WorldWideScience

Sample records for plastid response element

  1. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  2. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  3. Different spectrum of Arabidopsis CHLH/GUN5 protein functions in tetrapyrrole metabolism, plastid signaling and ABA responses in guard cells

    Directory of Open Access Journals (Sweden)

    Harue Ibata

    2016-11-01

    Full Text Available Expression of Photosynthesis-Associated Nuclear Genes (PhANGs is controlled by environmental stimuli and plastid-derived signals (plastid signals transmitting the developmental and functional status of plastids to the nucleus. Arabidopsis genomes uncoupled (gun mutants exhibit defects in plastid signaling, leading to ectopic expression of PhANGs in the absence of chloroplast development. GUN5 encodes the plastid-localized Mg-chelatase enzyme subunit (CHLH, and recent studies suggest that CHLH is a multifunctional protein involved in tetrapyrrole biosynthesis, plastid signaling and ABA responses in guard cells. To understand the basis of CHLH multifunctionality, we investigated fifteen gun5 missense mutant alleles and transgenic lines expressing a series of truncated CHLH proteins in a severe gun5 allele (cch background (tCHLHs, ten different versions. Here, we show that Mg-chelatase function and plastid signaling are generally correlated; in contrast, based on the analysis of the gun5 missense mutant alleles, ABA-regulated stomatal control is distinct from these two other functions. We found that none of the tCHLHs could restore plastid-signaling or Mg-chelatase functions. Additionally, we found that both the C-terminal half and N-terminal half of CHLH function in ABA-induced stomatal movement.

  4. Versatile roles of plastids in plant growth and development.

    Science.gov (United States)

    Inaba, Takehito; Ito-Inaba, Yasuko

    2010-11-01

    Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.

  5. Plastid thioredoxins f and m are related to the developing and salinity response of post-germinating seeds of Pisum sativum.

    Science.gov (United States)

    Fernández-Trijueque, Juan; Barajas-López, Juan de Dios; Chueca, Ana; Cazalis, Roland; Sahrawy, Mariam; Serrato, Antonio Jesús

    2012-06-01

    Plastid thioredoxins (TRXs) f and m have long been considered to regulate almost exclusively photosynthesis-related processes. Nonetheless, some years ago, we found that type-f and m TRXs were also present in non-photosynthetic organs such as roots and flowers of adult pea plants. In the present work, using pea seedlings 2-5 days old, we have determined the mRNA expression profile of the plastid PsTRX f, m1, and m2, together with the ferredoxin NADP reductase (FNR). Our results show that these TRX isoforms are expressed in cotyledons, underlying similar expression levels in roots for PsTRX m2. We have also noted plastid TRX expression in cotyledons of etiolated seedlings of Arabidopsis thaliana lines carrying constructs corresponding to PsTRX f and m1 promoters fused to the reporter gene GUS, pointing to a role in reserve mobilization. Furthermore, the response of plastid TRXs to NaCl and their capacity in restoring the growth of a TRX-deficient yeast under saline conditions suggest a role in the tolerance to salinity. We propose that these redox enzymes take part of the reserve mobilization in seedling cotyledons and we suggest additional physiological functions of PsTRX m2 in roots and PsTRX m1 in the salinity-stress response during germination.

  6. Plant plastid engineering.

    Science.gov (United States)

    Wani, Shabir H; Haider, Nadia; Kumar, Hitesh; Singh, N B

    2010-11-01

    Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.

  7. Plastids and carotenoid accumulation

    Science.gov (United States)

    Plastids are ubiquitously in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids except proplastids can synth...

  8. Sucrose Metabolism in Plastids

    NARCIS (Netherlands)

    Gerrits, N.; Turk, S.C.H.J.; Dun, van K.P.M.; Hulleman, H.D.; Visser, R.G.F.; Weisbeek, P.J.; Smeekens, S.C.M.

    2001-01-01

    The question whether sucrose (Suc) is present inside plastids has been long debated. Low Suc levels were reported to be present inside isolated chloroplasts, but these were argued to be artifacts of the isolation procedures used. We have introduced Suc-metabolizing enzymes in plastids and our experi

  9. Interplay between HEAT SHOCK PROTEIN 90 and HY5 Controls PhANG Expression in Response to the GUN5 Plastid Signal

    Institute of Scientific and Technical Information of China (English)

    Peter Kindgren; Louise Norén; Juan de Dios Barajas López; Jehad Shaikhali; (A)sa Strand

    2012-01-01

    The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell.This coordination of gene expression is achieved by organelle-to-nucleus or retrograde communication.Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression in plants.Recently,we identified HSP90 proteins as ligands of the putative plastid signal Mg-ProtolX.In order to investigate whether the interaction between HSP90 and Mg-ProtolX is biologically relevant,we produced transgenic lines with reduced levels of cytosolic HSP90 in wild-type and gun5 backgrounds.Our work reveals that HSP90 proteins respond to the tetrapyrrole-mediated plastid signal to control expression of photosynthesis-associated nuclear genes(PhANG)during the response to oxidative stress.We also show that the hy5 mutant is insensitive to tetrapyrrole accumulation and that Mg-ProtolX,cytosolic HSP90,and HY5 are all part of the same signaling pathway.These findings suggest that a regulatory complex controlling gene expression that includes HSP90 proteins and a transcription factor that is modified by tetrapyrroles in response to changes in the environment is evolutionarily conserved between yeast and plants.

  10. Plastid proteomics for elucidating iron limited remodeling of plastid physiology in diatoms

    Science.gov (United States)

    Gomes, K. M.; Nunn, B. L.; Jenkins, B. D.

    2016-02-01

    Diatoms are important primary producers in the world's oceans and their growth is constrained in large regions by low iron availability. This low iron-induced limitation of primary production is due to the requirement for iron in components of essential metabolic pathways including key chloroplast functions such as photosynthesis and nitrate assimilation. Diatoms can bloom and accumulate high biomass during introduction of iron into low iron waters, indicating adaptations allowing for their survival in iron-limited waters and rapid growth when iron becomes more abundant. Prior studies have shown that under iron limited stress, diatoms alter plastid-specific processes including components of electron transport, size of light harvesting capacity and chlorophyll content, suggesting plastid-specific protein regulation. Due to their complex evolutionary history, resulting from a secondary endosymbiosis, knowledge regarding the complement of plastid localized proteins remains limited in comparison to other model photosynthetic organisms. While in-silico prediction of diatom protein localization provides putative candidates for plastid-localization, these analyses can be limited as most plastid prediction models were developed using plants, primary endosymbionts. In order to characterize proteins enriched in diatom chloroplast and to understand how the plastid proteome is remodeled in response to iron limitation, we used mass spectrometry based proteomics to compare plastid- enriched protein fractions from Thalassiosira pseudonana, grown in iron replete and limited conditions. These analyses show that iron stress alters regulation of major metabolic pathways in the plastid including the Calvin cycle and fatty acid synthesis. These components provide promising targets to further characterize the plastid specific response to iron limitation.

  11. Dynamic composition, shaping and organization of plastid nucleoids

    Directory of Open Access Journals (Sweden)

    Marta ePowikrowska

    2014-09-01

    Full Text Available In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs. Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.

  12. Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases.

    Science.gov (United States)

    Musumeci, Matías A; Botti, Horacio; Buschiazzo, Alejandro; Ceccarelli, Eduardo A

    2011-03-29

    Plant-type ferredoxin-NADP(H) reductases (FNRs) are grouped in two classes, plastidic with an extended FAD conformation and high catalytic rates and bacterial with a folded flavin nucleotide and low turnover rates. The 112-123 β-hairpin from a plastidic FNR and the carboxy-terminal tryptophan of a bacterial FNR, suggested to be responsible for the FAD differential conformation, were mutually exchanged. The plastidic FNR lacking the β-hairpin was unable to fold properly. An extra tryptophan at the carboxy terminus, emulating the bacterial FNR, resulted in an enzyme with decreased affinity for FAD and reduced diaphorase and ferredoxin-dependent cytochrome c reductase activities. The insertion of the β-hairpin into the corresponding position of the bacterial FNR increased FAD affinity but did not affect its catalytic properties. The same insertion with simultaneous deletion of the carboxy-terminal tryptophan produced a bacterial chimera emulating the plastidic architecture with an increased k(cat) and an increased catalytic efficiency for the diaphorase activity and a decrease in the enzyme's ability to react with its substrates ferredoxin and flavodoxin. Crystallographic structures of the chimeras showed no significant changes in their overall structure, although alterations in the FAD conformations were observed. Plastidic and bacterial FNRs thus reveal differential effects of key structural elements. While the 112-123 β-hairpin modulates the catalytic efficiency of plastidic FNR, it seems not to affect the bacterial FNR behavior, which instead can be improved by the loss of the C-terminal tryptophan. This report highlights the role of the FAD moiety conformation and the structural determinants involved in stabilizing it, ultimately modulating the functional output of FNRs.

  13. Plastid transformation in eggplant.

    Science.gov (United States)

    Bansal, Kailash C; Singh, Ajay K

    2014-01-01

    Eggplant (Solanum melongena L.) is an important vegetable crop of tropical and temperate regions of the world. Here we describe a procedure for eggplant plastid transformation, which involves preparation of explants, biolistic delivery of plastid transformation vector into green stem segments, selection procedure, and identification of the transplastomic plants. Shoot buds appear from cut ends of the stem explants following 5-6 weeks of spectinomycin selection after bombardment with the plastid transformation vector containing aadA gene as selectable marker. Transplastomic lines are obtained after the regenerated shoots are subjected to several rounds of spectinomycin selection over a period of 9 weeks. Homoplasmic transplastomic lines are further confirmed by spectinomycin and streptomycin double selection. The transplastomic technology development in this plant species will open up exciting possibilities for improving crop performance, metabolic engineering, and the use of plants as factories for producing biopharmaceuticals.

  14. [Origination and evolution of plastids].

    Science.gov (United States)

    Mukhina, V S

    2014-01-01

    Plastids are photosynthetic DNA-containing organelles of plants and algae. In the review, the history of their origination and evolution within different taxa is considered. All of the plastids appear to be descendants of cyanobacteria that colonized eukaryotic cells. The first plastids arose through symbiosis of cyanobacteria with algal ancestors from Archaeplastida kingdom. Later, there occurred repeated secondary symbioses of other eukariotes with photosynthetic protists: in this way plastids emerged in organisms of other taxa. Co-evolution of cyanobacteria and ancestral algae led to extensive transformation of both: reduction of endosymbiont, mass transfer of cyanobacteria genes into karyogenome, formation of complex system of proteins transportation to plastids and their functioning regulation.

  15. Synthetic biology in plastids.

    Science.gov (United States)

    Scharff, Lars B; Bock, Ralph

    2014-06-01

    Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

  16. Plastid sigma factors: Their individual functions and regulation in transcription.

    Science.gov (United States)

    Chi, Wei; He, Baoye; Mao, Juan; Jiang, Jingjing; Zhang, Lixin

    2015-09-01

    Sigma factors are the predominant factors involved in transcription regulation in bacteria. These factors can recruit the core RNA polymerase to promoters with specific DNA sequences and initiate gene transcription. The plastids of higher plants originating from an ancestral cyanobacterial endosymbiont also contain sigma factors that are encoded by a small family of nuclear genes. Although all plastid sigma factors contain sequences conserved in bacterial sigma factors, a considerable number of distinct traits have been acquired during evolution. The present review summarises recent advances concerning the regulation of the structure, function and activity of plastid sigma factors since their discovery nearly 40 years ago. We highlight the specialised roles and overlapping redundant functions of plastid sigma factors according to their promoter selectivity. We also focus on the mechanisms that modulate the activity of sigma factors to optimise plastid function in response to developmental cues and environmental signals. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

  17. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    There is a global need for a more sustainable building development. About 50% of energy is used in buildings indicating that buildings provide a considerable potential for operational energy savings. Studies were conducted with the following objectives: to perform a state-of-the-art review...... energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...... of responsive building elements, of integrated building concepts and of environmental performance assessment methods to improve and optimize responsive building elements to develop and optimize new building concepts with integration of responsive building elements, HVAC-systems as well as natural and renewable...

  18. Composite structure of auxin response elements.

    Science.gov (United States)

    Ulmasov, T; Liu, Z B; Hagen, G; Guilfoyle, T J

    1995-10-01

    The auxin-responsive soybean GH3 gene promoter is composed of multiple auxin response elements (AuxREs), and each AuxRE contributes incrementally to the strong auxin inducibility to the promoter. Two independent AuxREs of 25 bp (D1) and 32 bp (D4) contain the sequence TGTCTC. Results presented here show that the TGTCTC element in D1 and D4 is required but not sufficient for auxin inducibility in carrot protoplast transient expression assays. Additional nucleotides upstream of TGTCTC are also required for auxin inducibility. These upstream sequences showed constitutive activity and no auxin inducibility when part or all of the TGTCTC element was mutated or deleted. In D1, the constitutive element overlaps the 5' portion of TGTCTC; in D4, the constitutive element is separated from TGTCTC. An 11-bp element in D1, CCTCGTGTCTC, conferred auxin inducibility to a minimal cauliflower mosaic virus 35S promoter in transgenic tobacco seedlings as well as in carrot protoplasts (i.e., transient expression assays). Both constitutive elements bound specifically to plant nuclear proteins, and the constitutive element in D1 bound to a recombinant soybean basic leucine zipper transcription factor with G-box specificity. To demonstrate further the composite nature of AuxREs and the ability of the TGTCTC element to confer auxin inducibility, we created a novel AuxRE by placing a yeast GAL4 DNA binding site adjacent to the TGTCTC element. Expression of a GAL4-c-Rel transactivator in the presence of this novel AuxRE resulted in auxin-inducible expression. Our results indicate that at least some AuxREs have a composite structure consisting of a constitutive element adjacent to a conserved TGTCTC element that confers auxin inducibility.

  19. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Andresen, Inger; Perino, Marco

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...... with technologies that promote the integration of responsive building elements and building services in integrated building concepts. In order to address some of these issues an international research effort, IEA-ECBCS Annex 44 has been initiated. The paper especially presents the annex activities regarding...... development of Energy and Environmental Building concepts including discussion of the selected design strategy and technical solutions, the integrated design approach and design methods and tools....

  20. Plastid Proteomic Analysis in Tomato Fruit Development.

    Directory of Open Access Journals (Sweden)

    Miho Suzuki

    Full Text Available To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein and HrBP1 (harpin binding protein-1 in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.

  1. Plastid Proteomic Analysis in Tomato Fruit Development.

    Science.gov (United States)

    Suzuki, Miho; Takahashi, Sachiko; Kondo, Takanori; Dohra, Hideo; Ito, Yumihiko; Kiriiwa, Yoshikazu; Hayashi, Marina; Kamiya, Shiori; Kato, Masaya; Fujiwara, Masayuki; Fukao, Yoichiro; Kobayashi, Megumi; Nagata, Noriko; Motohashi, Reiko

    2015-01-01

    To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.

  2. Can packaging elements elicit consumers’ emotional responses?

    DEFF Research Database (Denmark)

    Liao, Lewis; Corsi, Armando; Lockshin, Larry;

    Emotion has been an important concept in many areas of consumer research such as judgment, decision-making and advertising. Little research has been done on emotion in packaging adopting the physiological measures used in other areas. This paper draws on past studies in advertising that measure....... The results show that packaging can elicit an emotional response via different elements. The paper also raises concerns about the accuracy of using selfreport measures of emotional responses to packaging research....

  3. ftsZ gene and plastid division

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Plastid is one of the most important cellular organelles, the normal division process of plastid is essential for the differentiation and development of plant cells. For a long time, morphological observations and genetic analyses to special mutants are the major research fields of plastid division, but the molecular mechanisms underlying plastid division are largely unknown. Because of the endosymbiotic origin, plastid division might have mechanisms in common with those involved in bacterial cell division. It has been proved that several prokaryotic cell division genes also participate in the plastid division. Recently, the mechanisms of prokaryotic cell division have been well documented, which provides a valuable paradigm for understanding the plastid division mechanisms. In plants, the functional analyses of ftsZ, a key gene involved both in bacteria and plastid division, have established the solid foundation for people to understand the plastid division in molecular level. In this paper we will make a review for the research history and progress of plastid division.

  4. PLASTID MOVEMENT IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei.

    Science.gov (United States)

    Suetsugu, Noriyuki; Higa, Takeshi; Kong, Sam-Geun; Wada, Masamitsu

    2015-10-01

    Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.

  5. Codon Adaptation of Plastid Genes

    Science.gov (United States)

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  6. Codon Adaptation of Plastid Genes.

    Directory of Open Access Journals (Sweden)

    Haruo Suzuki

    Full Text Available Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes.

  7. Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile.

    Science.gov (United States)

    Foroughi, Siavash; Baker, Alan J M; Roessner, Ute; Johnson, Alexander A T; Bacic, Antony; Callahan, Damien L

    2014-09-01

    Noccaea caerulescens (J. & C. Presl) F. K. Meyer is a metal hyperaccumulating plant which can accumulate more than 2% zinc (Zn) dry tissue mass in its aerial tissues. At this concentration Zn is toxic to most plants due to inhibition of enzyme function, oxidative damage and mineral deficiencies. In this study the elemental and metabolite profiles of N. caerulescens plants grown in four different Zn concentrations were measured. This revealed broad changes in the metabolite and elemental profiles with the hyperaccumulation of Zn. The Zn treated plants exhibited no typical signs of stress such as chlorosis or reduced biomass, however, a range of metabolic stress responses, such as the modification of galactolipids and the major membrane lipids of plastids, and increases in oxylipins, which are precursors to the signalling molecules jasmonic and abscisic acids, as well as the increased synthesis of glucosinolates, was observed. Increases in particular organic acids and the ubiquitous metal cation chelator nicotianamine were also observed. The small molecule metabolite changes observed, however, did not account for the extreme Zn concentrations in the leaf tissue showing that the increase in nicotianamine production most likely negates Fe deficiency. The elemental analyses also revealed significant changes in other essential micronutrients, in particular, significantly lower Mn concentrations in the high Zn accumulating plants, yet higher Fe concentrations. This comprehensive elemental and metabolite analysis revealed novel metabolite responses to Zn and offers evidence against organic acids as metal-storage ligands in N. caerulescens.

  8. Plastid origin: who, when and why?

    Directory of Open Access Journals (Sweden)

    Chuan Ku

    2014-12-01

    Full Text Available The origin of plastids is best explained by endosymbiotic theory, which dates back to the early 1900s. Three lines of evidence based on protein import machineries and molecular phylogenies of eukaryote (host and cyanobacterial (endosymbiont genes point to a single origin of primary plastids, a unique and important event that successfully transferred two photosystems and oxygenic photosynthesis from prokaryotes to eukaryotes. The nature of the cyanobacterial lineage from which plastids originated has been a topic of investigation. Recent studies have focused on the branching position of the plastid lineage in the phylogeny based on cyanobacterial core genes, that is, genes shared by all cyanobacteria and plastids. These studies have delivered conflicting results, however. In addition, the core genes represent only a very small portion of cyanobacterial genomes and may not be a good proxy for the rest of the ancestral plastid genome. Information in plant nuclear genomes, where most genes that entered the eukaryotic lineage through acquisition from the plastid ancestor reside, suggests that heterocyst-forming cyanobacteria in Stanier’s sections IV and V are most similar to the plastid ancestor in terms of gene complement and sequence conservation, which is in agreement with models suggesting an important role of nitrogen fixation in symbioses involving cyanobacteria. Plastid origin is an ancient event that involved a prokaryotic symbiont and a eukaryotic host, organisms with different histories and genome evolutionary processes. The different modes of genome evolution in prokaryotes and eukaryotes bear upon our interpretations of plastid phylogeny.

  9. Thresholds in shock response across the elements

    Science.gov (United States)

    Bourne, F. L.; Bourne, N. K.

    2017-01-01

    Compendia of shock data have been assembled across national laboratories across the world. Previous work has shown a threshold in behaviour for materials; the weak shock limit. This corresponds to the stress state at which the shock is overdriven in a single front. Here the shock velocity-particle velocity data for elements and compounds has been systematically analysed to note discontinuities in the data. A range of materials show such features and the form of the discontinuity in each case is analysed. Some of these are found to correspond to martensitic phase transformations as expected whilst others are more difficult to classify. Particular groups within the elements show characteristic forms according to their groupings within the periodic table. Typical datasets are presented and trends in behaviour are noted for a range of elements.

  10. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  11. Plastid thioredoxins: a “one-for-all” redox-signaling system in plants

    Science.gov (United States)

    Serrato, Antonio J.; Fernández-Trijueque, Juan; Barajas-López, Juan-de-Dios; Chueca, Ana; Sahrawy, Mariam

    2013-01-01

    The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers. PMID:24319449

  12. Plastid thioredoxins: a "one-for-all" redox-signaling system in plants

    Directory of Open Access Journals (Sweden)

    Antonio Jesús Serrato

    2013-11-01

    Full Text Available The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain (PETC and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS, molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation. This review is focused on the role of plastid thioredoxins (pTRXs, proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers.

  13. Plastid thioredoxins: a "one-for-all" redox-signaling system in plants.

    Science.gov (United States)

    Serrato, Antonio J; Fernández-Trijueque, Juan; Barajas-López, Juan-de-Dios; Chueca, Ana; Sahrawy, Mariam

    2013-11-21

    The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers.

  14. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-04-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development.

  15. Finite Element Modeling of the Buckling Response of Sandwich Panels

    Science.gov (United States)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  16. Protein Targeting to the Plastid of Euglena.

    Science.gov (United States)

    Durnford, Dion G; Schwartzbach, Steven D

    2017-01-01

    The lateral transfer of photosynthesis between kingdoms through endosymbiosis is among the most spectacular examples of evolutionary innovation. Euglena, which acquired a chloroplast indirectly through an endosymbiosis with a green alga, represents such an example. As with other endosymbiont-derived plastids from eukaryotes, there are additional membranes that surround the organelle, of which Euglena has three. Thus, photosynthetic genes that were transferred from the endosymbiont to the host nucleus and whose proteins are required in the new plastid, are now faced with targeting and plastid import challenges. Early immunoelectron microscopy data suggested that the light-harvesting complexes, photosynthetic proteins in the thylakoid membrane, are post-translationally targeted to the plastid via the Golgi apparatus, an unexpected discovery at the time. Proteins targeted to the Euglena plastid have complex, bipartite presequences that direct them into the endomembrane system, through the Golgi apparatus and ultimately on to the plastid, presumably via transport vesicles. From transcriptome sequencing, dozens of plastid-targeted proteins were identified, leading to the identification of two different presequence structures. Both have an amino terminal signal peptide followed by a transit peptide for plastid import, but only one of the two classes of presequences has a third domain-the stop transfer sequence. This discovery implied two different transport mechanisms; one where the protein was fully inserted into the lumen of the ER and another where the protein remains attached to, but effectively outside, the endomembrane system. In this review, we will discuss the biochemical and bioinformatic evidence for plastid targeting, discuss the evolution of the targeting system, and ultimately provide a working model for the targeting and import of proteins into the plastid of Euglena.

  17. Genome fragmentation is not confined to the peridinin plastid in dinoflagellates.

    Science.gov (United States)

    Espelund, Mari; Minge, Marianne A; Gabrielsen, Tove M; Nederbragt, Alexander J; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S

    2012-01-01

    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3'-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.

  18. Finite Element Model Updating Using Response Surface Method

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...

  19. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2016-06-27

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits.

  20. Strategies for complete plastid genome sequencing.

    Science.gov (United States)

    Twyford, Alex D; Ness, Rob W

    2016-10-28

    Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.

  1. Plastid and Stromule Morphogenesis in Tomato

    OpenAIRE

    Pyke, Kevin A.; HOWELLS, CAROLINE A.

    2002-01-01

    By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead‐like structures along the stromules that are often observed as free vesicles, distinct from and apparently uncon...

  2. Functional analysis of plastid-encoded genes

    OpenAIRE

    Swiatek, Magdalena

    2002-01-01

    Plastid chromosomes from the variety of plant species contain several conserved open reading frames of unknown function, which most probably represent functional genes. The primary aim of this thesis was the analysis of the role of two such ORFs, designated ycfs or hypothetical chloroplast reading frames, namely ycf9 (ORF62) and ycf10 (ORF229, cemA). Both were analyzed in Nicotiana tabacum (tobacco) via their inactivation using biolistic plastid transformation. A new experiment...

  3. Nonlinear analysis of the forced response of structural elements

    Science.gov (United States)

    Nayfeh, A. H.; Mook, D. T.; Sridhar, S.

    1974-01-01

    A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.

  4. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  5. Finite element estimation of acoustical response functions in HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2009-11-21

    High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

  6. Chloroplast biogenesis-associated nuclear genes: Control by plastid signals evolved prior to their regulation as part of photomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Alison C HIlls

    2015-12-01

    Full Text Available The assembly of photosynthetically-competent chloroplasts occurs in angiosperm seedlings when first exposed to light, and is due to the control by light of photosynthesis-associated nuclear genes (PhANGs, also dependent upon plastid-to-nucleus biogenic communication signals. The relationship between light- and plastid signal-regulation of PhANGs is close but poorly understood. In contrast, many conifers green in the dark and the promoter of a pine PhANG, Lhcb, is active in the dark in tobacco. Here we show that the activity of this promoter in tobacco is sensitive to plastid photobleaching, or to the inhibition of plastid translation in the light or the dark, and the same interventions reduce expression of the native gene in pine seedlings, demonstrating classic plastid biogenic signalling in gymnosperms. Furthermore, Arabidopsis mutations causing defective plastid biogenesis suppress the effect in darkness of mutations in COP1 and DET1, repressors of photomorphogenesis, for the expression of several PhANGs but not a photosynthesis-unrelated, light-regulated gene. GLK transcriptional regulators mediate the response of LHCB but not of other tested PhANGs. We propose gain of the ability by repressors of photomorphogenesis to suppress the response of PhANG promoters to positive plastid biogenic signals in the dark to have contributed to the evolution of light control of chloroplast biogenesis.

  7. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    Science.gov (United States)

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  8. Finite Element Response Sensitivity Analysis: a comparison between force-based and Displacement-Based Frame Element Models

    OpenAIRE

    Barbato, Michele; Conte, J P

    2005-01-01

    This paper focuses on a comparison between displacement-based and force-based elements for static and dynamic response sensitivity analysis of frame type structures. Previous research has shown that force-based frame elements are superior to classical displacement-based elements enabling, at no significant additional computational costs, a drastic reduction in the number of elements required for a given level of accuracy in the simulated response. The present work shows that this advantage of...

  9. Parallel finite element modeling of earthquake ground response and liquefaction

    Institute of Scientific and Technical Information of China (English)

    Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law

    2004-01-01

    Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.

  10. Plastids: the Green Frontiers for Vaccine Production

    Directory of Open Access Journals (Sweden)

    Mohammad Tahir eWaheed

    2015-11-01

    Full Text Available Infectious diseases pose an increasing risk to health, especially in developing countries. Vaccines are available to either cure or prevent many of these diseases. However, there are certain limitations related to these vaccines, mainly the costs, which make these vaccines mostly unaffordable for people in resource poor countries. These costs are mainly related to production and purification of the products manufactured from fermenter-based systems. Plastid biotechnology has become an attractive platform to produce biopharmaceuticals in large amounts and cost-effectively. This is mainly due to high copy number of plastids DNA in mature chloroplasts, a characteristic particularly important for vaccine production in large amounts. An additional advantage lies in the maternal inheritance of plastids in most plant species, which addresses the regulatory concerns related to transgenic plants. These and many other aspects of plastids will be discussed in the present review, especially those that particularly make these green biofactories an attractive platform for vaccine production. A summary of recent vaccine antigens against different human diseases expressed in plastids will also be presented.

  11. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development

    Science.gov (United States)

    Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas

    2017-01-01

    Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type. PMID:28154576

  12. Integration of plastids with their hosts: Lessons learned from dinoflagellates.

    Science.gov (United States)

    Dorrell, Richard G; Howe, Christopher J

    2015-08-18

    After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.

  13. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  14. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts......An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... with responsive building elements. The (Dutch) Toolkit Sustainable Residential Buildings is one of the examples of tools for an integrated design process....

  15. The plastid outer envelope – a highly dynamic interface between plastid and cytoplasm

    Directory of Open Access Journals (Sweden)

    Frederique eBreuers

    2011-12-01

    Full Text Available Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE and the outer (OE plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate-specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmatic reticulum (ER. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the

  16. Plastid Protein Targeting: Preprotein Recognition and Translocation.

    Science.gov (United States)

    Chotewutmontri, P; Holbrook, K; Bruce, B D

    2017-01-01

    Eukaryotic organisms are defined by their endomembrane system and various organelles. The membranes that define these organelles require complex protein sorting and molecular machines that selectively mediate the import of proteins from the cytosol to their functional location inside the organelle. The plastid possibly represents the most complex system of protein sorting, requiring many different translocons located in the three membranes found in this organelle. Despite having a small genome of its own, the vast majority of plastid-localized proteins is nuclear encoded and must be posttranslationally imported from the cytosol. These proteins are encoded as a larger molecular weight precursor that contains a special "zip code," a targeting sequence specific to the intended final destination of a given protein. The "zip code" is located at the precursor N-terminus, appropriately called a transit peptide (TP). We aim to provide an overview of plastid trafficking with a focus on the mechanism and regulation of the general import pathway, which serves as a central import hub for thousands of proteins that function in the plastid. We extend comparative analysis of plant proteomes to develop a better understanding of the evolution of TPs and differential TP recognition. We also review alternate import pathways, including vesicle-mediated trafficking, dual targeting, and import of signal-anchored and tail-anchored proteins. © 2017 Elsevier Inc. All rights reserved.

  17. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum

    Directory of Open Access Journals (Sweden)

    Inagaki Yuji

    2010-06-01

    Full Text Available Abstract Background Plastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates. Results We sequenced 4,746 randomly picked clones from a L. chlorophorum cDNA library. 22 of the assembled genes were identified as genes encoding proteins functioning in plastids. Some of these were of green algal origin. This confirms that genes have been transferred from the plastid to the host nucleus of L. chlorophorum and indicates that the plastid is fully integrated as an organelle in the host. Other nuclear-encoded plastid-targeted protein genes, however, are clearly not of green algal origin, but have been derived from a number of different algal groups, including dinoflagellates, streptophytes, heterokonts, and red algae. The characteristics of N-terminal plastid-targeting peptides of all of these genes are substantially different from those found in peridinin-containing dinoflagellates and green algae. Conclusions L. chlorophorum expresses plastid-targeted proteins with a range of different origins, which probably arose through endosymbiotic gene transfer (EGT and horizontal gene transfer (HGT. The N-terminal extension of the genes is different from the extensions found in green alga and other dinoflagellates (peridinin- and

  18. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  19. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  20. Response of structural concrete elements to severe impulsive loads

    Science.gov (United States)

    Krauthammer, T.; Shanaa, H. M.; Assadi, A.

    1994-10-01

    The behavior and response of structural concrete elements under severe short duration dynamic loads was investigated numerically. The analytical approach utilized the Timoshenko beam theory for the analysis of reinforced concrete beams and one-way slabs. Nonlinear material models were used to derive the flexural and shear resistances, and the differential equations of the Timoshenko beam theory were solved numerically by applying the finite difference technique. A simplified approach was developed for estimating the strain rate in structural concrete members, and the corresponding strain rate effects on the strength of the steel and concrete were incorporated into the analysis. Detailed failure criteria were established for predicting the collapse of structural concrete members. Five cases subjected to localized impact loads and eleven cases subjected to distributed explosive loads were analyzed, and the results were compared to experimental data obtained by other investigators.

  1. Plastid transformation in potato: Solanum tuberosum.

    Science.gov (United States)

    Valkov, Vladimir T; Gargano, Daniela; Scotti, Nunzia; Cardi, Teodoro

    2014-01-01

    Although plastid transformation has attractive advantages and potential applications in plant biotechnology, for long time it has been highly efficient only in tobacco. The lack of efficient selection and regeneration protocols and, for some species, the inefficient recombination using heterologous flanking regions in transformation vectors prevented the extension of the technology to major crops. However, the availability of this technology for species other than tobacco could offer new possibilities in plant breeding, such as resistance management or improvement of nutritional value, with no or limited environmental concerns. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum). By optimizing the tissue culture system and using transformation vectors carrying homologous potato flanking sequences, we obtained up to one transplastomic shoot per bombardment. Such efficiency is comparable to that usually achieved in tobacco. The method described in this chapter can be used to regenerate potato transplastomic plants expressing recombinant proteins in chloroplasts as well as in amyloplasts.

  2. Maturation of Plastid c-type Cytochromes.

    Science.gov (United States)

    Gabilly, Stéphane T; Hamel, Patrice P

    2017-01-01

    Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.

  3. Progress towards commercialization of plastid transformation technology.

    Science.gov (United States)

    Maliga, Pal

    2003-01-01

    Tobacco chloroplasts are ready to be tested as a platform for the expression of recombinant proteins on a commercial scale. They hold the promise of reproducible yields of 5-25% of total soluble cellular protein in leaves and reliability has been achieved through refinement of an expression toolkit that includes vectors, recently developed expression cassettes and systems for marker gene removal. Implementation of plastid transformation technology in other crops, however, has met with difficulty and has delayed agronomic applications.

  4. Maturation of Plastid c-type Cytochromes

    Directory of Open Access Journals (Sweden)

    Stéphane T. Gabilly

    2017-07-01

    Full Text Available Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.

  5. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae.

    Directory of Open Access Journals (Sweden)

    Michael S DePriest

    Full Text Available The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta.

  6. New insights into plastid nucleoid structure and functionality.

    Science.gov (United States)

    Krupinska, Karin; Melonek, Joanna; Krause, Kirsten

    2013-03-01

    Investigations over many decades have revealed that nucleoids of higher plant plastids are highly dynamic with regard to their number, their structural organization and protein composition. Membrane attachment and environmental cues seem to determine the activity and functionality of the nucleoids and point to a highly regulated structure-function relationship. The heterogeneous composition and the many functions that are seemingly associated with the plastid nucleoids could be related to the high number of chromosomes per plastid. Recent proteomic studies have brought novel nucleoid-associated proteins into the spotlight and indicated that plastid nucleoids are an evolutionary hybrid possessing prokaryotic nucleoid features and eukaryotic (nuclear) chromatin components, several of which are dually targeted to the nucleus and chloroplasts. Future studies need to unravel if and how plastid-nucleus communication depends on nucleoid structure and plastid gene expression.

  7. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  8. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.

  9. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia.

    Directory of Open Access Journals (Sweden)

    Jong Im Kim

    Full Text Available Teleaulax amphioxeia is a photosynthetic unicellular cryptophyte alga that is distributed throughout marine habitats worldwide. This alga is an important plastid donor to the dinoflagellate Dinophysis caudata through the ciliate Mesodinium rubrum in the marine food web. To better understand the genomic characteristics of T. amphioxeia, we have sequenced and analyzed its plastid genome. The plastid genome sequence of T. amphioxeia is similar to that of Rhodomonas salina, and they share significant synteny. This sequence exhibits less similarity to that of Guillardia theta, the representative plastid genome of photosynthetic cryptophytes. The gene content and order of the three photosynthetic cryptomonad plastid genomes studied is highly conserved. The plastid genome of T. amphioxeia is composed of 129,772 bp and includes 143 protein-coding genes, 2 rRNA operons and 30 tRNA sequences. The DNA polymerase III gene (dnaX was most likely acquired via lateral gene transfer (LGT from a firmicute bacterium, identical to what occurred in R. salina. On the other hand, the psbN gene was independently encoded by the plastid genome without a reverse transcriptase gene as an intron. To clarify the phylogenetic relationships of the algae with red-algal derived plastids, phylogenetic analyses of 32 taxa were performed, including three previously sequenced cryptophyte plastid genomes containing 93 protein-coding genes. The stramenopiles were found to have branched out from the Chromista taxa (cryptophytes, haptophytes, and stramenopiles, while the cryptophytes and haptophytes were consistently grouped into sister relationships with high resolution.

  10. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.

    Science.gov (United States)

    Burki, Fabien; Imanian, Behzad; Hehenberger, Elisabeth; Hirakawa, Yoshihisa; Maruyama, Shinichiro; Keeling, Patrick J

    2014-02-01

    Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.

  11. Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation.

