in plants are crucial. Therefore, this paper provides an overview of methods for monitoring the optical activity of chlorophyll molecules and methods (non-destructive and destructive for quantification of chlorophyll in plants. These methods are used to estimate the effects of different stress factors (abiotic, biotic and xenobiotic on the efficiency of photosynthesis and bioproductivity, aiming to assess the impact that these limiting factors have on the yield of various cultivars. Also, those methods for analysis of chlorophyll optical activity and/or content are appropriate for assessing the reaction of weed species to different agricultural practices (mineral nutrition, treatment by herbicides, etc. and studies of different aspects of weed ecophysiology and their influence on crop harvest.

  1. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic – Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences

    Science.gov (United States)

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered. PMID:28122062

  2. Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

    OpenAIRE

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyunsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-01-01

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stab...

  3. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.

    Science.gov (United States)

    Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari

    2016-03-01

    The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  5. SHORT COMMUNICATION ISOLATION OF CHLOROPHYLL A ...

    African Journals Online (AJOL)

    a

    chromatography (CCC) technique has been applied to the separation of chlorophyll a from ... auxiliary gas flow rate, 0.06 L min-1; ion spray voltage, 3.5 kV; capillary .... This work presents a successful application of column chromatography ...

  6. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  7. Quantifying mangrove chlorophyll from high spatial resolution imagery

    NARCIS (Netherlands)

    Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bruin, de S.

    2015-01-01

    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly

  8. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, A.; Jenkins, T.

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  9. Phytoplankton chlorophyll

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  10. Presence of a chlorophyll d-like pigment in Chlorella extracts

    NARCIS (Netherlands)

    Michel-Wolwertz, M.R.; Sironval, C.; Goedheer, J.C.

    1965-01-01

    Three chlorophyll a isomers (a₁, a₂ and a₃) were separated by the chromatography of Chlorella extracts on paper 1. One of these, chlorophyll (a₃) showed additional absorption bands at 688 and 455 mμ in diethyl ether. Chromatographic analysis could not decide whether these bands were due to a₃ or

  11. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  12. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    Science.gov (United States)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  13. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  14. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements

    NARCIS (Netherlands)

    Darvishzadeh, R.; Skidmore, A.K.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M.A.

    2008-01-01

    The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700

  15. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  16. Investigations on gamma ray induced chlorophyll variegated mutants

    International Nuclear Information System (INIS)

    Datta, S.K.; Dwivedi, A.K.; Banerji, B.K.

    1995-01-01

    Considering economic importance of chlorophyll variegation in floriculture trade an attempt was made for cytological, anatomical and biochemical analysis of four Bougainvillea and Lantana depressa chlorophyll variegated mutants for better and clear understanding of origin of chlorophyll variegation. No cytological evidence could be detected for their origin. Anatomical and biochemical examinations revealed that chlorophyll variegation in these mutants were due to changes in biosynthesis pathways and time of chlorophyll synthesis in palisade and spongy mesophyll cells. (author). 7 refs., 3 figs., 3 tabs

  17. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium

    OpenAIRE

    Park, Seongjun; Ruhlman, Tracey A.; Weng, Mao-Lun; Hajrah, Nahid H.; Sabir, Jamal S.M.; Jansen, Robert K.

    2017-01-01

    Abstract Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have i...

  18. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  19. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai; Li, Qing; Xiong, Liming; Kronzucker, Herbert J.; Krä mer, Ute; Shi, Weiming

    2012-01-01

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  20. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-11-01

    Full Text Available Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  1. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  2. Chlorophyll_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included chlorophyll for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  3. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes.

    Science.gov (United States)

    Hupfer, H; Swiatek, M; Hornung, S; Herrmann, R G; Maier, R M; Chiu, W L; Sears, B

    2000-05-01

    We describe the 159,443-bp [corrected] sequence of the plastid chromosome of Oenothera elata (evening primrose). The Oe. elata plastid chromosome represents type I of the five genetically distinguishable basic plastomes found in the subsection Euoenothera. The genus Oenothera provides an ideal system in which to address fundamental questions regarding the functional integration of the compartmentalised genetic system characteristic of the eukaryotic cell. Its highly developed taxonomy and genetics, together with a favourable combination of features in its genetic structure (interspecific fertility, stable heterozygous progeny, biparental transmission of organelles, and the phenomenon of complex heterozygosity), allow facile exchanges of nuclei, plastids and mitochondria, as well as individual chromosome pairs, between species. The resulting hybrids or cybrids are usually viable and fertile, but can display various forms of developmental disturbance.

  4. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Time-resolved interaction investigations of carbocyanine dyes and chlorophyll a in solution

    International Nuclear Information System (INIS)

    Feller, K.H.; Fassler, D.

    1983-01-01

    Using a Nd:YAG laser/streak camera system of 30 ps time resolution the quenching of the fluorescence of the carbocyanine dye ICC by chlorophyll a in methanolic solution was investigated. The fluorescence lifetime of ICC decreased within the chlorophyll concentration range 0 - 9x10 - 5 mol/l from 170 ps to 135 ps. The observed very effective fluorescence quenching process suggests that the formation of heteroaggregates from ICC and chlorophyll is responsible for the rapid energy transfer. (author)

  6. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, H.; Rebeiz, C.A.

    1984-01-01

    The massive conversion of delta-aminolevulinic acid (ALA) to protochlorophyllide (Pchlide) and the massive conversion of chlorophyllide a (Chlide a) to chlorophyll a (Chl a) are two essential conditions for the ALA-dependent assembly of photosynthetic membranes in vitro. In this work, the authors describe the development of a cell-free system capable of the forementioned biosynthetic activities at rates higher than in vivo, for the first 2 h of dark-incubation. The cell-free system consisted of 1) etiochloroplasts prepared from kinetin and gibberellic-acid-pretreated cucumber cotyledons, and 2) cofactors and additives described elsewhere and which are needed for the massive conversion of ALA to Pchlide, 3) high concentrations of ATP, MgCl/sub 2/, and an isoprenol alcohol such as phytol, were required for the massive conversion of Chlide a to Chl a. An absolute and novel requirement of Mg/sup 2 +/ for the conversion of Chlide a to Chl a was also demonstrated. In addition to the role of phytol as a substrate for the conversion of Chlide a to Chl a, the data suggested that this alcohol may also be involved in the regulation of the reactions between ALA and Pchlide. It is proposed that during greening, the conversion of Chlide a to Chl a may follow different biosynthetic rates, having different substrate and cofactor requirements, depending on the stage of plastid development.

  7. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    Science.gov (United States)

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (Pprotists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase*

    Science.gov (United States)

    Wang, Xiao; Liu, Lin

    2016-01-01

    7-Hydroxymethyl chlorophyll a reductase (HCAR) catalyzes the second half-reaction in chlorophyll b to chlorophyll a conversion. HCAR is required for the degradation of light-harvesting complexes and is necessary for efficient photosynthesis by balancing the chlorophyll a/b ratio. Reduction of the hydroxymethyl group uses redox cofactors [4Fe-4S] cluster and FAD to transfer electrons and is difficult because of the strong carbon-oxygen bond. Here, we report the crystal structure of Arabidopsis HCAR at 2.7-Å resolution and reveal that two [4Fe-4S]clusters and one FAD within a very short distance form a consecutive electron pathway to the substrate pocket. In vitro kinetic analysis confirms the ferredoxin-dependent electron transport chain, thus supporting a proton-activated electron transfer mechanism. HCAR resembles a partial reconstruction of an archaeal F420-reducing [NiFe] hydrogenase, which suggests a common mode of efficient proton-coupled electron transfer through conserved cofactor arrangements. Furthermore, the trimeric form of HCAR provides a biological clue of its interaction with light-harvesting complex II. PMID:27072131

  9. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  10. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  11. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    Science.gov (United States)

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Radiation induced chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Bari, G.; Mustafa, G.; Soomro, A.M.; Baloch, A.W.

    1985-01-01

    Air dried grains of four local varieties of rice were treated with gamma-rays and fast neutrons for determining their mutagenic effectiveness through the occurence of chlorophyll mutations. Fast neutrons were more effective in inducing chlorophyll mutations and the rice variety Basmati 370 produced maximum number of mutations followed by varieties Sonahri Sugdasi, Jajai 77 and Sada Gulab. The highest frequency of chlorophyll mutations was that of albina types followed by striata types. The xantha, viridis and tigrina types of mutations were less frequent. (authors)

  13. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    Werb, Z.; Chin, J.R.

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [ 35 S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D + secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  14. Effect of automobile pollution on chlorophyll content of roadside urban trees

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2015-09-01

    Full Text Available The effect of automobile pollution was determined on chlorophyll content of four different tree species viz. Azadirachta indica L., Conocarpus erectus L., Guiacum officinale L.and Eucalyptus sp. growing along the roads of the city.  Significant changes in the level of chlorophyll “a”, chlorophyll “b” and total chlorophylla+b” were found in the leaves of four tree species (A. indica, C. erectus, G.officinale and Eucalyptus sp. collected from polluted sites (Airport, Malir Halt, Quaidabad as compared to control site (Karachi University Campus. Lowest concentration of chlorophyll “a”, chlorophyll “b” and chlorophylla+b” was recorded in the leaf samples of all tree species collected from Quaidabad site when compared with the leaf samples collected from control site. The highest levels of chlorophyll pigment were recorded in all tree species leave samples collected from Karachi University Campus.  Similarly, better levels of chlorophyll “a”, chlorophyll “b” and total chlorophylla+b” was observed in all tree species growing at Airport site as compared to plants growing at Malir Halt and Quaidabad sites.  This study clearly indicated that the vehicular activities induced air pollution problem and affected on the level of chlorophyll pigments in trees which were exposed to road side pollution.

  15. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  16. Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese Foxtail (Alopecurus japonicus.

    Directory of Open Access Journals (Sweden)

    Hongle Xu

    Full Text Available Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.

  17. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L. [Univ. of Missouri, Columbus, MO (United States); Katz, J.J. [Argonne National Laboratory, IL (United States)

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  18. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  19. Notes on the instability of extracted chlorophyll and a reported effect of ozone on lichen algae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D H

    1980-01-01

    Recently Rosentreter and Ahmadjian reported on the effects of ozone on the chlorophyll content of Cladonia arbuscula and isolated Trebouxia cells. However, the chlorophyll data they presented, even for the control, unozone-treated material, appears to be unusual. They reported values of the chlorophyll a/b ratio of 0.308-0.463 from Cladonia arbuscula and 0.345-0.476 for Trebouxia which are substantially lower than other published values. Because chlorophyll b is normally present in green plants as a minor accessory photosynthetic pigment, the suggestion that it was the major chlorophyll component requires some explanation. The purpose of this study is to show that chlorophyll is unstable when extracted into methanol and to suggest that the extraction and storage conditions used by Rosentreter and Ahmadjian may have allowed pigment degradation to occur which thereby accounted for the low chlorophyll a/b ratios they obtained.

  20. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  1. A robust and well-resolved phylogeny of Bactridinae (Arecaceae) based on plastid and nuclear DNA sequences

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Pintaud, Jean-Christophe; Asmussen-Lange, Conny

    as well as most of the currently accepted infrageneric taxa and recently proposed informal groups. Analyses are based on five plastid DNA regions (matK, trnQ-rps16, rps16 intron, trnD-trnT, trnL-trnF) and three nuclear markers (PRK, RPB2, ITS). A combined dataset was analysed with likelihood and parsimony...

  2. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens

    Directory of Open Access Journals (Sweden)

    Christiane Hedtmann

    2017-09-01

    Full Text Available The redox imbalanced 6 mutant (rimb6 of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR GENES 1, CPR1 (At4g12560, leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.