    Science.gov (United States)

    Marano, M R; Carrillo, N

    1991-01-01

    Ripening of tomato fruits involves differentiation of chloroplasts into non-photosynthetic chromoplasts. Plastid DNAs isolated either from green leaf chloroplasts or mature red fruit chromoplasts were compared by restriction endonuclease and DNA/DNA hybridization analyses. The same restriction and gene maps were obtained for both types of DNAs, illustrating the lack of major recombinational events during chromoplast formation. Several enzymes were used that discriminate the presence of methylated bases in their target sequences (Pst I, Pvu II, Sal I, Mbo I/Sau 3AI, Msp I/Hpa II, Bst NI/Eco RII). Plastid DNA fragments generated by these enzymes were hybridized against DNA probes encompassing about 85% of the tobacco chloroplast genome. These probes represented genes that follow very different expression behaviors in response to plastid development. Extensive restriction and hybridization analyses failed to reveal any difference between the chloroplast and chromoplast genomes, indicating that no developmentally related DNA methylation was detected by these methods. The results presented here do not support the hypothesis that selective DNA methylation of the chromoplast genome might play a major role in the transcriptional control of gene expression in these non-photosynthetic plastids.

  12. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  13. Vibration Response of Multi Storey Building Using Finite Element Modelling

    Science.gov (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  14. Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition.

    Science.gov (United States)

    Berg, Sabine; Krupinska, Karin; Krause, Kirsten

    2003-11-01

    The chlorophyll containing holoparasitic species Cuscuta reflexa, the achlorophyllous species Cuscuta odorata and the intermediate species Cuscuta gronovii, which contains only traces of chlorophyll, were compared with respect to their plastid coding capacity and plastid gene expression at the level of RNA. While extensive deletions have taken place in the plastid DNA of the achlorophyllous species C. odorata, the green species C. reflexa has retained an almost complete plastid genome. Although the plastid genome of the intermediate species C. gronovii has suffered extensive deletions, in contrast to the plastid genome of C. odorata it has retained photosynthesis-related genes. Hybridization with radioactive 3'-labelled RNA revealed that in all three species only a small 'parasite-specific' portion of the plastid genome consisting of mainly rRNAs and tRNAs is represented at the level of steady-state RNA. Run-on transcription assays revealed that in plastids of C. reflexa the entire genome is transcribed. Hence, the subset of RNA species required for a parasitic lifestyle is preferentially stabilized in Cuscuta plastids.

  15. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope.

    Directory of Open Access Journals (Sweden)

    Preetinder K Dhanoa

    Full Text Available BACKGROUND: Tail-anchored (TA proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34 and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9. Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. CONCLUSIONS/SIGNIFICANCE: Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie

  16. Experimental investigation of motion responses of tunnel element immerging by moored barge

    Institute of Scientific and Technical Information of China (English)

    左卫广; 王永学

    2015-01-01

    In this paper, the barge effect on the motion responses of the tunnel element immerging by the moored barge under waves is investigated experimentally. Both the motion responses of the tunnel element and the moored barge in the experiment are simultaneously acquired by the Untouched 6-D Measurement System. The results show that the sway motion responses of the tunnel element immerging by the moored barge are different from those without the barge. For the system of the tunnel element and the moored barge, the moored barge has two motion components in the sway direction. The high frequency motion of the moored barge has little effect on the high frequency motion of the tunnel element with moored barge. However, the low frequency motion of the moored barge has a significant effect on the sway motion of the tunnel element. The motion responses of the tunnel element and the barge in the heave and roll directions are mainly the high frequency motion.

  17. Early steps in plastid evolution: current ideas and controversies.

    Science.gov (United States)

    Bodył, Andrzej; Mackiewicz, Paweł; Stiller, John W

    2009-11-01

    Some nuclear-encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi-protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear-encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into fully integrated organelles. From this perspective it is more parsimonious to presume the early evolution of post-translational protein import via simpler, ancestral forms of modern Toc and Tic plastid translocons, with EM trafficking arising later to accommodate glycosylation and/or protein targeting to multiple cellular locations. This hypothesis is supported by both empirical and comparative data, and is consistent with the relative paucity of EM-based transport to modern primary plastids.

  18. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers.

    Science.gov (United States)

    Yang, Hong-Mei; Zhang, Yu-Xiao; Yang, Jun-Bo; Li, De-Zhu

    2013-08-01

    Arundinarieae is not only a taxonomically difficult group of bamboos, but also a troublesome one in molecular phylogenetics. In this study, the phylogeny of 50 species in Arundinarieae with an emphasis on Chimonocalamus was reconstructed, using four plastid regions (rpl32-trnL, trnT-trnL, rps16-trnQ and trnC-rpoB) and two nuclear genes (GBSSI and LEAFY). The plastid phylogeny was largely consistent with the previous studies, except that Ampelocalamus calcareus was newly recovered as lineage XI. The nuclear phylogeny of LEAFY had better resolution than the one of GBSSI. The close relationships among Ampelocalamus, Drepanostachyum and Himalayacalamus were retrieved by the nuclear datasets. Alpine Bashania, Chimonocalamus, Thamnocalamus, and species currently placed in Fargesia and Yushania formed a clade in the LEAFY and combined nuclear phylogenies. Some of the gene tree disparities revealed in previous studies were reconfirmed. Chimonocalamus was recovered as monophyletic by combining the nuclear genes, but as polyphyletic in plastid analyses. Insufficient informative characters, hybridization, plastid capture or incomplete plastid lineage sorting could be responsible for the incongruent phylogenetic positions of some species of Chimonocalamus. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Osteryoung Katherine W

    2009-04-01

    Full Text Available Abstract Background Plastids arose from a free-living cyanobacterial endosymbiont and multiply by binary division as do cyanobacteria. Plastid division involves nucleus-encoded homologs of cyanobacterial division proteins such as FtsZ, MinD, MinE, and ARC6. However, homologs of many other cyanobacterial division genes are missing in plant genomes and proteins of host eukaryotic origin, such as a dynamin-related protein, PDV1 and PDV2 are involved in the division process. Recent identification of plastid division proteins has started to elucidate the similarities and differences between plastid division and cyanobacterial cell division. To further identify new proteins that are required for plastid division, we characterized previously and newly isolated plastid division mutants of Arabidopsis thaliana. Results Leaf cells of two mutants, br04 and arc2, contain fewer, larger chloroplasts than those of wild type. We found that ARC2 and BR04 are identical to nuclear genes encoding the plastid chaperonin 60α (ptCpn60α and chaperonin 60β (ptCpn60β proteins, respectively. In both mutants, plastid division FtsZ ring formation was partially perturbed though the level of FtsZ2-1 protein in plastids of ptcpn60β mutants was similar to that in wild type. Phylogenetic analyses showed that both ptCpn60 proteins are derived from ancestral cyanobacterial proteins. The A. thaliana genome encodes two members of ptCpn60α family and four members of ptCpn60β family respectively. We found that a null mutation in ptCpn60α abolished greening of plastids and resulted in an albino phenotype while a weaker mutation impairs plastid division and reduced chlorophyll levels. The functions of at least two ptCpn60β proteins are redundant and the appearance of chloroplast division defects is dependent on the number of mutant alleles. Conclusion Our results suggest that both ptCpn60α and ptCpn60β are required for the formation of a normal plastid division apparatus, as

  20. Lichens (Parmelia sulcata) time response model to environmental elemental availability

    NARCIS (Netherlands)

    Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.T.

    1999-01-01

    Parmelia sulcata transplants, collected in a non-polluted area, were exposed to new atmospheric conditions at six stations, of which five were located near power plants and one at an unpolluted area. Data were collected for a 1-year period, on rainfall, airborne particulates, elemental deposition an

  1. Lichens (Parmelia sulcata) time response model to environmental elemental availability

    NARCIS (Netherlands)

    Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.T.

    1999-01-01

    Parmelia sulcata transplants, collected in a non-polluted area, were exposed to new atmospheric conditions at six stations, of which five were located near power plants and one at an unpolluted area. Data were collected for a 1-year period, on rainfall, airborne particulates, elemental deposition an

  2. The foundation of extranuclear inheritance: plastid and mitochondrial genetics.

    Science.gov (United States)

    Hagemann, Rudolf

    2010-03-01

    In 1909 two papers by Correns and by Baur published in volume 1 of Zeitschrift für induktive Abstammungs- und Vererbungslehre (now Molecular Genetics and Genomics) reported on the non-Mendelian inheritance of chlorophyll deficiencies. These papers, reporting the very first cases of extranuclear inheritance, laid the foundation for a new field: non-Mendelian or extranuclear genetics. Correns observed a purely maternal inheritance (in Mirabilis), whereas Baur found a biparental inheritance (in Pelargonium). Correns suspected the non-Mendelian factors in the cytoplasm, while Baur believed that the plastids carry these extranuclear factors. In the following years, Baur's hypothesis was proved to be correct. Baur subsequently developed the theory of plastid inheritance. In many genera the plastids are transmitted only uniparentally by the mother, while in a few genera there is a biparental plastid inheritance. Commonly there is random sorting of plastids during ontogenetic development. Renner and Schwemmle as well as geneticists in other countries added additional details to this theory. Pioneering studies on mitochondrial inheritance in yeast started in 1949 in the group of Ephrussi and Slonimski; respiration-deficient cells (petites in yeast, poky in Neurospora) were demonstrated to be due to mitochondrial mutations. Electron microscopical and biochemical studies (1962-1964) showed that plastids and mitochondria contain organelle-specific DNA molecules. These findings laid the molecular basis for the two branches of extranuclear inheritance: plastid and mitochondrial genetics.

  3. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  4. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology.

    Science.gov (United States)

    Nawrocki, Wojciech J; Tourasse, Nicolas J; Taly, Antoine; Rappaport, Fabrice; Wollman, Francis-André

    2015-01-01

    Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.

  5. The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus

    DEFF Research Database (Denmark)

    Kindgren, Peter; Kremnev, Dmitry; Blanco, Nicolás E

    2012-01-01

    involved in redox-mediated retrograde signalling. The allelic mutants prin2-1 and prin2-2 demonstrated a misregulation of photosynthesis-associated nuclear gene expression in response to excess light, and an inhibition of photosynthetic electron transport. As a consequence of the misregulation of LHCB1...... is required for full expression of genes transcribed by the plastid-encoded RNA polymerase (PEP). Similarly to the prin2 mutants, the ys1 mutant with impaired PEP activity also demonstrated a misregulation of LHCB1.1 and LHCB2.4 expression in response to excess light, suggesting a direct role for PEP activity...

  6. Plastid Molecular Pharming I. Production of Oral Vaccines via Plastid Transformation.

    Science.gov (United States)

    Berecz, Bernadett; Zelenyánszki, Helga; Pólya, Sára; Tamás-Nyitrai, Cecília; Oszvald, Mária

    2017-01-01

    Vaccines produced in plants have opened up new opportunities in vaccination. Among the various categories of vaccines, the recombinant vaccine is generally regarded as the most economical and safest type because it cannot cause disease and does not require large-scale cultivation of pathogens. Due to the low cost of their cultivation, plants may represent viable alternative platforms for producing subunit vaccines. Genetic engineering of plastids is the innovation of the last three decades and has numerous benefits when compared to nuclear transformation. Due to the high level of expression, oral vaccines produced in transplastomic plants do not have to be purified as they can be consumed raw, which, therefore, reduces the cost of preparation, transportation and handling of the vaccines. Oral vaccination also excludes the risk of other infections or contaminations, while compartmentation of the plant cell provides an excellent encapsulation to the antigen within the plastid. Herein we review the main biotechnological and immunological aspects of the progress achieved in the field of plastid derived edible vaccines during the last decade. As there is a public debate against genetically modified crops, the advantages and limitations of oral vaccines are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Finite element model calibration using frequency responses with damping equalization

    Science.gov (United States)

    Abrahamsson, T. J. S.; Kammer, D. C.

    2015-10-01

    Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.

  8. Finite-element impact response of debonded composite turbine blades

    Science.gov (United States)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  9. Modeling Reader's Emotional State Response on Document's Typographic Elements

    Directory of Open Access Journals (Sweden)

    Dimitrios Tsonos

    2011-01-01

    Full Text Available We present the results of an experimental study towards modeling the reader's emotional state variations induced by the typographic elements in electronic documents. Based on the dimensional theory of emotions we investigate how typographic elements, like font style (bold, italics, bold-italics and font (type, size, color and background color, affect the reader's emotional states, namely, Pleasure, Arousal, and Dominance (PAD. An experimental procedure was implemented conforming to International Affective Picture System guidelines and incorporating the Self-Assessment Manikin test. Thirty students participated in the experiment. The stimulus was a short paragraph of text for which any content, emotion, and/or domain dependent information was excluded. The Analysis of Variance revealed the dependency of (a all the three emotional dimensions on font size and font/background color combinations and (b the Pleasure dimension on font type and font style. We introduce a set of mapping rules showing how PAD vary on the discrete values of font style and font type elements. Moreover, we introduce a set of equations describing the PAD dimensions' dependency on font size. This novel model can contribute to the automated reader's emotional state extraction in order, for example, to enhance the acoustic rendition of the documents, utilizing text-to-speech synthesis.

  10. Coevolution of plastid genomes and transcript processing pathways in photosynthetic alveolates

    OpenAIRE

    Dorrell, Richard G.

    2014-01-01

    Following their endosymbiotic uptake, plastids undergo profound changes to genome content and to their associated biochemistry. I have investigated how evolutionary transitions in plastid genomes may impact on biochemical pathways associated with plastid gene expression, focusing on the highly unusual plastids found in one group of eukaryotes, the alveolates. The principal photosynthetic alveolate lineage is the dinoflagellate algae. Most dinoflagellate species harbour unusual plastids derive...

  11. Plastid transformation in sugar beet: Beta vulgaris.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele

    2014-01-01

    Chloroplast biotechnology has assumed great importance in the past 20 years and, thanks to the numerous advantages as compared to conventional transgenic technologies, has been applied in an increasing number of plant species but still very much limited. Hence, it is of utmost importance to extend the range of species in which plastid transformation can be applied. Sugar beet (Beta vulgaris L.) is an important industrial crop of the temperate zone in which chloroplast DNA is not transmitted trough pollen. Transformation of the sugar beet genome is performed in several research laboratories; conversely sugar beet plastome genetic transformation is far away from being considered a routine technique. We describe here a method to obtain transplastomic sugar beet plants trough biolistic transformation. The availability of sugar beet transplastomic plants should avoid the risk of gene flow between these cultivated genetic modified sugar beet plants and the wild-type plants or relative wild species.

  12. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway.

  13. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  14. Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression.

    Science.gov (United States)

    Tozawa, Y; Tanaka, K; Takahashi, H; Wakasa, K

    1998-01-15

    A full-length cDNA encoding a putative sigma factor for a plastid RNA polymerase was isolated from the higher plant Oryza sativa . The nucleotide sequence of the corresponding nuclear gene, named Os-sigA ( O.sativa sigma A), predicts a polypeptide of 519 amino acids that contains a putative plastid-targeting sequence in its N-terminal region. The predicted mature protein shows extensive sequence homology to bacterial sigma factors, encompassing the conserved regions 1.2, 2.1, 2.2, 2.3, 2.4, 3, 4.1 and 4.2 implicated in binding to -10 promoter elements, promoter melting and interaction with the core RNA polymerase enzyme. RNA blot analysis revealed that the abundance of Os-sigA transcripts was markedly greater in green shoots than in roots or in dark-grown etiolated shoots of rice seedlings. Furthermore, exposure of dark-grown etiolated seedlings to light resulted in a rapid increase in the amount of Os-sigA mRNA in the shoot. These observations suggest that regulation of expression of the nuclear gene for this putative plastid RNA polymerase sigmafactor by light contributes to light-dependent transcriptional regulation of plastid genes.

  15. The complete plastid genome sequence of Bomarea edulis (Alstroemeriaceae: Liliales).

    Science.gov (United States)

    Kim, Jung Sung; Kim, Hyoung Tae; Yoon, Chang Young; Kim, Joo-Hwan

    2016-05-01

    Bomarea, a member of the family Alstroemeriaceae, is distributed from Chile to Mexico and includes approximately 120 species. Recent molecular phylogenetic studies have clarified the monophyly of the family within the order Liliales and the sister relationship with the family Colchicaceae. At this time, five plastid genomes of Liliales have been analyzed at the familial level. To examine plastid genome variation at the generic level, we sequenced the plastid genome of Bomarea edulis, which is the most widely distributed species in the genus, and compared it with Alstroemeria aurea. The plastid genome sequence of B. edulis was 154,925 bp in length with a similar structure as A. aurea, excluding the IR-LSC junction. Ycf68 and infA were pseudogenes caused by frameshift mutations, and the ycf15 gene was deleted, similar to A. aurea.

  16. The plastid genome of the red alga Laurencia.

    Science.gov (United States)

    Verbruggen, Heroen; Costa, Joana F

    2015-06-01

    We present the 174,935 nt long plastid genome of the red alga Laurencia sp. JFC0032. It is the third plastid genome characterized for the largest order of red algae (Ceramiales). The circular-mapping plastid genome is small compared to most florideophyte red algae, and our comparisons show a trend toward smaller plastid genome sizes in the family Rhodomelaceae, independent from a similar trend in Cyanidiophyceae. The Laurencia genome is densely packed with 200 annotated protein-coding genes (188 widely conserved, 3 open reading frames shared with other red algae and 9 hypothetical coding regions). It has 29 tRNAs, a single-copy ribosomal RNA cistron, a tmRNA, and the RNase P RNA. © 2015 Phycological Society of America.

  17. The plastid-dividing machinery: formation, constriction and fission.

    Science.gov (United States)

    Yoshida, Yamato; Miyagishima, Shin-ya; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi

    2012-12-01

    Plastids divide by constriction of the plastid-dividing (PD) machinery, which encircles the division site. The PD machinery consists of the stromal inner machinery which includes the inner PD and filamenting temperature-sensitive mutant Z (FtsZ) rings and the cytosolic outer machinery which includes the outer PD and dynamin rings. The major constituent of the PD machinery is the outer PD ring, which consists of a bundle of polyglucan filaments. In addition, recent proteomic studies suggest that the PD machinery contains additional proteins that have not been characterized. The PD machinery forms from the inside to the outside of the plastid. The constriction seems to occur by sliding of the polyglucan filaments of the outer PD ring, aided by dynamin. The final fission of the plastid is probably promoted by the 'pinchase' activity of dynamin.

  18. [Plastid genome engineering: novel optimization strategies and applications].

    Science.gov (United States)

    Zhou, Fei; Lu, Shizhan; Gao, Liang; Zhang, Juanjuan; Lin, Yongjun

    2015-08-01

    The plastid genome engineering system allows site-specific modifications via two homologous recombination events. It is much safer, more precise and efficient compared with the nuclear transformation system. This technology can be applied to the basic research to expand plastid genome function analysis, and it also provides an excellent platform for not only high-level production of recombinant proteins but also plant breeding. In this review, we summarize the state of the art and progresses in this field. We focus on novel breeding strategies in transformation system improvement and new tools to enhance plastid transgene expression levels. In addition, we highlight selected applications in resistance engineering and quality improvement via metabolic engineering. We believe that by overcoming current technological limitations in the plastid transformation system can another green revolution for crop breeding beckon.

  19. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Directory of Open Access Journals (Sweden)

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  20. Fine structure of plastids during androgenesis in Hordeum vulgare L.

    OpenAIRE

    Fortunat Młodzianowski; Krystyna Idzikowska

    2014-01-01

    The fine structure of plastids was studied in the course of androgenesis in in the pollen of Hordeum vulgare L. It was found that these organelles occur in all stages of androgenesis. Their structure was simple and was frequently manifested on the cross section only by the presence of the envelope and matrix of different degree of density. Single thylakoids, nucleoid-like regions and starch grains were, however, also noted. The structure of plastids in embryoids formed from microspores of bar...

  1. Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Acer pseudoplatanus) cells and cauliflower (Brassica oleracea) buds.

    Science.gov (United States)

    Alban, C; Joyard, J; Douce, R

    1989-05-01

    -phosphate into MGDG by the enzymes associated with envelope membranes is not limited by the phosphatidate phosphatase. These results demonstrate that: (1) non-green plastids employ the same biosynthetic pathway as that previously established for chloroplasts (the formation of glycerolipids is a general property of all plastids, chloroplasts as well as non-green plastids), (2) the envelope membranes are the major structure responsible for the biosynthesis of phosphatidic acid, diacylglycerol and MGDG, and (3) the enzymes of the envelope Kornberg-Pricer pathway have the same properties in non-green starch-containing plastids as in mature chloroplasts from C16:3 and C18:3 plants.

  2. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae):Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid

    Science.gov (United States)

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results to prior phylogenetic results using plastid, nuclear, and mitochondrial DNA sequences. We obtained, using Illumina sequencing, full plastid sequences of 37 accessions of 20 Daucus taxa and outgrou...

  3. Ecological responsibility of business as public-private partnership element

    Directory of Open Access Journals (Sweden)

    I.M. Potravniy

    2011-10-01

    Full Text Available In the article the questions of social and ecological responsibility of business are considered within the public-private partnership mechanism framework. Methods of the ecological significant project economic regulation are shown in wildlife management and environment protection sphere.

  4. Moral Responsibility: The Missing Element in Educational Leadership

    Science.gov (United States)

    Vasillopulos, Christopher; Denney, Morgan

    2013-01-01

    We intend to deepen the understanding of leadership in general and educational leadership in particular by an analysis of Chester Barnard's (1938) concept of executive responsibility. By so doing we believe that we will reveal how an educational leader can foster the environment in which competent teachers can optimize their students' learning…

  5. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids.

    Science.gov (United States)

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.

  6. Overexpression of plastid terminal oxidase in Synechocystis sp. PCC 6803 alters cellular redox state.

    Science.gov (United States)

    Feilke, Kathleen; Ajlani, Ghada; Krieger-Liszkay, Anja

    2017-09-26

    Cyanobacteria are the most ancient organisms performing oxygenic photosynthesis, and they are the ancestors of plant plastids. All plastids contain the plastid terminal oxidase (PTOX), while only certain cyanobacteria contain PTOX. Many putative functions have been discussed for PTOX in higher plants including a photoprotective role during abiotic stresses like high light, salinity and extreme temperatures. Since PTOX oxidizes PQH2 and reduces oxygen to water, it is thought to protect against photo-oxidative damage by removing excess electrons from the plastoquinone (PQ) pool. To investigate the role of PTOX we overexpressed rice PTOX fused to the maltose-binding protein (MBP-OsPTOX) in Synechocystis sp. PCC 6803, a model cyanobacterium that does not encode PTOX. The fusion was highly expressed and OsPTOX was active, as shown by chlorophyll fluorescence and P700 absorption measurements. The presence of PTOX led to a highly oxidized state of the NAD(P)H/NAD(P)(+) pool, as detected by NAD(P)H fluorescence. Moreover, in the PTOX overexpressor the electron transport capacity of PSI relative to PSII was higher, indicating an alteration of the photosystem I (PSI) to photosystem II (PSII) stoichiometry. We suggest that PTOX controls the expression of responsive genes of the photosynthetic apparatus in a different way from the PQ/PQH2 ratio.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  7. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.

    Directory of Open Access Journals (Sweden)

    Štěpánka Hrdá

    Full Text Available Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.

  8. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.

    Science.gov (United States)

    Záhonová, Kristína; Hadariová, Lucia; Vacula, Rostislav; Yurchenko, Vyacheslav; Eliáš, Marek; Krajčovič, Juraj; Vesteg, Matej

    2014-03-03

    Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids.

  9. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Directory of Open Access Journals (Sweden)

    Yamaguchi-Shinozaki Kazuko

    2011-02-01

    Full Text Available Abstract Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.

  10. Changes in Plastid and Mitochondria Protein Expression in Arabidopsis Thaliana Callus on Board Chinese Spacecraft SZ-8

    Science.gov (United States)

    Zhang, Yue; Zheng, Hui Qiong

    2015-11-01

    Microgravity represents an adverse abiotic environment, which causes rearrangements in cellular organelles and changes in the energy metabolism of cells. Plastids and mitochondria are two subcellular energy organelles that are responsible for major metabolic processes, including photosynthesis, oxidative phosphorylation, ß-oxidation, and the tricarboxylic acid cycle. In our previous study performed on board the Chinese spacecraft SZ-8, we evaluated the global changes exerted by microgravity on the proteome of Arabidopsis thaliana cell cultures by comparing the microgravity-exposed samples with the controls either under 1 g centrifugation in space or 1 g ground conditions. Here, we report additional data from this space experiment that highlights the plastid and mitochondria proteins that responded to space flight conditions. We observed that 43 plastidial proteins and 50 mitochondrial proteins changed their abundances under microgravity in space. The major changes in both plastids and mitochondria involved proteins that functions in a suite of redox antioxidant and metabolic pathways. These results suggested that these antioxidant and metabolic changes in plastids and mitochondria could be important components of the adaptive strategy in plants subjected to microgravity in space.

  11. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  12. Plastid ultrastructure and photosynthesis in greening petaloid hypsophylls.

    Science.gov (United States)

    Weidner, M; Franz, A; Napp-Zinn, K

    1985-02-01

    The ultrastructural and biochemicalphysiological aspects of postfloral greening have been studied in hypsophylls of Heliconia aurantiaca Ghiesbr., Guzmania cf. x magnifica Richter and Spathiphyllum wallisii Regel. In all three species the greening of the hypsophylls is due to plastid transformation, chloroplast formation proceeding from the initially different types of plastids. The degradation process of the original plastid structures and the mode of thylakoid formation are distinct in each case. In none of the species do the transformed plastids look identical to the chloroplasts of the corresponding foliage leaves. On a chlorophyll basis, the rate of photosynthesis of the greened hypsophylls surpasses the rate of the leaves considerably in Spathiphyllum, but is much lower in Heliconia (no data for Guzmania). In all species, anatomy, plastid structure, pigments, 77° K-fluorescence emission, ribulose-1,5-bis-phosphate carboxylase activities and short-term photosynthesis (14)CO2-assimilation patterns prove the greened hypsophylls to be capable of providing additional carbon to the developing fruits, thus supplementing the import of organic matter from the foliage leaves.

  13. Plastid gene expression during fruit ripening in tomato.

    Science.gov (United States)

    Piechulla, B; Imlay, K R; Gruissem, W

    1985-11-01

    A tomato chloroplast genome map has been constructed with the restriction enzymes Hpa I, Pvu II, and Sal I. Twelve plastid genes have been located on the tomato plastid genome (159 kb).The expression of plastid genes during tomato fruit ripening has been studied. The levels of transcripts of various genes coding for proteins of the photosystem I (psaA), photosystem II (psbA, psbB, psbC, psbD) and the stroma (rbcL) decrease when plastids differentiate from chloroplasts to chromoplasts. The amount of plastid ribosomal RNA also decreases. Transcripts of the genes for the P700 reaction center protein (psaA), for the photosystem II-associated proteins (psbC, psbD) and for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) cannot be detected in chromoplasts. In contrast, a relatively high level of mRNA is present for the 32 kD protein ('herbicide-binding protein', psbA) in red fruit.

  14. State-of-the-art Review : Vol. 2A. Responsive Building Elements

    DEFF Research Database (Denmark)

    Blümel, Ernst; Haghighat, Fariborz; Li, Yuguo

    . The publication is an internal Annex report. With a focus on innovative building elements that dynamically respond to changes in climate and user demands, the report describes materials, components and systems that have been tested in laboratories and buildings around the world. This report is aimed......This report resumes and presents the activity done in Subtask A of IEA-ECBCS Annex 44 “Integrating Environmentally Responsive Elements in Buildings” concerning the state of the art review of Responsive Building Elements. It is based on the contributions from the participating countries...... at researchers in the field and gives an overview of how these elements work together with available performance data. It is hoped, that this report will be helpful for researchers in their search for new solutions to the problem of designing and constructing sustainable buildings....

  15. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Directory of Open Access Journals (Sweden)

    Corre Erwan

    2009-10-01

    Full Text Available Abstract Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including

  16. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids.

    Science.gov (United States)

    Le Corguillé, Gildas; Pearson, Gareth; Valente, Marta; Viegas, Carla; Gschloessl, Bernhard; Corre, Erwan; Bailly, Xavier; Peters, Akira F; Jubin, Claire; Vacherie, Benoit; Cock, J Mark; Leblanc, Catherine

    2009-10-16

    Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist

  17. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts.

    Science.gov (United States)

    Hehenberger, Elisabeth; Imanian, Behzad; Burki, Fabien; Keeling, Patrick J

    2014-09-01

    Dinoflagellates harboring diatom endosymbionts (termed "dinotoms") have undergone a process often referred to as "tertiary endosymbiosis"--the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellular features, such as their nucleus and mitochondria and others, in addition to their plastid. This has resulted in redundancy between host and endosymbiont, at least between some mitochondrial and cytosolic metabolism, where this has been investigated. The question of plastidial redundancy is particularly interesting as the fate of the host dinoflagellate plastid is unclear. The host cytosol possesses an eyespot that has been postulated to be a remnant of the ancestral peridinin plastid, but this has not been tested, nor has its possible retention of plastid functions. To investigate this possibility, we searched for plastid-associated pathways and functions in transcriptomic data sets from three dinotom species. We show that the dinoflagellate host has indeed retained genes for plastid-associated pathways and that these genes encode targeting peptides similar to those of other dinoflagellate plastid-targeted proteins. Moreover, we also identified one gene encoding an essential component of the dinoflagellate plastid protein import machinery, altogether suggesting the presence of a functioning plastid import system in the host, and by extension a relict plastid. The presence of the same plastid-associated pathways in the endosymbiont also extends the known functional redundancy in dinotoms, further confirming the unusual state of plastid integration in this group of dinoflagellates.

  18. A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs.

    Science.gov (United States)

    Williams-Carrier, Rosalind; Zoschke, Reimo; Belcher, Susan; Pfalz, Jeannette; Barkan, Alice

    2014-01-01

    Chloroplast transcription in land plants relies on collaboration between a plastid-encoded RNA polymerase (PEP) of cyanobacterial ancestry and a nucleus-encoded RNA polymerase of phage ancestry. PEP associates with additional proteins that are unrelated to bacterial transcription factors, many of which have been shown to be important for PEP activity in Arabidopsis (Arabidopsis thaliana). However, the biochemical roles of these PEP-associated proteins are not known. We describe phenotypes conditioned by transposon insertions in genes encoding the maize (Zea mays) orthologs of five such proteins: ZmPTAC2, ZmMurE, ZmPTAC10, ZmPTAC12, and ZmPRIN2. These mutants have similar ivory/virescent pigmentation and similar reductions in plastid ribosomes and photosynthetic complexes. RNA gel-blot and microarray hybridizations revealed numerous changes in plastid transcript populations, many of which resemble those reported for the orthologous mutants in Arabidopsis. However, unanticipated reductions in the abundance of numerous transfer RNAs (tRNAs) dominated the microarray data and were validated on RNA gel blots. The magnitude of the deficiencies for several tRNAs was similar to that of the most severely affected messenger RNAs, with the loss of trnL-UAA being particularly severe. These findings suggest that PEP and its associated proteins are critical for the robust transcription of numerous plastid tRNAs and that this function is essential for the prodigious translation of plastid-encoded proteins that is required during the installation of the photosynthetic apparatus.

  19. A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1).

    Science.gov (United States)

    Sanchez-Puerta, M Virginia; Delwiche, Charles F

    2008-10-01

    Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members-the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so-called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination.

  20. Fine structure of plastids during androgenesis in Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2014-01-01

    Full Text Available The fine structure of plastids was studied in the course of androgenesis in in the pollen of Hordeum vulgare L. It was found that these organelles occur in all stages of androgenesis. Their structure was simple and was frequently manifested on the cross section only by the presence of the envelope and matrix of different degree of density. Single thylakoids, nucleoid-like regions and starch grains were, however, also noted. The structure of plastids in embryoids formed from microspores of barley was compared with embryos developed from fertilized egg cell, and we did not found any fundamental differences between them. However, only plastid ribosomes were difficult to identify on ultrathin sections in embryoids and in the embryos.

  1. Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element.

    OpenAIRE

    1991-01-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that...

  2. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  3. Response of removable epoxy foam exposed to fire using an element death model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2004-09-01

    Response of removable epoxy foam (REF) to high heat fluxes is described using a decomposition chemistry model [1] in conjunction with a finite element heat conduction code [2] that supports chemical kinetics and dynamic radiation enclosures. The chemistry model [1] describes the temporal transformation of virgin foam into carbonaceous residue by considering breakdown of the foam polymer structure, desorption of gases not associated with the foam polymer, mass transport of decomposition products from the reaction site to the bulk gas, and phase equilibrium. The finite element foam response model considers the spatial behavior of the foam by using measured and predicted thermophysical properties in combination with the decomposition chemistry model. Foam elements are removed from the computational domain when the condensed mass fractions of the foam elements are close to zero. Element removal, referred to as element death, creates a space within the metal confinement causing radiation to be the dominant mode of heat transfer between the surface of the remaining foam elements and the interior walls of the confining metal skin. Predictions were compared to front locations extrapolated from radiographs of foam cylinders enclosed in metal containers that were heated with quartz lamps [3,4]. The effects of the maximum temperature of the metal container, density of the foam, the foam orientation, venting of the decomposition products, pressurization of the metal container, and the presence or absence of embedded components are discussed.

  4. Integration and Expression of gfp in the plastid of Medicago sativa L.

    Science.gov (United States)

    Xing, Shaochen; Wei, Zhengyi; Wang, Yunpeng; Liu, Yanzhi; Lin, Chunjing

    2014-01-01

    Here we describe a protocol of alfalfa (Medicago sativa L.) plastid transformation by which gfp, a gene encoding the green fluorescent protein (GFP), is inserted into plastid genome via particle bombardment and homoplastomic plant is obtained. Plastid engineering is likely to make a significant contribution to the genetic improvement of this crop and the production of vaccines and therapeutic proteins.

  5. Finite element analysis of dynamic response and structure borne noise of gearbox

    Institute of Scientific and Technical Information of China (English)

    LIU Wen; LIN Teng-jiao; LI Run-fang; DU Xue-song

    2007-01-01

    A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.

  6. Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines

    Directory of Open Access Journals (Sweden)

    Cornish Katrina

    2009-11-01

    Full Text Available Abstract Background Parthenium argentatum (guayule is an industrial crop that produces latex, which was recently commercialized as a source of latex rubber safe for people with Type I latex allergy. The complete plastid genome of P. argentatum was sequenced. The sequence provides important information useful for genetic engineering strategies. Comparison to the sequences of plastid genomes from three other members of the Asteraceae, Lactuca sativa, Guitozia abyssinica and Helianthus annuus revealed details of the evolution of the four genomes. Chloroplast-specific DNA barcodes were developed for identification of Parthenium species and lines. Results The complete plastid genome of P. argentatum is 152,803 bp. Based on the overall comparison of individual protein coding genes with those in L. sativa, G. abyssinica and H. annuus, we demonstrate that the P. argentatum chloroplast genome sequence is most closely related to that of H. annuus. Similar to chloroplast genomes in G. abyssinica, L. sativa and H. annuus, the plastid genome of P. argentatum has a large 23 kb inversion with a smaller 3.4 kb inversion, within the large inversion. Using the matK and psbA-trnH spacer chloroplast DNA barcodes, three of the four Parthenium species tested, P. tomentosum, P. hysterophorus and P. schottii, can be differentiated from P. argentatum. In addition, we identified lines within P. argentatum. Conclusion The genome sequence of the P. argentatum chloroplast will enrich the sequence resources of plastid genomes in commercial crops. The availability of the complete plastid genome sequence may facilitate transformation efficiency by using the precise sequence of endogenous flanking sequences and regulatory elements in chloroplast transformation vectors. The DNA barcoding study forms the foundation for genetic identification of commercially significant lines of P. argentatum that are important for producing latex.

  7. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  8. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    Science.gov (United States)

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P sportsman performance but also in terms of future healthy life plans and clinically.

  9. Simulation of Electromagnetic Wave Logging Response in Deviated Wells Based on Vector Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    LV Wei-Guo; CHU Zhao-Tan; ZHAO Xiao-Qing; FAN Yu-Xiu; SONG Ruo-Long; HAN Wei

    2009-01-01

    The vector finite element method of tetrahedral elements is used to model 3D electromagnetic wave logging response. The tangential component of the vector field at the mesh edges is used as a degree of freedom to overcome the shortcomings of node-based finite element methods. The algorithm can simulate inhomogeneous media with arbitrary distribution of conductivity and magnetic permeability. The electromagnetic response of well logging tools are studied in dipping bed layers with the borehole and invasion included. In order to simulate realistic logging tools, we take the transmitter antennas consisting of circular wire loops instead of magnetic dipoles. We also investigate the apparent resistivity of inhomogeneous formation for different dip angles.

  10. Are collapsars responsible for some r-process elements? How could we tell?

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J

    2004-04-05

    We consider the possibility that supernovae which form hyper-accreting black holes might be responsible for synthesis of r-process elements with mass A {approx}< 130. Calculations are presented which show that these elements are naturally synthesized in neutron-rich magnetically-dominated bubbles born in the inner regions of a black hole accretion disk. Simple considerations suggest that the total mass ejected in the form of these bubbles is about that needed to account for the entire galactic inventory of the 2nd-peak r-process elements. We also argue that if collapsars are responsible for, e.g., Ag synthesis, then Ag abundances should be correlated with Sc and/or Zn abundances in metal-poor stars.

  11. Transient response of isotropic, orthotropic and anisotropic composite-sandwich shells with the superparametric element

    Science.gov (United States)

    Mallikarjuna; Kant, T.; Fafard, M.

    1992-09-01

    The first-order Reissner-Mindlin shear deformation theory is employed to investigate the transient response of isotropic, layered orthotropic and anisotropic composite and sandwich shells. The eight-noded Serendipity and nine-noded Lagrangian quadrilateral superparametric shell elements are used. Numerical convergence and stability of the elements are established using an explicit central difference technique with a special mass matrix diagonalization scheme. The effects of transverse shear modulii of stiff layers, length/thickness and radius/length ratios, time step, finite element mesh, orientation of fibers and degree of orthotropy on the transient response of shells are studied. The variety of results presented here, based on realistic material properties of more commonly used advanced laminated composite shells, should serve as references for future investigations.

  12. Proteome Dynamics during Plastid Differentiation in Rice1[W

    Science.gov (United States)

    Kleffmann, Torsten; von Zychlinski, Anne; Russenberger, Doris; Hirsch-Hoffmann, Matthias; Gehrig, Peter; Gruissem, Wilhelm; Baginsky, Sacha

    2007-01-01

    We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch). PMID:17189339

  13. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Science.gov (United States)

    2010-07-01

    .... Further, this section of the plan must work in harmony with those sections of the plan dealing with exercises, the spill management team, and the qualified individual. 1.3The material in this appendix D is... the elements that define the program as appropriate. 2.2An effective spill response training...

  14. The cyclic AMP response element modulator regulates transcription of the TCR zeta-chain

    NARCIS (Netherlands)

    Tenbrock, K; Kyttaris, VC; Ahlmann, M; Ehrchen, JA; Tolnay, M; Melkonyan, H; Mawrin, C; Roth, J; Sorg, C; Juang, YT; Tsokos, GC

    2005-01-01

    Systemic lupus erythematusus T cells display decreased amounts of TCR zeta mRNA that results in part from limited binding of the transcriptional enhancer Elf-1 to the TCR zeta promoter. We have identified a new cis-binding site for the cAMP response element (CRE) modulator (CREM) on the TCR zeta pro

  15. Dynamic Stationary Response of Reinforced Plates by the Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Facundo Sanches

    2007-01-01

    Full Text Available A direct version of the boundary element method (BEM is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs. Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state (membrane and for the out-of-plane state (bending. These uncoupled systems are joined to form a macro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs. A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM.

  16. Hybridization study of developmental plastid gene expression in mustard (Sinapsis alba L.) with cloned probes for most plastid DNA regions.

    Science.gov (United States)

    Link, G

    1984-07-01

    An approach to assess the extent of developmental gene expression of various regions of plastid (pt)DNA in mustard (Sinapis alba L.) is described. It involves cloning of most ptDNA regions. The cloned regions then serve as hybridization probes to detect and assess the abundance of complementary RNA sequences represented in total plastid RNA. By comparison of the hybridization pattern observed with plastid RNA from either dark-grown or light-grown plants it was found that many ptDNA regions are constitutively expressed, while several 'inducible' regions account for much higher transcript levels in the chloroplast than in the etioplast stage. The reverse situation, i.e. 'repressed' regions which would account for higher transcript levels in the etioplast, was not observed. The hybridization results obtained with RNA from 'intermediatetype' plastids suggest that transient gene expression is a common feature during light-induced chloroplast development. The time-course of gene expression differs for various ptDNA regions.

  17. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials

    Science.gov (United States)

    Zhao, Nan; Zhu, Donghui

    2016-01-01

    Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018

  18. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development.

    Directory of Open Access Journals (Sweden)

    Juan de Dios Barajas-López

    Full Text Available The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5 was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative

  19. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  20. Creating Diversified Response Profiles from a Single Quenchometric Sensor Element by Using Phase-Resolved Luminescence

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Tehan

    2015-01-01

    Full Text Available We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i can become highly non-linear; (ii yield negative going responses; (iii can be biphasic; and (iv can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions.

  1. Creating Diversified Response Profiles from a Single Quenchometric Sensor Element by Using Phase-Resolved Luminescence

    Science.gov (United States)

    Tehan, Elizabeth C.; Bukowski, Rachel M.; Chodavarapu, Vamsy P.; Titus, Albert H.; Cartwright, Alexander N.; Bright, Frank V.

    2015-01-01

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions). PMID:25569752

  2. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    Science.gov (United States)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  3. Response of hot element wall shear stress gages in laminar oscillating flows

    Science.gov (United States)

    Cook, W. J.; Murphy, J. D.; Giddings, T. A.

    1986-01-01

    An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.

  4. An Extended Finite Element Method Formulation for Modeling the Response of Polycrystalline Materials to Dynamic Loading

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas E.

    2007-12-01

    The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.

  5. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    Directory of Open Access Journals (Sweden)

    Wenjuan Huang

    Full Text Available Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2 concentrations and nitrogen (N deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K, calcium (Ca, magnesium (Mg, aluminum (Al, copper (Cu and manganese (Mn in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1 and N addition (100 kg N ha(-1 yr(-1 from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics.

  6. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Brantley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  7. An extended finite element formulation for modeling the response of polycrystalline materials to shock loading

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2007-06-01

    The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)

  8. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2007-10-01

    Full Text Available Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE. We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation.

  9. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  10. Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling

    Institute of Scientific and Technical Information of China (English)

    马鑫; 钱乙余

    2001-01-01

    Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.

  11. Isolation of transcription factors binding auxin response elements using a yeast one-hybrid system

    Institute of Scientific and Technical Information of China (English)

    齐眉; 黄美娟; 陈凡

    2002-01-01

    Plant hormones play an important role during higher plant embryogenesis. Auxin is central to the development of vascular tissues, formation of lateral and adventitious roots, control of apical dominance, and tropic responses. Auxin response element (AuxRE), present in the promoters of many auxin-induced genes, can confer auxin responsiveness. Using carrot somatic embryo under specific developmental phase, a cDNA expression library was constructed. Several plasmids were recombined containing the tetramer of AuxRE as a bait. After screening by a yeast one-hy- brid system, one positive clone was confirmed and characterized. Electrophoretic mobility shift assay showed that AxRF1 protein expressed in yeast cell could bind AuxRE in vitro. It suggests that AxRF1 participates in regulation of the expression of auxin responsive gene during carrot somatic embryogenesis.

  12. Plastid endosymbiosis, genome evolution and the origin of green plants.

    Science.gov (United States)

    Stiller, John W

    2007-09-01

    Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.

  13. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    Science.gov (United States)

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  14. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid.

    Science.gov (United States)

    Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp

    2017-02-01

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid (DcMP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus. Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named DcMP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus, (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  15. A Novel Peroxisome Proliferator Response Element Modulates Hepatic Low Density Lipoprotein Receptor Gene Transcription in Response to PPARδ Activation

    Science.gov (United States)

    Shende, Vikram R.; Singh, Amar Bahadur; Liu, Jingwen

    2016-01-01

    The hepatic expression of LDLR gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative PPAR-response element (PPRE) sequence motif located at −768 to −752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin mediated transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression. PMID:26443862

  16. A novel peroxisome proliferator response element modulates hepatic low-density lipoprotein receptor gene transcription in response to PPARδ activation.

    Science.gov (United States)

    Shende, Vikram R; Singh, Amar Bahadur; Liu, Jingwen

    2015-12-15

    The hepatic expression of low-density lipoprotein (LDL) receptor (LDLR) gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative peroxisome proliferator-activated receptor (PPAR)-response element (PPRE) sequence motif located at -768 to -752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin (RSV)-mediated transactivation. EMSA and ChIP assay further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression.

  17. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    Science.gov (United States)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  18. Dual Targeting and Retrograde Translocation: Regulators of Plant Nuclear Gene Expression Can Be Sequestered by Plastids

    Directory of Open Access Journals (Sweden)

    Karin Krupinska

    2012-09-01

    Full Text Available Changes in the developmental or metabolic state of plastids can trigger profound changes in the transcript profiles of nuclear genes. Many nuclear transcription factors were shown to be controlled by signals generated in the organelles. In addition to the many different compounds for which an involvement in retrograde signaling is discussed, accumulating evidence suggests a role for proteins in plastid-to-nucleus communication. These proteins might be sequestered in the plastids before they act as transcriptional regulators in the nucleus. Indeed, several proteins exhibiting a dual localization in the plastids and the nucleus are promising candidates for such a direct signal transduction involving regulatory protein storage in the plastids. Among such proteins, the nuclear transcription factor WHIRLY1 stands out as being the only protein for which an export from plastids and translocation to the nucleus has been experimentally demonstrated. Other proteins, however, strongly support the notion that this pathway might be more common than currently believed.

  19. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    Science.gov (United States)

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes.

  20. Validation of an interferon stimulatory response element reporter gene assay for quantifying type I interferons.

    Science.gov (United States)

    McCoski, S R; Xie, M; Hall, E B; Mercadante, P M; Spencer, T E; Lonergan, P; Ealy, A D

    2014-04-01

    The goal of this work was to develop a virus-free, cell-based interferon (IFN) bioassay and determine the utility of this assay on biological samples that contained IFN-τ, the trophoblast-secreted maternal recognition of pregnancy factor in ruminants. Madin-Darby bovine kidney cells were transduced with lentiviral particles that contained a firefly luciferase reporter construct driven by an IFN stimulatory response element (ISRE). Stably transduced cells were selected with the use of puromycin resistance. A linear, dose-responsive response was detected with human IFN-α and ovine IFN-τ. Interferon activity was detected in conditioned media from bovine trophoblast cells and uterine flushes collected from sheep and cattle. Activity also was detected in media collected after individual or small group culture of in vitro-produced bovine blastocysts at day 8 to 10 after fertilization. In summary, this IFN stimulatory response element-reporter assay may be used as an alternative to virus-dependent, cytopathic assays. It contains a similar sensitivity to IFNs and can be completed in a shorter time than cytopathic assays and does not require heightened biosafety conditions after cell transduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Intercalation of psoralen into DNA of plastid chromosomes decreases late during barley chloroplast development.

    OpenAIRE

    Davies, J. P.; Thompson, R.J.; Mosig, G

    1991-01-01

    We have used a DNA crosslinking assay to measure intercalation of the psoralen derivative HMT (4'-hydroxymethyl-4,5',8-trimethylpsoralen) into barley (Hordeum vulgare) plastid chromosomal DNA during chloroplast and etioplast development. Intercalation into DNA in intact plastids in vivo and in plastid lysates in vitro shows that chromosomal DNA in the most mature chloroplasts intercalates HMT less efficiently than DNA in younger chloroplasts. In contrast, there is no change in HMT intercalati...

  2. Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available Analysis of the resonance response improvement of a planar C-band (4–8 GHz antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency.

  3. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    Science.gov (United States)

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  4. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.

    Science.gov (United States)

    Bodył, Andrzej

    2017-05-23

    The evolution of plastids has a complex and still unresolved history. These organelles originated from a cyanobacterium via primary endosymbiosis, resulting in three eukaryotic lineages: glaucophytes, red algae, and green plants. The red and green algal plastids then spread via eukaryote-eukaryote endosymbioses, known as secondary and tertiary symbioses, to numerous heterotrophic protist lineages. The number of these horizontal plastid transfers, especially in the case of red alga-derived plastids, remains controversial. Some authors argue that the number of plastid origins should be minimal due to perceived difficulties in the transformation of a eukaryotic algal endosymbiont into a multimembrane plastid, but increasingly the available data contradict this argument. I suggest that obstacles in solving this dilemma result from the acceptance of a single evolutionary scenario for the endosymbiont-to-plastid transformation formulated by Cavalier-Smith & Lee (1985). Herein I discuss data that challenge this evolutionary scenario. Moreover, I propose a new model for the origin of multimembrane plastids belonging to the red lineage and apply it to the dinoflagellate peridinin plastid. The new model has several general and practical implications, such as the requirement for a new definition of cell organelles and in the construction of chimeric organisms. © 2017 Cambridge Philosophical Society.

  5. In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules

    Directory of Open Access Journals (Sweden)

    Kwok Ernest Y

    2004-02-01

    Full Text Available Abstract Background Plastid stromules are stroma-filled tubules that extend from the surface of plastids in higher plants and allow the exchange of protein molecules between plastids. These structures are highly dynamic; stromules change both their shape and position in the cytoplasm very rapidly. Previous studies with microfilament inhibitors indicated that stromule shape and movement are dependent on the actin cytoskeleton. To learn more about the nature of the interactions of stromules and the cytoskeleton, we imaged fluorescently-labeled microfilaments and plastids. Results We have used Arabidopsis thaliana plants expressing green fluorescent protein fused to the human actin-binding protein talin to observe microfilaments and their relationship to stromules in vivo. Microfilaments were observed in close contact with stromules and plastid bodies of hypocotyl epidermis. Time-lapse confocal microscopy revealed that microfilament rearrangements were associated with changes in plastid and stromule morphology and position. We also observed close interactions between mitochondria and stromules in double-labeled cells. Conclusion Our results indicate a correlation between the rearrangement of microfilaments and changes in the shape and position of plastids and stromules. Stromules interact with microfilaments that may also be utilized by mitochondria and other organelles. The interaction of microfilaments and plastids is likely to be mediated by actin-binding proteins on the plastid envelope membrane.

  6. AN ENHANCED ELEMENT-FREE GALERKIN METHOD FOR DYNAMIC RESPONSE OF POROELASTIC SEABED

    Institute of Scientific and Technical Information of China (English)

    HUA Lei-na; YU Xi-ping

    2009-01-01

    This study presents an effective numerical model for the dynamic response of poroelastic seabed under wave action with enhanced performance. The spatial discretization is based on the Element-Free Galerkin (EFG) method and the time integration based on the GN11 scheme. A stability strategy that adopts a smaller number of nodes for the pore water pressure compared with those for the displacements of the soil skeleton is suggested to resolve the similar difficulty as encountered in the finite element method for a problem with mixed formulation when the pore water is incompressible and the soil skeleton impervious. The accuracy of the numerical model is verified through applying it to a typical case with critical permeability. Good agreement between computational and analytical solutions is obtained.

  7. Identification of peroxisome-proliferator responsive element in the mouse HSL gene.

    Science.gov (United States)

    Yajima, Hiroaki; Kobayashi, Yumie; Kanaya, Tomoka; Horino, Yoko

    2007-01-12

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step of lipolysis in adipose tissue. Several studies suggest that protein phosphorylation regulates the HSL enzymatic activity. On the other hand, the precise mechanism of the transcriptional regulation of the HSL gene remains to be elucidated. Here, we identified a functional peroxisome-proliferator responsive element (PPRE) in the mouse HSL promoter by reporter assay in CV-1 cells using serial deletion and point mutants of the 5'-flanking region. Chromatin immunoprecipitation (ChIP) analysis revealed that both peroxisome-proliferator activated receptor (PPARgamma) and retinoid X receptor (RXRalpha) interacted with the region. Binding of the PPARgamma/RXRalpha heterodimer to the PPRE sequence was also confirmed by electrophoretic mobility shift assay. These results indicate that the HSL gene is transcriptionally regulated by PPARgamma/RXRalpha heterodimer, and suggest that a cis-acting element regulates the HSL gene expression.

  8. Finite element simulation of rate-dependent magneto-active polymer response

    Science.gov (United States)

    Haldar, K.; Kiefer, B.; Menzel, A.

    2016-10-01

    This contribution is concerned with the embedding of constitutive relations for magneto-active polymers (MAP) into finite element simulations. To this end, a recently suggested, calibrated, and validated material model for magneto-mechanically coupled and rate-dependent MAP response is briefly summarized in its continuous and algorithmic settings. Moreover, the strongly coupled field equations of finite deformation magneto-mechanics are reviewed. For the purpose of numerical simulation, a finite element model is then established based on the usual steps of weak form representation, discretization and consistent linearization. Two verifying inhomogeneous numerical examples are presented in which a classical ‘plate with a hole’ geometry is equipped with MAP properties and subjected to different types of time-varying mechanical and magnetic loading.

  9. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  10. Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates.

    Science.gov (United States)

    Takishita, Kiyotaka; Ishida, Ken-Ichiro; Maruyama, Tadashi

    2004-12-01

    Although most photosynthetic dinoflagellates have plastids with peridinin, the three dinoflagellate genera Karenia, Karlodinium, and Takayama possess anomalously pigmented plastids that contain fucoxanthin and its derivatives (19'-hexanoyloxy-fucoxanthin and 19'-butanoyloxy-fucoxanthin) instead of the peridinin. This pigment composition is similar to that of haptophytes. All peridinin-containing dinoflagellates investigated so far have at least two types of glyceraldehyde-3-phosphate dehydrogenase (GAPDH): cytosolic and plastid-targeted forms. In the present study, we cloned and sequenced genes encoding cytosolic and plastid-targeted GAPDH proteins from three species of the fucoxanthin derivative-containing dinoflagellates. Based on the molecular phylogeny, the plastid-targeted GAPDH genes of the fucoxanthin derivative-containing dinoflagellates were closely related to those of haptophyte algae rather than to the peridinin-containing dinoflagellates, while one of several cytosolic versions from the peridinin- and the fucoxanthin derivative-containing dinoflagellates are closely related to each other. Considering a previously reported theory that the plastid-targeted GAPDH from the peridinin-containing dinoflagellates originated by a gene duplication of the cytosolic form before the splitting of the dinoflagellate lineage, it is highly likely that the plastid-targeted GAPDH gene of the peridinin-containing dinoflagellates is original in this algal group and that in the fucoxanthin-containing dinoflagellates, the original plastid-targeted GAPDH was replaced by that of a haptophyte endosymbiont during a tertiary endosymbiosis. The present results strongly support the hypothesis that the plastids of the peridinin- and the fucoxanthin derivative-containing dinoflagellates are of separate origin.

  11. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    Science.gov (United States)

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  12. On the structure of AP-4 responsive element in the LTR of Jembrana disease virus

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Previous studies with deletion and sequence analysis of JDV LTR showed that there is a putative AP-4 responsive element in LTR. By antisense transient assay and gel shifting assay, we for the first time demonstrated that AP-4 modulated JDV gene expression by binding DNA directly to bovine cells. The results, derived from site-directed mutagenesis experiments, suggest that the six base pairs of AP-4 binding site (CAGCTG) have different effects on JDV gene expression. When the first two base pairs changed to GC, JDV gene expression is severely decreased.

  13. The antioxidant responsive element (ARE) may explain the protective effects of cruciferous vegetables on cancer.

    Science.gov (United States)

    Finley, John W

    2003-07-01

    Research supports the hypothesis that one's diet has a great impact on his or her risk of cancer. Many studies have found that increased fruit and vegetable intake decreases the risk of cancer. Cruciferous vegetables such as broccoli and cauliflower seem to be especially protective against cancer. Most studies show that phytochemicals in crucifers up-regulate many detoxification enzyme systems in the animal that consumes them. Recent reports of the molecular events involved in the activation of a gene promoter called the antioxidant responsive element have begun to provide clues as to how a single substance may induce a battery of many genes.

  14. Identification of putative PPAR response elements in and around the murine UCP3 gene

    DEFF Research Database (Denmark)

    Siersbæk, Majken

    in thermogenesis in unerring, the physiological functions of UCP2 and UCP3 are at present not fully understood. Synthetic agonists for the peroxisome proliferator-activated receptors (PPARs) as well as fatty acids have been shown to increase murine UCP2 and UCP3 mRNA expression but response elements and mechanisms...... differentiation. Results from sequencing of chromatin immunoprecipitated (ChIP) material from 3T3-L1 adipocytes revealed three PPAR and retinoid X receptor (RXR) binding sites in and around the murine UCP3 gene. The recruitment of PPAR and RXR to the three potential PPREs was determined by ChIP combined...

  15. Spatial Finite Element Analysis for Dynamic Response of Curved Thin-Walled Box Girder Bridges

    Directory of Open Access Journals (Sweden)

    Yinhui Wang

    2016-01-01

    Full Text Available According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.

  16. LAS0811: From Combinatorial Chemistry to Activation of Antioxidant Response Element

    OpenAIRE

    Ming Zhu; Hyounggee Baek; Ruiwu Liu; Aimin Song; Kit Lam; Derick Lau

    2009-01-01

    The antioxidant response element (ARE) and its transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), are potential targets for cancer chemoprevention. We sought to screen small molecules synthesized with combinatorial chemistry for activation of ARE. By high-throughput screening of 9400 small molecules from 10 combinatorial chemical libraries using HepG2 cells with an ARE-driven reporter, we have identified a novel small molecule, 1,2-dimethoxy-4,5-dinitrobenzene (LAS0...

  17. Functional evolution of the p53 regulatory network through its target response elements

    Science.gov (United States)

    Jegga, Anil G.; Inga, Alberto; Menendez, Daniel; Aronow, Bruce J.; Resnick, Michael A.

    2008-01-01

    Transcriptional network evolution is central to the development of complex biological systems. Networks can evolve through variation of master regulators and/or by changes in regulation of genes within networks. To gain insight into meaningful evolutionary differences in large networks, it is essential to address the functional consequences of sequence differences in response elements (REs) targeted by transcription factors. Using a combination of custom bioinformatics and multispecies alignment of promoter regions, we investigated the functional evolution of REs in terms of responsiveness to the sequence-specific transcription factor p53, a tumor suppressor and master regulator of stress responses. We identified REs orthologous to known p53 targets in human and rodent cells or alternatively REs related to the established p53 consensus. The orthologous REs were assigned p53 transactivation capabilities based on rules determined from model systems, and a functional heat map was developed to visually summarize conservation of sequence and relative level of responsiveness to p53 for 47 REs in 14 species. Individual REs exhibited marked differences in transactivation potentials and widespread evolutionary turnover. Functional differences were often not predicted from consensus sequence evaluations. Of the established human p53 REs analyzed, 91% had sequence conservation in at least one nonprimate species compared with 67.5% for functional conservation. Surprisingly, there was almost no conservation of functional REs for genes involved in DNA metabolism or repair between humans and rodents, suggesting important differences in p53 stress responses and cancer development. PMID:18187580

  18. Analysis of nonexponential transient response due to a constant-phase element

    Energy Technology Data Exchange (ETDEWEB)

    Heuveln, F.H. van (Netherlands Energy Research Foundation, Petten (Netherlands))

    1994-12-01

    To characterize electrical losses of fuel cells or batteries, impedance spectroscopy (IS) or current interruption (CI) can be used. Analysis and parameter determination of impedance data is widely used. The system under study is usually represented by an equivalent circuit from which the system parameters can be determined. However, the analysis of current-interruption data is often carried out with too simple circuits, e.g., using pure exponential behavior, because analysis in the time domain (CI) is often much more awkward than analysis in the frequency domain (IS). A comparative study has been carried out on the analysis of a relatively ideal electrical circuit, containing a pure capacitor, and a more realistic circuit where the capacitor is replaced by a constant-phase element. Equations describing the response in the frequency and time domain are presented. Emphasis input upon the analysis of circuits containing a constant-phase element because impedance measurements clearly indicate the presence of such an element in many types of experiments, and because there is only limited literature available describing the behavior in the time domain.

  19. Analysis of non-exponential transient response due to a constant phase element

    Energy Technology Data Exchange (ETDEWEB)

    Van Heuveln, F.H.

    1994-08-01

    To characterize electrical losses of fuel cells or batteries, impedance spectroscopy (IS) or current interruption (CI) can be used. Analysis and parameter determination of impedance data is widely used. The system under study is usually represented by an equivalent circuit from which the system parameters can be determined. However, the analysis of current interruption data is often carried out with too simple circuits, e.g., using pure exponential behavior, because analysis in the time domain (CI) is often much more awkward then analysis in the frequency domain (IS). A comparative study has been carried out on the analysis of a relatively ideal electrical circuit, containing a pure capacitor, and a more realistic circuit where the capacitor is replaced by a constant phase element. Equations describing the response in the frequency and time domain are presented. Emphasis is put upon the analysis of circuits containing a constant phase element, because impedance measurements clearly indicate the presence of such an element in many types of experiments, and because there is only limited literature available describing the behavior in the time domain. 6 figs., 11 refs.

  20. Core influence on the frequency response analysis (FRA of power transformers through the finite element method

    Directory of Open Access Journals (Sweden)

    D. L. Alvarez

    2015-11-01

    Full Text Available In this paper the influence of core parameters in Frequency Response Analysis is analyzed through the equivalent circuit impedance matrix of the transformer winding; the parameters of the circuit have been computed using the Finite Element Method. In order to appreciate the behavior of the iron core in comparison to the air core, the frequency dependence of resonances is calculated to show how the air core only influences the results at low frequencies. The core is modeled using a complex permeability, and the parameters of conductivity and permeability are varied to show their influence in the resonances, which turned out to be negligible. In order to explain this behavior, the eigenvalues of the inverse impedance matrix are calculated showing that they are similar for different values of conductivity and permeability. Finally, the magnetic flux inside and outside the core and its influence in the frequency response is studied.

  1. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium

    Directory of Open Access Journals (Sweden)

    Marie-Mathilde Perrineau

    2015-06-01

    Full Text Available Group II introns are closely linked to eukaryote evolution because nuclear spliceosomal introns and the small RNAs associated with the spliceosome are thought to trace their ancient origins to these mobile elements. Therefore, elucidating how group II introns move, and how they lose mobility can potentially shed light on fundamental aspects of eukaryote biology. To this end, we studied five strains of the unicellular red alga Porphyridium purpureum that surprisingly contain 42 group II introns in their plastid genomes. We focused on a subset of these introns that encode mobility-conferring intron-encoded proteins (IEPs and found them to be distributed among the strains in a lineage-specific manner. The reverse transcriptase and maturase domains were present in all lineages but the DNA endonuclease domain was deleted in vertically inherited introns, demonstrating a key step in the loss of mobility. P. purpureum plastid intron RNAs had a classic group IIB secondary structure despite variability in the DIII and DVI domains. We report for the first time the presence of twintrons (introns-within-introns, derived from the same mobile element in Rhodophyta. The P. purpureum IEPs and their mobile introns provide a valuable model for the study of mobile retroelements in eukaryotes and offer promise for biotechnological applications.

  2. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium.

    Science.gov (United States)

    Perrineau, Marie-Mathilde; Price, Dana C; Mohr, Georg; Bhattacharya, Debashish

    2015-01-01

    Group II introns are closely linked to eukaryote evolution because nuclear spliceosomal introns and the small RNAs associated with the spliceosome are thought to trace their ancient origins to these mobile elements. Therefore, elucidating how group II introns move, and how they lose mobility can potentially shed light on fundamental aspects of eukaryote biology. To this end, we studied five strains of the unicellular red alga Porphyridium purpureum that surprisingly contain 42 group II introns in their plastid genomes. We focused on a subset of these introns that encode mobility-conferring intron-encoded proteins (IEPs) and found them to be distributed among the strains in a lineage-specific manner. The reverse transcriptase and maturase domains were present in all lineages but the DNA endonuclease domain was deleted in vertically inherited introns, demonstrating a key step in the loss of mobility. P. purpureum plastid intron RNAs had a classic group IIB secondary structure despite variability in the DIII and DVI domains. We report for the first time the presence of twintrons (introns-within-introns, derived from the same mobile element) in Rhodophyta. The P. purpureum IEPs and their mobile introns provide a valuable model for the study of mobile retroelements in eukaryotes and offer promise for biotechnological applications.

  3. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues

    Science.gov (United States)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are transcription factors that are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Since ChREBP and its co-activator Max-like protein X (Mlx) have not ...

  4. A CYCLIC-AMP RESPONSE ELEMENT IS INVOLVED IN RETINOIC ACID-DEPENDENT RAR-BETA-2 PROMOTER ACTIVATION

    NARCIS (Netherlands)

    KRUYT, FAE; FOLKERS, G; VANDENBRINK, CE; VANDERSAAG, PT; Kruyt, Frank

    1992-01-01

    Activation of the retinoic acid receptor (RAR) beta2 promoter is known to be mediated by a RA response element located in the proximity of the TATA-box. By deletion studies in P19 embryonal carcinoma cells we have analyzed the RARbeta2 promoter for the presence of additional regulatory elements. We

  5. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  6. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate

    KAUST Repository

    Gornik, Sebastian G.

    2015-04-20

    Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes - notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium - highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite\\'s host. Hematodinium sp. thus represents a further dimension of endosymbiosis-life after the organelle. © 2015, National Academy of Sciences. All rights reserved.

  7. Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids.

    Science.gov (United States)

    Shalchian-Tabrizi, Kamran; Minge, Marianne A; Cavalier-Smith, Tom; Nedreklepp, Joachim M; Klaveness, Dag; Jakobsen, Kjetill S

    2006-01-01

    Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny.

  8. Fluorescent protein aided insights on plastids and their extensions: A critical appraisal.

    Directory of Open Access Journals (Sweden)

    Kathleen eDelfosse

    2016-01-01

    Full Text Available Multi-coloured fluorescent proteins targeted to plastids have provided new insights on the dynamic behaviour of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signalling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.

  9. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome

    Science.gov (United States)

    Dorrell, Richard G; Gile, Gillian; McCallum, Giselle; Méheust, Raphaël; Bapteste, Eric P; Klinger, Christen M; Brillet-Guéguen, Loraine; Freeman, Katalina D; Richter, Daniel J; Bowler, Chris

    2017-01-01

    Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI: http://dx.doi.org/10.7554/eLife.23717.001 PMID:28498102

  10. Characterization of the plastid-specific germination and seedling establishment transcriptional programme.

    Science.gov (United States)

    Demarsy, E; Buhr, F; Lambert, E; Lerbs-Mache, S

    2012-01-01

    Upon imbibition, dry seeds rapidly gain metabolic activity and the switching on of a germination-specific transcriptional programme in the nucleus goes ahead, with the induction of many nucleus-encoded transcripts coding for plastid-localized proteins. Dedifferentiated plastids present in dry seeds differentiate into chloroplasts in cotyledons and into amyloplasts in the root and in the hypocotyl, raising the question of whether the beginning of a new plant's life cycle is also characterized by specific changes in the plastid transcriptional programme. Here the plastid transcriptome is characterized during imbibition/stratification, germination, and early seedling outgrowth. It is shown that each of these three developmental steps is characterized by specific changes in the transcriptome profile, due to differential activities of the three plastid RNA polymerases and showing the integration of plastids into a germination-specific transcriptional programme. All three RNA polymerases are active during imbibition; that is, at 4 °C in darkness. However, activity of plastid-encoded RNA polymerase (PEP) is restricted to the rrn operon. After cold release, PEP changes specificity by also transcribing photosynthesis-related genes. The period of germination and radicle outgrowth is further characterized by remarkable antisense RNA production that diminishes during greening when photosynthesis-related mRNAs accumulate to their highest but to very different steady-state levels. During stratification and germination mRNA accumulation is not paralleled by protein accumulation, indicating that plastid transcription is more important for efficient germination than translation.

  11. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2016-01-01

    Full Text Available Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.

  12. Comparison between the HCV IRES domain IV RNA structure and the Iron Responsive Element

    Directory of Open Access Journals (Sweden)

    Painter Jenna M

    2009-02-01

    Full Text Available Abstract Background Serum ferritin and hepatic iron concentrations are frequently elevated in patients who are chronically infected with the hepatitis C virus (HCV, and hepatic iron concentration has been used to predict response to interferon therapy, but these correlations are not well understood. The HCV genome contains an RNA structure resembling an iron responsive element (IRE in its internal ribosome entry site (IRES structural domain IV (dIV. An IRE is a stem loop structure used to control the expression of eukaryotic proteins involved in iron homeostasis by either inhibiting ribosomal binding or protecting the mRNA from nuclease degradation. The HCV structure, located within the binding site of the 40S ribosomal subunit, might function as an authentic IRE or by an IRE-like mechanism. Results Electrophoretic mobility shift assays showed that the HCV IRES domain IV structure does not interact with the iron regulatory protein 1 (IRP1 in vitro. Systematic HCV IRES RNA mutagenesis suggested that IRP1 cannot accommodate the shape of the wild type HCV IRES dIV RNA structure. Conclusion The HCV IRES dIV RNA structure is not an authentic IRE. The possibility that this RNA structure is responsible for the observed correlations between intracellular iron concentration and HCV infection parameters through an IRE-like mechanism in response to some other cellular signal remains to be tested.

  13. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive

    NARCIS (Netherlands)

    Christa, Gregor; Zimorski, Verena; Woehle, Christian; Tielens, Aloysius G M; Wägele, Heike; Martin, William F; Gould, Sven B

    2014-01-01

    Several sacoglossan sea slugs (Plakobranchoidea) feed upon plastids of large unicellular algae. Four species--called long-term retention (LtR) species--are known to sequester ingested plastids within specialized cells of the digestive gland. There, the stolen plastids (kleptoplasts) remain photosynt

  14. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive

    NARCIS (Netherlands)

    G. Christa (Gregor); V. Zimorski (Verena); C. Woehle (Christian); A.G.M. Tielens (Aloysius); H. Wägele (Heike); W. Martin (William); D.B. Gould (Douglas )

    2013-01-01

    textabstractSeveral sacoglossan sea slugs (Plakobranchoidea) feed upon plastids of large unicellular algae. Four species-called long-term retention (LtR) species-are known to sequester ingested plastids within specialized cells of the digestive gland. There, the stolen plastids (kleptoplasts) remain

  15. Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars.

    Directory of Open Access Journals (Sweden)

    Jamal S M Sabir

    Full Text Available Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for

  16. Plastid transformation in lettuce (Lactuca sativa L.) by polyethylene glycol treatment of protoplasts.

    Science.gov (United States)

    Lelivelt, Cilia L C; van Dun, Kees M P; de Snoo, C Bastiaan; McCabe, Matthew S; Hogg, Bridget V; Nugent, Jacqueline M

    2014-01-01

    A detailed protocol for PEG-mediated plastid transformation of Lactuca sativa cv. Flora, using leaf protoplasts, is described. Successful plastid transformation using protoplasts requires a large number of viable cells, high plating densities, and an efficient regeneration system. Transformation was achieved using a vector that targets genes to the trnI/trnA intergenic region of the lettuce plastid genome. The aadA gene, encoding an adenylyltransferase enzyme that confers spectinomycin resistance, was used as a selectable marker. With the current method, the expected transformation frequency is 1-2 spectinomycin-resistant cell lines per 10(6) viable protoplasts. Fertile, diploid, homoplasmic, plastid-transformed lines were obtained. Transmission of the plastid-encoded transgene to the T1 generation was demonstrated.

  17. RNase P RNA from the Recently Evolved Plastid of Paulinella and from Algae

    Directory of Open Access Journals (Sweden)

    Pilar Bernal-Bayard

    2014-11-01

    Full Text Available The RNase P RNA catalytic subunit (RPR encoded in some plastids has been found to be functionally defective. The amoeba Paulinella chromatophora contains an organelle (chromatophore that is derived from the recent endosymbiotic acquisition of a cyanobacterium, and therefore represents a model of the early steps in the acquisition of plastids. In contrast with plastid RPRs the chromatophore RPR retains functionality similar to the cyanobacterial enzyme. The chromatophore RPR sequence deviates from consensus at some positions but those changes allow optimal activity compared with mutated chromatophore RPR with the consensus sequence. We have analyzed additional RPR sequences identifiable in plastids and have found that it is present in all red algae and in several prasinophyte green algae. We have assayed in vitro a subset of the plastid RPRs not previously analyzed and confirm that these organelle RPRs lack RNase P activity in vitro.