  3. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    Full Text Available Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represent the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers have operated routinely on oceanographic cruises since the 1970s. Nevertheless, fluorescence is only a proxy of the total chlorophyll a concentration and a data calibration is required. Calibration issues are, however, sources of uncertainty, and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence databases have been made. Consequently, merged estimations with other data sources (e.g. satellite are lacking.

    We propose a merging method to fill this gap. It consists firstly in adjusting the fluorescence profile to impose a zero chlorophyll a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient, which forces the chlorophyll a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean colour observation. The method is close to the approach proposed by Boss et al. (2008 to correct fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle-derived estimations of chlorophyll a concentration was performed to evaluate the final error (estimated at 31%. Comparison with the Boss et al. (2008 method, using a subset of the DYFAMED data set, demonstrated that the methods have similar

  4. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  5. Gene expression in isolated plastids from fruits of capsicum annum

    International Nuclear Information System (INIS)

    Powell, D.S.; Pryke, J.A.

    1987-01-01

    Plastids were obtained from the ripening fruits of Capsicum annum, and incubated in vitro in the presence of [ 35 S]methionine(Met). There was polypeptide synthesis at all stages of pepper tissue studied in both chloroplasts and chromoplasts, dependent on the addition of nuclioside triphosphates and phosphoenolpyruvate and inhibited by D-threo-chloramphenicol. l8. refs. (author)

  6. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  7. Relationships between nutrients and chlorophyll a concentration in the international Alma Gol Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Balali

    2013-05-01

    Full Text Available This study investigated the relationships between nutrients and chlorophyll, a concentration in the International Alma Gol Wetland. Chlorophyll a is the major photosynthetic pigment in lots of phytoplanktons and has been used as a trophy index in aquatic ecosystems. Water samples were collected fortnightly from five stations in the wetland during summer and autumn. Chlorophyll-a ranged between 4.38 to 156.55 mg/m3, sulfate ranged between 138 to 190 mg/l, total alkalinity ranged between 80 to 280 mg/l, silica ranged between 3.80 to 35.00 mg/l, phosphate ranged between 0.02 to 3.70 mg/l, ammonia ranged between 0.10 to 11.90 mg/l, nitrate ranged between 0.01 to 2.75 mg/l and nitrite ranged between 0.01 to 0.39 mg/l. There was a significant correlation between chlorophyll a and nitrate, nitrite and ammonia but there was no significant correlation between chlorophyll a and silica, total alkalinity, sulfate and phosphorus.

  8. Recent Trends in Global Ocean Chlorophyll

    Science.gov (United States)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  9. Investigations about the in vitro import of nucleus encoded cyanellar ploypeptides

    International Nuclear Information System (INIS)

    Brandtner, M.

    1991-05-01

    Cyanelles are the plastids of the eukaryotic alga Cyanophora paradoxa. They share several features with cyanobacteria: a cell wall made of peptidoglycan, concentric thylakoid membranes and phycobilisomes as light harvesting complexes. Therefore cyanelles were regarded as 'missing link' between the chloroplasts and the prokaryotic ancestor according to the endosymbiotic hypothesis. The genome of the cyanelles resembles that of plastids concerning size and organization. So cyanelles have to import 90% of their proteins. In order to study the import of proteins into cyanelles, it was necessary to isolate a nucleus-encoded gene from a cDNA library. The gene could be expressed in vitro in a suitable plasmid. The radioactive labelled precursor will be incubated with isolated cyanelles. After their lysis their proteins will be run on a gel and the fate of the precursor -whether it was imported and processed respectively or not - will be detected. A method for mRNA isolation was adapted with respect to Cyanophora paradoxa. Based on the mRNA cDNA libraries were established. In parallel the mRNA was in vitro translated. Import experiments with the translation products were performed into cyanelles and pea chloroplasts. Additionally it was tried to import four precursors of higher plants into cyanelles. The isolated cyanelles were not competent for protein uptake. The gene for ferredoxin-NADP-reductase was found in a lambda ZAP cDNA library by screening with homologous antibodies. The transit peptide for the import into cyanelles shows the same general features as chloroplast transit peptides do, but differs from the three known transit peptides of ferredoxin-NADP-reductase from higher plants. (author)

  10. Distribution of nutrients, chlorophyll and phytoplankton primary ...

    African Journals Online (AJOL)

    Distribution of nutrients, chlorophyll and phytoplankton primary production in ... Two cruises were undertaken in the vicinity of the Cape Frio upwelling cell ... and concentrations of nitrate, phosphate, silicate, oxygen and chlorophyll a. ... Estimates of the annual primary production for each of the water bodies were calculated.

  11. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis.

    Science.gov (United States)

    Liu, Yang; Fang, Yang; Huang, Mengjun; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Zhang, Guohua; He, Kaize; Zhao, Yun; Zhao, Hai

    2015-01-01

    Duckweed is a novel aquatic bioenergy crop that is found ubiquitously throughout the world. Uniconazole plays an important role in improving crop production through the regulation of endogenous hormone levels. We found that a high quantity and quality of duckweed growth can be achieved by uniconazole application, although the mechanisms are unknown. The fronds of Landoltia punctata were sprayed evenly with 800 mg/L uniconazole. The dry weight following treatment increased by 10% compared to the controls at 240 h. Endogenous cytokinin (CK) and abscisic acid (ABA) content both increased compared to the control, while the level of gibberellins (GAs) decreased. Additionally, gene expression profiling results showed that the expression of transcripts encoding key enzymes involved in endogenous CK and ABA biosynthesis were up-regulated, while the transcripts of key enzymes for GAs biosynthesis were down-regulated. On the other hand, chlorophyll a and chlorophyll b contents were both increased compared with the control. Moreover, the net photosynthetic rate was elevated to 25.6 μmol CO2/m(2)/s compared with the control value of 22.05 μmol CO2/m(2)/s. Importantly, the expression of some chlorophyll biosynthesis-related transcripts was up-regulated. Uniconazole treatment altered endogenous hormone levels and enhanced chlorophyll content and net photosynthetic rate in duckweed by regulating key enzymes involved in endogenous hormone and chlorophyll biosynthesis. The alterations of endogenous hormones and the increase of chlorophyll and photosynthetic rate data support the increase of biomass and starch accumulation.

  12. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions

    Science.gov (United States)

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-01-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599

  13. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  14. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  15. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    Science.gov (United States)

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  17. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  18. Terpenoid Metabolism in Plastids 1

    Science.gov (United States)

    Camara, Bilal; Bardat, Françoise; Seye, Ababacar; D'Harlingue, Alain; Monéger, René

    1982-01-01

    The synthesis of α-tocopherol from 2,3-dimethylphytylquinol and S-adenosyl-l-methionine was achieved using Capsicum annuum fruit chromoplasts. The enzymes involved in the cyclization (2,3-dimethyl-phytylquinol cyclase) and methylation (S-adenosyl methionine:γ-tocopherol methyl-transferase) are both localized in the chromoplast membrane fraction (envelopes and/or a-chlorophyll lamellae), in contrast to the stroma fraction. PMID:16662717

  19. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  20. Comparison of Six DNA Extraction Procedures and the Application of Plastid DNA Enrichment Methods in Selected Non-photosynthetic Plants

    Directory of Open Access Journals (Sweden)

    Shin-Yi Shyu

    2013-12-01

    Full Text Available Genomic DNA was isolated using three DNA extraction commercial kits and three CTAB-based methods for two non-photosynthetic plants, Balanophora japonica and Mitrastemon kanehirai. The quality of the isolated DNA was evaluated and subjected to following restriction enzyme digestions. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998 performed well in isolating DNA from both species for restriction enzyme digestion. In addition, we succeeded to enrich plastid DNA content by using the methods depending on a high salt buffer to deplete nuclear material. The ‘high salt’ methods based on protocol presented by Milligan (1989 were able to increase plastid DNA effectively and significantly reduce nuclear DNA from M. kanehirai. The plastid DNA enrichment protocols are inexpensive and not time-consuming, and may be applicable to other non-photosynthetic plants.

  1. Complete plastid genome sequencing of Trochodendraceae reveals a significant expansion of the inverted repeat and suggests a Paleogene divergence between the two extant species.

    Directory of Open Access Journals (Sweden)

    Yan-xia Sun

    Full Text Available The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales, and Gunneridae (core eudicots, but complete plastome analyses do not resolve the relationships among these groups with strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the same unusual ∼4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8 that are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30 million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict species, both of which are of conservation concern.

  2. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites.

    Science.gov (United States)

    Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo

    2018-02-01

    Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  4. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  5. An overview of remote sensing of chlorophyll fluorescence

    Science.gov (United States)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  6. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  7. DAYTIME VARIATIONS OF CHLOROPHYLL A FLUORESCENCE IN PAU D'ALHO SEEDLINGS

    OpenAIRE

    Bacarin, Marcos Antonio; Martinazzo, Emanuela Garbin; Cassol, Daniela; Falqueto, Antelmo Ralph; Silva, Diolina Moura

    2016-01-01

    ABSTRACT Analysis of transient and modulated fluorescence of chlorophyll a were made at one-hour intervals during an eight-hour period starting at 07:30h aiming to study mechanisms of photoprotection against high radiation and temperature in Gallesia integrifolia plants. Seeds were germinated inside plastic pots containing soil as substrate. At 120 days after emergence, chlorophyll fluorescence measurements were performed using Handy-PEA and FMS2 fluorometers. During the course of a day, an i...

  8. WHIRLY1 Functions in the Control of Responses to Nitrogen Deficiency But Not Aphid Infestation in Barley.

    Science.gov (United States)

    Comadira, Gloria; Rasool, Brwa; Kaprinska, Barbara; García, Belén Márquez; Morris, Jennifer; Verrall, Susan R; Bayer, Micha; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2015-07-01

    WHIRLY1 is largely targeted to plastids, where it is a major constituent of the nucleoids. To explore WHIRLY1 functions in barley (Hordeum vulgare), RNA interference-knockdown lines (W1-1, W1-7, and W1-9) that have very low levels of HvWHIRLY1 transcripts were characterized in plants grown under optimal and stress conditions. The WHIRLY1-1 (W1-1), W1-7, and W1-9 plants were phenotypically similar to the wild type but produced fewer tillers and seeds. Photosynthesis rates were similar in all lines, but W1-1, W1-7, and W1-9 leaves had significantly more chlorophyll and less sucrose than the wild type. Transcripts encoding specific subsets of chloroplast-localized proteins, such as ribosomal proteins, subunits of the RNA polymerase, and thylakoid nicotinamide adenine dinucleotide (reduced) and cytochrome b6/f complexes, were much more abundant in the W1-7 leaves than the wild type. Although susceptibility of aphid (Myzus persicae) infestation was similar in all lines, the WHIRLY1-deficient plants showed altered responses to nitrogen deficiency, maintaining higher photosynthetic CO2 assimilation rates than the wild type under limiting nitrogen. Although all lines showed globally similar low nitrogen-dependent changes in transcripts and metabolites, the increased abundance of FAR-RED IMPAIRED RESPONSE1-like transcripts in nitrogen-deficient W1-7 leaves infers that WHIRLY1 has a role in communication between plastid and nuclear genes encoding photosynthetic proteins during abiotic stress. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  10. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Directory of Open Access Journals (Sweden)

    Holland Barbara R

    2006-07-01

    Full Text Available Abstract Background Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. Results Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. Conclusion Using the most treelike distance matrices, as

  11. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    Science.gov (United States)

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae. © 2015 Phycological Society of America.

  12. OSU Chlorophyll Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product was developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) data obtained by the MODerate...

  13. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    Science.gov (United States)

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  14. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves

    Directory of Open Access Journals (Sweden)

    Madaín Pérez-Patricio

    2018-02-01

    Full Text Available This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance, a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica, Canavalia ensiforme, and Lycopersicon esculentum. Experimental results showed that—in terms of accuracy and processing speed—the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica, where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  15. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  16. Chlorophyll modulation of mixed layer thermodynamics in a mixed ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    in a mixed-layer isopycnal General Circulation Model – An ... three dimensional ocean circulation theory combined with solar radiation transfer process. 1. .... temperature decrease compared with simulation without chlorophyll (bottom panel).