  18. Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria.

    Science.gov (United States)

    Criscuolo, Alexis; Gribaldo, Simonetta

    2011-11-01

    The emergence of photosynthetic eukaryotes has played a crucial role in evolution and has strongly modified earth's ecology. Several phylogenetic analyses have established that primary plastids arose from a cyanobacterium through endosymbiosis. However, the question of which present-day cyanobacterial lineage is most closely related to primary plastids has been unclear. Here, we have performed an extensive phylogenomic investigation on the origin of primary plastids based on the analysis of up to 191 protein markers and over 30,000 aligned amino acid sites from 22 primary photosynthetic eukaryotes and 61 cyanobacteria representing a wide taxonomic sampling of this phylum. By using a number of solutions to circumvent a large range of systematic errors, we have reconstructed a robust global phylogeny of cyanobacteria and studied the placement of primary plastids within it. Our results strongly support an early emergence of primary plastids within cyanobacteria, prior to the diversification of most present-day cyanobacterial lineages for which genomic data are available.

  19. A Multi-Element Approach to Location Inference of Twitter: A Case for Emergency Response

    Directory of Open Access Journals (Sweden)

    Farhad Laylavi

    2016-04-01

    Full Text Available Since its inception, Twitter has played a major role in real-world events—especially in the aftermath of disasters and catastrophic incidents, and has been increasingly becoming the first point of contact for users wishing to provide or seek information about such situations. The use of Twitter in emergency response and disaster management opens up avenues of research concerning different aspects of Twitter data quality, usefulness and credibility. A real challenge that has attracted substantial attention in the Twitter research community exists in the location inference of twitter data. Considering that less than 2% of tweets are geotagged, finding location inference methods that can go beyond the geotagging capability is undoubtedly the priority research area. This is especially true in terms of emergency response, where spatial aspects of information play an important role. This paper introduces a multi-elemental location inference method that puts the geotagging aside and tries to predict the location of tweets by exploiting the other inherently attached data elements. In this regard, textual content, users’ profile location and place labelling, as the main location-related elements, are taken into account. Location-name classes in three granularity levels are defined and employed to look up the location references from the location-associated elements. The inferred location of the finest granular level is assigned to a tweet, based on a novel location assignment rule. The location assigned by the location inference process is considered to be the inferred location of a tweet, and is compared with the geotagged coordinates as the ground truth of the study. The results show that this method is able to successfully infer the location of 87% of the tweets at the average distance error of 12.2 km and the median distance error of 4.5 km, which is a significant improvement compared with that of the current methods that can predict the location

  20. Whole-genome cartography of p53 response elements ranked on transactivation potential.

    Science.gov (United States)

    Tebaldi, Toma; Zaccara, Sara; Alessandrini, Federica; Bisio, Alessandra; Ciribilli, Yari; Inga, Alberto

    2015-06-17

    Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary

  1. The transient response for different types of erodable surface thermocouples using finite element analysis

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein

    2007-01-01

    Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.

  2. A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response

    Directory of Open Access Journals (Sweden)

    P.P. Moita

    2008-01-01

    Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.

  3. Maternal inheritance of plastids and mitochondria in Cycas L. (Cycadaceae).

    Science.gov (United States)

    Zhong, Zhi-Rong; Li, Nan; Qian, Dan; Jin, Jian-Hua; Chen, Tao

    2011-12-01

    Cycas is often considered a living fossil, thereby providing a unique model for revealing the evolution of spermatophytes. To date, the genetic inheritance of these archaic plants is not fully understood. The present study seeks to document the process of organelle inheritance in an interspecific cross of Cycas species. Extranuclear organelle DNA from chloroplasts and mitochondria was analyzed using both polymerase chain reaction-restriction fragment length polymorphism analysis and microscopy. Here, we show that the chloroplasts and mitochondria in the progeny of interspecific crosses between Cycas taitungensis and Cycas ferruginea were exclusively inherited from the female parent. Epifluorescence microscopic analyses of the pollen cells from Cycas elongata indicated that there was a significant degradation of organelle DNA in male reproductive cells following maturation; the DNA fluorescent signals were only seen after pollen mitosis two, but not detectable at mature stage. Lack of organelle DNA fluorescent signal in prothallial cells was confirmed by the absence of plastids and mitochondria in electronic microscopic images. In conclusion, these data suggest that the maternal plastid and mitochondrial inheritance in Cycas, native to the old world, are the same as seen in seed plants.

  4. A sea slug’s guide to plastid symbiosis

    Directory of Open Access Journals (Sweden)

    Jan de Vries

    2014-12-01

    Full Text Available Some 140 years ago sea slugs that contained chlorophyll-pigmented granules similar to those of plants were described. While we now understand that these “green granules” are plastids the slugs sequester from siphonaceous algae upon which they feed, surprisingly little is really known about the molecular details that underlie this one of a kind animal-plastid symbiosis. Kleptoplasts are stored in the cytosol of epithelial cells that form the slug’s digestive tubules, and one would guess that the stolen organelles are acquired for their ability to fix carbon, but studies have never really been able to prove that. We also do not know how the organelles are distinguished from the remaining food particles the slugs incorporate with their meal and that include algal mitochondria and nuclei. We know that the ability to store kleptoplasts long-term has evolved only a few times independently among hundreds of sacoglossan species, but we have no idea on what basis. Here we take a closer look at the history of sacoglossan research and discuss recent developments. We argue that, in order to understand what makes this symbiosis work, we will need to focus on the animal’s physiology just as much as we need to commence a detailed analysis of the plastids’ photobiology. Understanding kleptoplasty in sacoglossan slugs requires an unbiased multidisciplinary approach.

  5. HIV Rev Assembly on the Rev Response Element (RRE: A Structural Perspective

    Directory of Open Access Journals (Sweden)

    Jason W. Rausch

    2015-06-01

    Full Text Available HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE, a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus. Once in the cytoplasm, the complexes dissociate and unspliced and singly-spliced viral RNAs are packaged into nascent virions or translated into viral structural proteins and enzymes, respectively. Rev binding to the RRE is a complex process, as multiple copies of the protein assemble on the RNA in a coordinated fashion via a series of Rev-Rev and Rev-RNA interactions. Our understanding of the nature of these interactions has been greatly advanced by recent studies using X-ray crystallography, small angle X-ray scattering (SAXS and single particle electron microscopy as well as biochemical and genetic methodologies. These advances are discussed in detail in this review, along with perspectives on development of antiviral therapies targeting the HIV-1 RRE.

  6. Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor-response elements interactions.

    Science.gov (United States)

    Tan, Yen Nee; Su, Xiaodi; Liu, Edison T; Thomsen, Jane S

    2010-04-01

    Gold nanoparticles (AuNPs) are widely used as colorimetric probes for biosensing, relying on their unique particle size-dependent and/or interparticle distance-dependent extinction spectrum and solution color. Herein, we describe an AuNP-based colorimetric assay to detect binding interactions between nuclear hormone receptors and their corresponding DNA-binding elements, particularly the human estrogen receptors (ERalpha and ERbeta) and their cognate estrogen response elements (EREs). We found that the protein-DNA (ER-ERE) complexes can stabilize citrate anion-capped AuNPs against salt-induced aggregation to a larger extent than the protein (ER) or the DNA (ERE) alone, due to their unique molecular size and charge properties that provide a strong electrosteric protection. Moreover, our results show that the extent of stabilization is sequence-dependent and can distinguish a single base variation in the ERE associated with minor changes in protein-DNA binding affinity. With this assay, many important parameters of protein-DNA binding events (e.g., sequence selectivity, distinct DNA binding properties of protein subtypes, binding stoichiometry, and sequence-independent transient binding) can be determined instantly without using labels, tedious sample preparations, and sophisticated instrumentation. These benefits, in particular the high-throughput potential, could enable this assay to become the assay of choice to complement conventional techniques for large scale characterization of protein-DNA interactions, a key aspect in biological research.

  7. A novel human polycomb binding site acts as a functional polycomb response element in Drosophila.

    Directory of Open Access Journals (Sweden)

    Suresh Cuddapah

    Full Text Available Polycomb group (PcG proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs, which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.

  8. Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

    Energy Technology Data Exchange (ETDEWEB)

    ROMERO,VICENTE J.; SWILER,LAURA PAINTON; GIUNTA,ANTHONY A.

    2000-04-25

    This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

  9. The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity.

    Science.gov (United States)

    Korall, Petra; Kenrick, Paul

    2004-06-01

    Molecular phylogenetic research on Selaginellaceae has focused on the plastid gene rbcL, which in this family has unusually high substitution rates. Here we develop a molecular data set from the nuclear 26S ribosomal DNA gene with the aim of evaluating and extending the results of previous phylogenetic research. The 26S rDNA and the rbcL regions were sequenced for a sample of 23 species, which represent the main elements of species diversity in the family. The data were analysed independently and in combination using both maximum parsimony and Bayesian inference. Although several between genome differences were found, the general pattern of relationships uncovered by all analyses was very similar. Results corroborate the previous study supporting new groupings not previously recognised on morphological grounds. Substitution rates in the 26S rDNA were also found to be high (26% informative) for the region analysed, but lower than for rbcL (37% informative). These data indicate that high substitution rates might be widespread in all three genomes (i.e., plastid, mitochondrion, and nucleus).

  10. Quantifying crustal response to deep active intrusions with geodesy-based finite element modeling

    Science.gov (United States)

    Henderson, S. T.; Pritchard, M. E.; Elliott, J.

    2013-12-01

    The Altiplano-Puna Volcanic Complex (APVC, 21-24 S, 66-69 W) is a first order feature of the Central Andes Volcanic Arc. The APVC consists of over 10,000 km^3 of dacitic ignimbrites deposited in the late Miocene, making it one of the largest concentrations of silicic volcanism in the world. The persistent and intense magmatic flux in this region has likely contributed to the thickened crust (50-70 km), elevated geotherm (>50 C/km) and extensive partial melt (mass balance between source and sink reservoirs, and require physically realistic rheological parameters of the crust. Modeling is performed with Pylith finite element software on a cylindrical three dimensional domain with a radius of 300 km and depth of 200 km. Our models assume pressurization in a viscoelastic crust, and therefore describe crustal response rather than dynamic processes of fluid creation and motion. Surface deformation timescales are highly dependent on geothermal gradient and source pressurization history. While still inconclusive, the potential for an abrupt end to surface deformation has important implications for the characterization of creep versus relaxation processes occurring in response to deep intrusions. Ultimately, crustal scale numerical models provide a means to check petrologically-derived depths of fluid accumulation, in addition to theoretical estimates of softening that occurs with distributed partial melt. The specific models presented are tuned to the subsurface conditions of the APVC, but may be relevant to arc intrusions below the brittle-ductile transition elsewhere.

  11. Finite element modeling of human brain response to football helmet impacts.

    Science.gov (United States)

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.

  12. ZAP-70 and p72syk are signaling response elements through MHC class II molecules

    DEFF Research Database (Denmark)

    Kanner, S B; Grosmaire, L S; Blake, J

    1995-01-01

    of intracellular calcium. Similar responses have been observed in B-cells following stimulation of MHC class II molecules, including the increased production of intracellular cAMP. In this report, we demonstrate that the ZAP-70 tyrosine kinase is a responsive signaling element following cross-linking of HLA......-DR in class II+ T-cells, and that the homologous tyrosine kinase p72syk is stimulated in B-cells following ligation of class II antigens. Antibody mediated co-ligation of the T-cell antigen receptor (TCR/CD3) with class II molecules resulted in augmented tyrosine phosphorylation of ZAP-70. Comparable...... to antibody induced receptor ligation, bacterial superantigen (SEA and SEB) treatment of HLA-DR+ T-cells stimulated ZAP-70 tyrosine phosphorylation, consistent with class II transmembrane signaling by ligation of HLA-DR and V beta in cis. Modulation of the TCR/CD3 led to abrogation of class II induced ZAP-70...

  13. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    Science.gov (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  14. Seismic response of continuous span bridges through fiber-based finite element analysis

    Institute of Scientific and Technical Information of China (English)

    Chiara Casarotti; Rui Pinho

    2006-01-01

    It is widely recognized that nonlinear time-history analysis constitutes the most accurate way to simulate the response of structures subjected to strong levels of seismic excitation. This analytical method is based on sound underlying principles and has the capability to reproduce the intrinsic inelastic dynamic behavior of structures. Nonetheless,comparisons with experimental results from large-scale testing of structures are still needed, in order to ensure adequate levels of confidence in this numerical methodology. The fiber modelling approach employed in the current endeavor inherently accounts for geometric nonlinearities and material inelasticity, without a need for calibration of plastic hinges mechanisms,typical in concentrated plasticity models. The resulting combination of analysis accuracy and modelling simplicity, allows thus to overcome the perhaps not fully justifiable sense of complexity associated to nonlinear dynamic analysis. The fiberbased modelling approach is employed in the framework of a finite element program downloaded from the Internet for seismic response analysis of framed structures. The reliability and accuracy of the program are demonstrated by numerically reproducing pseudo-dynamic tests on a four span continuous deck concrete bridge. Modelling assumptions are discussed,together with their implications on numerical results of the nonlinear time-history analyses, which were found to be in good agreement with experimental results.

  15. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study.

    Science.gov (United States)

    Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2009-07-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation.

  16. Stable Membrane-Association of mRNAs in Etiolated, Greening and Mature Plastids

    Science.gov (United States)

    Legen, Julia; Schmitz-Linneweber, Christian

    2017-01-01

    Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. This study analyzed transcriptome-wide distribution of plastid mRNAs between soluble and membrane fractions of purified plastids using microarray analyses and validating RNA gel blot hybridizations. To determine the impact of light on mRNA localization, we used etioplasts, greening plastids and mature chloroplasts from Zea mays as a source for membrane and soluble extracts. The results show that the three plastid types display an almost identical distribution of RNAs between the two organellar fractions, which is confirmed by quantitative RNA gel blot analyses. Furthermore, they reveal that different RNAs processed from polycistronic precursors show transcript-autonomous distribution between stroma and membrane fractions. Disruption of ribosomes leads to release of mRNAs from membranes, demonstrating that attachment is likely a direct consequence of translation. We conclude that plastid mRNA distribution is a stable feature of different plastid types, setting up rapid chloroplast translation in any plastid type. PMID:28858216

  17. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.

    Science.gov (United States)

    Saldarriaga, J F; Taylor, F J; Keeling, P J; Cavalier-Smith, T

    2001-09-01

    Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow.

  18. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization.

    Science.gov (United States)

    Michalovova, M; Vyskot, B; Kejnovsky, E

    2013-10-01

    We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.

  19. Identification of the interleukin-6/oncostatin M response element in the rat tissue inhibitor of metalloproteinases-1 (TIMP-1) promoter.

    Science.gov (United States)

    Bugno, M; Graeve, L; Gatsios, P; Koj, A; Heinrich, P C; Travis, J; Kordula, T

    1995-01-01

    The rat tissue inhibitor of metalloproteinase 1 (TIMP-1) gene is expressed in rat hepatocytes, and this expression is up-regulated by interleukin 6 (IL-6). We report here the cloning of the 5' flanking region of the rat TIMP-1 gene and identification of an IL-6/oncostatin M (OSM) response element at -64 to -36 which functions in hepatic cells. Within this element we have identified two functional binding sites for transcription factors AP-1 (activatory protein-1) and STAT (signal transducer and activator of transcription). IL-6/OSM stimulation induces binding of a protein, identified as STAT3, to the IL-6/OSM response element, while binding of the AP-1 protein was constitutive. Binding sites for both AP-1 and STAT3 are necessary for full responsiveness of the TIMP-1 promoter to IL-6/OSM, as shown by deletion and mutation analysis. Furthermore, the entire IL-6/OSM response element conferred responsiveness onto a heterologous promoter, whereas this has not been observed when AP-1 and STAT elements were separately tested. Images PMID:8559663

  20. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C;

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription...... metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity....

  1. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom;

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...

  2. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control.

    Science.gov (United States)

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-05-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.

  3. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control[W

    Science.gov (United States)

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-01-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria. PMID:24879428

  4. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  5. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    Zhanwei Zhang; Ting Zhang; Keli Dong

    2012-01-01

    At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected signifi-cantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippo-campus of the senescence-accelerated mouse.

  6. Molecular evolution and nucleotide sequences of the maize plastid genes for the alpha subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH).

    Science.gov (United States)

    Rodermel, S R; Bogorad, L

    1987-05-01

    The nucleotide sequences of the maize plastid genes for the alpha subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH) are presented. The evolution of these genes among higher plants is characterized by a transition mutation bias of about 2:1 and by rates of synonymous and nonsynonymous substitution which are much lower than similar rates for genes from other sources. This is consistent with the notion that the plastid genome is evolving conservatively in primary sequence. Yet, the mode and tempo of sequence evolution of these and other plastid-encoded coupling factor genes are not the same. In particular, higher rates of nonsynonymous substitution in atpE (the gene for the epsilon subunit of CF1) and higher rates of synonymous substitution in atpH in the dicot vs. monocot lineages of higher plants indicate that these sequences are likely subject to different evolutionary constraints in these two lineages. The 5'- and 3'-transcribed flanking regions of atpA and atpH from maize, wheat and tobacco are conserved in size, but contain few putative regulatory elements which are conserved either in their spatial arrangement or sequence complexity. However, these regions likely contain variable numbers of "species-specific" regulatory elements. The present studies thus suggest that the plastid genome is not a passive participant in an evolutionary process governed by a more rapidly changing, readily adaptive, nuclear compartment, but that novel strategies for the coordinate expression of genes in the plastid genome may arise through rapid evolution of the flanking sequences of these genes.

  7. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Xue, Peng [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Zhang, Hao [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zheng, Hongzhi [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhou, Tong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Teng, Weiping [The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jingbopi@gmail.com [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China)

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  8. [Response of a finite element model of the pelvis to different side impact loads].

    Science.gov (United States)

    Ruan, Shijie; Zheng, Huijing; Li, Haiyan; Zhao, Wei

    2013-08-01

    The pelvis is one of the most likely affected areas of the human body in case of side impact, especially while people suffer from motor vehicle crashes. With the investigation of pelvis injury on side impact, the injury biomechanical behavior of pelvis can be found, and the data can help design the vehicle security devices to keep the safety of the occupants. In this study, a finite element (FE) model of an isolated human pelvis was used to study the pelvic dynamic response under different side impact conditions. Fracture threshold was established by applying lateral loads of 1000, 2000, 3000, 4000 and 5000 N, respectively, to the articular surface of the right acetabulum. It was observed that the smaller the lateral loads were, the smaller the von Mises stress and the displacement in the direction of impact were. It was also found that the failure threshold load was near 3000 N, based on the fact that the peak stress would not exceed the average compressive strength of the cortical bone. It could well be concluded that with better design of car-door and hip-pad so that the side impact force was brought down to 3000 N or lower, the pelvis would not be injured.

  9. Activation of antioxidant response element (ARE)-dependent genes by roasted coffee extracts.

    Science.gov (United States)

    Yazheng, Liu; Kitts, David D

    2012-09-01

    Coffee beans contain numerous bioactive components that exhibit antioxidant capacity when assessed using both chemical, cell free, and biological, cell-based model systems. However, the mechanisms underlying the antioxidant effects of coffee in biological systems are not totally understood and in some cases vary considerably from results obtained with simpler in vitro chemical assays. In the present study, the physicochemical characteristics and antioxidant activity of roasted and non-roasted coffee extracts were investigated in both cell free (ORAC(FL)) and cell-based systems. A profile of antioxidant gene expression in cultured human colon adenocarcinoma Caco-2 cells treated with both roasted and non-roasted coffee extracts, respectively, was investigated using Real-Time polymerase chain reaction (PCR) array technology. Results demonstrated that the mechanisms of the antioxidant activity associated with coffee constituents assessed by the ORAC(FL) assay were different to those observed using an intracellular oxidation assay with Caco-2 cells. Moreover, roasted coffee (both light and dark roasted) extracts produced both increased- and decreased-expressions of numerous genes that are involved in the management of oxidative stress via the antioxidant defence system. The selective and specific positive induction of antioxidant response element (ARE)-dependent genes, including gastrointestinal glutathione peroxidase (GPX2), sulfiredoxin (SRXN1), thioredoxin reductase 1 (TXNRD1), peroxiredoxin 1 (PRDX1), peroxiredoxin 4 (PDRX4) and peroxiredoxin 6 (PDRX6) were identified with the activation of the endogenous antioxidant defence system in Caco-2 cells.

  10. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake.

    Science.gov (United States)

    Bouazizi, Houda; Jouili, Hager; Geitmann, Anja; El Ferjani, Ezzeddine

    2010-09-01

    Bioaccumulation and toxicity of copper (CuSO4) were assessed in expanding leaves of 14-day-old bean seedlings. CuSO4 was administrated in the growth medium for three days and changes in the activities of the antioxidant enzymes guaiacol peroxidase (GPX) and catalase (CAT), and in the H2O2 production and mineral element contents were measured. Copper accumulated in exposed plants caused severe symptoms such as chlorosis and necrosis as well as a dramatic reduction in dry weight production. Simultaneously, concentrations of iron, zinc and potassium were reduced significantly suggesting that a change in nutrient homeostasis may be responsible for the observed symptoms. Contrary to mature tissues, the expanding leaves did not display significant oxidative stress, since malondialdehyde (MDA) content was unchanged, the activities of GPX and CAT were lowered or unaltered, and endogenous H2O2 only increased at high copper concentrations. Our results suggest that while excess copper slightly alters the activity of the antioxidative enzyme system in young expanding leaves of bean plants, it exerts its toxicity primarily through causing a disturbance in the nutrient balance.

  11. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  12. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil, E-mail: hyunil74@hotmail.com; Lee, Zang Hee, E-mail: zang1959@snu.ac.kr

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  13. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  14. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism.

    Science.gov (United States)

    Iizuka, Katsumi

    2017-02-22

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp(-/-) mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  15. Identification of putative PPAR response elements in and around the murine UCP3 gene

    DEFF Research Database (Denmark)

    Siersbæk, Majken

    in thermogenesis in unerring, the physiological functions of UCP2 and UCP3 are at present not fully understood. Synthetic agonists for the peroxisome proliferator-activated receptors (PPARs) as well as fatty acids have been shown to increase murine UCP2 and UCP3 mRNA expression but response elements and mechanisms...... are not yet characterized. The aim of this study was to investigate the transcriptional regulation of UCP3 by the PPARs. Results: The PPAR agonists increase UCP2 and UCP3 mRNA expression in skeletal muscle cells (C2C12). In addition, UCP2 and UCP3 mRNA expression is upregulated during 3T3-L1 adipocyte...... differentiation. Results from sequencing of chromatin immunoprecipitated (ChIP) material from 3T3-L1 adipocytes revealed three PPAR and retinoid X receptor (RXR) binding sites in and around the murine UCP3 gene. The recruitment of PPAR and RXR to the three potential PPREs was determined by ChIP combined...

  16. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    Science.gov (United States)

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  17. A peroxisome proliferator response elements regulatory system in xenopus oocytes and its application

    Institute of Scientific and Technical Information of China (English)

    YAN Jin; FAN Chun-lei; WO Xing-de; GAO Li-ping

    2005-01-01

    Background Peroxisome proliferator-activated receptor-gamma (PPARγ) is a kind of ligand-activated transcription factors binding to peroxisome proliferator response element (PPRE), a specific recognition site. It is thought to play a critical role in glucose and lipid metabolism and in inflammation control. The aim of this study was to establish a new cellular model for the quick screening of lipid-lowering drugs, which may be effective as PPAR-γ ligands on the PPRE-mediated pathway regulatory system. Methods Two plasmids were constructed: pXOE-PPARγ, in which the human PPARγ gene was in the downstream of TFⅢA gene promoter, and pLXRN-PPRE-d2EGFP, in which the enhanced green fluorescent protein (EGFP) gene was subcloned into PPRE. The xenopus oocytes were injected with these two plamids, and consequently treated with prostaglandin E1, pioglitazone, and different kinds of lipid-lowering drugs. After 3 days, the oocytes were observed under a fluorescence microscope. To confirm the drug action,we injected pXOE-PPARγ plasmid into the oocytes, which then treated with prostaglandin E1and Hawthorn flavonoids. The mass of expressed lipoprotein lipase (LPL) in the cells was determined by enzyme labeling linked immunosorbent assay (ELISA).Conclusions It is possible to establish a PPRE regulatory EGFP reporter system in xenopus oocytes to monitor the activity of PPARγ ligand. Hawthorn flavonoids can increase the expression of gene downsteam of PPRE by effect on the PPRE pathway regulatory system.

  18. LAS0811: From Combinatorial Chemistry to Activation of Antioxidant Response Element

    Directory of Open Access Journals (Sweden)

    Ming Zhu

    2009-01-01

    Full Text Available The antioxidant response element (ARE and its transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, are potential targets for cancer chemoprevention. We sought to screen small molecules synthesized with combinatorial chemistry for activation of ARE. By high-throughput screening of 9400 small molecules from 10 combinatorial chemical libraries using HepG2 cells with an ARE-driven reporter, we have identified a novel small molecule, 1,2-dimethoxy-4,5-dinitrobenzene (LAS0811, as an activator of the ARE. LAS0811 upregulated the activity of NAD(PH:quinone oxidoreductase 1 (NQO1, a representative antioxidative enzyme regulated by ARE. It enhanced production of an endogenous reducing agent, glutathione (GSH. In addition, LAS0811 induced expression of heme oxygenase 1 (HO1, which is an ARE-regulated enzyme with anti-inflammatory activity. Furthermore, LAS0811 reduced cell death due to the cytotoxic stress of a strong oxidant, t-butyl hydroperoxide (t-BOOH. Mechanistically, LAS0811 upregulated the expression of Nrf2 and promoted its translocation into the nuclei leading to subsequent ARE activation. Taken together, LAS0811 is a novel activator of the ARE and its associated detoxifying genes and, thus, a potential agent for cancer chemoprevention.

  19. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production.

    Science.gov (United States)

    Na, Hong; Huisman, Willem; Ellestad, Kristofor K; Phillips, Tom R; Power, Christopher

    2010-09-01

    Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.

  20. Finite element prediction of seismic response modification of monumental structures utilizing base isolation

    Science.gov (United States)

    Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis

    2015-05-01

    The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.

  1. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase.

    Science.gov (United States)

    García-Calderón, Margarita; Pons-Ferrer, Teresa; Mrázova, Anna; Pal'ove-Balang, Peter; Vilková, Mária; Pérez-Delgado, Carmen M; Vega, José M; Eliášová, Adriana; Repčák, Miroslav; Márquez, Antonio J; Betti, Marco

    2015-01-01

    This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2) in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L. japonicus plants in response to stress.

  2. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase

    Directory of Open Access Journals (Sweden)

    Margarita eGarcía-Calderón

    2015-09-01

    Full Text Available This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2 in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L .japonicus plants in response to stress.

  3. Plastid-like Seq in mt Genome - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available erences for individual fragments is available. Data file...t were migrated from the plastid genome to the mitochondrial genome. Information on sizes, positions, gene names, homologies and diff

  4. Intercalation of psoralen into DNA of plastid chromosomes decreases late during barley chloroplast development.

    Science.gov (United States)

    Davies, J P; Thompson, R J; Mosig, G

    1991-01-01

    We have used a DNA crosslinking assay to measure intercalation of the psoralen derivative HMT (4'-hydroxymethyl-4,5',8-trimethylpsoralen) into barley (Hordeum vulgare) plastid chromosomal DNA during chloroplast and etioplast development. Intercalation into DNA in intact plastids in vivo and in plastid lysates in vitro shows that chromosomal DNA in the most mature chloroplasts intercalates HMT less efficiently than DNA in younger chloroplasts. In contrast, there is no change in HMT intercalation during etioplast differentiation in the dark. Our results also show that DNA in higher plant plastid chromosomes is under superhelical tension in vivo. The lower susceptibility to HMT intercalation of DNA in the most mature chloroplasts indicates that late during chloroplast development the superhelical tension or the binding of proteins to the DNA or both change. Images PMID:1923805

  5. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed

    Digital Repository Service at National Institute of Oceanography (India)

    Choi, C.J.; Bachy, C.; Jaeger, G.S.; Poirier, C.; Sudek, L.; Sarma, V.V.S.S.; Mahadevan, A.; Giovannoni, S.J.; Worden, A.Z.

    on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple...

  6. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.

    Science.gov (United States)

    Meyers, Benjamin; Zaltsman, Adi; Lacroix, Benoît; Kozlovsky, Stanislav V; Krichevsky, Alexander

    2010-01-01

    Plant genetic engineering is one of the key technologies for crop improvement as well as an emerging approach for producing recombinant proteins in plants. Both plant nuclear and plastid genomes can be genetically modified, yet fundamental functional differences between the eukaryotic genome of the plant cell nucleus and the prokaryotic-like genome of the plastid will have an impact on key characteristics of the resulting transgenic organism. So, which genome, nuclear or plastid, to transform for the desired transgenic phenotype? In this review we compare the advantages and drawbacks of engineering plant nuclear and plastid genomes to generate transgenic plants with the traits of interest, and evaluate the pros and cons of their use for different biotechnology and basic research applications, ranging from generation of commercial crops with valuable new phenotypes to 'bioreactor' plants for large-scale production of recombinant proteins to research model plants expressing various reporter proteins.

  7. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    Science.gov (United States)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  8. The complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum.

    Directory of Open Access Journals (Sweden)

    Behzad Imanian

    Full Text Available BACKGROUND: In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a 'dinotom'. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexity suggesting an early stage of integration. Although the evolution of these endosymbionts has attracted considerable interest, the plastid genome has not been examined in detail, and indeed no tertiary plastid genome has yet been sequenced. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the complete plastid genomes of two closely related dinotoms, Durinskia baltica and Kryptoperidinium foliaceum. The D. baltica (116470 bp and K. foliaceum (140426 bp plastid genomes map as circular molecules featuring two large inverted repeats that separate distinct single copy regions. The organization and gene content of the D. baltica plastid closely resemble those of the pennate diatom Phaeodactylum tricornutum. The K. foliaceum plastid genome is much larger, has undergone more reorganization, and encodes a putative tyrosine recombinase (tyrC also found in the plastid genome of the heterokont Heterosigma akashiwo, and two putative serine recombinases (serC1 and serC2 homologous to recombinases encoded by plasmids pCf1 and pCf2 in another pennate diatom, Cylindrotheca fusiformis. The K. foliaceum plastid genome also contains an additional copy of serC1, two degenerate copies of another plasmid-encoded ORF, and two non-coding regions whose sequences closely resemble portions of the pCf1 and pCf2 plasmids. CONCLUSIONS/SIGNIFICANCE: These results suggest that while the plastid genomes of two dinotoms share very similar gene content and genome organization with that of the free-living pennate diatom P. tricornutum, the K. folicaeum plastid genome has absorbed two

  9. The Indirect Boundary Element Method (IBEM) for Seismic Response of Topographical Irregularities in Layered Media

    Science.gov (United States)

    Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.

    2013-12-01

    The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully

  10. The Chloroplast Min System Functions Differentially in Two Specific Nongreen Plastids in Arabidopsis thaliana

    Science.gov (United States)

    Wang, Peng; Zhang, Jie; Su, Jianbin; Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hongbin

    2013-01-01

    The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts. PMID:23936263

  11. Formation and excretion of autophagic plastids (plastolysomes in Brassica napus embryogenic microspores

    Directory of Open Access Journals (Sweden)

    Veronica eParra-Vega

    2015-02-01

    Full Text Available The change in developmental fate of microspores reprogrammed towards embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes, engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos.

  12. The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes.

    Science.gov (United States)

    Nolte, Christof; Amores, Angel; Nagy Kovács, Erzsébet; Postlethwait, John; Featherstone, Mark

    2003-03-01

    The zebrafish hoxd4a locus was compared to its murine ortholog, Hoxd4. The sequence of regulatory elements, including a DR5 type retinoic acid response element (RARE) required for Hoxd4 neural enhancer activity, are highly conserved. Additionally, zebrafish and mouse neural enhancers function identically in transgenic mouse embryos. We tested whether sequence conservation reflects functional importance by altering the spacing and sequence of the RARE in the Hoxd4 neural enhancer. Stabilizing receptor-DNA interactions did not anteriorize transgene expression. By contrast, conversion of the RARE from a DR5 to a DR2 type element decreased receptor-DNA stability and posteriorized expression. Hence, the setting of the Hox anterior expression border is not a simple function of the affinity of retinoid receptors for their cognate element.

  13. A study of the diffusional response of refractory and other elements in superalloy systems during diffusion coating

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, A.L.; Warnes, B.M. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    2000-11-01

    Samples of commercially pure nickel and two common superalloys were prepared by electroplating a thin layer of platinum on the surface, then exposing the samples to temperatures of 950 C and 1080 C for periods of two and six hours. Using electron probe micro analysis (EMPA), elemental composition profiles were obtained from the samples following the diffusion steps. The relative diffusion coefficients for a number of elements were determined using a classical Boltzmann-Matano method. As expected, it was discovered that elements such as cobalt, chromium, titanium and tantalum displayed a significant diffusional response in this relatively short time, while tungsten, molybdenum and rhenium diffused to a lesser degree under these conditions. It was discovered that there is significant interaction between many of the alloying elements in these systems during the diffusion anneal. The limitations of the analytical technique are summarized. (orig.)

  14. Light regulation to chlorophyll synthesis and plastid development of the chlorophyll-less golden-leaf privet.

    Science.gov (United States)

    Yuan, Ming; Xu, Mo-Yun; Yuan, Shu; Chen, Yang-Er; Du, Jun-Bo; Xu, Fei; Zhang, Zhong-Wei; Guo, Zi-Chan; Zhao, Zhong-Yi; Lin, Hong-Hui

    2010-09-01

    Ligustrum vicaryi L. is a hybrid of Ligustrum ovalifolium Hassk. var. aureo-marginatum and Ligustrum vulgale L., and displays a chlorophyll-less phenotype. Therefore it is widely used as a horticultural shrub because of its golden-color leaves. Its putative mechanism, light responses, chlorophyll synthesis and plastid development were studied. L. vicaryi has a higher level of 5-aminolevulinic acid (ALA), but lower levels of chlorophylls compared with L. quihoui. The yellowish phenotype of L. vicaryi upper leaves could be attributed to their hampered conversion from chlorophyllide into chlorophyll a. Despite the enhanced ALA level and the decreased thylakoid stacking in plastids, L. vicaryi golden leaves contain normal levels of Lhcb transcripts and photosystem apoproteins. Furthermore, reactive oxygen species (ROS) accumulation is almost the same in L. vicaryi and L. quihoui. The golden leaves often turn green and the contents of chlorophylls increase with decreasing light intensity. Dynamic changes of chlorophyll-synthesis-system under the light transition were also analyzed.

  15. Effect of crack on the impact response of plates by the extended finite element method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Tiberkak, Rachid [University of Blida, Soumaa (Algeria); Bachene, Mourad [University of Medea, Medea (Algeria); Rechak, Said [Ecole Nationale Polytechnique, Algiers (Algeria)

    2014-06-15

    The dynamic response of cracked isotropic plates subjected to impact loading is studied in this paper. The impact properties of cracked plate are compared with the virgin ones to predict the eventual presence of discontinuities in plates. The extended finite element method (X-FEM) is employed in the mathematical modeling of the impact problem, wherein the effects of shear deformation is considered. Conventional finite element without any discontinuity is initially conducted in the numerical implementation. Enriched functions are then added to the nodal displacement field for element nodes that contain cracks. The effects of crack length and crack position on contact force and on plate deflection are analyzed. Results show that the maximal contact force decreases as the deflection increases with increasing crack length a . The effect of crack position on the dynamic response is less pronounced when the crack is near the fixed end.

  16. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution

    Directory of Open Access Journals (Sweden)

    Wang Tian-Tian

    2007-01-01

    Full Text Available Abstract Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5. Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs, are heavily overrepresented (108,582 elements. 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.

  17. Plastid osmotic stress influences cell differentiation at the plant shoot apex.

    Science.gov (United States)

    Wilson, Margaret E; Mixdorf, Matthew; Berg, R Howard; Haswell, Elizabeth S

    2016-09-15

    The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex. © 2016. Published by The Company of Biologists Ltd.

  18. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies.