  17. A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Justin D. Fellows

    2017-06-01

    Full Text Available Apicomplexan parasites cause a variety of important infectious diseases, including malaria, toxoplasma encephalitis, and severe diarrhea due to Cryptosporidium. Most apicomplexans depend on an organelle called the apicoplast which is derived from a red algal endosymbiont. The apicoplast is essential for the parasite as the compartment of fatty acid, heme, and isoprenoid biosynthesis. The majority of the approximate 500 apicoplast proteins are nucleus encoded and have to be imported across the four membranes that surround the apicoplast. Import across the second outermost membrane of the apicoplast, the periplastid membrane, depends on an apicoplast-specific endoplasmic reticulum-associated protein degradation (ERAD complex and on enzymes of the associated ubiquitination cascade. However, identification of an apicoplast ubiquitin associated with this machinery has long been elusive. Here we identify a plastid ubiquitin-like protein (PUBL, an apicoplast protein that is derived from a ubiquitin ancestor but that has significantly changed in its primary sequence. PUBL is distinct from known ubiquitin-like proteins, and phylogenomic analyses suggest a clade specific to apicomplexans. We demonstrate that PUBL and the AAA ATPase CDC48AP both act to translocate apicoplast proteins across the periplastid membrane during protein import. Conditional null mutants and genetic complementation show that both proteins are critical for this process and for parasite survival. PUBL residues homologous to those that are required for ubiquitin conjugation onto target proteins are essential for this function, while those required for polyubiquitination and preprotein processing are dispensable. Our experiments provide a mechanistic understanding of the molecular machinery that drives protein import across the membranes of the apicoplast.

  18. Effects of biocides on chlorophyll contents of detached basil leaves

    Directory of Open Access Journals (Sweden)

    Titima Arunrangsi

    2013-06-01

    Full Text Available Herbicides and insecticides have been widely and intensively used in agricultural areas worldwide to enhance crop yield. However, many biocides cause serious environmental problems. In addition, the biocides may also have some effects on the treated agricultural crops. To study effects of biocides on chlorophyll content in detached basil leaves, 2,4-D dimethylamine salt (2,4 D-Amine, paraquat, carbosulfan, and azadirachtin, were chosen as representatives of biocide. After applying the chemicals to detached basil leaves overnight in darkness, chlorophyll contents were determined. Only treatment with 2,4 D-Amine resulted in reduction of chlorophyll contents significantly compared to treatment with deionized (DI water. In the case of paraquat and carbosulfan, chlorophyll contents were not significantly changed, while slightly higher chlorophyll contents, compared to DI water, after the treatment with azadirachtin, were observed. The results indicated that 2,4 D-Amine shows an ability to accelerate chlorophyll degradation, but azadirachtin helps to retard chlorophyll degradation, when each biocide is used at the concentration recommended by the manufacturer.

  19. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll

  20. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes.

    Science.gov (United States)

    Sabir, Jamal; Schwarz, Erika; Ellison, Nicholas; Zhang, Jin; Baeshen, Nabih A; Mutwakil, Muhammed; Jansen, Robert; Ruhlman, Tracey

    2014-08-01

    Land plant plastid genomes (plastomes) provide a tractable model for evolutionary study in that they are relatively compact and gene dense. Among the groups that display an appropriate level of variation for structural features, the inverted-repeat-lacking clade (IRLC) of papilionoid legumes presents the potential to advance general understanding of the mechanisms of genomic evolution. Here, are presented six complete plastome sequences from economically important species of the IRLC, a lineage previously represented by only five completed plastomes. A number of characters are compared across the IRLC including gene retention and divergence, synteny, repeat structure and functional gene transfer to the nucleus. The loss of clpP intron 2 was identified in one newly sequenced member of IRLC, Glycyrrhiza glabra. Using deeply sequenced nuclear transcriptomes from two species helped clarify the nature of the functional transfer of accD to the nucleus in Trifolium, which likely occurred in the lineage leading to subgenus Trifolium. Legumes are second only to cereal crops in agricultural importance based on area harvested and total production. Genetic improvement via plastid transformation of IRLC crop species is an appealing proposition. Comparative analyses of intergenic spacer regions emphasize the need for complete genome sequences for developing transformation vectors for plastid genetic engineering of legume crops. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    Science.gov (United States)

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  2. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  3. Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signalling in the prors1-1 mutant

    Directory of Open Access Journals (Sweden)

    Luca eTadini

    2012-12-01

    Full Text Available Perturbations in organellar gene expression (OGE and the thylakoid redox state (TRS activate retrograde signalling pathways that adaptively modify nuclear gene expression (NGE, according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1 which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signalling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signalling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific, which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins.

  4. Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon

    Science.gov (United States)

    Buditama, Gilang; Damayanti, Astrid; Giok Pin, Tjiong

    2017-12-01

    Phytoplankton is a microscopic plant that has a function to produces oxygen and organic substances. It also plays a role as a main producer in the food chain of a marine ecosystem. Chlorophyll-a is a colour pigment most common in phytoplankton species, so that the concentration level of chlorophyll-a can be used as an indicator of the abundance of phytoplankton cells, and as a reference for predicting organic potency in the aquatic area. This research discusses about the spatial and temporal distribution of chlorophyll-a and its correlation with salinity and total suspended solid (TSS), in the seawaters of Cirebon, West Java. The goal of this research is to be a source of information for fishermen, and other stakeholders whose related subjects in the field of marine and fisheries to predict fertile water regions and can also be used as an indicator in discovering potential areas to catch pelagic fish in Cirebon seawaters. Chlorophyll-a concentration, salinity, and TSS are identified using remote sensing data such as Landsat-8 OLI multi temporal images according to dry and wet month parameters in the 2014-2015. The results of the processed image are then validated between in-situ measurements in the field and remote sensing imagery at the same time. This research utilizes descriptive analysis, and statistics with spatial approach. The results of the research show that temporally, chlorophyll-a levels have a tendency to be higher in wet months compared to dry months, while chlorophyll-a is higher in areas near the coastline compared to open sea areas. The distribution of chlorophyll-a concentration is affected by salinity and TSS distribution, where salinity has the negative relationship and TSS has the positive relationship with chlorophyll-a distribution.

  5. Inhibition of triacylglycerol and apoprotein B secretion and of low density lipoprotein binding in Hep G2 cells by eicosapentaenoic acid

    International Nuclear Information System (INIS)

    Wong, S.H.; Nestel, P.J.

    1987-01-01

    The consumption of long chain polyunsaturated fatty acids of fish oils leads to profound lowering of plasma triacylglyercol (TAG) but not of plasma cholesterol. Reasons for this were investigated with the human hepatoma cell line, the Hep G2 cell. Incubations with oleic acid (OA), linoleic acid (LA) and the characteristic marine fatty acid eicosapentaenoic acid (EPA) enriched cellular TAG mass, though least with EPA. However, secretion of very low density lipoprotein (VLDL)-TAG and apoprotein B (apo B), measured from [ 3 H]-glycerol and [ 3 H]-leucine was markedly inhibited by EPA. Preincubation with LA reduced VLDL-TAG but not apo B secretion in comparison with OA which stimulated both. A possible effect on low density lipoprotein (LDL) removal was studied by measuring [ 125 I]-LDL binding. Preincubation with either EPA or LA inhibited the saturable binding of LDL, observed with OA and control incubations. The binding of lipoproteins containing chylomicron remnants was not affected by any of the fatty acids

  6. Assessment of The trophic state and Chlorophyll-a concentrations using Landsat OLI in Karaoun reservoir, Lebanon

    Directory of Open Access Journals (Sweden)

    Ali Fadel

    2016-12-01

    Full Text Available Fadel, A., Faour G. and Slim K. 2016. Assessment of the trophic state and chlorophyll-a concentrations using Landsat OLI in Karaoun reservoir, Lebanon. Lebanese Science Journal, 17(2: 130-145. Harmful algal blooms have become a worldwide environmental problem. A regular and cost-effective monitoring of these blooms is highly needed by lakes managers. Satellite remote sensing imagery like Landsat Operational Land Imager (OLI can be used to assess and monitor chlorophyll-a in water bodies over large areas in a cost-effective way. In this study, the accuracy of Landsat OLI to estimate chlorophyll-a was examined. Four field campaigns and cloud free images of Landsat OLI with 30 m resolution (01 May 2013, 21 August 2013, 10 July 2015, and 11 August 2015 were used in this study to determine the accuracy of Landsat OLI in estimating chlorophyll-a in a 12 km2 freshwater body, Karaoun reservoir. After atmospheric correction of these images, reflectance of single and multiple band combinations were compared to field chlorophyll-a data. Results of field campaigns showed that the trophic state of Karaoun reservoir is still eutrophic to hypereutrophic with high nutrient concentration and low phytoplankton biodiversity, dominated by cyanobacteria species, Microcystis aeruginosa and Aphanizomenon ovalisporum. On single band level, the in situ chlorophyll-a measurement correlated best with band 5 (0.85 - 0.88 µm, with R=0.75 and R2=0.57. Highest correlation (R=0.84 and R2=0.72 was obtained using band combination, B2:B4 band ratio multiplied by B5. Results indicated that Landsat OLI can be used effectively to determine chlorophyll-a concentration in lakes and reservoirs. We recommend the application of Landsat OLI as a satisfactory and cost effective method for monitoring chlorophyll-a in other lakes through-out the world

  7. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  8. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.; Raitsos, Dionysios E.; Dall'Olmo, Giorgio; Zarokanellos, Nikolaos; Jackson, Thomas; Racault, Marie-Fanny; Boss, Emmanuel S.; Sathyendranath, Shubha; Jones, Burton; Hoteit, Ibrahim

    2015-01-01

    an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll

  9. Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants

    Energy Technology Data Exchange (ETDEWEB)

    Heemskerk, J.W.M.; Heinz, E. (Univ. of Hamburg (West Germany)); Storz, T.; Schmidt, R.R. (Univ. of Konstanz (West Germany))

    1990-08-01

    Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-(6-{sup 3}H)galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment of the organelles with the nonpenetrating protease thermolysin. Envelope membranes isolated from thermolysin-treated chloroplasts of Spinacia oleracea L. (16:3 plant) and Pisum sativum L. (18:3 plant) or membranes isolated from thermolysin-treated chromoplasts are strongly reduced in galactolipid:galactolipid galactosyltransferase activity, but not with regard to UDP-Gal:diacylglycerol galactosyltransferase. For the intact plastids, this indicates that thermolysin treatment specifically blocks DGDG (and TGDG) synthesis, whereas MGDG synthesis is not affected. Neither in chloroplast nor in chromoplast membranes is DGDG synthesis stimulated by UDP-Gal. DGDG synthesis in S. oleracea chloroplasts is not stimulated by nucleoside 5{prime}-diphospho digalactosides. Therefore, galactolipid:galactolipid galactosyltransferase is so far the only detectable enzyme synthesizing DGDG.

  10. Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants

    International Nuclear Information System (INIS)

    Heemskerk, J.W.M.; Heinz, E.; Storz, T.; Schmidt, R.R.

    1990-01-01

    Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-[6- 3 H]galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment of the organelles with the nonpenetrating protease thermolysin. Envelope membranes isolated from thermolysin-treated chloroplasts of Spinacia oleracea L. (16:3 plant) and Pisum sativum L. (18:3 plant) or membranes isolated from thermolysin-treated chromoplasts are strongly reduced in galactolipid:galactolipid galactosyltransferase activity, but not with regard to UDP-Gal:diacylglycerol galactosyltransferase. For the intact plastids, this indicates that thermolysin treatment specifically blocks DGDG (and TGDG) synthesis, whereas MGDG synthesis is not affected. Neither in chloroplast nor in chromoplast membranes is DGDG synthesis stimulated by UDP-Gal. DGDG synthesis in S. oleracea chloroplasts is not stimulated by nucleoside 5'-diphospho digalactosides. Therefore, galactolipid:galactolipid galactosyltransferase is so far the only detectable enzyme synthesizing DGDG

  11. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria); Rademacher, Thomas [Institute of Molecular Biotechnology, RWTH Aachen University, Aachen (Germany); Lampel, Johannes [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria); Eudes, François [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Vitale, Alessandro [Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan (Italy); Stoger, Eva, E-mail: eva.stoger@boku.ac.at [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria)

    2014-12-11

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.

  12. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    International Nuclear Information System (INIS)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa; Rademacher, Thomas; Lampel, Johannes; Eudes, François; Vitale, Alessandro; Stoger, Eva

    2014-01-01

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.

  13. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.

    Science.gov (United States)

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M

    2016-12-07

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  14. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2016-12-01

    Full Text Available Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO. However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution, simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  15. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Weng, Mao-Lun; Hajrah, Nahid H; Sabir, Jamal S M; Jansen, Robert K

    2017-06-01

    Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics.

    Science.gov (United States)

    Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang

    2017-05-01

    Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants

    Directory of Open Access Journals (Sweden)

    Alessana F. Schlichting

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to verify the efficiency of two portable chlorophyll meters (Minolta SPAD® 502 and Falker ClorofiLOG® 1030 in assessing the nutritional status of wheat plants, correlating the indices from the devices and the direct determination of chlorophyll content with the concentration of nitrogen (N in the plant. The experiment was conducted in a greenhouse, in pots with 5 dm3 of Oxisol, in a completely randomized design, with six N doses (0, 80, 160, 240, 320 and 400 mg dm-3 and five replicates. At 47 days after emergence, the readings of SPAD and Falker indices and the quantification of chlorophyll content and N concentration in wheat plants were performed, as well as analysis of variance and correlation test, both at 0.05 probability level. The chlorophyll meters Minolta SPAD® 502 and Falker ClorofiLOG® 1030 do not differ with respect to the indirect determination of chlorophyll in wheat plants. The Falker chlorophyll index was statistically equal to the chlorophyll content. Indirect chlorophyll indices and chlorophyll content showed a high correlation with the N concentration in the plant.

  18. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  19. Chlorophyll formation and phytochrome

    NARCIS (Netherlands)

    Raven, C.W.

    1973-01-01

    The rôle of phytochrome in the regeneration of protochlorophyll (Pchl) in darkness following short exposures to light, as well as in the accumulation of chlorophyll- a (Chl- a ) in continuous light in previously dark-grown seedlings of pea, bean,

  20. Individual members of the light-harvesting complex II chlorophyll a/b-binding protein gene family in pea (Pisum sativum) show differential responses to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Mackerness, A.H.S.; Liu, L.; Thomas, B.; Thompson, W.F.; Jordan, B.R.; White, M.J.

    1998-01-01

    In the present work, UV-B-repressible and UV-B-inducible genes were identified in the pea, Pisum sativum L., by rapid amplification of 3′ cDNA ends through use of the polymerase chain reaction. Of the UV-B-repressible clones, psUVRub and psUVDeh represent genes encoding Rubisco activase and dehydrin, respectively. A third clone, psUVZinc, did not correspond closely in overall nucleotide sequence to any gene registered in GenBank; however, a short deduced peptide shared similarity with the photosystem-II reaction center X protein of the chlorophyll a+c-containing alga, Odontella sinensis. The UV-B-inducible clones, psUVGluc, psUVAux and psUVRib, were related to genes encoding β-1, 3-glucanase, auxin-repressed protein, and a 40S ribosomal protein, respectively. The modulation of these pea genes indicates how UV-B, through its actions as a physical stressor, affects several important physiological processes in plants. (author)

  1. Chlorophyll in tomato seeds: marker for seed performance?

    NARCIS (Netherlands)

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the

  2. Estimating chlorophyll content from Eucalyptus dunnii leaves by reflectance values

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2016-06-01

    Full Text Available This study aimed to estimate photosynthetic pigments contents from leaves of Eucalyptus dunni Maiden based on values of reflectance spectra of red, green and blue colors obtained with a digital color analyzer. We collected fifty leaves from the lower third of the crown of twenty trees including young as well as mature leaves. From each leaf an area of 14 cm2 of the leaf blade was cut in which we measured reflectance values on the red, green and blue spectra with a portable digital colorimeter, obtained relative index of chlorophyll with a SPAD – 502 and determined the content of the chlorophyll a, b, and a + b by classic method of solvent extraction. We submitted the data to multiple linear regression and nonlinear analysis at 5% of error probability. It was evaluated the occurrence of multicollinearity. The negative exponential model resulted in good fit when data from red spectrum was used for chlorophyll a, green spectrum for chlorophyll b and a + b, making possible correlation coefficients between the estimated values and the extracted above 0.85. Except for the chlorophyll a content, the accuracy in estimates of photosynthetic pigments were higher than estimated by the chlorophyll meter, even with linearity between methods. Therefore, it is possible to estimate photosynthetic pigments on E. dunni leaves through values of red and green wavelengths from a digital color analyser.

  3. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  4. Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales.

    Science.gov (United States)

    Bellot, Sidonie; Cusimano, Natalie; Luo, Shixiao; Sun, Guiling; Zarre, Shahin; Gröger, Andreas; Temsch, Eva; Renner, Susanne S

    2016-08-03

    Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites' occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  6. The effect of storage temperature of cucumber fruit on chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Ryszard Kosson

    2013-12-01

    Full Text Available The effect of three storage temperature levels: 12,5°C, 20°C, and 1,5°C on basic indexes of chlorophyll fluorescence of cucumber fruits was studied. The greenhouse grown cucumber fruits cv. Wiktor F1 were stored in perforated polyethylene bags or without packages. The minimum chlorophyll fluorescence (Fo, maximum chlorophyll fluorescence (Fm, variable chlorophyll fluorescence (Fv and relative variable fluorescence (Fv/Fm of the cucumber peel were measured. Relative variable fluorescence was decTeasing when cucumbers were stored at temperature lower or higher than optimum level. The chlorophyll fluorescence measurements can be helpful for determination of appropriate temperature parameters of cucumber storage.

  7. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    Science.gov (United States)

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    Science.gov (United States)

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  9. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  10. Assessment of the Trophic State and Chlorophyll-A Concentrations using Landsat OLI in Karaoun Reservoir Lebanon

    International Nuclear Information System (INIS)

    Fadel, A.; Faour, GH.; Slim, K.

    2016-01-01

    Harmful algal blooms have become a worldwide environmental problem. A regular and cost -effective monitoring of these blooms is highly needed by lakes managers. Satellite remote sensing imagery like Landsat Operational Land Imager (OLI) can be used to assess and monitor chlorophyll-a in water bodies over large areas in a cost-effective way. In this study, the accuracy of Landsat OLI to estimate chlorophyll-a was examined. Four field campaigns and cloud free images of Landsat OLI with 30 m resolution (01 May 2013, 21 August 2013, 10 July 2015, and 11 August 2015) were used in this study to determine the accuracy of Landsat OLI in estimating chlorophyll-a in a 12 km2 fresh water body, Karaoun reservoir. After atmospheric correction of these images, reflectance of single and multiple band combinations were compared to field chlorophyll-a data. Results of field campaigns showed that the trophic state of Karaoun reservoir is still eutrophic to hypereutrophic withhigh nutrient concentration andlow phytoplankton biodiversity, dominatedby cyanobacteria species, Microcystis aeruginosa and Aphanizomenon ovalisporum. On single band level, the n situ chlorophyll-a measurement correlated best with band 5 (0.85 -0.88 μm), with R=0.75 and R2=0.57.Highest correlation (R=0.84 and R2=0.72) was obtained using band combination, B2:B4 band ratio multiplied by B5. Results indicated that Landsat OLI can be used effectively to determine chlorophyll-a concentration in lakes and reservoirs. We recommend the application of Landsat OLI as a satisfactory and cost effective method for monitoring chlorophyll-a in other lakes through-out the world. (author)

  11. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  12. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  13. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  14. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    Directory of Open Access Journals (Sweden)

    C. B. Hasager

    2003-01-01

    Full Text Available A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen is the limiting factor for phytoplankton in the Kattegat Strait during summer periods (May to August and the major nitrogen inputs come from the atmosphere and deep-water entrainment. The extreme reoccurrence values of nitrogen from atmospheric wet and dry deposition and deep-water flux entrainments are calculated by the periodic maximum method and the results are successfully compared to a map of chlorophyll return periods based on in-situ observations. The one-year return of extreme atmospheric wet deposition is around 60 mg N m-2 day-1 and 30 mg N m-2 day-1 for deep-water entrainment. Atmospheric nitrogen dry deposition is insignificant in the context of algal blooms. At longer time-scales e.g. at 10-year return, the nitrogen deep-water entrainment is larger than the extreme of atmospheric wet deposition. This indicates that the pool of nitrogen released from the sea bottom by deep-water entrainment forced by high winds greatly exceeds the atmospheric pool of nitrogen washed out by precipitation. At the frontal zone of the Kattegat Strait and Skagerrak, the nitrogen deep-water entrainment is very high and this explains the high 10-year return chlorophyll level at 8 mg m-3 in the Kattegat Strait. In the southern part, the extreme chlorophyll level is only 4 mg m-3 according to the statistics of a multi-year time-series of water samples. The chlorophyll level varies greatly in time and space as documented by a series of SeaWiFS satellite maps (OC4v4 algorithm of chlorophyll ScanFish and buoy observations from an experimental period in the Kattegat Strait. It is recommended to sample in-situ chlorophyll observation collocated in time to the satellite

  15. Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya

    Science.gov (United States)

    Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.

    2018-03-01

    The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.

  16. EmpiricalValues_Chlorophyll_GrandComposite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are a composite of several years (1997-2005)...

  17. Chaperone-like properties of tobacco plastid thioredoxins f and m

    Science.gov (United States)

    Sanz-Barrio, Ruth; Fernández-San Millán, Alicia; Carballeda, Jon; Corral-Martínez, Patricia; Seguí-Simarro, José M.; Farran, Inmaculada

    2012-01-01

    Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein. PMID:21948853

  18. Morphological and quantitative changes in mitochondria, plastids, and peroxisomes during the log-to-stationary transition of the growth phase in cultured tobacco BY-2 cells.

    Science.gov (United States)

    Toyooka, Kiminori; Sato, Mayuko; Wakazaki, Mayumi; Matsuoka, Ken

    2016-01-01

    We developed a wide-range and high-resolution transmission electron microscope acquisition system and obtained giga-pixel images of tobacco BY-2 cells during the log and stationary phases of cell growth. We demonstrated that the distribution and ultrastructure of compartments involved in membrane traffic (i.e., Golgi apparatus, multivesicular body, and vesicle cluster) change during the log-to-stationary transition. Mitochondria, peroxisomes, and plastids were also enumerated. Electron densities of mitochondria and peroxisomes were altered during the growth-phase shift, while their numbers were reduced by nearly half. Plastid structure dramatically changed from atypical to spherical with starch granules. Nearly the same number of plastids was observed in both log and stationary phases. These results indicate that mechanisms regulating organelle populations differ from organelle to organelle.

  19. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae.

    Science.gov (United States)

    de Santana Lopes, Amanda; Gomes Pacheco, Túlio; Nimz, Tabea; do Nascimento Vieira, Leila; Guerra, Miguel P; Nodari, Rubens O; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Rogalski, Marcelo

    2018-04-01

    The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.