    Science.gov (United States)

    Zhang, Yu-Xiao; Zeng, Chun-Xia; Li, De-Zhu

    2012-06-01

    The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  20. Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining.

    Science.gov (United States)

    Borucki, Wojciech; Bederska, Magdalena; Sujkowska-Rybkowska, Marzena

    2015-05-01

    We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.

  1. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    Science.gov (United States)

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  2. What is the primary beam response of an interferometer with unequal elements?

    NARCIS (Netherlands)

    Strom, R.G.; Bachiller, R.; Colomer, F.; Desmurs, J.F.; de Vicente, P.

    2004-01-01

    The EVN stations encompass elements with a range of diameters, even including an interferometer (the Westerbork Telescope, with up to 14 elements used together as a tied array). In combination, the various station pairs will each produce their own primary beam envelopes, with which the interferomete

  3. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.

    Science.gov (United States)

    Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A

    2011-04-01

    The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.

  4. cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein

    OpenAIRE

    2002-01-01

    Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino aci...

  5. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    Science.gov (United States)

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction.

  6. Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter.

    Science.gov (United States)

    Qin, Weiping; Pan, Jiangping; Qin, Yiwen; Lee, David N; Bauman, William A; Cardozo, Christopher

    2014-07-25

    Glucocorticoids stimulate muscle atrophy through a cascade of signals that includes activation of FoxO transcription factors which then upregulate multiple genes to promote degradation of myofibrillar and other muscle proteins and inhibit protein synthesis. Our previous finding that glucocorticoids upregulate mRNA levels for FoxO1 in skeletal muscle led us to hypothesize that the FoxO1 gene contains one or more glucocorticoid response elements (GREs). Here we show that upregulation of FoxO1 expression by glucocorticoids requires the glucocorticoid receptor (GR) and binding of hormones to it. In cultured C2C12 myoblasts dexamethasone did not alter FoxO1 mRNA stability. Computational analysis predicted that the proximal promoter of the FoxO1 gene contained a cluster of eight GRE half sites and one highly conserved near-consensus SRE; the cluster is found between -800 and -2000bp upstream of the first codon of the FoxO1 gene. A reporter gene constructed using the first 2kb of the FoxO1 promoter was stimulated by dexamethasone. Removal of a 5' domain containing half of the GREs reduced reporter gene activity and removal of all GREs in this region ablated activation by dexamethasone. Restriction fragments of the cluster of 8 upstream GREs bound recombinant GR in gel shift assays. Collectively, the data demonstrate that the proximal promoter of the FoxO1 gene contains multiple functional GREs, indicating that upregulation of FoxO1 expression by glucocorticoids through GREs represents an additional mechanism by which the GR drives glucocorticoid-mediated muscle atrophy. These findings are also relevant to other physiological roles of FoxO1 such as regulation of hepatic metabolism. Published by Elsevier Inc.

  7. Characterization and localization of metal-responsive-element-binding transcription factors from tilapia

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Andrew Pok-Lap; Au, Candy Yee-Man; Chan, William Wai-Lun [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong); Chan, King Ming, E-mail: kingchan@cuhk.edu.hk [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong)

    2010-08-01

    Two isoforms of MTF-1, MTF-1L (long form) and MTF-1S (short form), were cloned in tilapia (Ti) and characterized in a tilapia liver cell line, Hepa-T1. The cloned tiMTF-1L has the characteristics of all of the tiMTF-1S identified so far with the zinc finger domain having six fingers, the acidic-rich, proline-rich, and serine/threonine-rich domains; however, the short form encodes for the zinc finger domain with five zinc fingers only and no other domains. The transient transfection of tiMTF-1L into human HepG2 cells showed both constitutive and zinc-induced metal-responsive-element (MRE)-driven reporter gene expression. However, the transfection of tiMTF-1S (which lacks all three transactivation domains) into a human cell line showed reduced transcriptional activities compared with an endogenous control in both basal- and Zn{sup 2+}-induced conditions. The tiMTF-1 isoforms were tagged with GFP and transfected into Hepa-T1 cells (tilapia hepatocytes). The nuclear translocation of tiMTF-1L was observed when the cells were exposed to a sufficient concentration of metals for 6 h. However, tiMTF-1S, was localized in the nucleus with or without metal treatment. Electrophoretic mobility shift assay (EMSA) confirmed that both of the isoforms were able to bind to the MRE specifically in vitro. Tissue distribution studies showed that tiMTF-1L was more abundant than tiMTF-1S in all of the tissues tested.

  8. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.

    Science.gov (United States)

    Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien

    2012-01-01

    Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.

  9. The MYC 3′ Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sherri A. Rennoll

    2016-05-01

    Full Text Available Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC. The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF and β-catenin binding to the MYC 3′ Wnt responsive DNA element (MYC 3′ WRE with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE within the MYC 3′ WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3′ WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3′ WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC.

  10. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought

    DEFF Research Database (Denmark)

    Schmidt, I.K.; Tietema, A.; Williams, D.

    2004-01-01

    Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution...... chemistry measured below the organic soil layer and below the rooting zone and water fluxes estimated with hydrological models were combined to calculate element budgets. Remarkably high N leaching was observed at the NL heath with 18 and 6.4 kg N ha(-1) year(-1) of NO3-N and NH4-N leached from the control...

  11. The plastid casein kinase 2 phosphorylates Rubisco activase at the Thr-78 site but is not essential for regulation of Rubisco activation state

    Directory of Open Access Journals (Sweden)

    Sang Yeol eKim

    2016-03-01

    Full Text Available Rubisco activase (RCA is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730. The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity, which is known to involve a redox-sensitive disulfide bond located in the carboxy-terminal extension of the RCAα subunit. Additionally, phosphorylation of RCA threonine-78 (Thr-78 has been reported to occur in the dark suggesting that phosphorylation may also be associated with dark-inactivation of RCA and deactivation of Rubisco. In the present study, we developed site-specific antibodies to monitor phosphorylation of RCA at the Thr-78 site and used non-reducing SDS-PAGE to monitor the redox status of the RCAα subunit. By immunoblotting, phosphorylation of both RCA isoforms occurred at low light and in the dark and feeding peroxide or DTT to leaf segments indicated that redox status of the chloroplast stroma was a critical factor controlling RCA phosphorylation. Use of a knockout mutant identified the plastid-targeted casein kinase 2 (cpCK2α as the major protein kinase involved in RCA phosphorylation. Studies with recombinant cpCK2α and synthetic peptide substrates identified acidic residues at the -1, +2 and +3 positions surrounding Thr-78 as strong positive recognition elements. The cpck2 knockout mutant had strongly reduced phosphorylation at the Thr-78 site but was similar to wild type plants in terms of induction kinetics of photosynthesis following transfer from darkness or low light to high light, suggesting that if phosphorylation of RCA Thr-78 plays a direct role it would be redundant to redox regulation for control of Rubisco activation state under normal conditions.

  12. Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny.

    Science.gov (United States)

    Thyssen, Gregory; Svab, Zora; Maliga, Pal

    2012-10-01

    Plastids and mitochondria, the DNA-containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co-transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild-type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS-92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid-transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.

  13. A Mutation in Arabidopsis SEEDLING PLASTID DEVELOPMENT1 Affects Plastid Differentiation in Embryo-Derived Tissues during Seedling Growth1[W][OA

    Science.gov (United States)

    Ruppel, Nicholas J.; Logsdon, Charles A.; Whippo, Craig W.; Inoue, Kentaro; Hangarter, Roger P.

    2011-01-01

    Oilseed plants like Arabidopsis (Arabidopsis thaliana) develop green photosynthetically active embryos. Upon seed maturation, the embryonic chloroplasts degenerate into a highly reduced plastid type called the eoplast. Upon germination, eoplasts redifferentiate into chloroplasts and other plastid types. Here, we describe seedling plastid development1 (spd1), an Arabidopsis seedling albino mutant capable of producing normal green vegetative tissues. Mutant seedlings also display defects in etioplast and amyloplast development. Precocious germination of spd1 embryos showed that the albino seedling phenotype of spd1 was dependent on the passage of developing embryos through the degreening and dehydration stages of seed maturation, suggesting that SPD1 is critical during eoplast development or early stages of eoplast redifferentiation. The SPD1 gene was found to encode a protein containing a putative chloroplast-targeting sequence in its amino terminus and also domains common to P-loop ATPases. Chloroplast localization of the SPD1 protein was confirmed by targeting assays in vivo and in vitro. Although the exact function of SPD1 remains to be defined, our findings reveal aspects of plastid development unique to embryo-derived cells. PMID:21045120

  14. Quality assessment of structure and language elements of written responses given by seven Scandinavian drug information centres

    DEFF Research Database (Denmark)

    Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter

    2017-01-01

    for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. RESULTS: The quality......PURPOSE: The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). METHODS: Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded...... of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some...

  15. Quality assessment of structure and language elements of written responses given by seven Scandinavian drug information centres

    DEFF Research Database (Denmark)

    Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter

    2017-01-01

    PURPOSE: The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). METHODS: Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded...... for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. RESULTS: The quality...... of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some...

  16. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  17. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.

    Science.gov (United States)

    Kanai, Masatake; Hayashi, Makoto; Kondo, Maki; Nishimura, Mikio

    2013-09-01

    Plants accumulate large amounts of storage products in seeds to provide an energy reserve and to supply nutrients for germination and post-germinative growth. Arabidopsis thaliana belongs to the Brassica family, and oil is the main storage product in Arabidopsis seeds. To elucidate the regulatory mechanisms of oil biosynthesis in seeds, we screened for high density seeds (heavy seed) that have a low oil content. HS3 (heavy seed 3) encodes the DEAD-box RNA helicase 22 that is localized to plastids. The triacylglycerol (TAG) content of hs3-1 seeds was 10% lower than that of wild-type (WT) seeds, while the protein content was unchanged. The hs3-1 plants displayed a pale-green phenotype in developing seeds and seedlings, but not in adult leaves. The HS3 expression level was high in developing seeds and seedlings, but was low in stems, rosette leaves and flowers. The plastid gene expression profile of WT developing seeds and seedlings differed from that of hs3-1 developing seeds and seedlings. The expression of several genes was reduced in developing hs3-1 seeds, including accD, a gene that encodes the β subunit of carboxyltransferase, which is one component of acetyl-CoA carboxylase in plastids. In contrast, no differences were observed between the expression profiles of WT and hs3-1 rosette leaves. These results show that HS3 is essential for proper mRNA accumulation of plastid genes during seed development and seedling growth, and suggest that HS3 ensures seed oil biosynthesis by maintaining plastid mRNA levels.

  18. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  19. EARTHQUAKE RESPONSE ANALYSIS OF STEEL PORTAL FRAMES BY PSEUDODYNAMIC SIMULATION TECHNIQUE USING A GENERAL-PURPOSE FINITE ELEMENT ANALYSIS PROGRAM

    Science.gov (United States)

    Miki, Toshihiro; Mizusawa, Tomisaku; Yamada, Osamu; Toda, Tomoki

    This paper studies the earthquake response of steel portal frames when the shear collapse occurs at the centre of the beam. The pseudodynamic simulation technique for the earthquake response analysis of the frames is developed in correspondence to the pseudodynamic substructure testing method. For the thin-walled box element under shear force in the middle of beam, the numerical process is utilized by a general-purpose finite element analysis program. The numerical results show the shear collapse behaviour in stiffened box beams and corresponding restoring force - displacement relationship of frames. The advantages of shear collapse of beams for the use in frames during earthquakes are discussed from the point of view of the hysteretic energy dissipated by the column base.

  20. Dis3- and exosome subunit-responsive 3 Prime mRNA instability elements

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Daniel L.; Hou, Dezhi [Case Western Reserve University School of Medicine, Department of Molecular Biology and Microbiology, Cleveland, OH 44106 (United States); Gross, Robert H. [Dartmouth College, Department of Biological Sciences, Life Sciences Center 343, Hanover, NH 03755 (United States); Andrulis, Erik D., E-mail: exa32@case.edu [Case Western Reserve University School of Medicine, Department of Molecular Biology and Microbiology, Cleveland, OH 44106 (United States)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. Black-Right-Pointing-Pointer Identified novel 3 Prime UTR cis-acting element that destabilizes a reporter mRNA. Black-Right-Pointing-Pointer Show exosome subunits are required for cis-acting element-mediated mRNA instability. Black-Right-Pointing-Pointer Define precise sequence requirements of novel cis-acting element. Black-Right-Pointing-Pointer Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3 Prime -5 Prime exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3 Prime untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are

  1. A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Zhou; Maggie Yuk-Ting Lee; James Ming-Him Ng; Mee-Len Chye; Wing-Kin Yip; Sze-Yong Zee; Eric Lam

    2006-01-01

    AIM: To cost-effectively express the 23-ku pE2, the most promising subunit vaccine encoded by the E2fragment comprising of the 3'-portion of hepatitis E virus (HEV) open reading frame 2 (ORF2) in plastids of tobacco (Nicotiana tabacum cv. SR1), to investigate the transgene expression and pE2 accumulation in plastids,and to evaluate the antigenic effect of the plastid-derived pE2 in mice.METHODS: Plastid-targeting vector pRB94-E2containing the E2 fragment driven by rice psbA promoter was constructed. Upon delivery into tobacco plastids,this construct could initiate homologous recombination in psaB-trnfM and trnG-psbC fragments in plastid genome, and result in transgene inserted between the two fragments. The pRB94-E2 was delivered with a biolistic particle bombardment method, and the plastid-transformed plants were obtained following the regeneration .of the bombarded leaf tissues on a spectinomycin-supplemented medium. Transplastomic status of the regenerated plants was confirmed by PCR and Southern blot analysis, transgene expression was investigated by Northern blot analysis, and accumulation of pE2 was measured by ELISA. Furthermore, protein extracts were used to immunize mice, and the presence of the pE2-reactive antibodies in serum samples of the immunized mice was studied by ELISA.RESULTS: Transplastomic lines confirmed by PCR and Southern blot analysis could actively transcribe the E2 mRNA. The pE2 polypeptide was accumulated to a level as high as 13.27 μg/g fresh leaves. The pE2 could stimulate the immunized mice to generate pE2-specific antibodies.CONCLUSION: HEV-E2 fragment can be inserted into the plastid genome and the recombinant pE2 antigen derived is antigenic in mice. Hence, plastids may be a novel source for cost-effective production of HEV vaccines.

  2. Enhancement of DNA vaccine-induced immune responses by a 72-bp element from SV40 enhancer

    Institute of Scientific and Technical Information of China (English)

    LI Hai-shan; XU Jian-qing; HONG Kun-xue; SHAO Yi-ming; LIU Yong; LI Ding-feng; ZHANG Ran-ran; TANG Hai-li; ZHANG Yu-wei; HUANG Wei; LIU Ying; PENG Hong

    2007-01-01

    Background Although DNA vaccine is considered as the next generation of vaccine, most DNA vaccine candidates are still suffering from the relatively weak immunogenicity despite the increased dosage of plasmid DNA administered. In order to enhance the immune responses elicited by a codon-optimized HIV gag DNA vaccine, a modified plasmid vector pDRVI1.0 and a booster immunization with replicating Tiantan vaccinia (RTV) strain expressing the same gene were employed.Methods Vector pDRVI1.0 was constructed through inserting the 72-bp element from the SV40 enhancer, which was reported promoting nuclear transport of plasmid DNA, to the upstream of cytomegalovirus enhancer/promoter region of the plasmid vector pVR1012. Gene expression levels from expression plasmids based on pDRVI1.0 and pVR1012 were tested. Humoral and cellular immune responses induced by DNA vaccine alone or DNA prime-RTV boost regimen were determined in mice.Results It was shown that the 72-bp element significantly enhanced the gene expression level in non-dividing cells.gag-specific humoral and cellular immune responses induced by DNA vaccination were both significantly improved, while the Th1/Th2 balance was not obviously affected by the 72-bp element. RTV boosting further significantly enhanced DNA vaccine-primed antibody and T cell responses in a Th1-biased manner.Conclusions The 72-bp SV40 enhancer element should be included in the DNA vaccine vector and RTV strain is a very efficient live vector for boosting immunization.

  3. Regulation of Cox-2 by Cyclic AMP Response Element Binding Protein in Prostate Cancer: Potential Role for Nexrutine

    OpenAIRE

    Rita Ghosh; Gretchen E. Garcia; Katherine Crosby; Hiroyasu Inoue; Thompson, Ian M.; Troyer, Dean A.; Kumar, Addanki P.

    2007-01-01

    We recently showed that NexrutineR, a Phellodendron amurense bark extract, suppresses proliferation of prostate cancer cell lines and tumor development in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Our data also indicate that the antiproliferative effects of NexrutineR are mediated in part by Akt and Cyclic AMP response element binding protein (CREB). Cyclooxygenase (Cox-2), a pro-inflammatory mediator, is a CREB target that induces prostaglandin E2 (PGE2) and suppresses a...

  4. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  5. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

    KAUST Repository

    Waller, Ross F.

    2015-12-08

    The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.

  6. Cyanobacterial contribution to the genomes of the plastid-lacking protists

    Directory of Open Access Journals (Sweden)

    Matsuzaki Motomichi

    2009-08-01

    Full Text Available Abstract Background Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited. Results We identified 12 gene families with cyanobacterial ancestry in the genomes of a taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria [Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta] using a novel phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata. We failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes. Conclusion Our data demonstrate that a considerable number of genes with cyanobacterial ancestry have contributed to the genome composition of the plastid-lacking protists, especially bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that all genes identified in this study constitute multi-gene families with punctate distribution among eukaryotes, suggesting that the transferred genes could have survived through rounds of gene family expansion and differential reduction.

  7. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  8. Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa.

    Science.gov (United States)

    Dudas, Brigitta; Jenes, Barnabas; Kiss, Gyorgy Botond; Maliga, Pal

    2012-11-01

    We report here the isolation of spectinomycin-resistant mutants in cultured cells of Medicago sativa line RegenSY-T2. Spectinomycin induces bleaching of cultured alfalfa cells due to inhibition of protein synthesis on the prokaryotic type 70S plastid ribosomes. Spontaneous mutants resistant to spectinomycin bleaching were identified by their ability to form green shoots on plant regeneration medium containing selective spectinomycin concentrations in the range of 25-50 mg/l. Sequencing of the plastid rrn16 gene revealed that spectinomycin resistance is due to mutations in a conserved stem structure of the 16S rRNA. Resistant plants transferred to the greenhouse developed normally and produced spectinomycin-resistant seed progeny. In light of their absence in soybean, a related leguminous plant, the isolation of spectinomycin-resistant mutants in M. sativa was unexpected. The new mutations are useful for the study of plastid inheritance, as demonstrated by detection of predominantly paternal plastid inheritance in the RegenSY-T2 × Szapko57 cross, and can be used as selective markers in plastid transformation vectors to obtain cisgenic plants.

  9. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element.

    Science.gov (United States)

    Clinckemalie, Liesbeth; Spans, Lien; Dubois, Vanessa; Laurent, Michaël; Helsen, Christine; Joniau, Steven; Claessens, Frank

    2013-12-01

    More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.

  10. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.

    Science.gov (United States)

    Miura, Takeshi; Taketomi, Ayako; Nakabayashi, Toshikatsu; Nishinaka, Toru; Terada, Tomoyuki

    2015-07-01

    CHCR3, a member of the short-chain dehydrogenase/reductase superfamily, is a carbonyl reductase 3 enzyme in Chinese hamsters. Carbonyl reductase 3 in humans has been believed to involve the metabolism and/or pharmacokinetics of anthracycline drugs, and the mechanism underlying the gene regulation has been investigated. In this study, the nucleotide sequence of the Chcr3 promoter was originally determined, and its promoter activity was characterised. The proximal promoter region is TATA-less and GC-rich, similar to the promoter region of human carbonyl reductase 3. Cobalt stimulated the transcriptional activity of the Chcr3 gene. The results of a luciferase gene reporter assay demonstrated that cobalt-induced stimulation required an antioxidant responsive element. Forced expression of Nrf2, the transcription factor that binds to antioxidant responsive elements, enhanced the transcriptional activity of the Chcr3 gene. These results suggest that cobalt induces the expression of the Chcr3 gene via the Nrf2-antioxidant responsive element pathway.

  11. 33 CFR Appendix C to Part 155 - Training Elements for Oil Spill Response Plans

    Science.gov (United States)

    2010-07-01

    ... delivered to the various personnel. Further, this section of the plan must work in harmony with those sections of the plan dealing with exercises, the spill management team, and the qualified individual. 1... plan, it is necessary for the plan to convey the elements that define the program as appropriate....

  12. Study of the Internal Mechanical response of an asphalt mixture by 3-D Discrete Element Modeling

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Hofko, Bernhard

    2015-01-01

    In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional Discrete Element Method (DEM). The cylinder model was filled with cubic array of spheres with a specified radius, and was considered as a whole mixture with uniform contact properties for ...

  13. A topology-motivated mixed finite element method for dynamic response of porous media

    CERN Document Server

    Lotfian, Zahrasadat

    2015-01-01

    In this paper, we propose a numerical method for computing solutions to Biot's fully dynamic model of incompressible saturated porous media [Biot;1956]. Our spatial discretization scheme is based on the three-field formulation (u-w-p) and the coupling of a lowest order Raviart-Thomas mixed element [Raviart,Thomas;1977] for fluid variable fields (w, p ) and a nodal Galerkin finite element for skeleton variable field (u). These mixed spaces are constructed based on the natural topology of the variables; hence, are physically compatible and able to exactly model the kind of continuity which is expected. The method automatically satisfies the well known LBB (inf-sup) stability condition and avoids locking that usually occurs in the numerical computations in the incompressible limit and very low hydraulic conductivity. In contrast to the majority of approaches, our three-field formulation can fully capture dynamic behavior of porous media even in high frequency loading phenomena with considerable fluid acceleratio...

  14. Modeling and assessment of the response of super-light elements to fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Campeanu, B.M.; Giraudo, M.

    2013-01-01

    in those cases, where a safe evacuation of the building is ensured, the high costs associated with the downtime and reparation of the building can be very high and not acceptable in the view of a safe and sustainable design of structures. In this respect, the newly patented building technology....... The implementation of a three-dimensional Finite Element Model (FEM) of the SL-deck is described and modelling aspects are discussed with particular reference to the sensitivity of the model to the thermal properties of the strong and light concrete. The results of the investigation are compared with the outcomes...... of the fire performances of complex concrete elements and in the focus on modelling issues related to the handling of the uncertainties. © 2013 Taylor & Francis Group....

  15. Modeling and assessment of the response of super-light elements to fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Campeanu, B.M.; Giraudo, M.

    in those cases, where a safe evacuation of the building is ensured, the high costs associated with the downtime and reparation of the building can be very high and not acceptable in the view of a safe and sustainable design of structures. In this respect, the newly patented building technology....... The implementation of a three-dimensional finite element model (FEM) of the SL-deck is described and modelling aspects are discussed with particular reference to the sensitivity of the model to the thermal properties of the strong and light concrete. The results of the investigation are compared with the outcomes...... of the fire performances of complex concrete elements and in the focus on modelling issues related to the handling of the uncertainties....

  16. Cell and plastid division are coordinated through the prereplication factor AtCDT1

    Science.gov (United States)

    Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine

    2005-01-01

    The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083

  17. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    Science.gov (United States)

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  18. The plastid ancestor originated among one of the major cyanobacterial lineages.

    Science.gov (United States)

    Ochoa de Alda, Jesús A G; Esteban, Rocío; Diago, María Luz; Houmard, Jean

    2014-09-15

    The primary endosymbiotic origin of chloroplasts is now well established but the identification of the present cyanobacteria most closely related to the plastid ancestor remains debated. We analyse the evolutionary trajectory of a subset of highly conserved cyanobacterial proteins (core) along the plastid lineage, those which were not lost after the endosymbiosis. We concatenate the sequences of 33 cyanobacterial core proteins that share a congruent evolutionary history, with their eukaryotic counterparts to reconstruct their phylogeny using sophisticated evolutionary models. We perform an independent reconstruction using concatenated 16S and 23S rRNA sequences. These complementary approaches converge to a plastid origin occurring during the divergence of one of the major cyanobacterial lineages that include N2-fixing filamentous cyanobacteria and species able to differentiate heterocysts.

  19. Plastid ribosomal protein S5 plays a critical role in photosynthesis, plant development, and cold stress tolerance in arabidopsis

    Science.gov (United States)

    Plastid ribosomal proteins (RPs) are essential components for protein synthesis machinery and exert diverse roles in plant growth and development. Mutations in plastid RPs lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood and th...

  20. A complete plastid phylogeny of Daucus – concordance to nuclear results, and markers necessary for phylogenetic resolution

    Science.gov (United States)

    Premise of study: Our purposes were to (1) obtain a well-resolved plastid counterpart to the 94 gene nuclear ortholog gene phylogeny of Arbizu et al. (2014, Amer. J. Bot. 101:1666-1685; and Syst. Bot., in press), and (2) to investigate various classes and numbers of plastid markers necessary for a c...

  1. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  2. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    Science.gov (United States)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  3. Complete Plastid Genome of the Brown Alga Costaria costata (Laminariales, Phaeophyceae.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs. The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.

  4. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species

    Science.gov (United States)

    Khan, Abdul Latif; Aaqil Khan, Muhammad; Muhammad Imran, Qari; Kang, Sang-Mo; Al-Hosni, Khdija; Jeong, Eun Ju; Lee, Ko Eun; Lee, In-Jung

    2017-01-01

    The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species. PMID:28763486

  5. Low-Velocity Impact Response and Finite Element Analysis of Four-Step 3-D Braided Composites

    Science.gov (United States)

    Sun, Baozhong; Zhang, Yan; Gu, Bohong

    2013-08-01

    The low-velocity impact characters of 3-D braided carbon/epoxy composites were investigated from experimental and finite element simulation approaches. The quasi-static tests were carried out at a constant velocity of 2 mm/min on MTS 810.23 material tester system to obtain the indentation load-displacement curves and indentation damages. The low-velocity tests were conducted at the velocities from 1 m/s to 6 m/s (corresponding to the impact energy from 3.22 J to 116 J) on Instron Dynatup 9250 impact tester. The peak force, energy for peak force, time to peak force, and total energy absorption were obtained to determine the impact responses of 3-D braided composites. A unit cell model was established according to the microstructure of 3-D braided composites to derive the constitutive equation. Based on the model, a user-defined material subroutine (VUMAT) has been compiled by FORTRAN and connected with commercial finite element code ABAQUS/Explicit to calculate the impact damage. The unit cell model successfully predicted the impact response of 3-D braided composites. Furthermore, the stress wave propagation and failure mechanisms have been revealed from the finite element simulation results and ultimate damage morphologies of specimens.

  6. MYC cis-Elements in PsMPT Promoter Is Involved in Chilling Response of Paeonia suffruticosa.

    Directory of Open Access Journals (Sweden)

    Yuxi Zhang

    Full Text Available The MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed. The PsMPT transcript was detected in different tree peony tissues and was highly expressed in the flower organs, including petal, stigma and stamen. An 1174 bp of the PsMPT promoter was isolated by TAIL-PCR, and the PsMPT promoter::GUS transgenic Arabidopsis was generated and analyzed. GUS staining and qPCR showed that the promoter was active in mainly the flower stigma and stamen. Moreover, it was found that the promoter activity was enhanced by chilling, NaCl, GA, ACC and NAA, but inhibited by ABA, mannitol and PEG. In transgenic plants harboring 421 bp of the PsMPT promoter, the GUS gene expression and the activity were significantly increased by chilling treatment. When the fragment from -421 to -408 containing a MYC cis-element was deleted, the chilling response could not be observed. Further mutation analysis confirmed that the MYC element was one of the key motifs responding to chilling in the PsMPT promoter. The present study provides useful information for further investigation of the regulatory mechanism of PsMPT during the endo-dormancy release.

  7. Growth responses of an estuarine fish exposed to mixed trace elements in sediments over a full life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, C.L. [University of Maryland, Solomons, MD (United States). Center for Environmental Science

    2003-02-01

    Hatchling Cyprinodon variegatus were raised in the presence or absence of sediments contaminated with mixed trace elements to examine lethal and sublethal bioenergetic effects (metabolic rate, lipid storage, growth, reproduction) over a full life cycle ({gt}1 year). Contaminated sediments were derived from a site receiving coal combustion residues (CCR) and were elevated in numerous trace elements including Al, As, Ba, Cd, Cu, Se, and V. Exposures were conducted at two levels of salinity (5 and 36 ppt) to examine the potential interaction of this variable with contaminants. Salinity had no effect on responses measured. Over the course of the study, fish exposed to contaminated sediment accumulated several CCR-related trace elements, including As, Cd, Se, and V. There were no differences in fish survival for contaminated sediment treatments and uncontaminated sediment treatments, nor were there differences in metabolic expenditures. However, growth, male condition factor, and storage lipid content in females were reduced due to contaminant exposure. No significant effects on fecundity or the proportion of females that were gravid at the end of the study were observed, yet females raised under control conditions produced 12% larger eggs than did, females raised on contaminated sediments. Because many species inhabit contaminated areas for long periods of time, often encompassing the entire life cycle, exposures focused only on specific life stages may substantially underestimate the overall responses elicited by individuals.

  8. Transcriptional regulation of the bovine leukemia virus promoter by the cyclic AMP-response element modulator tau isoform.

    Science.gov (United States)

    Nguyên, Thi Lien-Anh; de Walque, Stéphane; Veithen, Emmanuelle; Dekoninck, Ann; Martinelli, Valérie; de Launoit, Yvan; Burny, Arsène; Harrod, Robert; Van Lint, Carine

    2007-07-20

    Bovine leukemia virus (BLV) expression is controlled at the transcriptional level through three Tax(BLV)-responsive elements (TxREs) responsive to the viral transactivator Tax(BLV). The cAMP-responsive element (CRE)-binding protein (CREB) has been shown to interact with CRE-like sequences present in the middle of each of these TxREs and to play critical transcriptional roles in both basal and Tax(BLV)-transactivated BLV promoter activity. In this study, we have investigated the potential involvement of the cAMP-response element modulator (CREM) in BLV transcriptional regulation, and we have demonstrated that CREM proteins were expressed in BLV-infected cells and bound to the three BLV TxREs in vitro. Chromatin immunoprecipitation assays using BLV-infected cell lines demonstrated in the context of chromatin that CREM proteins were recruited to the BLV promoter TxRE region in vivo. Functional studies, in the absence of Tax(BLV), indicated that ectopic CREMtau protein had a CRE-dependent stimulatory effect on BLV promoter transcriptional activity. Cross-link of the B-cell receptor potentiated CREMtau transactivation of the viral promoter. Further experiments supported the notion that this potentiation involved CREMtau Ser-117 phosphorylation and recruitment of CBP/p300 to the BLV promoter. Although CREB and Tax(BLV) synergistically transactivated the BLV promoter, CREMtau repressed this Tax(BLV)/CREB synergism, suggesting that a modulation of the level of Tax(BLV) transactivation through opposite actions of CREB and CREMtau could facilitate immune escape and allow tumor development.

  9. GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression.

    Science.gov (United States)

    Mizoi, Junya; Ohori, Teppei; Moriwaki, Takashi; Kidokoro, Satoshi; Todaka, Daisuke; Maruyama, Kyonoshin; Kusakabe, Kazuya; Osakabe, Yuriko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Soybean (Glycine max) is an important crop around the world. Abiotic stress conditions, such as drought and heat, adversely affect its survival, growth, and production. The DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2 (DREB2) group includes transcription factors that contribute to drought and heat stress tolerance by activating transcription through the cis-element dehydration-responsive element (DRE) in response to these stress stimuli. Two modes of regulation, transcriptional and posttranslational, are important for the activation of gene expression by DREB2A in Arabidopsis (Arabidopsis thaliana). However, the regulatory system of DREB2 in soybean is not clear. We identified a new soybean DREB2 gene, GmDREB2A;2, that was highly induced not only by dehydration and heat but also by low temperature. GmDREB2A;2 exhibited a high transactivation activity via DRE and has a serine/threonine-rich region, which corresponds to a negative regulatory domain of DREB2A that is involved in its posttranslational regulation, including destabilization. Despite the partial similarity between these sequences, the activity and stability of the GmDREB2A;2 protein were enhanced by removal of the serine/threonine-rich region in both Arabidopsis and soybean protoplasts, suggestive of a conserved regulatory mechanism that involves the recognition of serine/threonine-rich sequences with a specific pattern. The heterologous expression of GmDREB2A;2 in Arabidopsis induced DRE-regulated stress-inducible genes and improved stress tolerance. However, there were variations in the growth phenotypes of the transgenic Arabidopsis, the induced genes, and their induction ratios between GmDREB2A;2 and DREB2A. Therefore, the basic function and regulatory machinery of DREB2 have been maintained between Arabidopsis and soybean, although differentiation has also occurred.

  10. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    Directory of Open Access Journals (Sweden)

    Paquette Martin A

    2011-12-01

    Full Text Available Abstract Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid. A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement. An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid. Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search

  11. Identification of a growth hormone-responsive STAT5-binding element in the rat insulin 1 gene

    DEFF Research Database (Denmark)

    Galsgaard, E D; Gouilleux, F; Groner, B

    1996-01-01

    promoter activity 2-fold, and this stimulation was abolished by introduction of a block mutation in a gamma-interferon-activated sequence (GAS)-like element (GLE) with the sequence 5'-TTCTGGGAA-3' located in the rat insulin 1 enhancer at position -330 to -322. This element, termed Ins-GLE, was able...... to confer GH responsiveness to a heterologous promoter. GH induced the binding of two protein complexes to the Ins-GLE. An antibody directed against the transcription factor STAT5 (signal transducer and activator of transcription) supershifted the GH-induced complexes. Furthermore, in COS7 cells transiently...... transfected with STAT5 and GH receptor cDNAs, it was found that expression of STAT5 was necessary for GH induction of these two DNA-binding complexes. These results suggest that GH stimulates insulin 1 promoter activity by inducing the binding of STAT5 to Ins-GLE....

  12. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, S.A.; Scott, R.A.; Pike, J.W. (Baylor College of Medicine, Houston, TX (USA))

    1989-06-01

    Osteoblast-specific expression of the bone protein osteocalcin is controlled at the transcriptional level by the steroid hormone 1{alpha},25-dihydroxyvitamin D{sub 3}. As this protein may represent a marker for bone activity in human disease, the authors examined the regulation of its expression at the molecular level by evaluating human osteocalcin gene promoter function. They describe regions within the promoter that contribute to basal expression of the gene in osteoblast-like cells in culture. Further, they define a 21-base-pair DNA element with the sequence 5{prime}-GTGACTCACCGGGTGAACGGG-3{prime}, which acts in cis to mediate 1{alpha},25-dihydroxyvitamin D{sub 3} inducibility of the osteocalcin gene. This response element bears sequence similarity with other short DNA segments, particularly those for estrogen and thyroid hormone, which act together with their respective trans-acting receptors to modulate gene transcription.

  13. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum.

    Science.gov (United States)

    Kirsch, C; Logemann, E; Lippok, B; Schmelzer, E; Hahlbrock, K

    2001-04-01

    Within the complex signalling network from pathogen-derived elicitor perception to defense-related gene activation, some immediate-early responding genes may have pivotal roles in downstream transcriptional regulation. We have identified the parsley (Petroselinum crispum) ELI17 gene as a particularly fast-responding gene possessing a new type of W box-containing, elicitor-responsive promoter element, E17. Highly selective E17-mediated reporter gene expression at pathogen infection sites in transgenic Arabidopsis thaliana plants demonstrated the potential of this promoter element for designing new strategies in resistance breeding as well as for further analysis of the early components of defense-related gene activation mechanisms. The protein encoded by the ELI17 gene exhibits various structural characteristics of established transcription factors and is designated as a CMPG protein according to the first four strictly conserved amino acids defining a newly emerging class of plant-specific proteins.