  20. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  1. Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris – a filamentous cyanobacterium containing chlorophyll f

    Directory of Open Access Journals (Sweden)

    Yaqiong eLi

    2014-02-01

    Full Text Available A chlorophyll f containing cyanobacterium, Halomicronema hongdechloris (H. hongdechloris was isolated from a stromatolite cyanobacterial community. However, the extremely slower growth rate of H. hongdechloris culture became a critical factor, hindering the research on this newly isolated cyanobacterium and the investigation of chlorophyll f-photosynthesis. Therefore, optimizing H. hongdechloris culture conditions has become an essential requirement for future research. This work investigated the effects of various culture conditions, essential nutrients and light environments to determine the optimal growth conditions for H. hongdechloris and the biosynthetic rate of chlorophyll f. Based on the total chlorophyll concentration, an optimal growth rate of 0.22 ± 0.02 day-1 (doubling time: 3.1 ± 0.3 days was observed when cells were grown under continuous illumination with far-red light with an intensity of 20 µE at 32°C in modified K+ES seawater (pH 8.0 with additional supplements of 11.75 mM NaNO3 and 0.15 mM K2HPO4. High performance liquid chromatography on H. hongdechloris pigments confirmed that chlorophyll a is the major chlorophyll and chlorophyll f constitutes approximately 10% of the total chlorophyll from cells grown under far-red light. Fluorescence confocal image analysis demonstrated changes of photosynthetic membranes and the distribution of photopigments in response to different light conditions. The total photosynthetic oxygen evolution yield per cell showed no changes under different light conditions, which confirms the involvement of chlorophyll f in oxygenic photosynthesis. The implications of the presence of chlorophyll f in H. hongdechloris and its relationship to light environment are discussed.

  2. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete

  3. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Kalff, J.; Christoffersen, Kirsten Seestern

    2006-01-01

    content of periphyton on hard substrata (rocks and wood) was positively related to water-column total P (TP), whereas chlorophyll content of algae on sediment (epipelon) and TP were not significantly related. Chlorophyll content was up to 100× higher on sediments than on hard substrata. Within regions...... of the littoral zones in nutrient and energy cycles in lakes....

  4. Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae).

    Science.gov (United States)

    Choi, In-Su; Kim, Joo-Hwan; Choi, Byoung-Hee

    2016-07-01

    The first complete plastid genome (plastome) of the largest angiosperm genus, Astragalus, was sequenced for the Korean endangered endemic species A. mongholicus var. nakaianus. Its genome is relatively short (123,633 bp) because it lacks an Inverted Repeat (IR) region. It comprises 110 genes, including four unique rRNAs, 30 tRNAs, and 76 protein-coding genes. Similar to other closely related plastomes, rpl22 and rps16 are absent. The putative pseudogene with abnormal stop codons is atpE. This plastome has no additional inversions when compared with highly variable plastomes from IRLC tribes Fabeae and Trifolieae. Our phylogenetic analysis confirms the non-monophyly of Galegeae.

  5. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  6. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  7. Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2013-12-01

    Full Text Available The visible reflectance spectroscopy (VRS and chlorophyll a concentration were determined in three sediment profiles collected from East Antarctica to investigate the potential application of VRS in reconstructing historical changes in Antarctic lake primary productivity. The results showed that the appearance of a trough at 650–700 nm is an important marker for chlorophyll a concentration and can therefore be used to distinguish the sedimentary organic matter source from guano and algae. The measured chlorophyll a content had significant positive correlations with the trough area between 650 and 700 nm, and no distinct trough was found in the sediments with organic matter completely derived from guano. Modelling results showed that the spectra spectrally inferred chlorophyll a content, and the measured data exhibit consistent trends with depth, showing that the dimensionless trough area can serve as an independent proxy for reconstructing historical fluctuations in the primary production of Antarctic ponds. The correlation of phosphorus (P with measured and inferred chlorophyll a contents in ornithogenic sediments near penguin colonies indicates that the change in primary productivity in the Antarctic ponds investigated was closely related to the amount of guano input from these birds.

  8. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    Science.gov (United States)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  9. Spatial-temporal variability of leaf chlorophyll and its relationship with cocoa yield

    Directory of Open Access Journals (Sweden)

    Caique C. Medauar

    Full Text Available ABSTRACT The objective of this study was to evaluate the spatial-temporal variability of leaf chlorophyll index and its relationship with cocoa yield. The experiment was carried out in an experimental area of cocoa production located in Ilhéus, Bahia State, Brazil. Leaf chlorophyll content was measured in September, October, January, February, March and April in the 2014/2015 season, at each sampling point of a regular grid by using a portable chlorophyll meter. Under the same conditions, yield was evaluated and the data were submitted to descriptive statistics and a linear correlation study. Geostatistical analysis was used to determine and quantify the spatial and temporal variability of leaf chlorophyll index and yield. Leaf chlorophyll index varied over the period evaluated, but the months of February, March and April showed no spatial dependence in the study area, indicating absence of temporal stability. Cocoa monthly yield, except in January, presented high spatial variability. Under the conditions of this study, it was not possible to establish a relationship between leaf chlorophyll index and cocoa yield.

  10. Shine-dalgarno sequences play an essential role in the translation of plastid mRNAs in tobacco

    DEFF Research Database (Denmark)

    Scharff, Lars; Ehrnthaler, Miriam; Janowski, Marcin

    2017-01-01

    SD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations...

  11. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  12. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta).

    Science.gov (United States)

    Paiano, Monica Orlandi; Del Cortona, Andrea; Costa, Joana F; Liu, Shao-Lun; Verbruggen, Heroen; De Clerck, Olivier; Necchi, Orlando

    2018-02-01

    Little is known about genome organization in members of the order Batrachospermales, and the infra-ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra-ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene-dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein-coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling. © 2017 Phycological Society of America.

  13. A modern robust approach to remotely estimate chlorophyll in coastal and inland zones

    Science.gov (United States)

    Shanmugam, Palanisamy; He, Xianqiang; Singh, Rakesh Kumar; Varunan, Theenathayalan

    2018-05-01

    The chlorophyll concentration of a water body is an important proxy for representing the phytoplankton biomass. Its estimation from multi or hyper-spectral remote sensing data in natural waters is generally achieved by using (i) the waveband ratioing in two or more bands in the blue-green or (ii) by using a combination of the radiance peak position and magnitude in the red-near-infrared (NIR) spectrum. The blue-green ratio algorithms have been extensively used with satellite ocean color data to investigate chlorophyll distributions in open ocean and clear waters and the application of red-NIR algorithms is often restricted to turbid productive water bodies. These issues present the greatest obstacles to our ability to formulate a modern robust method suitable for quantitative assessments of the chlorophyll concentration in a diverse range of water types. The present study is focused to investigate the normalized water-leaving radiance spectra in the visible and NIR region and propose a robust algorithm (Generalized ABI, GABI algorithm) for chlorophyll concentration retrieval based on Algal Bloom index (ABI) which separates phytoplankton signals from other constituents in the water column. The GABI algorithm is validated using independent in-situ data from various regional to global waters and its performance is further evaluated by comparison with the blue-green waveband ratios and red-NIR algorithms. The results revealed that GABI yields significantly more accurate chlorophyll concentrations (with uncertainties less than 13.5%) and remains more stable in different waters types when compared with the blue-green waveband ratios and red-NIR algorithms. The performance of GABI is further demonstrated using HICO images from nearshore turbid productive waters and MERIS and MODIS-Aqua images from coastal and offshore waters of the Arabian Sea, Bay of Bengal and East China Sea.

  14. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  15. An optimal thermal condition for maximal chlorophyll extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available This work describes an environmentally friendly process for chlorophyll extraction from bamboo leaves. Shaking water bath and ultrasound cleaner are adopted in this technology, and the influence of temperature of the water bath and ultrasonic cleaner is evaluated. Results indicated that there is an optimal condition for maximal yield of chlorophyll.

  16. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  17. Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads

    Directory of Open Access Journals (Sweden)

    Karina Gonçalves da Silva

    2017-10-01

    Full Text Available Gas exchange and chlorophyll a fluorescence are widely used in physiological and ecological studies; however, few studies have used these techniques with ornamental plants. This study tested the potential contribution of gas exchange and chlorophyll a fluorescence to evaluate the water and nutrients uptake by the tank and root system of epiphyte bromeliad Guzmania lingulata. For this purpose, we conducted an experiment with different water regime and another with different concentrations of nitrogen. The experiments were: 1 - Watering: Control (application of water into Tank and Root, Tank (watering into Tank, Root (watering Root and Drought (water suspension during the 90 days of experimentation and 2 - Nitrogen: Plants fertilized with Hoagland and Arnon nutrient solution exclusively into Tank or Root with nitrogen concentrations of control and 2.62 or 5.34 mM N applied as urea. The Fv /Fm ratio allowed comparing the treatments between experiments, demonstrating that Root and Tank both have the capacity to maintain G. lingulata photosynthetic activity and growth, while Drought treatment (water suspension was the limiting factor for energy conversion efficiency of PSII. However, gas exchange was more permissive as a parameter for comparing treatments in the nitrogen experiment, providing important information about the general aspects of the photosynthetic process in the watering experiment. Both gas exchange and chlorophyll a fluorescence can support the evaluation of G. lingulata physiological status and can be useful tools in ornamental horticultural studies.

  18. Cu toxicity on growth and chlorophyll-a of Chaetoceros sp.

    Science.gov (United States)

    Puspitasari, R.; Suratno; Purbonegoro, T.; Agustin, A. T.

    2018-02-01

    Phytoplankton is a primary producer in marine aquatic ecosystem. Their sensitivity to metal makes them important to study to predict the environmental impact of pollution. Copper is an essential nutrient for aquatic life as micronutrients on an organism but toxic at high levels. The focus of this study was to assess the toxicity of copper to Chaetoceros sp. on growth and chlorophyll-a content. The result shows that inhibition concentration (IC50) of copper on the microalgae, Chaetoceros sp. was 30.25 μg L-1. Growth of Chaetoceros sp. decreased 16.84% in 16 μg L-1 and 81.97% in 44 μg L-1. Chlorophyll-a content decreased dramatically at 44 μg L-1 compared to control. Increase of the cell size, deformation of cell wall and loss of setae were observed at higher concentration of copper.

  19. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  20. Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence.

    Science.gov (United States)

    Zhang, Liang; Zhang, Li-Bing

    2018-01-01

    The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

    KAUST Repository

    Dreano, Denis

    2015-04-27

    A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

  2. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

    KAUST Repository

    Dreano, Denis; Mallick, Bani; Hoteit, Ibrahim

    2015-01-01

    A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

  3. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  4. Chlorophyll-a, Aqua MODIS, OSU DB, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  5. Chlorophyll-a, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  7. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, East US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  8. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  9. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.

    Science.gov (United States)

    Süssenbacher, Iris; Kreutz, Christoph R; Christ, Bastien; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-08-10

    1-Formyl-19-oxobilin-type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19-dioxobilin-type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild-type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gamma ray induced chlorophyll and morphological mutants in grasspea

    International Nuclear Information System (INIS)

    Das, P.K.; Kundagrami, S.

    2000-01-01

    Higher dose of gamma ray treatment such as 30 kR promoted larger chlorophyll as well as morphological mutation frequency and spectrum. In both M 1 and M 2 generation marginata significantly out numbered other types of chlorophyll mutations. On the other hand, along morphological mutations stunted growth types were recovered more frequently. Both the genotypes Nirmal and P-24 differed greatly for their mutagenic specificity. In both M 1 and M 2 generation Nirmal recorded higher chlorophyll and morphological mutation frequency and spectrum indicating differential genotype response to different dosages of gamma ray treatment. (author)

  11. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    International Nuclear Information System (INIS)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B

    2004-01-01

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  12. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B [Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo (Russian Federation)

    2004-02-28

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  13. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    Science.gov (United States)

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  14. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  15. Estimate of Leaf Chlorophyll and Nitrogen Content in Asian Pear (Pyrus serotina Rehd. by CCM-200

    Directory of Open Access Journals (Sweden)

    Mostafa GHASEMI

    2011-03-01

    Full Text Available In many cases evaluation of chlorophyll and nitrogen content in plants need to destructive methods, more time and organic solvents. Application of chlorophyll meters save time and resources. The aim of this study was estimating of chlorophyll and nitrogen content in Asian pear leaves using non-destructive method and rapid quantification of chlorophyll by chlorophyll content meter (CCM-200. This study was conducted on 8 years old Asian pear trees during June 2008 in Tehran, Iran. To develop our regression model, the chlorophyll meter data were correlated with extracted chlorophyll and nitrogen content data obtained from DMSO and Kejeldal methods, respectively. The results showed that, there was positive and linear correlation between CCM-200 data and chlorophyll a (R�=0.7183, chlorophyll b (R�=0.8523, total chlorophyll (R�=0.90, and total nitrogen content (R�=0.76 in Asian pear leaves. Thus, it can be concluded that, CCM-200 can be used in order to predict both chlorophyll and nitrogen content in Asian pear leaves.

  16. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    Science.gov (United States)

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  17. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in β-Carotene and Chlorophyll-a/β-Carotene Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh T.; Skeini, Timur [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Iancu, Violeta [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Redfern, Paul C.; Curtiss, Larry A.; Hla, Saw Wai [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States

    2018-01-11

    Carotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how beta-carotene and chlorophyll-a form mixed molecular phases On a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five beta-carotene conformations including a structure exhibiting a three-dimensional conformation. Furthermore, molecular resolution images enable direct visualization of beta-carotene/chlorophyll-a clsuters, with intimate structural details highlighting how they pair: beta-carotene preferentially positions next to chlorophyll-a and induces switching of chlorophyll-a from straight to several bent tail conformations in the molecular clusters.

  18. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Monika Szczecińska

    2015-09-01

    Full Text Available Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2 enabled the molecular delimitation of closely-related Pulsatilla

  19. Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.

    Science.gov (United States)

    Ogasawara, Shin; Tamiaki, Hitoshi

    2015-10-15

    The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

    Science.gov (United States)

    Wernand, Marcel R.; van der Woerd, Hendrik J.; Gieskes, Winfried W. C.

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major ‘greenhouse gas’, and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans – but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of ‘the’ ocean. PMID:23776435

  1. Chlorophyll Detection and Mapping of Shallow Water Impoundments Using Image Spectrometry

    International Nuclear Information System (INIS)

    Artigas, F.; Pechmann, I.; Marti, A.; Yao, N.; Pechmann, I.

    2008-01-01

    There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in the impoundments, ditches, and associated waterways of the Hackensack Meadow lands (NJ, USA). The resulting images clearly depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary. Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address water quality management issues in fragmented urban estuaries.

  2. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.

  3. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao

    2015-03-19

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast. © 2015 Yao, Hoteit.

  4. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    Science.gov (United States)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  5. VIIRSN Level-3 Standard Mapped Image, Chlorophyll a, Daily, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from the NPP -Suonomi Spacecraft. Measurements are gathered by the VIIRS instrument carried aboard the...

  6. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  7. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  8. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.

    Science.gov (United States)

    Sun, Ye; Wang, Yihang; Xiao, Hui; Gu, Xinzhe; Pan, Leiqing; Tu, Kang

    2017-11-15

    Honey peach is a very common but highly perishable market fruit. When pathogens infect fruit, chlorophyll as one of the important components related to fruit quality, decreased significantly. Here, the feasibility of hyperspectral imaging to determine the chlorophyll content thus distinguishing diseased peaches was investigated. Three optimal wavelengths (617nm, 675nm, and 818nm) were selected according to chlorophyll content via successive projections algorithm. Partial least square regression models were established to determine chlorophyll content. Three band ratios were obtained using these optimal wavelengths, which improved spatial details, but also integrates the information of chemical composition from spectral characteristics. The band ratio values were suitable to classify the diseased peaches with 98.75% accuracy and clearly show the spatial distribution of diseased parts. This study provides a new perspective for the selection of optimal wavelengths of hyperspectral imaging via chlorophyll content, thus enabling the detection of fungal diseases in peaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  10. Relationship of fouling diatom number and chlorophyll-a value from Zuari estuary, Goa (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Redekar, P.D.; Wagh, A.B.

    The diatom cell biomass is expressed in terms of diatom number and chlorophyll -a value on panel of glass slide. The Chlorophyll value in a water body is indicative of the productivity. The present study was conducted to find out the relationship...

  11. Chlorophyll mutants in Phaseolus vulgaris (L.) Savi

    International Nuclear Information System (INIS)

    Svetleva, D.; Petkova, S.

    1991-01-01

    Three-year investigations were conducted on chlorophyll mutants of three type: viridissima, claroviridis, flavoviridis, viridocostata and xanthomarginata produced post gamma irradiation ( 60 Co, 8 krad, 280 rad/min). Cell division rate in spectrum and in quantity of induced aberrations was found to have no significant differences with the control. Chlorophyll mutations compared to the control are less developed and their productive characters are less manifested. Cell division rate and the quantity of induced aberrations have no relation to the elements of productivity in the mutants investigated. 3 tabs., 12 refs

  12. Chlorophyll derivatives for pest and disease control: Are they safe?

    International Nuclear Information System (INIS)

    Azizullah, Azizullah; Murad, Waheed

    2015-01-01

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable

  13. Chlorophyll derivatives for pest and disease control: Are they safe?

    Energy Technology Data Exchange (ETDEWEB)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  14. Intricate patterns of phylogenetic relationships in the olive family as inferred from multi-locus plastid and nuclear DNA sequence analyses: a close-up on Chionanthus and Noronhia (Oleaceae).

    Science.gov (United States)

    Hong-Wa, Cynthia; Besnard, Guillaume

    2013-05-01

    Noronhia represents the most successful radiation of the olive family (Oleaceae) in Madagascar with more than 40 named endemic species distributed in all ecoregions from sea level to high mountains. Its position within the subtribe Oleinae has, however, been largely unresolved and its evolutionary history has remained unexplored. In this study, we generated a dataset of plastid (trnL-F, trnT-L, trnS-G, trnK-matK) and nuclear (internal transcribed spacer [ITS]) DNA sequences to infer phylogenetic relationships within Oleinae and to examine evolutionary patterns within Noronhia. Our sample included most species of Noronhia and representatives of the ten other extant genera within the subtribe with an emphasis on Chionanthus. Bayesian inferences and maximum likelihood analyses of plastid and nuclear data indicated several instances of paraphyly and polyphyly within Oleinae, with some geographic signal. Both plastid and ITS data showed a polyphyletic Noronhia that included Indian Ocean species of Chionanthus. They also found close relationships between Noronhia and African Chionanthus. However, the plastid data showed little clear differentiation between Noronhia and the African Chionanthus whereas relationships suggested by the nuclear ITS data were more consistent with taxonomy and geography. We used molecular dating to discriminate between hybridization and lineage sorting/gene duplication as alternative explanations for these topological discordances and to infer the biogeographic history of Noronhia. Hybridization between African Chionanthus and Noronhia could not be ruled out. However, Noronhia has long been established in Madagascar after a likely Cenozoic dispersal from Africa, suggesting any hybridization between representatives of African and Malagasy taxa was ancient. In any case, the African and Indian Ocean Chionanthus and Noronhia together formed a strongly supported monophyletic clade distinct and distant from other Chionanthus, which calls for a revised

  15. Phytol: A chlorophyll component with anti-inflammatory and metabolic properties

    DEFF Research Database (Denmark)

    Olofsson, Peter; Hultqvist, Malin; Hellgren, Lars I.

    2014-01-01

    The naturally occurring dipterpene molecule Phytol is an alcohol that can be extracted from the chlorophyll of green plants. Phytol has been studied for decades and has been suggested to have both metabolic properties as well as potent anti-inflammatory effects. Phytol represents a molecule derived...

  16. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  17. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    Science.gov (United States)

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the

  18. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    Science.gov (United States)

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b 6 /f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (F v /F m , rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  20. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  1. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  2. Seasonal variability of sea surface chlorophyll-a of waters around ...

    Indian Academy of Sciences (India)

    days during 1978--1986 are processed to produce sea surface chlorophyll maps ... shallow water areas, in particular waters in Palk Bay and Gulf of Mannar, should be carried out in order .... The circulation penetrates deeper, affecting the.

  3. Effect of PEG-6000 Imposed Water Deficit on Chlorophyll Metabolism in Maize Leaves

    Directory of Open Access Journals (Sweden)

    Rekha Gadre

    2013-08-01

    Full Text Available Drought stress is one of the major abiotic constraint limiting plant growth and productivity world wide. The current study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, on chlorophyll metabolism in maize leaves to work out the mechanistic details. Leaf segments prepared from primary leaves of etiolated maize seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 5%, 10%, 20%, 30% in continuous light of intensity 40 Wm-2 at 26±2 °C for 24 h in light chamber. The results demonstrate a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000. Reduction in chlorophyll ‘a’ level was to a greater extent than the chlorophyll ‘b’. The RNA content decreased in a concentration dependent manner with PEG, however, proline content increased significantly. Relative water content decreased significantly with the supply of 30% PEG only. A substantial decrease in chlorophyll synthesis due to significant reduction in ALA content and ALAD activity, with no change in chlorophyllase activity with the supply of PEG suggests that water deficit affects chlorophyll formation rather than its degradation.

  4. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    Science.gov (United States)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining

  5. Chlorophyll-a, Orbview-2 SeaWiFS, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  6. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation.

    Science.gov (United States)

    Vergara-Domínguez, Honorio; Ríos, José Julían; Gandul-Rojas, Beatriz; Roca, María

    2016-12-01

    The central reaction of chlorophyll (chl) breakdown pathway occurring during olive fruits maturation is the cleavage of the macrocycle pheophorbide a to a primary fluorescent chl catabolite (pFCC) and it is catalyzed by two enzymes: pheophorbide a oxygenase (PaO) and red chl catabolite reductase (RCCR). In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). This work demonstrated that RCCR activity of olive fruits is type II. During the study of evolution of PaO and RCCR activities through the olive fruits maturation in two varieties: Hojiblanca and Arbequina, a significant increase in PaO and RCCR activity was found in ripening stage. In addition, the profile and structure of NCCs present in epicarp of this fruit was studied using HPLC/ESI-TOF-MS. Five different NCCs were defined and for the first time the enzymatic reactions implied in chlorophyll degradations in olive fruits elucidated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite

    Czech Academy of Sciences Publication Activity Database

    Yurchenko, T.; Ševčíková, T.; Strnad, Hynek; Butenko, A.; Eliáš, M.