  14. Esophageal and Small Intestinal Mucosal Integrity in Eosinophilic Esophagitis and Response to an Elemental Diet.

    Science.gov (United States)

    Warners, Marijn J; Vlieg-Boerstra, Berber J; Verheij, Joanne; van Hamersveld, Patricia H P; van Rhijn, Bram D; Van Ampting, Marleen T J; Harthoorn, Lucien F; de Jonge, Wouter J; Smout, Andreas J P M; Bredenoord, Albert J

    2017-07-01

    The esophageal mucosal integrity is impaired in eosinophilic esophagitis (EoE) and it has been suggested that the duodenal permeability is increased. The absence of food allergens may restore the integrity. The aims of this study were to assess duodenal permeability in EoE and to evaluate the effect of an elemental diet on the esophageal and duodenal integrity. In this prospective study 17 adult EoE patients and 8 healthy controls (HC) were included. Esophageal biopsy specimens were sampled before and after 4 weeks of elemental diet to measure eosinophil counts and gene expression of tight junction and barrier integrity proteins. Esophageal and duodenal impedance were measured by electrical tissue impedance spectroscopy and Ussing chambers were used to measure transepithelial resistance (TER) and transepithelial molecule flux. Small intestinal permeability was measured using a test, measuring lactulose/mannitol (L/M) ratios. In EoE patients, the esophageal but not the duodenal integrity was impaired, compared with HC. We observed no significant difference between L/M ratios of HC and EoE patients. After diet, eosinophil counts decreased significantly, which was paralleled by normalization of esophageal impedance and transepithelial molecule flux. The esophageal TER improved significantly, but did not reach values seen in HC. Esophageal expression of genes encoding for barrier integrity proteins filaggrin and desmoglein-1 was impaired at baseline and restored after diet. An elemental diet restores esophageal integrity, suggesting that it is at least partly secondary to allergen exposure. Duodenal integrity seems not to be affected in EoE, and possibly plays a minor role in its pathophysiology.

  15. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available BACKGROUND: Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics. PRINCIPAL FINDINGS: We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp and P. yezoensis (191,975 bp, the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211-213 protein-coding genes (including 29-31 unknown-function ORFs, 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146 was much smaller than that of Porphyra purpurea and P. haitanensis (0.250, and P. yezoensis (0.251; this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved. CONCLUSIONS: These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing

  16. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

    Science.gov (United States)

    Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.

    2007-04-01

    A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

  17. Quantitative analysis of polycomb response elements (PREs at identical genomic locations distinguishes contributions of PRE sequence and genomic environment

    Directory of Open Access Journals (Sweden)

    Okulski Helena

    2011-03-01

    Full Text Available Abstract Background Polycomb/Trithorax response elements (PREs are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. Results We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7 with a PRE from the vestigial (vg gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT that is essential for silencing. Conclusions This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design.

  18. Enrichment of Conserved Synaptic Activity-Responsive Element in Neuronal Genes Predicts a Coordinated Response of MEF2, CREB and SRF

    Science.gov (United States)

    Rodríguez-Tornos, Fernanda M.; San Aniceto, Iñigo; Cubelos, Beatriz; Nieto, Marta

    2013-01-01

    A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease. PMID:23382855

  19. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Directory of Open Access Journals (Sweden)

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  20. Expression and purification of full length mouse metal response element binding transcription factor-1 using Pichia pastoris.

    Science.gov (United States)

    Huyck, Ryan W; Keightley, Andrew; Laity, John H

    2012-09-01

    The metal response element binding transcription factor-1 (MTF-1) is an important stress response, heavy metal detoxification, and zinc homeostasis factor in eukaryotic organisms from Drosophila to humans. MTF-1 transcriptional regulation is primarily mediated by elevated levels of labile zinc, which direct MTF-1 to bind the metal response element (MRE). This process involves direct zinc binding to the MTF-1 zinc fingers, and zinc dependent interaction of the MTF-1 acidic region with the p300 coactivator protein. Here, the first recombinant expression system for mutant and wild type (WT) mouse MTF-1 (mMTF-1) suitable for biochemical and biophysical studies in vitro is reported. Using the methyltropic yeast Pichia pastoris, nearly half-milligram recombinant WT and mutant mMTF-1 were produced per liter of P. pastoris cell culture, and purified by a FLAG-tag epitope. Using a first pass ammonium sulfate purification, followed by anti-FLAG affinity resin, mMTF-1 was purified to >95% purity. This recombinant mMTF-1 was then assayed for direct protein-protein interactions with p300 by co-immunoprecipitation. Surface plasmon resonance studies on mMTF-1 provided the first quantitative DNA binding affinity measurements to the MRE promotor element (K(d)=5±3 nM). Both assays demonstrated the functional activity of the recombinant mMTF-1, while elucidating the molecular basis for mMTF-1-p300 functional synergy, and provided new insights into the mMTF-1 domain specific roles in DNA binding. Overall, this production system provides accessibility for the first time to a multitude of in vitro studies using recombinant mutant and WT mMTF-1, which greatly facilitates new approaches to understanding the complex and varied functions of this protein.

  1. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements

    Energy Technology Data Exchange (ETDEWEB)

    Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Takeda, Michiaki; Murata, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Akiba, Uichi; Hamada, Fumio [Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita 010-8502 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan)

    2009-04-27

    Electrochemical assay using HeLa cell lines transfected with various plasmid vectors encoding SEAP (secreted alkaline phosphatase) as the reporter has been performed by using SECM (scanning electrochemical microscopy). The plasmid vector contains different responsive elements that include GRE (glucocorticoid response elements), CRE (cAMP responsive elements), or {kappa}B (binding site for NF{kappa}B (nuclear factor kappa B)) upstream of the SEAP sequence. The transfected HeLa cells were patterned on a culture dish in a 4 x 4 array of circles of diameter 300 {mu}m by using the PDMS (poly(dimethylsiloxane)) stencil technique. The cellular array was first exposed to 100 ng mL{sup -1} dexamethasone, 10 ng mL{sup -1} forskolin, or 100 ng mL{sup -1} TNF-{alpha} (tumor necrosis factor {alpha}) after which it was further cultured in an RPMI culture medium for 6 h. After incubation, the cellular array was soaked in a measuring solution containing 4.7 mM PAPP (p-aminophenylphosphate) at pH 9.5, following which electrochemical measurements were performed immediately within 40 min. The SECM method allows parallel evaluation of different cell lines transfected with pGRE-SEAP, pCRE-SEAP, and pNF{kappa}B-SEAP patterned on the same solid support for detection of the oxidation current of PAP (p-aminophenol) flux produced from only 300 HeLa cells in each stencil pattern. The results of the SECM method were highly sensitive as compared to those obtained from the conventional CL (chemiluminescence) protocol with at least 5 x 10{sup 4} cells per well.

  2. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  3. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  4. A Bioinformatics Method for the Design of Live Attenuated Virus Vaccine Utilizing Host MicroRNA Response Elements.

    Science.gov (United States)

    Wichadakul, Duangdao

    2016-01-01

    The host microRNA machinery has been employed to control viral replication. To improve safety for live attenuated virus vaccines, the binding sites of the host microRNAs, so-called microRNA response elements (MREs), were incorporated into the virus sequences. These MREs were typically designed for a specific host microRNA and virus sequence with the effectiveness evaluated by experimental trials. Here, we describe a computational flow that can be used to simultaneously design and prioritize the effective MREs in large-scale.

  5. Somatic gene transfer of cAMP response element-binding protein attenuates memory impairment in aging rats

    OpenAIRE

    Mouravlev, Alexandre; Dunning, Jane; Young, Deborah; During, Matthew J.

    2006-01-01

    cAMP response element-binding protein (CREB) is important for the formation and facilitation of long-term memory in diverse models. However, to our knowledge, involvement of CREB in age-associated memory impairment has not been reported. Here, we use a recombinant adeno-associated virus vector to obtain stable transgenic expression of CREB as well as the inducible cAMP early repressor (ICER) in the hippocampus of adult rats. In a longitudinal study, we show that somatic gene transfer of both ...

  6. Microbial Response to the Application of Amendments in a Contaminated Soil with Trace Elements

    Directory of Open Access Journals (Sweden)

    A. Branzini

    2009-01-01

    Full Text Available Problem Statement: The anthropogenic activities can cause adverse effects in soils, increasing in some situations trace elements contents, impacting negatively both the microbial biomass and activity. Among the practices used for the recovery of soil quality we can find the application of organic amendments or the product of their composting. These can adsorb trace elements decreasing their availability and increasing the soil microbial biomass. The microorganisms of the soil use to be considered as sensitive biological indicators of the changes produced in the soil quality. Approach: One processes to quantify soil biological activity is the respiration. The aim was to evaluate the effects of two organic amendments application on soil microbial activity, in a soil contaminated with copper (Cu, zinc (Zn and chromium (Cr. To prove the raised aim we quantified CO2-C release. Results: The results showed that at the end of the incubation period, as much in contaminated soils as in soils without contamination, the total activity of microorganisms was significantly increased by the application of organic amendments (p = 0.0062 and p = 0.0005, respectively. The application of both composts to slightly acid soils increased the initial and final values of pH. There was no evidence of modification in Electrical Conductivity (EC because of compost application. At the end of the incubation period a negative relationship was observed between EC and CO2-C (R2 = 0.74, p = 0.0028. Conclusions: The obtained results in this study suggested that it was possible to increase the total activity of soil microorganisms and to reduce the bioavailability of Cu, Cr and Zn in a contaminated soil. As a result, CO2-C release is a sensitive index of the soil quality, at least in the experimental conditions of this essay.

  7. Characterization of a proximal Sp1 response element in the mouse Dlk2 gene promoter

    Directory of Open Access Journals (Sweden)

    Rivero Samuel

    2011-12-01

    Full Text Available Abstract Background DLK2 is an EGF-like membrane protein, closely related to DLK1, which is involved in adipogenesis. Both proteins interact with the NOTCH1 receptor and are able to modulate its activation. The expression of the gene Dlk2 is coordinated with that of Dlk1 in several tissues and cell lines. Unlike Dlk1, the mouse Dlk2 gene and its locus at chromosome 17 are not fully characterized. Results The goal of this work was the characterization of Dlk2 mRNA, as well as the analysis of the mechanisms that control its basal transcription. First, we analyzed the Dlk2 transcripts expressed by several mouse cells lines and tissues, and mapped the transcription start site by 5' Rapid Amplification of cDNA Ends. In silico analysis revealed that Dlk2 possesses a TATA-less promoter containing minimal promoter elements associated with a CpG island, and sequences for Inr and DPE elements. Besides, it possesses six GC-boxes, considered as consensus sites for the transcription factor Sp1. Indeed, we report that Sp1 directly binds to the Dlk2 promoter, activates its transcription, and regulates its level of expression. Conclusions Our results provide the first characterization of Dlk2 transcripts, map the location of the Dlk2 core promoter, and show the role of Sp1 as a key regulator of Dlk2 transcription, providing new insights into the molecular mechanisms that contribute to the expression of the Dlk2 gene.

  8. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, Olaf; Gläßer, Christine; Chen, Jin-Gui; Mayer, Klaus F. X.; Grimm, Bernhard

    2012-01-01

    The formation of 5-aminolevulinic acid (ALA) in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesized a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signaling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE) by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2), hy2 (gun3), gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesizing capacity is common to analyzed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB) that inactivates glutamate-1-semialdehyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF)-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The over-represented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localized ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signaling-mediated control of NGE.

  9. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signalling

    Directory of Open Access Journals (Sweden)

    Olaf eCzarnecki

    2012-10-01

    Full Text Available The formation of 5-aminolevulinic acid (ALA in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesised a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signalling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2, hy2 (gun3, gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesising capacity is common to analysed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB that inactivates glutamate-1-semialdhyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The overrepresented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localised ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signalling

  10. Role of plastid transglutaminase in LHCII polyamination and thylakoid electron and proton flow.

    Directory of Open Access Journals (Sweden)

    Nikolaos E Ioannidis

    Full Text Available Transglutaminases function as biological glues in animal cells, plant cells and microbes. In energy producing organelles such as chloroplasts the presence of transglutaminases was recently confirmed. Furthermore, a plastidial transglutaminase has been cloned from maize and the first plants overexpressing tgz are available (Nicotiana tabacum TGZ OE. Our hypothesis is that the overexpression of plastidal transglutaminase will alter photosynthesis via increased polyamination of the antenna of photosystem II. We have used standard analytical tools to separate the antenna from photosystem II in wild type and modified plants, 6 specific antibodies against LHCbs to confirm their presence and sensitive HPLC method to quantify the polyamination level of these proteins. We report that bound spermidine and spermine were significantly increased (∼80% in overexpressors. Moreover, we used recent advances in in vivo probing to study simultaneously the proton and electron circuit of thylakoids. Under physiological conditions overexpressors show a 3-fold higher sensitivity of the antenna down regulation loop (qE to the elicitor (luminal protons which is estimated as the ΔpH component of thylakoidal proton motive force. In addition, photosystem (hyper-PSIIα with an exceptionally high antenna (large absorption cross section, accumulate in transglutaminase over expressers doubling the rate constant of light energy utilization (Kα and promoting thylakoid membrane stacking. Polyamination of antenna proteins is a previously unrecognized mechanism for the modulation of the size (antenna absorption cross section and sensitivity of photosystem II to down regulation. Future research will reveal which peptides and which residues of the antenna are responsible for such effects.

  11. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements.

    Science.gov (United States)

    Rojas-Pierce, Marcela; Whippo, Craig W; Davis, Phillip A; Hangarter, Roger P; Springer, Patricia S

    2014-10-01

    The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.

  12. Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria to Hydroponic and Aquaponic Conditions

    Directory of Open Access Journals (Sweden)

    Tyler S. Anderson

    2017-07-01

    Full Text Available The primary objective of this research was to compare lettuce performance under conventional hydroponics at pH 5.8 (referred to as H5, hydroponics at pH 7.0 (referred to as H7, and recirculated aquaponic water at pH 7.0 (referred to as A7. Aquaponic nutrients were supplied by continuously recirculating water between a fish rearing system (recirculating aquaculture system or RAS and the lettuce growing system (with the sole addition being chelated iron. This paper builds upon our previous research where we found that H7 produced 26% less shoot fresh weight (FW growth than H5 and an 18% reduction in dry weight (DW. In this research, we also evaluated the inorganic hydroponics nutrient solution at pH 7.0 (H7 to provide continuity between experiments and to isolate the pH effect. The A7 plant biomass responses were not different from H5 in all biomass response categories. H7 was different from H5 in shoot FW, DW, and DW/FW, as well as root FW and DW. H7 was different from the A7 in shoot FW, DW/FW, and root DW. There were no tissue elemental differences between H5 and H7 except Cu. The Ca and Na contents differed between H5 and A7, while the microelements Mn, Mo, and Zn differed. Generally, the elemental tissue differences between treatments were proportional to the differences for the same elements in the nutrient solutions. Aquaponic systems are often viewed to be more complicated and more risky because two complex systems are being joined (hydroponics plus RAS. However, the aquaponics system proved to be surprisingly simple to manage in daily operations. Our data suggested that the aquaponics system (A7, which was operated at a higher pH 7.0, was able to offset any negative biomass and elemental effects that occurred in the inorganic hydroponic pH 7.0 treatment (H7 from its increased pH and less optimized nutrient solution elemental concentrations.

  13. Investigation of mechanical responses to the tactile perception of surfaces with different textures using the finite element method

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2016-07-01

    Full Text Available Tactile perception is essential for humans to perceive the world, and it usually results in mechanical responses from the finger. In this study, a nonlinear, viscoelastic, and multilayered finite element model of the finger was developed. The relationship between the mechanical responses within the finger and tactile perception while the finger scanned different surface textures was studied. The results showed that the sensitivity of tactile perception is affected by the peak value of von Mises stress, which is itself determined by the shape and density of a given texture. The von Mises stress varies periodically with time, and this variation depends on the periodicity of the texture. Displacement signals around Pacinian corpuscles have periodic variation. The period of displacement decreases as the density of the texture increases. The spectral centroid increases as the spacing of the texture decreases. The related mechanisms are discussed in this article.

  14. Complete plastid genome of Eriobotrya japonica (Thunb.) Lindl and comparative analysis in Rosaceae.

    Science.gov (United States)

    Shen, Liqun; Guan, Qijie; Amin, Awais; Zhu, Wei; Li, Mengzhu; Li, Ximin; Zhang, Lin; Tian, Jingkui

    2016-01-01

    Eriobotrya japonica (Thunb.) Lindl (loquat) is an evergreen Rosaceae fruit tree widely distributed in subtropical regions. Its leaves are considered as traditional Chinese medicine and are of high medical value especially for cough and emesis. Thus, we sequenced the complete plastid genome of E. japonica to better utilize this important species. The complete plastid genome of E. japonica is 159,137 bp in length, which contains a typical quadripartite structure with a pair of inverted repeats (IR, 26,326 bp) separated by large (LSC, 89,202 bp) and small (SSC, 19,283 bp) single-copy regions. The E. japonica plastid genome encodes 112 unique genes which consist of 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Gene structure and content of E. japonica plastid genome are quite conserved and show similarity among Rosaceous species. Five large indels are unique to E. japonica in comparison with Pyrus pyrifolia and Prunus persica, which could be utilized as molecular markers. A total of 72 simple sequence repeats (SSRs) were detected and most of them are mononucleotide repeats composed of A or T, indicating a strong A or T bias for base composition. The Ka and Ks ratios of most genes are lower than 1, which suggests that most genes are under purifying selection. The phylogenetic analysis described the evolutionary relationship within Rosaceae and fully supported a close relationship between E. japonica and P. pyrifolia.

  15. Against the traffic: The first evidence for mitochondrial DNA transfer into the plastid genome

    Science.gov (United States)

    Transfer of DNA between different compartments of the plant cell, i.e. plastid, mitochondrion and nucleus, is a well-known phenomenon in plant evolution. Six directions of inter-compartmental DNA migration are possible in theory, however only four of them have been previously reported. These include...

  16. Cytochemical characterization of plastidal inclusions in Abutilon mosaic-infected Malva parviflora mesophyll cells.

    Science.gov (United States)

    Jeske, H; Werz, G

    1980-10-15

    Electron microscopy of plastids from mesophyll cells of Malva parviflora infected with the Abutilon mosaic virus revealed elongated "chains of pearls" with subunits of 7.5 nm in diameter. Paracrystalline inclusions of the chains of pearls studied by means of cytochemical techniques gave evidence of the presence of DNA.

  17. Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling

    Science.gov (United States)

    Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar

    2013-01-01

    Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947

  18. Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes

    NARCIS (Netherlands)

    Qiu, Y.L.; Dombrovska, O.; Lee, J.; Li, L.; Whitlock, B.A.; Bernasconi-Quadroni, F.; Rest, J.S.; Davis, C.C.; Borsch, T.; Hilu, K.W.; Renner, S.S.; Soltis, D.E.; Soltis, P.E.; Zanis, M.J.; Cannone, J.J.; Powell, M.; Savolainen, V.; Chatrou, L.W.; Chase, M.W.

    2005-01-01

    DNA sequences of nine genes (plastid: atpB, matK, and rbcL; mitochondrial: atp1, matR, mtSSU, and mtLSU; nuclear: 18S and 26S rDNAs) from 100 species of basal angiosperms and gymnosperms were analyzed using parsimony, Bayesian, and maximum likelihood methods. All of these analyses support the follow

  19. Draft Plastid and Mitochondrial Genome Sequences from Antarctic Alga Prasiola crispa

    Science.gov (United States)

    Carvalho, Evelise Leis; Wallau, Gabriel da Luz; Rangel, Darlene Lopes; Machado, Laís Ceschini; da Silva, Alexandre Freitas; da Silva, Luiz Fernando Duarte; Macedo, Pablo Echeverria; Pereira, Antonio Batista; Victoria, Filipe de Carvalho; Boldo, Juliano Tomazzoni; Dal Belo, Cháriston André

    2015-01-01

    The organelle genomes of the Antarctic alga Prasiola crispa (Lightfoot) Kützing have been sequenced. The plastid and mitochondrial genomes have a total length of 196,502 bp and 89,819 bp, respectively. These genomes have 19 putative photosynthesis-related genes and 17 oxidative metabolism-related genes, respectively. PMID:26450727

  20. A Plastid Gene Phylogeny of the Yam Genus, Dioscorea: Roots, Fruits and Madagascar

    NARCIS (Netherlands)

    Wilkin, P.; Schols, P.; Chase, M.; Chayamarit, K.; Furness, C.; Huysmans, S.; Rakotonasolo, F.; Smets, E.; Thapyai, C.

    2005-01-01

    Following recent phylogenetic studies of the families and genera of Dioscoreales, the identification of monophyletic infrageneric taxa in the pantropical genus Dioscorea is a priority. A phylogenetic analysis based on sequence data from the plastid genes rbcL and matK is presented, using 67 species

  1. Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes

    NARCIS (Netherlands)

    Qiu, Y.L.; Dombrovska, O.; Lee, J.; Li, L.; Whitlock, B.A.; Bernasconi-Quadroni, F.; Rest, J.S.; Davis, C.C.; Borsch, T.; Hilu, K.W.; Renner, S.S.; Soltis, D.E.; Soltis, P.E.; Zanis, M.J.; Cannone, J.J.; Powell, M.; Savolainen, V.; Chatrou, L.W.; Chase, M.W.

    2005-01-01

    DNA sequences of nine genes (plastid: atpB, matK, and rbcL; mitochondrial: atp1, matR, mtSSU, and mtLSU; nuclear: 18S and 26S rDNAs) from 100 species of basal angiosperms and gymnosperms were analyzed using parsimony, Bayesian, and maximum likelihood methods. All of these analyses support the

  2. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    Science.gov (United States)

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  3. Varietal tracing of virgin olive oils based on plastid DNA variation profiling.

    Directory of Open Access Journals (Sweden)

    Marga Pérez-Jiménez

    Full Text Available Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels, it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties, which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices.

  4. Mitral valve finite element modeling: implications of tissues' nonlinear response and annular motion.

    Science.gov (United States)

    Stevanella, Marco; Votta, Emiliano; Redaelli, Alberto

    2009-12-01

    Finite element modeling represents an established method for the comprehension of the mitral function and for the simulation of interesting clinical scenarios. However, current models still do not include all the key aspects of the real system. We implemented a new structural finite element model that considers (i) an accurate morphological description of the valve, (ii) a description of the tissues' mechanical properties that accounts for anisotropy and nonlinearity, and (iii) dynamic boundary conditions that mimic annulus and papillary muscles' contraction. The influence of such contraction on valve biomechanics was assessed by comparing the computed results with the ones obtained through an auxiliary model with fixed annulus and papillary muscles. At the systolic peak, the leaflets' maximum principal stress contour showed peak values in the anterior leaflet at the strut chordae insertion zone (300 kPa) and near the annulus (200-250 kPa), while much lower values were detected in the posterior leaflet. Both leaflets underwent larger tensile strains in the longitudinal direction, while in the circumferential one the anterior leaflet experienced nominal tensile strains up to 18% and the posterior one experienced compressive strains up to 23% associated with the folding of commissures and paracommissures, consistently with tissue redundancy. The force exerted by papillary muscles at the systolic peak was equal to 4.11 N, mainly borne by marginal chordae (76% of the force). Local reaction forces up to 45 mN were calculated on the annulus, leading to tensions of 89 N/m and 54 N/m for its anterior and posterior tracts, respectively. The comparison with the results of the auxiliary model showed that annular contraction mainly affects the leaflets' circumferential strains. When it was suppressed, no more compressive strains could be observed and peak strain values were located in the belly of the anterior leaflet. Computational results agree to a great extent with

  5. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    Science.gov (United States)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  6. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes.

    Science.gov (United States)

    Ruhfel, Brad R; Gitzendanner, Matthew A; Soltis, Pamela S; Soltis, Douglas E; Burleigh, J Gordon

    2014-02-17

    Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales

  7. Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome.

    Science.gov (United States)

    Iyama, Teruaki; Wilson, David M

    2016-01-16

    Cockayne syndrome (CS) is a premature aging disorder characterized by developmental defects, multisystem progressive degeneration and sensitivity to ultraviolet light. CS is divided into two primary complementation groups, A and B, with the CSA and CSB proteins presumably functioning in DNA repair and transcription. Using laser microirradiation and confocal microscopy, we characterized the nature and regulation of the CS protein response to oxidative DNA damage, double-strand breaks (DSBs), angelicin monoadducts and trioxsalen interstrand crosslinks (ICLs). Our data indicate that CSB recruitment is influenced by the type of DNA damage and is most rapid and robust as follows: ICLs>DSBs>monoadducts>oxidative lesions. Transcription inhibition reduced accumulation of CSB at sites of monoadducts and ICLs, but it did not affect recruitment to (although slightly affected retention at) oxidative damage. Inhibition of histone deacetylation altered the dynamics of CSB assembly, suggesting a role for chromatin status in the response to DNA damage, whereas the proteasome inhibitor MG132 had no effect. The C-terminus of CSB and, in particular, its ubiquitin-binding domain were critical to recruitment, while the N-terminus and a functional ATPase domain played a minor role at best in facilitating protein accumulation. Although the absence of CSA had no effect on CSB recruitment, CSA itself localized at sites of ICLs, DSBs and monoadducts but not at oxidative lesions. Our results reveal molecular components of the CS protein response and point to a major involvement of complex lesions in the pathology of CS.

  8. Critical role of transcription factor cyclic AMP response element modulator in beta1-adrenoceptor-mediated cardiac dysfunction.

    Science.gov (United States)

    Lewin, Geertje; Matus, Marek; Basu, Abhijit; Frebel, Karin; Rohsbach, Sebastian Pius; Safronenko, Andrej; Seidl, Matthias Dodo; Stümpel, Frank; Buchwalow, Igor; König, Simone; Engelhardt, Stefan; Lohse, Martin J; Schmitz, Wilhelm; Müller, Frank Ulrich

    2009-01-06

    Chronic stimulation of the beta(1)-adrenoceptor (beta(1)AR) plays a crucial role in the pathogenesis of heart failure; however, underlying mechanisms remain to be elucidated. The regulation by transcription factors cAMP response element-binding protein (CREB) and cyclic AMP response element modulator (CREM) represents a fundamental mechanism of cyclic AMP-dependent gene control possibly implicated in beta(1)AR-mediated cardiac deterioration. We studied the role of CREM in beta(1)AR-mediated cardiac effects, comparing transgenic mice with heart-directed expression of beta(1)AR in the absence and presence of functional CREM. CREM inactivation protected from cardiomyocyte hypertrophy, fibrosis, and left ventricular dysfunction in beta(1)AR-overexpressing mice. Transcriptome and proteome analysis revealed a set of predicted CREB/CREM target genes including the cardiac ryanodine receptor, tropomyosin 1alpha, and cardiac alpha-actin as altered on the mRNA or protein level along with the improved phenotype in CREM-deficient beta(1)AR-transgenic hearts. The results imply the regulation of genes by CREM as an important mechanism of beta(1)AR-induced cardiac damage in mice.

  9. Micoses superficiais e os elementos da resposta imune Superficial mycosis and the immune response elements

    Directory of Open Access Journals (Sweden)

    Paulo Ricardo Criado

    2011-08-01

    Full Text Available As micoses superficiais são prevalentes em todo o mundo, geralmente ocasionadas por dermatófitos e restritas à camada córnea. A resposta imunológica do hospedeiro às infecções dos fungos dermatófitos depende basicamente das defesas do hospedeiro a metabólitos do fungo, da virulência da cepa ou da espécie infectante e da localização anatômica da infecção. Serão revistos alguns dos fatores da defesa imunológica do hospedeiro que influenciam na eficácia da resposta imune. Em especial, a participação dos receptores de padrão de reconhecimento (PRRs, tais como os receptores toll-like ou os da família lectina (DC-SIGN e dectin-2, que participam da resposta imune inata, conferindo-lhe especificidade e definindo o padrão da resposta imune como um todo. O predomínio celular ou humoral da resposta imune definirá o quadro clínico e o prognóstico da infecção, levando à cura ou cronicidadeSuperficial mycoses are prevalent worldwide. They are often caused by dermatophytes and restricted to the stratum corneum. The host's immune response against infections caused by dermatophytes basically depends on the host's defense against metabolites of the fungi, virulence of the infecting strain or species and anatomical site of the infection. We will review some of the factors of the host's immune defense that influence the efficacy of the immune response. We will particularly review the role of pattern recognition receptors (PRRs, such as toll-like receptors or lectin receptors (DCSIGN and Dectin 2, which participate in the innate immune response, bringing specificity to the immune response and setting its pattern. The predominance of a cellular or humoral immune response determines the clinical manifestations and the prognosis of the infection, leading to healing or chronicity

  10. Identification of Regulatory Mutations in SERPINC1 Affecting Vitamin D Response Elements Associated with Antithrombin Deficiency

    Science.gov (United States)

    Toderici, Mara; de la Morena-Barrio, María Eugenia; Padilla, José; Miñano, Antonia; Antón, Ana Isabel; Iniesta, Juan Antonio; Herranz, María Teresa; Fernández, Nuria; Vicente, Vicente; Corral, Javier

    2016-01-01

    Antithrombin is a crucial anticoagulant serpin whose even moderate deficiency significantly increases the risk of thrombosis. Most cases with antithrombin deficiency carried genetic defects affecting exons or flanking regions of SERPINC1.We aimed to identify regulatory mutations inSERPINC1 through sequencing the promoter, intron 1 and 2 of this gene in 23 patients with antithrombin deficiency but without known genetic defects. Three cases with moderate antithrombin deficiency (63–78%) carried potential regulatory mutations. One located 200 bp before the initiation ATG and two in intron 1. These mutations disrupted two out of five potential vitamin D receptor elements (VDRE) identified in SERPINC1 with different software. One genetic defect, c.42-1060_-1057dupTTGA, was a new low prevalent polymorphism (MAF: 0.01) with functional consequences on plasma antithrombin levels. The relevance of the vitamin D pathway on the regulation of SERPINC1 was confirmed in a cell model. Incubation of HepG2 with paricalcitol, a vitamin D analog, increased dose-dependently the levels of SERPINC1transcripts and antithrombin released to the conditioned medium. This study shows further evidence of the transcriptional regulation of SERPINC1 by vitamin D and first describes the functional and pathological relevance of mutations affecting VDRE of this gene. Our study opens new perspectives in the search of new genetic defects involved in antithrombin deficiency and the risk of thrombosis as well as in the design of new antithrombotic treatments. PMID:27003919

  11. Explicit incremental-update algorithm for modeling crystal elasto-viscoplastic response in finite element simulation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-wei; YANG He; SUN Zhi-chao

    2006-01-01

    Computational stability and efficiency are the key problems for numerical modeling of crystal plasticity,which will limit its development and application in finite element (FE) simulation evidently. Since implicit iterative algorithms are inefficient and have difficulty to determine initial values,an explicit incremental-update algorithm for the elasto-viscoplastic constitutive relation was developed in the intermediate frame by using the second Piola-Kirchoff (P-K) stress and Green stain. The increment of stress and slip resistance were solved by a calculation loop of linear equations sets. The reorientation of the crystal as well as the elastic strain can be obtained from a polar decomposition of the elastic deformation gradient. User material subroutine VUMAT was developed to combine crystal elasto-viscoplastic constitutive model with ABAQUS/Explicit. Numerical studies were performed on a cubic upset model with OFHC material (FCC crystal). The comparison of the numerical results with those obtained by implicit iterative algorithm and those from experiments demonstrates that the explicit algorithm is reliable. Furthermore,the effect rules of material anisotropy,rate sensitivity coefficient (RSC) and loading speeds on the deformation were studied. The numerical studies indicate that the explicit algorithm is suitable and efficient for large deformation analyses where anisotropy due to texture is important.

  12. Element Cycling and Energy Flux Responses in Ecosystem Simulations Conducted at the Chinese Lunar Palace-1

    Science.gov (United States)

    Dong, Chen; Fu, Yuming; Xie, Beizhen; Wang, Minjuan; Liu, Hong

    2017-01-01

    Bioregenerative life-support systems (BLSS) address interactions between organisms and their environment as an integrated system through the study of factors that regulate the pools and fluxes of materials and energy through ecological systems. As a simple model, using BLSS is very important in the investigation of element cycling and energy flux for sustainable development on Earth. A 105-day experiment with a high degree of closure was carried out in this system from February to May, 2014, with three volunteers. The results indicate that 247 g·d-1 carbon was imported into the system from stored food. Most hydrogen is circulated as water, and more than 99% H2O can be lost through leaf transpiration into the atmosphere. A total of 1.8 g·d-1 "unknown oxygen" emerged between the input and output of the plant growth module. For the urine processing module, 20.5% nitrogen was reused and 5.35 g·d-1 was put into the nutrient solution.

  13. Effect of the antioxidant ionol (BHT) on growth and development of etiolated wheat seedlings: control of apoptosis, cell division, organelle ultrastructure, and plastid differentiation.

    Science.gov (United States)

    Bakeeva, L E; Zamyatnina, V A; Shorning, B Y; Aleksandrushkina, N I; Vanyushin, B F

    2001-08-01

    Ionol (BHT), a compound having antioxidant activity, at concentrations in the range 1-50 mg/liter (0.45 x 10(-5)-2.27 x 10(-4) M), inhibits growth of etiolated wheat seedlings, changes the morphology of their organs, prolongs the coleoptile life span, and prevents the appearance of specific features of aging and apoptosis in plants. In particular, BHT prevents the age-dependent decrease in total DNA content, apoptotic internucleosomal fragmentation of nuclear DNA, appearance in the cell vacuole of specific vesicles with active mitochondria intensively producing mtDNA, and formation of heavy mitochondrial DNA rho = 1.718 g/cm3) in coleoptiles of etiolated wheat seedlings. BHT induces large structural changes in the organization of all cellular organelles (nucleus, mitochondria, plastids, Golgi apparatus, endocytoplasmic reticulum) and the formation of new unusual membrane structures in the cytoplasm. BHT distorts the division of nuclei and cells, and this results in the appearance of multi-bladed polyploid nuclei and multinuclear cells. In roots of etiolated wheat seedlings, BHT induces intensive synthesis of pigments, presumably carotenoids, and the differentiation of plastids with formation of chloro- or chromoplasts. The observed multiple effects of BHT are due to its antioxidative properties (the structural BHT analog 3,5-di-tert-butyltoluene is physiologically inert; it has no effect similar to that of BHT). Therefore, the reactive oxygen species (ROS) controlled by BHT seem to trigger apoptosis and the structural reorganization of the cytoplasm in the apoptotic cell with formation of specific vacuolar vesicles that contain active mitochondria intensively producing mtDNA. Thus, the inactivation of ROS by BHT may be responsible for the observed changes in the structure of all the mentioned cellular organelles. This corresponds to the idea that ROS control apoptosis and mitosis including formation of cell wall, and they are powerful secondary messengers that

  14. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  15. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    Directory of Open Access Journals (Sweden)

    Roger Huerlimann

    Full Text Available The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT, and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid and in two forms (homomeric and heteromeric. All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa and Chromista (Stramenopiles, Haptophyta and Cryptophyta have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO, Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta. These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was

  16. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2008-04-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. Results Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. Conclusion Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT.

  17. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2009-10-01

    Full Text Available Abstract Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori

  18. Phylogenetics of early branching eudicots: Comparing phylogenetic signal across plastid introns, spacers, and genes

    Institute of Scientific and Technical Information of China (English)

    Anna-Magdalena BARNISKE; Thomas BORSCH; Kai M(U)LLER; Michael KRUG; Andreas WORBERG; Christoph NEINHUIS; Dietmar QUANDT

    2012-01-01

    Recent phylogenetic analyses revealed a grade with Ranunculales,Sabiales,Proteales,Trochodendrales,and Buxales as first branching eudicots,with the respective positions of Proteales and Sabiales still lacking statistical confidence.As previous analyses of conserved plastid genes remain inconclusive,we aimed to use and evaluate a representative set of plastid introns (group Ⅰ:trnL; group Ⅱ:petD,rpll6,trnK) and intergenic spacers (trnL-F,petB-petD,atpB-rbcL,rps3-rpll6) in comparison to the rapidly evolving matK and slowly evolving atpB and rbcL genes.Overall patterns of microstructural mutations converged across genomic regions,underscoring the existence of a general mutational pattern throughout the plastid genome.Phylogenetic signal differed strongly between functionally and structurally different genomic regions and was highest in matK,followed by spacers,then group Ⅱ and group Ⅰ introns.The more conserved atpB and rbcL coding regions showed distinctly lower phylogenetic information content.Parsimony,maximum likelihood,and Bayesian phylogenetic analyses based on the combined dataset of non-coding and rapidly evolving regions (>14 000 aligned characters) converged to a backbone topology ofeudicots with Ranunculales branching first,a Proteales-Sabiales clade second,followed by Trochodendrales and Buxales.Gunnerales generally appeared as sister to all remaining core eudicots with maximum support.Our results show that a small number of intron and spacer sequences allow similar insights into phylogenetic relationships of eudicots compared to datasets of many combined genes.The non-coding proportion of the plastid genome thus can be considered an important information source for plastid phylogenomics.