    2016-01-01

    Roč. 6, č. 11 (2016), č. článku 160249. ISSN 2046-2441 R&D Projects: GA ČR GA13-33039S; GA MŠk(CZ) ED2.1.00/19.0388; GA MŠk(CZ) LO1208 EU Projects: European Commission 642575 Institutional support: RVO:68378050 Keywords : Eustigmatophyceae * horizontal gene transfer * plastid genome * secondary metabolism * sugar phosphate cyclase superfamily * UbiA superfamily Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.481, year: 2016

  8. Genetic Architecture of Natural Variation in Rice Chlorophyll Content Revealed by a Genome-Wide Association Study.

    Science.gov (United States)

    Wang, Quanxiu; Xie, Weibo; Xing, Hongkun; Yan, Ju; Meng, Xiangzhou; Li, Xinglei; Fu, Xiangkui; Xu, Jiuyue; Lian, Xingming; Yu, Sibin; Xing, Yongzhong; Wang, Gongwei

    2015-06-01

    Chlorophyll content is one of the most important physiological traits as it is closely related to leaf photosynthesis and crop yield potential. So far, few genes have been reported to be involved in natural variation of chlorophyll content in rice (Oryza sativa) and the extent of variations explored is very limited. We conducted a genome-wide association study (GWAS) using a diverse worldwide collection of 529 O. sativa accessions. A total of 46 significant association loci were identified. Three F2 mapping populations with parents selected from the association panel were tested for validation of GWAS signals. We clearly demonstrated that Grain number, plant height, and heading date7 (Ghd7) was a major locus for natural variation of chlorophyll content at the heading stage by combining evidence from near-isogenic lines and transgenic plants. The enhanced expression of Ghd7 decreased the chlorophyll content, mainly through down-regulating the expression of genes involved in the biosynthesis of chlorophyll and chloroplast. In addition, Narrow leaf1 (NAL1) corresponded to one significant association region repeatedly detected over two years. We revealed a high degree of polymorphism in the 5' UTR and four non-synonymous SNPs in the coding region of NAL1, and observed diverse effects of the major haplotypes. The loci or candidate genes identified would help to fine-tune and optimize the antenna size of canopies in rice breeding. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State

    Science.gov (United States)

    Borovikov, Anna; Keppenne, Christian; Kovach, Robin

    2015-01-01

    In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.

  10. YCF45 protein, usually associated with plastids, is targeted into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Týč, Jiří; Long, Shaojun; Jirků, Milan; Lukeš, Julius

    2010-01-01

    Roč. 173, č. 1 (2010), s. 43-47 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Plastid * Mitochondrion * Targeting * YCF45 * Horizontal gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.875, year: 2010

  11. Nuclear and plastid DNAs from the binucleate dinoflagellates Glenodinium (Peridinium) foliaceum and Peridinium balticum.

    Science.gov (United States)

    Kite, G C; Rothschild, L J; Dodge, J D

    1988-01-01

    The binucleate dinoflagellates Glenodinium (Peridinium) foliaceum Stein and Peridinium balticum (Levander) Lemmermann were found to contain two major buoyant density classes of DNA. The heavier peak (1.730 g/cm3) was derived from the "dinokaryotic" nucleus and the lighter peak (1.706 g/cm3) from the "endosymbiont" nucleus and this allowed for the fractionation of G. foliaceum DNA in CsCl/EtBr density gradients. An initial CsCl/Hoechst Dye gradient removed a minor A-T rich satellite species which was identified as plastid DNA with a size of about 100-106 kb. Analysis of the nuclear DNA by agarose gel electrophoresis and renaturation studies showed that the endosymbiont nucleus lacked amplified gene-sized DNA molecules, however, this nucleus did have a comparatively high level of DNA. The total amount of DNA per cell and the relative contributions of the two nuclei appeared to vary between two strains of G. foliaceum (75 pg/cell in CCAP strain and 58 pg in UTEX strain). The only strain of P. balticum examined contained 73 pg cell. These results are discussed in relation to the status and possible functioning of the endosymbiont nucleus and the idea that these dinoflagellates provide model systems with which to study the evolution of plastids.

  12. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  13. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  14. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  15. A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs

    Directory of Open Access Journals (Sweden)

    Jieqiong Su

    2015-04-01

    Full Text Available With decreasing water availability as a result of climate change and human activities, analysis of the influential factors and variation trends of chlorophyll a has become important to prevent reservoir eutrophication and ensure water supply safety. In this paper, a structurally simplified hybrid model of the genetic algorithm (GA and the support vector machine (SVM was developed for the prediction of monthly concentration of chlorophyll a in the Miyun Reservoir of northern China over the period from 2000 to 2010. Based on the influence factor analysis, the four most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate index, and reservoir storage were extracted using the method of feature selection with the GA, which simplified the model structure, making it more practical and efficient for environmental management. The results showed that the developed simplified GA-SVM model could solve nonlinear problems of complex system, and was suitable for the simulation and prediction of chlorophyll a with better performance in accuracy and efficiency in the Miyun Reservoir.

  16. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  17. Chlorophyll-a, Terra MODIS, OSU DB, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Terra satellite. Measurements are gathered by the Moderate Resolution Imaging...

  18. Application of a chlorophyll index derived from satellite data to ...

    African Journals Online (AJOL)

    Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. H Demarcq, R Barlow, L Hutchings. Abstract. No Abstract. African Journal of Marine Science Vol.29(2) 2007: pp. 271-282. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  19. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  20. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    Science.gov (United States)

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  1. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates

    International Nuclear Information System (INIS)

    Welschmeyer, N.A.; Lorenzen, C.J.

    1984-01-01

    The pattern of photosynthetic 14 C labeling over time is described for phytoplankton. The carbon-specific growth rate (d -1 ) is defined explicitly by changes in the specific activity (dpm μg -1 C) of the algae. For Skeletonema costatum, growing in axenic batch culture, the specific activities of both total cellular carbon and chlorophyll carbon increase at equal rates and the change in specific activity with time follows the predicted pattern. The specific activity of 14 C-labeled chlorophyll a was used to estimate phytoplankton growth rates and C:Chl ratios of field samples in Dabob Bay (Puget Sound), Washington. Growth rates decreased with depth and C:Chl ratios were higher for samples incubated under high light intensity. In several instances the C:Chl ratio increased from the beginning to the end of the incubation; this trend was most conspicuous near surface light intensities and for days of high total incident radiation. On these occasions, Chl a was actively 14 C labeled, yet little (or even negative) change was noted in the concentration of Chl a. These results suggest that some process (or processes) of chlorophyll degradation must be active at the same time that chlorophyll is being synthesized

  2. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    Science.gov (United States)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  3. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi.

    Science.gov (United States)

    Álvarez, Susana; Zapata, Manuel; Garrido, José L; Vaz, Belén

    2012-06-04

    We report herein the isolation and complete characterization of a member of the chlorophyll c family, designated as [8-ethyl]-chlorophyll c(3) ([8-ethyl]-chl c(3)). Structural elucidation of this pigment rested on the analysis of mono- and bidimensional NMR, UV-VIS spectroscopy and ESI-MS data, and the configuration at the 13(2) position on chiral HPLC analysis.

  4. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  5. Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions

    International Nuclear Information System (INIS)

    Olonscheck, D; Hofmann, M; Schellnhuber, H J; Worm, B

    2013-01-01

    Recently compiled observational data suggest a substantial decline in the global median chlorophyll a concentration over the 20th century, a trend that appears to be linked to ocean warming. Several modelling studies have considered changes in the ocean’s physical structure as a possible cause, while experimental work supports a biological mechanism, namely an observed increase in zooplankton grazing rate that outpaces phytoplankton production at higher temperatures. Here, we present transient simulations derived from a coupled ocean general circulation and carbon cycle model forced by atmospheric fields under unabated anthropogenic global warming (IPCC SRES A1FI scenario). The simulations account for both physical and biological mechanisms, and can reproduce about one quarter of the observed chlorophyll a decline during the 20th century, when using realistically parameterized temperature sensitivity of zooplankton metabolism (Q 10 between 2 and 4) and phytoplankton growth (Q 10 ∼ 1.9). Therefore, we have employed and re-calibrated the standard ecosystem model which assumes a lower temperature sensitivity of zooplankton grazing (Q 10 = 1.1049) by re-scaling phytoplankton growth rates and zooplankton grazing rates. Our model projects a global chlorophyll a decline of >50% by the end of the 21st century. While phytoplankton abundance and chlorophyll a experience pronounced negative effects, primary production and zooplankton concentrations are less sensitive to ocean warming. Although changes in physical structure play an important role, much of the simulated change in chlorophyll a and productivity is related to the uneven temperature sensitivity of the marine ecosystem. (letter)

  6. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline.

    Science.gov (United States)

    Rydzyński, Dariusz; Piotrowicz-Cieślak, Agnieszka I; Grajek, Hanna; Michalczyk, Dariusz J

    2017-10-01

    With increasing soil concentrations of ciprofloxacin and tetracycline a decrease of leaf chlorophyll content was observed. Tetracycline was more detrimental than ciprofloxacin. The chlorophyll content in plants growing for ten days on a tetracycline containing soil decreased by 68%. The decrease of chlorophyll concentration was even sharper in new leaves that formed after application of the antibiotic (up to 81% drop). The comparison of absorption spectra of commercial, reagent grade chlorophyll, alone and incubated with antibiotics, has shown that ciprofloxacin and tetracycline can react directly with chlorophyll and decrease its concentration by 47.7% and 48.5%, respectively. The changes in fluorescence spectra confirmed the formation of chlorophyll degradation product. The chlorophyll decay was a second order reaction and depended on antibiotic concentration and duration of exposure. Reaction rate constants differed with antibiotics and their soil concentrations. With increasing contents of antibiotics in soil the constant of chlorophyll degradation rate in lupin plants increased from k = 870 M -1 day -1 for 3 mg ciprofloxacin to k = 2490 M -1 day -1 for 90 mg ciprofloxacin, and in the case of tetracycline the reaction rate constant increased from k = 1330 M -1 day -1 to k = 2910 M -1 day -1 . The sensitivity of chlorophyll to ciprofloxacin and tetracycline was confirmed by determining EC and TU indices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    Science.gov (United States)

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  8. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function

    Directory of Open Access Journals (Sweden)

    dePamphilis Claude W

    2005-02-01

    Full Text Available Abstract Background The analysis of synonymous and nonsynonymous rates of DNA change can help in the choice among competing explanations for rate variation, such as differences in constraint, mutation rate, or the strength of genetic drift. Nonphotosynthetic plants of the Orobanchaceae have increased rates of DNA change. In this study 38 taxa of Orobanchaceae and relatives were used and 3 plastid genes were sequenced for each taxon. Results Phylogenetic reconstructions of relative rates of sequence evolution for three plastid genes (rbcL, matK and rps2 show significant rate heterogeneity among lineages and among genes. Many of the non-photosynthetic plants have increases in both synonymous and nonsynonymous rates, indicating that both (1 selection is relaxed, and (2 there has been a change in the rate at which mutations are entering the population in these species. However, rate increases are not always immediate upon loss of photosynthesis. Overall there is a poor correlation of synonymous and nonsynonymous rates. There is, however, a strong correlation of synonymous rates across the 3 genes studied and the lineage-speccific pattern for each gene is strikingly similar. This indicates that the causes of synonymous rate variation are affecting the whole plastid genome in a similar way. There is a weaker correlation across genes for nonsynonymous rates. Here the picture is more complex, as could be expected if there are many causes of variation, differing from taxon to taxon and gene to gene. Conclusions The distinctive pattern of rate increases in Orobanchaceae has at least two causes. It is clear that there is a relaxation of constraint in many (though not all non-photosynthetic lineages. However, there is also some force affecting synonymous sites as well. At this point, it is not possible to tell whether it is generation time, speciation rate, mutation rate, DNA repair efficiency or some combination of these factors.

  9. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  10. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  11. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim

    2015-01-01

    , the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province

  12. Are the Satellite-Observed Narrow, Streaky Chlorophyll Filaments Locally Intensified by the Submesoscale Processes?

    Science.gov (United States)

    2015-11-05

    HIS I’OR’A CANCELS AND SUPERSEOFS Al l PRFV•OUS VERSIONS ARE THE SATELLITE-OBSERVED NARROW, STREAKY CHLOROPHYLL FILAMENTS LOCALLY INTENSIFIED BY...AUGUST 2003 cold, dense jeto C 17 16 15 14 13 122.4W 122W 122.4W 122W warm, anticyclonic eddy CHLOROPHYLL 122.4W 122W 122.4W 122W 122.4W 122W filament...122.4W 122W mg/m 3 10 4 2 1 0.4 0.2 Figure 1. MODIS-Aqua SST and Chlorophyll a images for August 2003. Black lines on MODIS SST and Chlorophyll a

  13. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    Science.gov (United States)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  14. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  15. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits

    Science.gov (United States)

    Fu, Xiumin; Kong, Wenbin; Peng, Gang; Zhou, Jingyi; Azam, Muhammad; Xu, Changjie; Grierson, Don; Chen, Kunsong

    2012-01-01

    Loquat (Eriobotrya japonica Lindl.) can be sorted into red- and white-fleshed cultivars. The flesh of Luoyangqing (LYQ, red-fleshed) appears red-orange because of a high content of carotenoids while the flesh of Baisha (BS, white-fleshed) appears ivory white due to a lack of carotenoid accumulation. The carotenoid content in the peel and flesh of LYQ was approximately 68 μg g−1 and 13 μg g−1 fresh weight (FW), respectively, and for BS 19 μg g−1 and 0.27 μg g−1 FW. The mRNA levels of 15 carotenogenesis-related genes were analysed during fruit development and ripening. After the breaker stage (S4), the mRNA levels of phytoene synthase 1 (PSY1) and chromoplast-specific lycopene β-cyclase (CYCB) were higher in the peel, and CYCB and β-carotene hydroxylase (BCH) mRNAs were higher in the flesh of LYQ, compared with BS. Plastid morphogenesis during fruit ripening was also studied. The ultrastructure of plastids in the peel of BS changed less than in LYQ during fruit development. Two different chromoplast shapes were observed in the cells of LYQ peel and flesh at the fully ripe stage. Carotenoids were incorporated in the globules in chromoplasts of LYQ and BS peel but were in a crystalline form in the chromoplasts of LYQ flesh. However, no chromoplast structure was found in the cells of fully ripe BS fruit flesh. The mRNA level of plastid lipid-associated protein (PAP) in the peel and flesh of LYQ was over five times higher than in BS peel and flesh. In conclusion, the lower carotenoid content in BS fruit was associated with the lower mRNA levels of PSY1, CYCB, and BCH; however, the failure to develop normal chromoplasts in BS flesh is the most convincing explanation for the lack of carotenoid accumulation. The expression of PAP was well correlated with chromoplast numbers and carotenoid accumulation, suggesting its possible role in chromoplast biogenesis or interconversion of loquat fruit. PMID:21994170

  16. Lead pollution: effects on chlorophyll. [Phalaris canariensis, Lemna minor, graminaceae

    Energy Technology Data Exchange (ETDEWEB)

    Fiussello, N

    1973-01-01

    The emissions of motors are responsible for the high concentrations of lead in soil and plants near roads. In man, when the concentration of lead in blood exceeds the value of 30 ..mu..g/100 ml, is shown a decrease of haemaglobin and an increase of ALA urinary content. Since the early stages of chlorophyll biosynthetic pathway are similar if not identical with those leading to haem as far as protoporphyrin IX, it is interesting to ascertain if lead can specifically interfere in chlorophyll biosynthesis. In sand cultures with 200 p.p.m. of lead (the conc. in roadside soils), after 2 weeks, wheat shows a diminution of 16,5% in fresh weight 7,5% in dry weight and 6,5% in chlorophyll; Phalaris canariensis shows a diminution of 68% f.w., 41% d.w. and 39% chl. in comparison with the controls. A water-plant, Lemna minor, is more sensitive: the chlorophyll content, referred to dry weight, shows after a week a diminution of 32% and 55% with 10/sup -4/M and 10/sup -3/M lead nitrate. Lead in 200 p.p.m. conc. is surely poisonous against the tested plants but a specific action on chlorophyll synthesis could be accepted, at present, only for Lemna minor. It is possible that in wheat and in Phalaris a part of lead is bound in root-system, the more damaged, while in Lemna it can reach more easily the chloroplasts. At present a detectable increase of ALA, in plants treated with lead, has not been proved both in Graminaceae and in Lemna minor.

  17. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  18. Complexes and aggregates of chlorophylls

    NARCIS (Netherlands)

    Kooyman, R.P.H.

    1980-01-01

    Chlorophyll (Chl) molecules can form complexes in two important ways: by ligation at the magnesium atom and/or by hydrogen bonding at the keto- carbonyl group. Under certain conditions these processes may give rise to dimer formation. This thesis describes some properties of complexes and dimers of

  19. Gas exchanges in peach palms as a function of the spad chlorophyll meter readings

    Directory of Open Access Journals (Sweden)

    Maria Luiza Sant'anna Tucci

    2011-10-01

    Full Text Available The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1, the leaf temperature (Tleaf, ºC, the CO2 assimilation (A, μmol m-2 s-1, the stomatal conductance (g s, mol m-2 s-1, the transpiration (E, mmol m-2 s-1 and the intercellular CO2 concentration (Ci, μmol mol-1 were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.. A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99, indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.

  20. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  1. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  2. Researches Regarding the Influence of Cold Storage on the Chlorophyll Content in Lettuce

    Directory of Open Access Journals (Sweden)

    Iuliana Cretescu

    2014-05-01

    Full Text Available The aim of the present investigations was to determine the effect of the cold storage period on the content of chlorophylls in the leaves of lettuce and arugula (rucola. The research material consisted in two types of lettuce (Lactuca sativa L. var. capitata; Lactuca sativa L. var. crispa and arugula (Eruca sativa purchased from supermarkets in Timisoara. The quantitative determination of chlorophyll pigments in leaves (SPAD was made by chlorophyll meter (SPAD 502 Konica-Minolta. During the few days cold storage at a temperature of 4ºC, the content of chlorophyll in the leaf significantly decreased, compared with that in the control group. After 3 days of cold storage arugula and lettuce (Lactuca sativa var. capitata values of chlorophyll content differ statistically very significantly (p<0.001 from the values found in the control group which for lettuce (Lactuca sativa L. var. crispa differs statistically significant (p < 0.05.

  3. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    International Nuclear Information System (INIS)

    Zvezdanovic, Jelena; Cvetic, Tijana; Veljovic-Jovanovic, Sonja; Markovic, Dejan

    2009-01-01

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching

  4. CHANGES IN CHLOROPHYLL A FLUORENSCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHEATOSEROS (BACILLARIOPHYCEAE) IN BATCH CULTURE

    Science.gov (United States)

    Photosystem II reaction centers per cell decreased as the cultures began to decline. The degree of inactivation increased daily as the cell numbers continued to decrease. The concentration of chlorophyll a per cell and the ratio of the major accessory pigments to chlorophyll a (e...

  5. Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence

    International Nuclear Information System (INIS)

    Ralph, P.J.; Burchett, M.D.

    1998-01-01

    Laboratory-cultured Halophila ovalis showed tolerance to petrochemical exposure up to 1% (w/v) solution of Bass Strait crude oil, an oil dispersant (Corexit 9527) and a mixture of crude oil and dispersant. Quantum yield, as measured by chlorophyll fluorescence, was the most sensitive measure of the photosynthetic processes affected by petrochemical. The results indicated clearly that chlorophyll fluorescence was effective at monitoring the onset and development of stress and recovery of H. ovalis when exposed to crude oil, dispersant and a mixture of the two compounds. Photosynthetic pigment content generally confirmed the chlorophyll fluorescence response; however, several anomalies occurred. (author)

  6. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  7. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Science.gov (United States)

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  8. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  9. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  10. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  11. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  12. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    International Nuclear Information System (INIS)

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V.; Carvalho, Helena G.; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-01-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants

  13. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    Energy Technology Data Exchange (ETDEWEB)

    Torreira, Eva [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Seabra, Ana Rita [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Marriott, Hazel; Zhou, Min [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Llorca, Óscar [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Robinson, Carol V. [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Carvalho, Helena G. [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Pereira, Pedro José Barbosa, E-mail: cftornero@cib.csic.es [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  14. Spatio-temporal patterns in the north-western Mediterranean from MERIS derived chlorophyll a concentration

    Directory of Open Access Journals (Sweden)

    Ana Gordoa

    2008-12-01

    Full Text Available We address the major surface signatures of chlorophyll a in the Catalan Sea within the context of the dynamics of the north-western Mediterranean basin. Monthly composites from MERIS measurements and CHL products for Case 1 waters were analysed from June 2002 to June 2005. Composite images of variability were used to identify surface dynamics. The results showed that coastal and open sea waters were separated by a belt of low variability, a permanent oligotrophic belt that is noticeable with respect to the bloom conditions of the surrounding areas. The width of this Catalan Oligotrophic Belt (COB located along the continental slope, varied between 17 and 30 km and became blurred in the southernmost area. The chlorophyll a temporal pattern over the shelf showed an almost steady increase from September to March. A similar behaviour but with lower concentrations was observed in oceanic waters. Both temporal patterns showed a disruption during January and/or February that coincided with the well known deep water formation event in the Gulf of Lions. In 2004, the convection was weaker and the offshore temporal trend was not disrupted; however, the opposite was observed in 2005. The spatial chlorophyll a distribution of oceanic waters presented a clear north-south decreasing trend, while the coastal distribution did not show any latitudinal patterns but rather peaks in the areas enriched by river runoff. The observed seasonality was similar to the one published from SeaWiFS data and slightly different from the seasonality shown by CZCS data. Nevertheless, we did not discard the possibility that some of the observed seasonal differences could be a true temporal shift in chlorophyll a production.

  15. The Characterization of Chlorophyll-A and Microalgae Isolation Process of Wastewater Collected at Sembrong Dam

    Science.gov (United States)

    Wellson, R.; Othman, N.; Matias-Peralta, H. M.

    2016-07-01

    Recently, there has been an increasing number of river water quality deterioration that has brought into water quality disruptions that entering dams including in Johor and one of them is occurred in Sembrong Dam in Johor. Sembrong Dam is a major water source for some 120,000 people in the districts of Kluang and parts of Batu Pahat. The quality of water in Sembrong should be well-monitored in ensuring the continuous distribution of clean and safe water supply to peoples. Based on the news reported by The Star news dated on 11 May 2015, the water bodies in Sembrong Dam are polluted by the algae blooms which has started to cause problems in treating water phase by clogging up the filters and causing the production to be reduced and finally resulting in frequent water disruptions to residents. Therefore, there is a need to study the water quality of the dam water prior to further water treatment. One of important characterizations is by measuring chlorophyll-a and the isolation of the dominant microalgae species in the water body in which they are able to indicate the level of water pollution. This paper presents the determination of chlorophyll-a and the isolation of microalgae strains collected from Sembrong Dam. Chlorophyll-a is a photosynthetic pigment present in all species of phytoplankton, including algae and in some photosynthetic bacteria, known as cyanobacteria. The method used in measuring the chlorophyll-a is based on the standard method of IS0 10 260. The average chlorophyll-a concentration measured at Sembrong Dam is 175.9 µg L-1 and it is responsible for the appearance of green color in the sample and it is categorized into hypereutrophic state which is highly polluted. The technique used for isolation of microalgae strains is traditional method which is by spreading the sample on agar. The pure isolate indicated that the genus Botryococcus is the dominant algae species which is characterized morphologically. Both chlorophyll-a and microalgae

  16. Chlorophyll-a, Orbview-2 SeaWiFS, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2 satellite. Because data is...

  17. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  18. Cross-system comparison of factors influencing chlorophyll-a concentration in Oregon estuaries

    Science.gov (United States)

    Water column chlorophyll-a (chla) is a proxy for phytoplankton biomass and is often used as a biological response indicator of eutrophication. Although watershed nutrient loading may influence chla concentration in estuaries, factors such as freshwater inflow, residence time, and...

  19. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.

    2012-01-01

    Plant stress is often expressed as a reduction in amount of biomass or leaf area index (LAI). In addition, stress may affect the plant pigment system, influencing the photosynthetic capacity of plants. Chlorophyll content is the main driver for this primary production. The chlorophyll content is

  20. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.