  19. Assessment of Pulse Echo Response of Flat Bottom Holes Through Curved Interfaces Using the Patch Element Model

    Science.gov (United States)

    Madhu, G.; Reddy, Sudhan; Krishnamurthy, C. V.; Balasubramaniam, Krishnan

    2009-03-01

    The World Federations of Non-Destructive Evaluations Centers (WFNDEC) has proposed two studies for 2008 Benchmark problem. The first study deals with surface curvature effects across fluid-solid media to evaluate immersion transducer's P-wave response from Flat Bottom Holes (FBH) situated in the solid medium. The second study pertains to pulse echo response from Side Drilled Holes (SDH). We report the results for P-wave response from a FBH due to a transducer placed above a curved interface using the frequency domain Patch Element Model (PEM), developed at CNDE at IITM. The assessment employs an optimized algorithm to determine the points of reflection/refraction on any planar or curved interface between two media and incorporates the Divergence Factor (DF) to account for curvature effects on the field assessment. We also report results on the 2007 benchmark problem dealing with the response from FBH which has two parts: One is model based study and the other is comparison of model with experiments. The PEM results for 2007 and 2008 are compared with the available results from experiments and other models.

  20. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements.

    Science.gov (United States)

    Firth, J D; Ebert, B L; Ratcliffe, P J

    1995-09-08

    The oxygen-regulated control system responsible for the induction of erythropoietin (Epo) by hypoxia is present in most (if not all) cells and operates on other genes, including those involved in energy metabolism. To understand the organization of cis-acting sequences that are responsible for oxygen-regulated gene expression, we have studied the 5' flanking region of the mouse gene encoding the hypoxically inducible enzyme lactate dehydrogenase A (LDH). Deletional and mutational analysis of the function of mouse LDH-reporter fusion gene constructs in transient transfection assays defined three domains, between -41 and -84 base pairs upstream of the transcription initiation site, which were crucial for oxygen-regulated expression. The most important of these, although not capable of driving hypoxic induction in isolation, had the consensus of a hypoxia-inducible factor 1 (HIF-1) site, and cross-competed for the binding of HIF-1 with functionally active Epo and phosphoglycerate kinase-1 sequences. The second domain was positioned close to the HIF-1 site, in an analogous position to one of the critical regions in the Epo 3' hypoxic enhancer. The third domain had the motif of a cAMP response element (CRE). Activation of cAMP by forskolin had no effect on the level of LDH mRNA in normoxia, but produced a magnified response to hypoxia that was dependent upon the integrity of the CRE, indicating an interaction between inducible factors binding the HIF-1 and CRE sites.

  1. Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes

    Institute of Scientific and Technical Information of China (English)

    WANG Jiangxin; SHI Zhixin; XU Xudong

    2004-01-01

    Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl)and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.

  2. The effect of precrash velocity reduction on occupant response using a human body finite element model.

    Science.gov (United States)

    Guleyupoglu, B; Schap, J; Kusano, K D; Gayzik, F S

    2017-07-04

    The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature. In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0-1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median

  3. Historical landscape elements in preserving steppic species - vegetation responses on micro-topography and human disturbances

    Science.gov (United States)

    Deák, Balázs; Valkó, Orsolya; Török, Péter; Tóthmérész, Béla

    2017-04-01

    Land use changes of past centuries resulted in a considerable loss and isolation of grassland habitats worldwide which also led to a serious loss in ecosystem functions. In intensively used agricultural landscapes remnants of natural flora persisted only in small habitat islands embedded in a hostile matrix, which are inadequate for arable farming or construction. In the steppe zone of Eurasia burial mounds, so-called kurgans, have a great potential to preserve the natural flora and habitats and act as local biodiversity hotspots. Their special micro-topography and historical origin makes kurgans characteristic landscape elements of the steppe region. These features also result in a specific soil development and micro-climate, which makes kurgans especially adequate habitats for several steppe specialist plant species. Furthermore, they are proper objects for studying the effects of present and past human disturbances on the vegetation of semi-natural habitats. Exploration of the main factors driving biodiversity in isolated habitat fragments is crucial for understanding the ecological processes shaping their vegetation and for designing effective strategies for their protection. We surveyed the vegetation of 44 isolated kurgans in East-Hungary and studied the effects of habitat area, slope, recent disturbance, past destruction and the level of woody encroachment on the species richness and cover of grassland specialist and weedy species. We used model selection techniques and linear models for testing relevant factors affecting specialist species in grassland fragments. We found that the biodiversity conservation potential of kurgans is supported by their steep slopes, which provide adequate habitat conditions and micro-climate for steppic specialist plant species. By harbouring several grassland specialist species, kurgans have a great potential for preserving the natural species pool of even considerably altered agricultural landscapes, and can mitigate the

  4. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available BACKGROUND: The proliferating cell nuclear antigen (PCNA is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2 enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. CONCLUSION/SIGNIFICANCE: We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  5. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    Science.gov (United States)

    Kim, Jeong Soo; Kyum Kim, Moon

    2012-08-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  6. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development.

    Science.gov (United States)

    Xiong, Yuqing; DeFraia, Christopher; Williams, Donna; Zhang, Xudong; Mou, Zhonglin

    2009-07-01

    Arabidopsis PGL1, PGL2, PGL4 and PGL5 are predicted to encode cytosolic isoforms of 6-phosphogluconolactonase (6PGL), whereas PGL3 is predicted to encode a 6PGL that has been shown to localize in both plastids and peroxisomes. Therefore, 6PGL may exist in the cytosol, plastids and peroxisomes. However, the function of 6PGL in these three subcellular locations has not been well defined. Here we show that PGL3 is essential, whereas PGL1, PGL2 and PGL5 are individually dispensable for plant growth and development. Knockdown of PGL3 in the pgl3 mutant leads to a dramatic decrease in plant size, a significant increase in total glucose-6-phosphate dehydrogenase activity and a marked decrease in cellular redox potential. Interestingly, the pgl3 plants exhibit constitutive pathogenesis-related gene expression and enhanced resistance to Pseudomonas syringae pv. maculicola ES4326 and Hyaloperonospora arabidopsidis Noco2. We found that although pgl3 does not spontaneously accumulate elevated levels of free salicylic acid (SA), the constitutive defense responses in pgl3 plants are almost completely suppressed by the npr1 and sid2/eds16/ics1 mutations, suggesting that the pgl3 mutation activates NPR1- and SID2/EDS16/ICS1-dependent defense responses. We demonstrate that plastidic (not peroxisomal) localization and 6PGL activity of the PGL3 protein are essential for complementing all pgl3 phenotypes, indicating that the oxidative section of the plastidic pentose phosphate pathway (PPP) is required for plant normal growth and development. Thus, pgl3 provides a useful tool not only for defining the role of the PPP in different subcellular compartments, but also for dissecting the SA/NPR1-mediated signaling pathway.

  7. Genomic Regulation of the Response of an Agroecosystem to Elements of Global Change

    Energy Technology Data Exchange (ETDEWEB)

    DeLucia, Evan, H.

    2011-06-03

    This document outlines some of the major accomplishments from this project: (1) New tools for analyzing and visualizing microarray data from soybean gene expression experiments; (2) Physiological, biochemical, and gene array evidence that acclimation of carbon metabolism to elevated CO{sub 2} is governed in significant part by changes in gene expression associated with respiratory metabolism; (3) Increased carbon assimilation in soybeans grown at elevated CO{sub 2} altered pools of carbohydrates and transcripts that control growth and expansion of young leaves; (4) Growth at elevated CO{sub 2} increases the abundance of transcripts controlling cell wall polysaccharide synthesis but not transcripts controlling lignin synthesis; (5) The total antioxidant capacity of soybeans varies among cultivars and in response to atmospheric change; (6) Accelerated leaf senescence at elevated O{sub 3} coincides with reduced abundance of transcripts controlling protein synthesis; (7) Growth under elevated CO{sub 2} increases the susceptibility of soybean to insect herbivores by increasing insect lifespan and fecundity through altered leaf chemistry and by defeating molecular induction of plant defenses; (8) Exposure to elevated CO{sub 2} and O{sub 3} alters flavonoid metabolism in soybean; (9) Exposure to elevated CO{sub 2} or O{sub 3} conferred resistance to soybean mosaic virus by cross inducing defense- and stress-related signaling pathways; and (10) Exposure to elevated CO{sub 2} accelerates decomposition by changing chemical and biotic properties of the soil.

  8. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.

    Science.gov (United States)

    Park, Gwansik; Kim, Taewung; Forman, Jason; Panzer, Matthew B; Crandall, Jeff R

    2017-08-01

    The goal of this study was to predict the structural response of the femoral shaft under dynamic loading conditions using subject-specific finite element (SS-FE) models and to evaluate the prediction accuracy of the models in relation to the model complexity. In total, SS-FE models of 31 femur specimens were developed. Using those models, dynamic three-point bending and combined loading tests (bending with four different levels of axial compression) of bare femurs were simulated, and the prediction capabilities of five different levels of model complexity were evaluated based on the impact force time histories: baseline, mass-based scaled, structure-based scaled, geometric SS-FE, and heterogenized SS-FE models. Among the five levels of model complexity, the geometric SS-FE and the heterogenized SS-FE models showed statistically significant improvement on response prediction capability compared to the other model formulations whereas the difference between two SS-FE models was negligible. This result indicated the geometric SS-FE models, containing detailed geometric information from CT images with homogeneous linear isotropic elastic material properties, would be an optimal model complexity for prediction of structural response of the femoral shafts under the dynamic loading conditions. The average and the standard deviation of the RMS errors of the geometric SS-FE models for all the 31 cases was 0.46 kN and 0.66 kN, respectively. This study highlights the contribution of geometric variability on the structural response variation of the femoral shafts subjected to dynamic loading condition and the potential of geometric SS-FE models to capture the structural response variation of the femoral shafts.

  9. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Serk In, E-mail: serkin@korea.edu [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul (Korea, Republic of); Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN (United States); Park, Sung-Jun [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Laboratory of Obesity and Aging Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Lee, Junghan; Kim, Hye Eun; Park, Su Jin; Sohn, Jeong-Won [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Park, Yun Gyu, E-mail: parkyg@korea.ac.kr [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.

  10. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  11. Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb-Zn Mine, Toranica, Republic of Macedonia.

    Science.gov (United States)

    Angelovska, Svetlana; Stafilov, Trajče; Šajn, Robert; Balabanova, Biljana

    2016-04-01

    Moss species (Homalothecium lutescens, Hypnum cupressiforme, Brachythecium glareosum, and Campthotecium lutescens) were used as suitable sampling media for biomonitoring the origin of heavy-metal pollution in the lead-zinc (Pb-Zn) mine "Toranica" near the Kriva Palanka town, Eastern Macedonia. The contents of 20 elements-silver (Ag), aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), Pb, strontium (Sr), vanadium (V), and (Zn) were determined by atomic emission spectrometry with inductively coupled plasma. Data processing was applied with combinations of multivariate statistical methods: factor analysis, principal component analysis, and cluster analysis. Moss' responsiveness to the atmospheric distribution of the selected elements was investigated in correlation to the specific geology of the region (soil dusting). Lithogenic distribution was characterized with the distribution of three dominant geochemical associations: F1: Al-Li-V-Cr-Ni-Co, F2: Ba-Ca-Sr, and F3: Cd-Zn-Pb-Cu. Spatial distribution was constructed for visualization of the factor deposition. Furthermore, air distribution (passive biomonitoring) versus soil geochemistry of the analyzed elements was examined. Significant correlations were singled out for Pb, Zn, and Cd and for Mg(moss)/Na(soil). Characteristic lithological anomaly characterized the presence of the oldest geological volcanic rocks. Zone 1 (Pb-Zn mine surrounding) presents a unique area with hydrothermal action of Pb-Zn mineralization leading to polymetallic enrichments in soil. This phenomenon strongly affects the environment, which is a natural geochemical imprint in this unique area (described with the strong dominance of the geochemical association Cd-Zn-Pb-Cu).

  12. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2.

    Science.gov (United States)

    Zhang, Pan; Yang, Peizhi; Zhang, Zhiqiang; Han, Bo; Wang, Weidong; Wang, Yafang; Cao, Yuman; Hu, Tianming

    2014-02-15

    Dehydration responsive element binding (DREB) transcription factors play an important role in the regulation of stress-related genes. These factors contribute to resistance to different abiotic stresses. In the present study, a novel DREB transcription factor, BdDREB2, isolated from Buchloe dactyloides, was cloned and characterized. The BdDREB2 protein was estimated to have a molecular weight of 28.36kDa, a pI of 5.53 and a typical AP2/ERF domain. The expression of BdDREB2 was involved in responses to drought and salt stresses. Overexpression of BdDREB2 in tobacco showed higher relative water and proline content, and was associated with lower MDA content under drought stress, suggesting that the transgenic tobacco may tolerate drought stress better. Results demonstrate that BdDREB2 may play an important role in the regulation of abiotic stress responses, and mediate many physiological pathways that enhance stress tolerance in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Validation of Shoulder Response of Human Body Finite-Element Model (GHBMC) Under Whole Body Lateral Impact Condition.

    Science.gov (United States)

    Park, Gwansik; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2016-08-01

    In previous shoulder impact studies, the 50th-percentile male GHBMC human body finite-element model was shown to have good biofidelity regarding impact force, but under-predicted shoulder deflection by 80% compared to those observed in the experiment. The goal of this study was to validate the response of the GHBMC M50 model by focusing on three-dimensional shoulder kinematics under a whole-body lateral impact condition. Five modifications, focused on material properties and modeling techniques, were introduced into the model and a supplementary sensitivity analysis was done to determine the influence of each modification to the biomechanical response of the body. The modified model predicted substantially improved shoulder response and peak shoulder deflection within 10% of the observed experimental data, and showed good correlation in the scapula kinematics on sagittal and transverse planes. The improvement in the biofidelity of the shoulder region was mainly due to the modifications of material properties of muscle, the acromioclavicular joint, and the attachment region between the pectoralis major and ribs. Predictions of rib fracture and chest deflection were also improved because of these modifications.

  14. The Contribution of Pre-impact Posture on Restrained Occupant Finite Element Model Response in Frontal Impact.

    Science.gov (United States)

    Poulard, David; Subit, Damien; Nie, Bingbing; Donlon, John-Paul; Kent, Richard W

    2015-01-01

    The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts. This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments. The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0). Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation. This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis

  15. Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis.

    Science.gov (United States)

    Luesse, Darron R; DeBlasio, Stacy L; Hangarter, Roger P

    2006-08-01

    Chloroplasts move in a light-dependent manner that can modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement is beginning to define the molecular machinery that controls these movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensities while maintaining a normal movement response under low light intensities. In wild-type plants, fluence rates below 20 micromol m(-2) s(-1) of blue light lead to chloroplast accumulation on the periclinal cell walls, whereas light intensities over 20 micromol m(-2) s(-1) caused chloroplasts to move toward the anticlinal cell walls (avoidance response). However, at light intensities below 75 micromol m(-2) s(-1), chloroplasts in pmi2 leaves move to the periclinal walls; 100 micromol m(-2) s(-1) of blue light is required for chloroplasts in pmi2 to move to the anticlinal cell walls, indicating a shift in the light threshold for the avoidance response in the mutant. The pmi2 mutation has been mapped to a gene that encodes a protein of unknown function with a large coiled-coil domain in the N terminus and a putative P loop. PMI2 shares sequence and structural similarity with PMI15, another unknown protein in Arabidopsis that, when mutated, causes a defect in chloroplast avoidance under high-light intensities.

  16. Investigation of Micro-mechanical Response of Asphalt Mixtures by a Three-dimensional Discrete Element Model

    Institute of Scientific and Technical Information of China (English)

    HOU Shuguang; ZHANG Dong; HUANG Xiaoming; ZHAO Yongli

    2015-01-01

    The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.

  17. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.

    2009-01-01

    The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... increased (P estrogen and attenuated (P estrogen-induced transactivation is mediated via ERs, the effect of muscle contraction...... is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing...

  18. Development of a Finite Element Model of the Human Shoulder to Investigate the Mechanical Responses and Injuries in Side Impact

    Science.gov (United States)

    Iwamoto, Masami; Miki, Kazuo; Yang, King H.

    Previous studies in both fields of automotive safety and orthopedic surgery have hypothesized that immobilization of the shoulder caused by the shoulder injury could be related to multiple rib fractures, which are frequently life threatening. Therefore, for more effective occupant protection, it is important to understand the relationship between shoulder injury and multiple rib fractures in side impact. The purpose of this study is to develop a finite element model of the human shoulder in order to understand this relationship. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder. The model also included approaches to represent bone fractures and joint dislocations. The relationships between shoulder injury and immobilization of the shoulder are discussed using model responses for lateral shoulder impact. It is also discussed how the injury can be related to multiple rib fractures.

  19. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes.

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2012-06-01

    Full Text Available Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2 gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.

  20. CLONING AND CHARACTERIZATION OF A METAL RESPONSIVE ELEMENT-CONTAINING FRAGMENT FROM THE WILSON DISEASE GENE LOCUS BY JUNCTION TRAPPING

    Institute of Scientific and Technical Information of China (English)

    谢久永; 刘国仰; 王梅; 黄尚志; 罗会元

    1998-01-01

    All mammalian metallothionaln genes studied to dare have several metal responsive elements (MRE) with consensus sequences of TGCRCNC (R, purlne) in their regulatory region. MRE-11ke sequeaees were also found in many other metal-related genes. To see whether there is also such a sequence at the genetic locus (13q14. 3) d Wilstm disease, which is a genetic disorder d copper metabolisa''n, junction-trapping method baaed on the MRE sequence was used. A fragment containing MRE and MRE-like sequences from YAC 27D8 at the WND locus was successfully cloned and mapped back to the YAC by PC, R, Presence of such a sequence in the copper transporter gene at the W''D locus might imply that it has a possible interesting role in the regulation of WD gene expression.

  1. Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae).

    Science.gov (United States)

    Zhang, Xian-Zhi; Zeng, Chun-Xia; Ma, Peng-Fei; Haevermans, Thomas; Zhang, Yu-Xiao; Zhang, Li-Na; Guo, Zhen-Hua; Li, De-Zhu

    2016-03-01

    In this paper we investigate the biogeography of the temperate woody bamboos (Arundinarieae) using a densely-sampled phylogenetic tree of Bambusoideae based on six plastid DNA loci, which corroborates the previously discovered 12 lineages (I-XII) and places Kuruna as sister to the Chimonocalamus clade. Biogeographic analyses revealed that the Arundinarieae diversified from an estimated 12 to 14Mya, and this was followed by rapid radiation within the lineages, particularly lineages IV, V and VI, starting from c. 7-8Mya. It is suggested that the late Miocene intensification of East Asian monsoon may have contributed to this burst of diversification. The possibilities of the extant Sri Lankan and African temperate bamboo lineages representing 'basal elements' could be excluded, indicating that there is no evidence to support the Indian or African route for migration of temperate bamboo ancestors to Asia. Radiations from eastern Asia to Africa, Sri Lanka, and to North America all are likely to have occurred during the Pliocene, to form the disjunct distribution of Arundinarieae we observe today. The two African lineages are inferred as being derived independently from Asian ancestors, either by overland migrations or long-distance dispersals. Beringian migration may explain the eastern Asian-eastern North American disjunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Regulation of brain-derived neurotrophic factor exon IV transcription through calcium responsive elements in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Fei Zheng

    Full Text Available Activity-dependent transcription of brain-derived neurotrophic factor (BDNF has been studied as an important model to elucidate the mechanisms underlying numerous aspects of neuroplasticity. It has been extensively emphasized that Ca(2+ influx through different routes may have significantly different effects on BDNF transcription. Here, we examined the regulatory property of the major calcium responsive elements (CaRE in BDNF promoter IV in cultured rat cortical neurons. BDNF promoter IV, as well as CaRE1 and CaRE3, was significantly activated by Ca(2+ influx through L-type voltage-gated calcium channel (L-VGCC or NMDA receptor (NMDAR. However, the L-VGCC- and NMDAR-mediated activation of CaRE was differentially regulated by different Ca(2+-stimulated protein kinases. Specifically, PKA, CaMKI, and CaMKIV activity were required for L-VGCC-, but not NMDAR-mediated CaRE1 activation. CaMKI activity was required for NMDAR- but not L-VGCC-mediated CaRE3 activation. Surprisingly, the activation of CaRF, a previously identified transcription factor for CaRE1, was stimulated via L-VGCC but not NMDAR, and required MEK, PI3K and CaMKII activity. These results suggest a new working model that activity-dependent BDNF IV up-regulation may be coordinately mediated by CaRE1 and CaRE3 activity, which show different responses to Ca(2+-stimulated kinases. Our data also explain how the individual cis-element in BDNF promoter is distinctively coupled to different Ca(2+ routes.

  3. Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids.

    Science.gov (United States)

    Melo, Paula M; Lima, Lígia M; Santos, Isabel M; Carvalho, Helena G; Cullimore, Julie V

    2003-05-01

    In this paper, we report the cloning and characterization of the plastid-located glutamine synthetase (GS) of Medicago truncatula Gaertn (MtGS2). A cDNA was isolated encoding a GS2 precursor polypeptide of 428 amino acids composing an N-terminal transit peptide of 49 amino acids. Expression analysis, by Westerns and by northern hybridization, revealed that MtGS2 is expressed in both photosynthetic and non-photosynthetic organs. Both transcripts and proteins of MtGS2 were detected in substantial amounts in root nodules, suggesting that the enzyme might be performing some important role in this organ. Surprisingly, about 40% of the plastid GS in nodules occurred in the non-processed precursor form (preGS2). This precursor was not detected in any other organ studied and moreover was not observed in non-fixing nodules. Cellular fractionation of nodule extracts revealed that preGS2 is associated with the plastids and that it is catalytically inactive. Immunogold electron microscopy revealed a frequent coincidence of GS with the plastid envelope. Taken together, these results suggest a nodule-specific accumulation of the GS2 precursor at the surface of the plastids in nitrogen-fixing nodules. These results may reflect a regulation of GS2 activity in relation to nitrogen fixation at the level of protein import into nodule plastids.

  4. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines.

    Science.gov (United States)

    Wilson, Stephen; Qi, Jianfei; Filipp, Fabian V

    2016-09-14

    Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors.

  5. Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available Phosphoglucose isomerase (PGI catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP. In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(PH/NAD(P ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP-pathway derived cytokinins (CKs in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy

  6. Plastid mRNAs are neither spliced nor edited in maize and cauliflower mitochondrial in organello systems

    OpenAIRE

    Bolle, Nina; Hinrichsen, Inga; Kempken, Frank

    2007-01-01

    The process of RNA editing in chloroplasts and higher plant mitochondria displays some similarities, raising the question of common or similar components in editing apparatus of these two organelles. To investigate the ability of plant mitochondria to edit plastid transcripts, we employed a previously established mitochondrial maize and cauliflower in organello system. Two plastid genes, Zea mays ndhB and ycf3 containing group II introns and several editing sites, were introduced into mitocho...

  7. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG under normal and pathological (tumor conditions.

  8. Exposure to residual concentrations of elements from a remediated coal fly ash spill does not adversely influence stress and immune responses of nestling tree swallows.

    Science.gov (United States)

    Beck, Michelle L; Hopkins, William A; Hallagan, John J; Jackson, Brian P; Hawley, Dana M

    2014-01-01

    Anthropogenic activities often produce pollutants that can affect the physiology, growth and reproductive success of wildlife. Many metals and trace elements play important roles in physiological processes, and exposure to even moderately elevated concentrations of essential and non-essential elements could have subtle effects on physiology, particularly during development. We examined the effects of exposure to a number of elements from a coal fly ash spill that occurred in December 2008 and has since been remediated on the stress and immune responses of nestling tree swallows. We found that nestlings at the site of the spill had significantly greater blood concentrations of Cu, Hg, Se and Zn in 2011, but greater concentrations only of Se in 2012, in comparison to reference colonies. The concentrations of elements were below levels of significant toxicological concern in both years. In 2011, we found no relationship between exposure to elements associated with the spill and basal or stress-induced corticosterone concentrations in nestlings. In 2012, we found that Se exposure was not associated with cell-mediated immunity based on the response to phytohaemagglutinin injection. However, the bactericidal capacity of nestling plasma had a positive but weak association with blood Se concentrations, and this association was stronger at the spill site. Our results indicate that exposure to these low concentrations of elements had few effects on nestling endocrine and immune physiology. The long-term health consequences of low-level exposure to elements and of exposure to greater element concentrations in avian species require additional study.

  9. Roles of Salicylic Acid-responsive Cis-acting Elements and W-boxes in Salicylic Acid Induction of VCH3 Promoter in Transgenic Tobaccos

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan LI; Wei WEI; Yu LI

    2006-01-01

    A salicylic acid (SA)-inducible VCH3 promoter was recently identified from grapevine (Vitis amurensis) that contains two inverse SA-responsive cis-acting elements and four W-boxes. To further demonstrate the roles of these elements, four fragments with lengths from -1187, -892, -589, -276 to +7 bp were fused with the β-glucuronidase (GUS) reporter gene and transferred to Nicotiana tobacum,together with another four VCH3 promoter fragments with mutation in the two inverse SA-responsive elements. The functions of each promoter fragment were examined by analysis of GUS activity in the transgenic tobacco root treated with SA. Enhanced GUS activity was shown in the roots of transgenic tobaccos with the VCH3 (-1187)-GUS construct containing two SA-responsive cis-acting elements and four W-boxes. However, GUS activity directed by the VCH3 (-892)-GUS construct, containing one SA cisacting element and four W-boxes, was reduced by up to 35% compared with that in tobaccos transformed with the VCH3 (-1187)-GUS construct, indicating that the SA cis-acting element plays an important role in SA induction of the VCH3 promoter. Neither the m2VCH3 (-1187)-GUS nor the m VCH3 (-892)-GUSconstruct, with mutation on the SA-responsive elements, abolished the expression of GUS activity, demonstrating that the W-boxes in the VCH3 promoter are also involved in SA induction. Histochemical analysis of GUS activity directed by each of the eight VCH3 promoter fragments showed that GUS was expressed specifically in vascular tissue. It was concluded that both the SA-responsive cis-acting elements and the Wboxes are important for the SA induction of the VCH3 promoter. This promoter might have a potential use in plant genetic engineering.

  10. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Duan, Ai-Guo; Abuduhamiti, Bawerjan

    2016-06-16

    In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.

  11. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic – Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences

    Science.gov (United States)

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered. PMID:28122062

  12. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses.

    Science.gov (United States)

    Srinivasan, Kamalakkannan; Wright, Gus A; Hames, Nicole; Housman, Max; Roberts, Alayna; Aufderheide, Karl J; Janetopoulos, Chris

    2013-01-01

    Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and unpolarized cells responding

  13. Expression of MUC17 is regulated by HIF1α-mediated hypoxic responses and requires a methylation-free hypoxia responsible element in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sho Kitamoto

    Full Text Available MUC17 is a type 1 membrane-bound glycoprotein that is mainly expressed in the digestive tract. Recent studies have demonstrated that the aberrant overexpression of MUC17 is correlated with the malignant potential of pancreatic ductal adenocarcinomas (PDACs; however, the exact regulatory mechanism of MUC17 expression has yet to be identified. Here, we provide the first report of the MUC17 regulatory mechanism under hypoxia, an essential feature of the tumor microenvironment and a driving force of cancer progression. Our data revealed that MUC17 was significantly induced by hypoxic stimulation through a hypoxia-inducible factor 1α (HIF1α-dependent pathway in some pancreatic cancer cells (e.g., AsPC1, whereas other pancreatic cancer cells (e.g., BxPC3 exhibited little response to hypoxia. Interestingly, these low-responsive cells have highly methylated CpG motifs within the hypoxia responsive element (HRE, 5'-RCGTG-3', a binding site for HIF1α. Thus, we investigated the demethylation effects of CpG at HRE on the hypoxic induction of MUC17. Treatment of low-responsive cells with 5-aza-2'-deoxycytidine followed by additional hypoxic incubation resulted in the restoration of hypoxic MUC17 induction. Furthermore, DNA methylation of HRE in pancreatic tissues from patients with PDACs showed higher hypomethylation status as compared to those from non-cancerous tissues, and hypomethylation was also correlated with MUC17 mRNA expression. Taken together, these findings suggested that the HIF1α-mediated hypoxic signal pathway contributes to MUC17 expression, and DNA methylation of HRE could be a determinant of the hypoxic inducibility of MUC17 in pancreatic cancer cells.

  14. Regulation of Cox-2 by Cyclic AMP Response Element Binding Protein in Prostate Cancer: Potential Role for Nexrutine

    Directory of Open Access Journals (Sweden)

    Rita Ghosh

    2007-11-01

    Full Text Available We recently showed that NexrutineR, a Phellodendron amurense bark extract, suppresses proliferation of prostate cancer cell lines and tumor development in the transgenic adenocarcinoma of mouse prostate (TRAMP model. Our data also indicate that the antiproliferative effects of NexrutineR are mediated in part by Akt and Cyclic AMP response element binding protein (CREB. Cyclooxygenase (Cox-2, a pro-inflammatory mediator, is a CREB target that induces prostaglandin E2 (PGE2 and suppresses apoptosis. Treatment of LNCaP cells with NexrutineR reduced tumor necrosis factor α-induced enzymatic as well as promoter activities of Cox-2. NexrutineR also reduced the expression and promoter activity of Cox-2 in PC-3 cells that express high constitutive levels of Cox-2. Deletion analysis coupled with mutational analysis of the Cox-2 promoter identified CRE as being sufficient for mediating NexrutineR response. Immunohistochemical analysis of human prostate tumors show increased expression of CREB and DNA binding activity in high-grade tumors (three-fold higher in human prostate tumors compared to normal prostate; P = .01. We have identified CREB-mediated activation of Cox-2 as a potential signaling pathway in prostate cancer which can be blocked with a nontoxic, cost-effective dietary supplement like NexrutineR, demonstrating a prospective for development of NexrutineR for prostate cancer management.

  15. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  16. Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting

    Science.gov (United States)

    Smart, Kevin J.; Wyrick, Danielle Y.; Ferrill, David A.

    2011-04-01

    Pit craters, circular to elliptical depressions that lack a raised rim or ejecta deposits, are common on the surface of Mars. Similar structures are also found on Earth, Venus, the Moon, and smaller planetary bodies, including some asteroids. While it is generally accepted that these pits form in response to material drainage into a subsurface void space, the primary mechanism(s) responsible for creating the void is a subject of debate. Previously proposed mechanisms include collapse into lave tubes, dike injection, extensional fracturing, and dilational normal faulting. In this study, we employ two-dimensional discrete element models to assess both extensional fracturing and dilational normal faulting as mechanisms for forming pit craters. We also examine the effect of mechanical stratigraphy (alternating strong and weak layers) and variation in regolith thickness on pit morphology. Our simulations indicate that both extensional fracturing and dilational normal faulting are viable mechanisms. Both mechanisms lead to generally convex (steepening downward) slope profiles; extensional fracturing results in generally symmetric pits, whereas dilational normal faulting produces strongly asymmetric geometries. Pit width is established early, whereas pit depth increases later in the deformation history. Inclusion of mechanical stratigraphy results in wider and deeper pits, particularly for the dilational normal faulting, and the presence of strong near-surface layers leads to pits with distinct edges as observed on Mars. The modeling results suggest that a thicker regolith leads to wider but shallower pits that are less distinct and may be more difficult to detect in areas of thick regolith.

  17. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  18. DNA Methylation Occurred around Lowly Expressed Genes of Plastid DNA during Tomato Fruit Development.

    Science.gov (United States)

    Ngernprasirtsiri, J; Kobayashi, H; Akazawa, T

    1988-09-01

    We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.

  19. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process.

    Science.gov (United States)

    Tseng, Menq-Jiau; Yang, Ming-Te; Chu, Wan-Ru; Liu, Cheng-Wei

    2014-01-01

    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetable crops grown worldwide. Scientists are using biotechnology in addition to traditional breeding methods to develop new cabbage varieties with desirable traits. Recent biotechnological advances in chloroplast transformation technology have opened new avenues for crop improvement. In 2007, we developed a stable plastid transformation system for cabbage and reported the successful transformation of the cry1Ab gene into the cabbage chloroplast genome. This chapter describes the methods for cabbage transformation using biolistic procedures. The following sections are included in this protocol: preparation of donor materials, coating gold particles with DNA, biolistic bombardment, as well as the regeneration and selection of transplastomic cabbage plants. The establishment of a plastid transformation system for cabbage offers new possibilities for introducing new agronomic and horticultural traits into Brassica crops.

  20. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.

    Science.gov (United States)

    Dagan, Tal; Roettger, Mayo; Stucken, Karina; Landan, Giddy; Koch, Robin; Major, Peter; Gould, Sven B; Goremykin, Vadim V; Rippka, Rosmarie; Tandeau de Marsac, Nicole; Gugger, Muriel; Lockhart, Peter J; Allen, John F; Brune, Iris; Maus, Irena; Pühler, Alfred; Martin, William F

    2013-01-01

    Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.

  1. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    Science.gov (United States)

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  2. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics.

    Science.gov (United States)

    Harrison, Nicola; Harrison, Richard J; Kidner, Catherine A

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia.

  3. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    OpenAIRE

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to th...

  4. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids

    OpenAIRE

    Zechmann, B.; Mauch, Felix; Sticher, Liliane; Müller, M.

    2008-01-01

    The tripeptide glutathione is a major antioxidant and redox buffer with multiple roles in plant metabolism. Glutathione biosynthesis is restricted to the cytosol and the plastids and the product is distributed to the various organelles by unknown mechanisms. In the present study immunogold cytochemistry based on anti-glutathione antisera and transmission electron microscopy was used to determine the relative concentration of glutathione in different organelles of Arabidopsis thaliana leaf and...

  5. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae.

    Science.gov (United States)

    Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K

    2010-02-01

    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

  6. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    OpenAIRE

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to th...

  7. Role of the C-terminal extension peptide of plastid located glutamine synthetase from Medicago truncatula: Crucial for enzyme activity and needless for protein import into the plastids.

    Science.gov (United States)

    Ferreira, Maria João; Vale, Diogo; Cunha, Luis; Melo, Paula

    2017-02-01

    Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is encoded by a small family of highly homologous nuclear genes that produce cytosolic (GS1) and plastidic (GS2) isoforms. Compared to GS1, GS2 proteins have two extension peptides, one at the N- and the other at the C-terminus, which show a high degree of conservation among plant species. It has long been known that the N-terminal peptide acts as a transit peptide, targeting the protein to the plastids however, the function of the C-terminal extension is still unknown. To investigate whether the C-terminal extension influences the activity of the enzyme, we produced a C-terminal truncated version of Medicago truncatula GS2a in Escherechia coli and studied its catalytic properties. The activity of the truncated protein was found to be lower than that of MtGS2a and with less affinity for glutamate. The importance of the C-terminal extension for the protein import into the chloroplast was also assessed by transient expression of fluorescently-tagged MtGS2a truncated at the C-terminus, which was correctly detected in the chloroplast. The results obtained in this work demonstrate that the C-terminal extension of M. truncatula GS2a is important for the activity of the enzyme and does not contain crucial information for the import process.

  8. The CCAAT/enhancer-binding protein-ATF response elements-luciferase mouse model, an innovative tool to monitor the integrated stress response pathway in vivo.

    Science.gov (United States)

    Bruhat, Alain; Fafournoux, Pierre

    2017-05-01

    The article highlights the recent development of an ATF4 (activating transcription factor) inducible luciferase (LUC) mouse model to monitor the integrated stress response pathway (ISR) in vivo. The ISR pathway plays a key role in cellular adaptation to stress and is dysregulated in numerous diseases. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 α, which leads to the recruitment of the transcription factor ATF4 to specific CCAAT/enhancer-binding protein-ATF response elements (CAREs) located in the promoters of target genes. To monitor the modulation of this pathway in the whole animal and at tissue and cellular levels, we generated a CARE-driven LUC mouse model. We validated the relevance of this model to study stress-related pathologies and recently observed the correlation between the ISR pathway induction in muscle and the occurrence of stress-induced skeletal muscle atrophy. The CARE-LUC mouse model represents an innovative tool for investigating the role of the ISR pathway in physiology and disease and opens new avenues for the development of drugs that could modify this important pathway in stress-related human diseases.

  9. Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms.

    Science.gov (United States)

    Nagata, Noriko

    2010-03-01

    The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes:maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollenmitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)--the most likely possibility--digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.

  10. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera

    Science.gov (United States)

    Park, J.-M.; Manen, J.-F.; Colwell, A.E.; Schneeweiss, G.M.

    2008-01-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera. ?? 2008 The Botanical Society of Japan and Springer.

  11. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  12. A new centrifuge microscope reveals that mobile plastids trigger gravity sensing in Arabidopsis inflorescence stems

    Science.gov (United States)

    Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon

    2012-07-01

    The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with

  13. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1.

    Science.gov (United States)

    Gao, Ying; Zan, Xin-Li; Wu, Xue-Feng; Yao, Lei; Chen, Yu-Ling; Jia, Shuang-Wei; Zhao, Kai-Jun

    2014-02-01

    Chitinases are a group of pathogenesis-related proteins. The Brassica juncea chitinase gene BjCHI1 is highly inducible by pathogenic fungal infection, suggesting that the promoter of BjCHI1 might contain specific cis-acting element responsive to fungal attack. To identify the fungus-responsive element in BjCHI1 promoter (BjC-P), a series of binary plant transformation vectors were constructed by fusing the BjC-P or its deletion-derivatives to β-glucuronidase (GUS) reporter gene. Expression of the GUS reporter gene was systematically assayed by a transient gene expression system in Nicotiana benthamiana leaves treated with fungal elicitor Hexa-N-Acetyl-Chitohexaose, as well as in transgenic Arabidopsis plants inoculated with fungus Botrytis cinerea. The histochemical and quantitative GUS assays showed that the W-box-like element (GTAGTGACTCAT) in the region (-668 to -657) was necessary for the fungus-response, although there were another five W-box-like elements in BjC-P. In addition, gain-of-function analysis demonstrated that the fragment (-409 to -337) coupled to the W-box-like element was needed for full magnitude of the fungal induction. These results revealed the existence of a novel regulation mechanism of W-box-like element involved in plant pathogenic resistance, and will benefit the potential application of BjC-P in engineering crops.

  14. Hippocampal expression of synaptic structural proteins and phosphorylated cAMP response element-binding protein in a rat model of vascular dementia induced by chronic cerebral hypoperfusion

    Institute of Scientific and Technical Information of China (English)

    Hui Zhao; Zhiyong Li; Yali Wang; Qiuxia Zhang

    2012-01-01

    The present study established a rat model of vascular dementia induced by chronic cerebral hy-poperfusion through permanent ligation of bilateral common carotid arteries. At 60 days after mod-eling, escape latency and swimming path length during hidden-platform acquisition training in Morris water maze significantly increased in the model group. In addition, the number of accurate crossings over the original platform significantly decreased, hippocampal CA1 synaptophysin and growth-associated protein 43 expression significantly decreased, cAMP response element-binding protein expression remained unchanged, and phosphorylated cAMP response element-binding protein expression significantly decreased. Results suggested that abnormal expression of hippo-campal synaptic structural protein and cAMP response element-binding protein phosphorylation played a role in cognitive impairment following chronic cerebral hypoperfusion.

  15. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  16. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  17. Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: from the origin of plastids to the dominance of rhizobia

    Science.gov (United States)

    Le Moal, M.; Collin, H.; Biegala, I. C.

    2010-12-01

    The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has been formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH phylogenies. These genetic analyses were possible owning to the development of a new PCR protocol adapted for scarce microorganisms (0.2 cell ml-1). Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized with Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml-1 of Richelia were detected in the eastern basin, while small (0.7-1.5 μm) and large (2.5-3.2 μm) Nitro821-targeted cells were recovered at all stations and averaged 3.5 cell ml-1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. Surprisingly, the larger hybridized cells were not belonging to UCYN-B and C but to plastids of picoeukaryote. NifH gene was not recovered among picoeukaryotes, when rhizobia sequences, including the ones of Bradyrhizobia, were dominating nifH clone libraries from picoplanktonic size fractions. Few sequences of γ-proteobacteria were also detected in central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles

  18. cAMP response element binding protein is required for differentiation of respiratory epithelium during murine development.

    Directory of Open Access Journals (Sweden)

    A Daniel Bird

    Full Text Available The cAMP response element binding protein 1 (Creb1 transcription factor regulates cellular gene expression in response to elevated levels of intracellular cAMP. Creb1(-/- fetal mice are phenotypically smaller than wildtype littermates, predominantly die in utero and do not survive after birth due to respiratory failure. We have further investigated the respiratory defect of Creb1(-/- fetal mice during development. Lungs of Creb1(-/- fetal mice were pale in colour and smaller than wildtype controls in proportion to their reduced body size. Creb1(-/- lungs also did not mature morphologically beyond E16.5 with little or no expansion of airway luminal spaces, a phenotype also observed with the Creb1(-/- lung on a Crem(-/- genetic background. Creb1 was highly expressed throughout the lung at all stages examined, however activation of Creb1 was detected primarily in distal lung epithelium. Cell differentiation of E17.5 Creb1(-/- lung distal epithelium was analysed by electron microscopy and showed markedly reduced numbers of type-I and type-II alveolar epithelial cells. Furthermore, immunomarkers for specific lineages of proximal epithelium including ciliated, non-ciliated (Clara, and neuroendocrine cells showed delayed onset of expression in the Creb1(-/- lung. Finally, gene expression analyses of the E17.5 Creb1(-/- lung using whole genome microarray and qPCR collectively identified respiratory marker gene profiles and provide potential novel Creb1-regulated genes. Together, these results demonstrate a crucial role for Creb1 activity for the development and differentiation of the conducting and distal lung epithelium.

  19. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    Science.gov (United States)

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-08-05

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops.

  20. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene.

    Science.gov (United States)

    McKnight, Robert A; Yost, Christian C; Yu, Xing; Wiedmeier, Julia E; Callaway, Christopher W; Brown, Ashley S; Lane, Robert H; Fung, Camille M

    2015-12-01

    Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.

  1. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element.

    Science.gov (United States)

    Guyton, K Z; Xu, Q; Holbrook, N J

    1996-01-01

    GADD153 is a CCAAT/enhancer-binding-protein-related gene that may function to control cellular growth in response to stress signals. In this study, a variety of oxidant treatments were shown to stimulate endogenous GADD153 mRNA expression and to transcriptionally activate a GADD153 promoter-reporter gene construct in transfected HeLa cells. Both commonalities and distinctions in the induction of GADD153 by H2O2 and the thiol-reactive compound arsenite were demonstrated. GADD153 mRNA induction by both H2O2 and arsenite was potentiated by GSH depletion, and completely inhibited by N-acetyl-cysteine. o-Phenanthroline and mannitol blocked GADD153 induction by H2O2, indicating that iron-generated hydroxyl radical mediates this induction. Concordantly, GSH peroxidase overexpression in WI38 cells attenuated GADD153 mRNA induction by H2O2. However, GADD153 induction by arsenite was only modestly reduced in the same cells, suggesting a lesser contribution of peroxides to gene activation by arsenite. We also demonstrated that oxidative stress participates in the induction of GADD153 by UVC (254 nm) irradiation. Finally, both promoter-deletion analysis and point mutation of the AP-1 site in an otherwise intact promoter support a significant role for AP-1 in transcriptional activation of GADD153 by UVC or oxidant treatment. Indeed, exposure of cells to oxidants or UVC stimulated binding of Fos and Jun to the GADD153 AP-1 element. Together, these results demonstrate that both free-radical generation and thiol modification can transcriptionally activate GADD153, and that AP-1 is critical to oxidative regulation of this gene. This study further supports a role for the GADD153 gene product in the cellular response to oxidant injury. PMID:8670069

  2. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Photosynthetic euglenids acquired their plastid by secondary endosymbiosis of a prasinophyte-like green alga. But unlike its prasinophyte counterparts, the plastid genome of the euglenid Euglena gracilis is riddled with introns that interrupt almost every protein-encoding gene. The atypical group II introns and twintrons (introns-within-introns found in the E. gracilis plastid have been hypothesized to have been acquired late in the evolution of euglenids, implying that massive numbers of introns may be lacking in other taxa. This late emergence was recently corroborated by the plastid genome sequences of the two basal euglenids, Eutreptiella gymnastica and Eutreptia viridis, which were found to contain fewer introns. METHODOLOGY/PRINCIPAL FINDINGS: To gain further insights into the proliferation of introns in euglenid plastids, we have characterized the complete plastid genome sequence of Monomorphina aenigmatica, a freshwater species occupying an intermediate phylogenetic position between early and late branching euglenids. The M. aenigmatica UTEX 1284 plastid genome (74,746 bp, 70.6% A+T, 87 genes contains 53 intron insertion sites, of which 41 were found to be shared with other euglenids including 12 of the 15 twintron insertion sites reported in E. gracilis. CONCLUSIONS: The pattern of insertion sites suggests an ongoing but uneven process of intron gain in the lineage, with perhaps a minimum of two bursts of rapid intron proliferation. We also identified several sites that represent intermediates in the process of twintron evolution, where the external intron is in place, but not the internal one, offering a glimpse into how these convoluted molecular contraptions originate.

  3. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.

    Science.gov (United States)

    Brázda, Václav; Čechová, Jana; Battistin, Michele; Coufal, Jan; Jagelská, Eva B; Raimondi, Ivan; Inga, Alberto

    2017-01-29

    The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.

  4. Small molecule inhibition of cAMP response element binding protein in human acute myeloid leukemia cells.

    Science.gov (United States)

    Mitton, B; Chae, H-D; Hsu, K; Dutta, R; Aldana-Masangkay, G; Ferrari, R; Davis, K; Tiu, B C; Kaul, A; Lacayo, N; Dahl, G; Xie, F; Li, B X; Breese, M R; Landaw, E M; Nolan, G; Pellegrini, M; Romanov, S; Xiao, X; Sakamoto, K M

    2016-12-01

    The transcription factor CREB (cAMP Response-Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell-cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell-cycle and survival pathways, which may represent a novel approach for AML therapy.

  5. Induction of electrophile-responsive element (EpRE)-mediated gene expression by tomato extracts in vitro.

    Science.gov (United States)

    Gijsbers, Linda; van Eekelen, Henriëtte D L M; Nguyen, Thuy H; de Haan, Laura H J; van der Burg, Bart; Aarts, Jac M M J G; Rietjens, Ivonne M C M; Bovy, Arnaud G

    2012-12-01

    The market for food products with additional health benefits is increasing rapidly and tools for identification of bio-functional characteristics of food items are essential. To facilitate the detection of beneficial effects of tomato on gene expression, methods to prepare tomato extracts suitable to test in the EpRE LUX assay and other cell-based reporter gene assays for health-related bioactivity mechanisms, were developed. An isoprenoid-containing chloroform extract of tomato fruit and most individual isoprenoids did not induce electrophile-responsive element (EpRE)-mediated gene expression. A semi-polar extract of tomato fruits, enzymatically hydrolysed to remove the glycosyl residues from the phenolic ingredients was able to induce EpRE-mediated luciferase expression at both mRNA and protein level, which might be partly due to the presence of quercetin, kaempferol, naringenin and naringenin chalcone. It was concluded that induction of EpRE-regulated genes, such as detoxifying phase II and antioxidant enzymes, may contribute to the beneficial health effects of tomato.

  6. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  7. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Directory of Open Access Journals (Sweden)

    Muslim Akmal

    2016-09-01

    Full Text Available Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A; KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells.

  8. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element

    Science.gov (United States)

    Claudel, Thierry; Sturm, Ekkehard; Duez, Hélène; Torra, Inés Pineda; Sirvent, Audrey; Kosykh, Vladimir; Fruchart, Jean-Charles; Dallongeville, Jean; Hum, Dean W.; Kuipers, Folkert; Staels, Bart

    2002-01-01

    Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid–activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells. PMID:11927623

  9. Immunohistochemical Study of Nrf2-Antioxidant Response Element as Indicator of Oxidative Stress Induced by Cadmium in Developing Rats

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2015-01-01

    Full Text Available In developing animals, Cadmium (Cd induces toxicity to many organs including brain. Reactive oxygen species (ROS are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE. Cd-generated oxidative stress and elevated Nrf2 activity have been reported in vitro and in situ cells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity.

  10. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  11. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element

    Science.gov (United States)

    Pardanaud-Glavieux, Corinne; García-Hurtado, Javier; Sauty, Claire; Guerci, Aline; Ferrer, Jorge

    2017-01-01

    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive. PMID:28225770

  12. Three-dimensional integral imaging displays using a quick-response encoded elemental image array: an overview

    Science.gov (United States)

    Markman, A.; Javidi, B.

    2016-06-01

    Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.

  13. Activation of the Nuclear Factor E2-Related Factor 2/Antioxidant Response Element Pathway Is Neuroprotective after Spinal Cord Injury

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E.

    2012-01-01

    Abstract The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI. PMID:21806470

  14. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E; Keane, Robert W

    2012-03-20

    The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI.

  15. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Science.gov (United States)

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  16. Effect of 2-Hydroxyethyl Methacrylate on Antioxidant Responsive Element-Mediated Transcription: A Possible Indication of Its Cytotoxicity

    Science.gov (United States)

    Orimoto, Ai; Suzuki, Takahiro; Ueno, Atsuko; Kawai, Tatsushi; Nakamura, Hiroshi; Kanamori, Takao

    2013-01-01

    Background The resin monomer 2-hydroxyethyl methacrylate (HEMA) is known to be more cytotoxic than methyl methacrylate (MMA). Using a luciferase reporter assay system, we previously showed that MMA activates the glutathione S-transferase alpha 1 gene (Gsta1) promoter through the anti-oxidant responsive element (ARE). However, it is not known whether HEMA induces ARE-mediated transcription. Methodology/Principal Findings We further developed the reporter system and studied the concentration-dependent effect of HEMA on ARE enhancer activity. The revised system employed HepG2 cells stably transfected with a destabilized luciferase reporter vector carrying 2 copies of the 41-bp ARE region of Gsta1. In this system, MMA increased ARE activity by 244-fold at 30 mM; HEMA augmented ARE activity at 3 mM more intensely than MMA (36-fold versus 11-fold) and was equipotent as MMA at 10 mM (56-fold activation); however, HEMA failed to increase ARE activity at 30 mM. In HepG2 cells, HEMA detectably lowered the cellular glutathione levels at 10 mM and cell viability at 30 mM, but MMA did not. Conclusions These results suggest that the low-concentration effect of HEMA on ARE activity reflects its cytotoxicity. Our reporter system used to examine ARE activity may be useful for evaluating cytotoxicities of resin monomers at concentrations lower than those for which cell viabilities are reduced. PMID:23516576

  17. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  18. MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas.

    Science.gov (United States)

    Chen, Lin; Yang, Qian; Kong, Wei-Qing; Liu, Tao; Liu, Min; Li, Xin; Tang, Hua

    2012-07-01

    MicroRNAs are a class of small endogenous non-coding RNAs that function as post-transcriptional regulators. In our previous study, we found that miR-181b was significantly downregulated in human gastric adenocarcinoma tissue samples compared to the adjacent normal gastric tissues. In this study, we confirm the down-regulation of miR-181b in human gastric cancer cell lines versus the gastric epithelial cells. Overexpression of miR-181b suppressed the proliferation and colony formation rate of gastric cancer cells. miR-181b downregulated the expression of cAMP responsive element binding protein 1 (CREB1) by binding its 3' untranslated region. Overexpression of CREB1 counteracted the suppression of growth in gastric cancer cells caused by ectopic expression of miR-181b. These results indicate that miR-181b may function as a tumor suppressor in gastric adenocarcinoma cells through negative regulation of CREB1.

  19. Probing the Elastic-Plastic, Time-Dependant Response of Test Fasteners using Finite Element Analysis (FEA)

    Energy Technology Data Exchange (ETDEWEB)

    ML Renauld; H Lien

    2004-12-13

    The evolution of global and local stress/strain conditions in test fasteners under test conditions is investigated using elastic-plastic, time-dependent finite element analyses (FEA). For elastic-plastic response, tensile data from multiple specimens, material heats and test temperatures are integrated into a single, normalized flow curve from which temperature dependency is extracted. A primary creep model is calibrated with specimen- and fastener-based thermal relaxation data generated under a range of times, temperatures, stress levels and environments. These material inputs are used in analytical simulations of experimental test conditions for several types of fasteners. These fastener models are constructed with automated routines and contact conditions prescribed at all potentially mating surfaces. Thermal or mechanical room temperature pre-loading, as appropriate for a given fastener, is followed by a temperature ramp and a dwell time at constant temperature. While the amount of thermal stress relaxation is limited for the conditions modeled, local stress states are highly dependent upon geometry (thread root radius, for example), pre-loading history and thermal expansion differences between the test fastener and test fixture. Benefits of this FE approach over an elastic methodology for stress calculation will be illustrated with correlations of Stress Corrosion Cracking (SCC) initiation time and crack orientations in stress concentrations.

  20. Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress.

    Science.gov (United States)

    Loyola, J; Verdugo, I; González, E; Casaretto, J A; Ruiz-Lara, S

    2012-01-01

    Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.

  1. Hypoxia-response element (HRE)-directed transcriptional regulation of the rat lysyl oxidase gene in response to cobalt and cadmium.

    Science.gov (United States)

    Gao, Song; Zhou, Jing; Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2013-04-01

    Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5'-ACGTG-3') exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10-100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)-treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at -387/-383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation.

  2. Interplay between estrogen response element sequence and ligands controls in vivo binding of estrogen receptor to regulated genes.

    Science.gov (United States)

    Krieg, Adam J; Krieg, Sacha A; Ahn, Bonnie S; Shapiro, David J

    2004-02-06

    To examine the role of the estrogen response element (ERE) sequence in binding of liganded estrogen receptor (ER) to promoters, we analyzed in vivo interaction of liganded ER with the imperfect ERE in the pS2 gene and the composite estrogen-responsive unit (ERU) in the proteinase inhibitor 9 (PI-9) gene. In transient transfections of ER-positive HepG2-ER7 cells, PI-9 was strongly induced by estrogen, moxestrol (MOX), and 4-hydroxytamoxifen (OHT). PI-9 was not induced by raloxifene or ICI 182,780. Quantitative reverse transcriptase-PCR showed that moxestrol strongly induced cellular PI-9 and pS2 mRNAs, whereas OHT moderately induced PI-9 mRNA and weakly induced pS2 mRNA. Chromatin immunoprecipitation experiments demonstrated strong and similar association of 17beta-estradiol-hERalpha and MOX-hERalpha with the PI-9 ERU and with the pS2 ERE. Binding of MOX-hERalpha to the PI-9 ERU and the pS2 ERE was rapid and continuous. Although MOX-hERalpha bound strongly to the PI-9 ERU and less well to the pS2 ERE in chromatin immunoprecipitation, gel shift assays showed that estrogen-hERalpha binds with higher affinity to the deproteinized pS2 ERE than to the PI-9 ERU. Across a broad range of OHT concentrations, OHT-hERalpha associated strongly with the pS2 ERE and weakly with the PI-9 ERU. ICI-hERalpha bound poorly to the PI-9 ERU and effectively to the pS2 ERE. Raloxifene-hERalpha and MOX-hERalpha exhibited similar binding to the PI-9 ERU and the pS2 ERE. These studies demonstrate that ER ligand and ERE sequence work together to regulate in vivo binding of ER to estrogen-responsive promoters.

  3. Regulation of Insulin-Response Element Binding Protein-1 in Obesity and Diabetes: Potential Role in Impaired Insulin-Induced Gene Transcription

    OpenAIRE

    2008-01-01

    One of the major mechanisms by which insulin modulates glucose homeostasis is through regulation of gene expression. Therefore, reduced expression of transcription factors that are required for insulin-regulated gene expression may contribute to insulin resistance. We recently identified insulin response element-binding protein-1 (IRE-BP1) as a transcription factor that binds and transactivates multiple insulin-responsive genes, but the regulation of IRE-BP1 in vivo is largely unknown. In thi...

  4. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  5. Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants.

    Science.gov (United States)

    Guo, Wenhu; Grewe, Felix; Mower, Jeffrey P

    2015-01-01

    The distinct distribution and abundance of C-to-U and U-to-C RNA editing among land plants suggest that these two processes originated and evolve independently, but the paucity of information from several key lineages limits our understanding of their evolution. To examine the evolutionary diversity of RNA editing among ferns, we sequenced the plastid transcriptomes from two early diverging species, Ophioglossum californicum and Psilotum nudum. Using a relaxed automated approach to minimize false negatives combined with manual inspection to eliminate false positives, we identified 297 C-to-U and three U-to-C edit sites in the O. californicum plastid transcriptome but only 27 C-to-U and no U-to-C edit sites in the P. nudum plastid transcriptome. A broader comparison of editing content with the leptosporangiate fern Adiantum capillus-veneris and the hornwort Anthoceros formosae uncovered large variance in the abundance of plastid editing, indicating that the frequency and type of RNA editing is highly labile in ferns. Edit sites that increase protein conservation among species are more abundant and more efficiently edited than silent and non-conservative sites, suggesting that selection maintains functionally important editing. The absence of U-to-C editing from P. nudum plastid transcripts and other vascular plants demonstrates that U-to-C editing loss is a recurrent phenomenon in vascular plant evolution.

  6. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity

    NARCIS (Netherlands)

    Boerboom, A.M.J.F.; Vermeulen, M.; Woude, van der H.; Bremer, B.I.; Lee, Y.Y.; Kampman, E.; Bladeren, van P.J.; Rietjens, I.M.C.M.; Aarts, J.M.M.J.G.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  7. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity.

    NARCIS (Netherlands)

    Boerboom, A.M.A.; Vermeulen, M.; Woude, H. van der; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Aarts, J.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  8. Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya

    NARCIS (Netherlands)

    Vermeulen, M.; Boerboom, A.M.J.F.; Blankvoort, B.M.G.; Aarts, J.M.M.J.G.; Rietjens, I.; Bladeren, van P.J.; Vaes, W.H.J.

    2009-01-01

    Isothiocyanates are electrophiles that are able to induce phase II biotransformation enzyme gene expression via an electrophile-responsive element (EpRE) in the gene regulatory region. To study the potency of different isothiocyanates to induce the expression of EpRE-regulated genes, a Hepa-1c1c7 lu

  9. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    Science.gov (United States)

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  10. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    Science.gov (United States)

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  11. Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya

    NARCIS (Netherlands)

    Vermeulen, M.; Boerboom, A.M.J.F.; Blankvoort, B.M.G.; Aarts, J.M.M.J.G.; Rietjens, I.; Bladeren, van P.J.; Vaes, W.H.J.

    2009-01-01

    Isothiocyanates are electrophiles that are able to induce phase II biotransformation enzyme gene expression via an electrophile-responsive element (EpRE) in the gene regulatory region. To study the potency of different isothiocyanates to induce the expression of EpRE-regulated genes, a Hepa-1c1c7

  12. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    Science.gov (United States)

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  13. Modeling the seismic response of 2D models of asteroid 433 Eros, based on the spectral-element method.

    Science.gov (United States)

    Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas

    The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of

  14. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.

    Science.gov (United States)

    Nibuya, M; Nestler, E J; Duman, R S

    1996-04-01

    The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence expression of CREB mRNA, demonstrating the pharmacological specificity of this effect. In situ hybridization analysis demonstrates that antidepressant administration increases expression of CREB mRNA in CA1 and CA3 pyramidal and dentate gyrus granule cell layers of the hippocampus. In addition, levels of CRE immunoreactivity and of CRE binding activity were increased by chronic antidepressant administration, which indicates that expression and function of CREB protein are increased along with its mRNA. Chronic administration of the phosphodiesterase (PDE) inhibitors rolipram or papaverine also increased expression of CREB mRNA in hippocampus, demonstrating a role for the cAMP cascade. Moreover, coadministration of rolipram with imipramine resulted in a more rapid induction of CREB than with either treatment alone. Increased expression and function of CREB suggest that specific target genes may be regulated by these treatments. We have found that levels of brain-derived neurotrophic factor (BDNF) and trkB mRNA are also increased by administration of antidepressants or PDE inhibitors. These findings indicate that upregulation of CREB is a common action of chronic antidepressant treatments that may lead to regulation of specific target genes, such as BDNF and trkB, and to the long-term effects of these treatments on brain function.

  15. LTR point mutations in the Tax-responsive elements of HTLV-1 isolates from HIV/HTLV-1-coinfected patients

    Directory of Open Access Journals (Sweden)

    Magri Mariana

    2012-09-01

    Full Text Available Abstract Background In Virology Journal 2011, 8:535, Neto et al. described point mutations into Tax-responsive elements (TRE of the LTR region of HTLV-1 isolates from asymptomatic carriers from Sao Paulo, Brazil, and hypothesized that the presence of the G232A mutation in the TRE-1 increase viral proliferation and consequently the proviral load (PvL, while the A184G mutation in the TRE-2 do not have such effect. Findings We performed the real-time PCR assay (pol and sequenced LTR region of HTLV-1 isolates from 24 HIV/HTLV-1-coinfected patients without HTLV-1-associated diseases from the same geographic area. These sequences were classified as belonging to the transcontinental subgroup A of the Cosmopolitan subtype a. The frequency of G232A mutation (16/24, 66.7% was high as much as 61.8% reported by Neto’s in HTLV-1 asymptomatic carriers with high PvL. High frequency (13/24, 54.2% of double mutations G232A and A184G was also detected in HIV/HTLV-1-coinfected patients. We did not quantify PvL, but comparative analyses of the cycle threshold (Ct median values of the group of isolates presenting the mutated-types sequences (Ct 33.5, n = 16 versus the group of isolates with the wild-type sequences (Ct 32, n = 8 showed no statistical difference (p = 0.4220. Conclusion The frequencies of mutated-type sequences in the TRE-1 and TRE-2 motifs were high in HIV/HTLV-1-coinfected patients from Sao Paulo, Brazil. If these LTR point mutations have predictive value for the development of HTLV-1-associated diseases or they correspond to the subtype of virus that circulate in this geographic area has to be determined.

  16. Activation of Estrogen Response Element-Independent ERα Signaling Protects Female Mice From Diet-Induced Obesity.

    Science.gov (United States)

    Yasrebi, Ali; Rivera, Janelle A; Krumm, Elizabeth A; Yang, Jennifer A; Roepke, Troy A

    2017-02-01

    17β-estradiol (E2) regulates central and peripheral mechanisms that control energy and glucose homeostasis predominantly through estrogen receptor α (ERα) acting via receptor binding to estrogen response elements (EREs). ERα signaling is also involved in mediating the effects of E2 on diet-induced obesity (DIO), although the roles of ERE-dependent and -independent ERα signaling in reducing the effects of DIO remain largely unknown. We hypothesize that ERE-dependent ERα signaling is necessary to ameliorate the effects of DIO. We addressed this question using ERα knockout (KO) and ERα knockin/knockout (KIKO) female mice, the latter expressing an ERα that lacks a functional ERE binding domain. Female mice were ovariectomized, fed a low-fat diet (LFD) or a high-fat diet (HFD), and orally dosed with vehicle or estradiol benzoate (EB) (300 μg/kg). After 9 weeks, body composition, glucose and insulin tolerance, peptide hormone and inflammatory cytokine levels, and hypothalamic arcuate nucleus and liver gene expression were assessed. EB reduced body weight and body fat in wild-type (WT) female mice, regardless of diet, and in HFD-fed KIKO female mice, in part by reducing energy intake and feeding efficiency. EB reduced fasting glucose levels in KIKO mice fed both diets but augmented glucose tolerance only in HFD-fed KIKO female mice. Plasma insulin and interleukin 6 were elevated in KIKO and KO female mice compared with LFD-fed WT female mice. Expression of arcuate neuropeptide and receptor genes and liver fatty acid biosynthesis genes was altered by HFD and by EB through ERE-dependent and -independent mechanisms. Therefore, ERE-independent signaling mechanisms in both the brain and peripheral organs mediate, in part, the effects of E2 during DIO. Copyright © 2017 by the Endocrine Society.

  17. Combinatorial interactions are required for the efficient recruitment of pho repressive complex (PhoRC to polycomb response elements.

    Directory of Open Access Journals (Sweden)

    Tatyana G Kahn

    2014-07-01

    Full Text Available Polycomb Group (PcG proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs. Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL, which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies.

  18. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    Science.gov (United States)

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant.

  19. Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements.

    Science.gov (United States)

    Swami, Srilatha; Krishnan, Aruna V; Peng, Lihong; Lundqvist, Johan; Feldman, David

    2013-08-01

    Calcitriol (1,25-dihydroxyvitamin D3), the hormonally active metabolite of vitamin D, exerts its anti-proliferative activity in breast cancer (BCa) cells by multiple mechanisms including the downregulation of the expression of estrogen receptor α (ER). We analyzed an ∼3.5 kb ER promoter sequence and demonstrated the presence of two potential negative vitamin D response elements (nVDREs), a newly identified putative nVDRE upstream at -2488 to -2473 bp (distal nVDRE) and a previously published sequence (proximal nVDRE) at -94 to -70 bp proximal to the P1 start site. Transactivation analysis using ER promoter deletion constructs and heterologous promoter-reporter constructs revealed that both nVDREs functioned to mediate calcitriol transrepression. In the electrophoretic mobility shift assay, the vitamin D receptor (VDR) showed strong binding to both nVDREs in the presence of calcitriol, and the chromatin immunoprecipitation assay demonstrated the recruitment of the VDR to the distal nVDRE site. Mutations in the 5' hexameric DNA sequence of the distal nVDRE resulted in the loss of calcitriol-mediated transrepression and the inhibition of protein-DNA complex formation, demonstrating the importance of these nucleotides in VDR DNA binding and transrepression. A putative nuclear factor-Y (NFY) binding site, identified within the distal nVDRE, led to the findings that NFY bound to the distal nVDRE site interfered with the binding of the VDR at the site and reduced calcitriol-mediated transrepression. In conclusion, the ER promoter region contains two negative VDREs that act in concert to bind to the VDR and both nVDREs are required for the maximal inhibition of ER expression by calcitriol. The suppression of ER expression and estrogen-mediated signaling by calcitriol in BCa cells suggests that vitamin D may be useful in the treatment of ER+ BCa.

  20. Lagrangian three-dimensional finite-element formulation for the nonlinear fluid-structural response of reactor components. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R. F.; Fiala, C.

    1980-03-01

    This report presents the formulations used in the NEPTUNE code. Specifically, it describes the finite-element formulation of a three-dimensional hexahedral element for simulating the behavior of either fluid or solid continua. Since the newly developed hexahedral element and the original triangular plate element are finite elements, they are compatible in the sense that they can be combined arbitrarily to simulate complex reactor components in three-dimensional space. Because rate-type constitutive relations are used in conjunction with a velocity-strain tensor, the formulation is applicable to large deformation problems. This development can be used to simulate (1) the fluid adjacent to reactor components and (2) the concrete fill found in large reactor head closures.

  1. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    Science.gov (United States)

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  2. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.

    Science.gov (United States)

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F; Martin, William F

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.

  3. Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus.

    Science.gov (United States)

    Miyagishima, S; Takahara, M; Kuroiwa, T

    2001-03-01

    The plastid division apparatus (called the plastid-dividing ring) has been detected in several plant and algal species at the constricted region of plastids by transmission electron microscopy. The apparatus is composed of two or three rings: an outer ring in the cytosol, an inner ring in the stroma, and a middle ring in the intermembrane space. The components of these rings are not clear. FtsZ, which forms the bacterial cytokinetic ring, has been proposed as a component of both the inner and outer rings. Here, we present the ultrastructure of the outer ring at high resolution. To visualize the outer ring by negative staining, we isolated dividing chloroplasts from a synchronized culture of a red alga, Cyanidioschyzon merolae, and lysed them with nonionic detergent Nonidet P-40. Nonidet P-40 extracted primarily stroma, thylakoids, and the inner and middle rings, leaving the envelope and outer ring largely intact. Negative staining revealed that the outer ring consists of a bundle of 5-nm filaments in which globular proteins are spaced 4.8 nm apart. Immunoblotting using an FtsZ-specific antibody failed to show immunoreactivity in the fraction containing the filament. Moreover, the filament structure and properties are unlike those of known cytoskeletal filaments. The bundle of filaments forms a very rigid structure and does not disassemble in 2 M urea. We also identified a dividing phase-specific 56-kD protein of chloroplasts as a candidate component of the ring. Our results suggest that the main architecture of the outer ring did not descend from cyanobacteria during the course of endosymbiosis but was added by the host cell early in plant evolution.

  4. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  5. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development.

    Science.gov (United States)

    Stein, Ofer; Damari-Weissler, Hila; Secchi, Francesca; Rachamilevitch, Shimon; German, Marcelo A; Yeselson, Yelena; Amir, Rachel; Schaffer, Arthur; Holbrook, N Michele; Aloni, Roni; Zwieniecki, Maciej A; Granot, David

    2016-03-01

    Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-12-01

    Full Text Available Abstract Background The genus Cuscuta L. (Convolvulaceae, commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. Results Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. Conclusion Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some

  7. Sevoflurane effects on cyclic adenosine monophosphate response element binding protein, phosphorylated cyclic adenosine monophosphate response element binding protein, and Livin expression in the cortex and hippocampus of a vascular cognitive impairment rat model

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Ling Dan; Xianlin Zhu

    2009-01-01

    BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia.OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA.METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours.MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze.RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P<0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P<0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham

  8. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Directory of Open Access Journals (Sweden)

    Holland Barbara R

    2006-07-01

    Full Text Available Abstract Background Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. Results Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. Conclusion Using the most treelike distance matrices, as

  9. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well.

    Directory of Open Access Journals (Sweden)

    Aron J Fazekas

    Full Text Available A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s. We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples. The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA and three non-coding (trnH-psbA, atpF-atpH, and psbK-psbI loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA to 59% (trnH-psbA of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85-100% for plastid loci, with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs. Several loci (matK, psbK-psbI, trnH-psbA were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69-71%; values that were approached by several two- and three-region combinations. This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the

  10. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB,and matK DNA sequences

    NARCIS (Netherlands)

    Cuénoud, P.; Savolainen, V.; Chatrou, L.W.; Powell, M.; Grayer, R.J.; Chase, M.W.

    2002-01-01

    To study the inter- and infrafamilial phylogenetic relationships in the order Caryophyllales sensu lato (s.l.), 930 base pairs of the matK plastid gene have been sequenced and analyzed for 127 taxa. In addition, these sequences have been combined with the rbcL plastid gene for 53 taxa and with the r

  11. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    Science.gov (United States)

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.

  12. Element Selective Probe of the Ultra-Fast Magnetic Response to an Element Selective Excitation in Fe-Ni Compounds Using a Two-Color FEL Source

    Directory of Open Access Journals (Sweden)

    Eugenio Ferrari

    2017-01-01

    Full Text Available The potential of the two-color mode implemented at the FERMI free-electron laser (FEL source for pumping and probing selectively different atomic species has been demonstrated by time-resolved scattering experiments with permalloy (FeNi alloy and NiFe2O4 samples. We monitored the ultra-fast demagnetization of Ni induced by the pump FEL pulse, by tuning the linearly-polarized FEL probe pulse to the Ni-3p resonance and measuring the scattered intensity in the transverse magneto-optical Kerr effect geometry. The measurements were performed by varying the intensity of the FEL pump pulse, tuning its wavelength to and off of the Fe-3p resonance, and by spanning the FEL probe pulse delays across the 300–900 fs range. The obtained results have evidenced that for the case of NiFe2O4, there is a sensible difference in the magnetic response at the Ni site when the pump pulse causes electronic excitations at the Fe site.

  13. Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids.

    OpenAIRE

    1995-01-01

    In tobacco plastids, functional psbL mRNA is created by editing an ACG codon to an AUG translation initiation codon. To determine if editing may occur in a chimeric mRNA, the N-terminal part of psbL containing the editing site was translationally fused with the aadA and kan bacterial genes. The chimeric constructs were introduced into the tobacco plastid genome by targeted gene insertion. Editing of the chimeric mRNAs indicated that the 98 nt fragment spanning the psbL editing site contains a...

  14. Vitamin D Responsive Elements within the HLA-DRB1 Promoter Region in Sardinian Multiple Sclerosis Associated Alleles

    Science.gov (United States)

    Murru, Maria Rita; Corongiu, Daniela; Tranquilli, Stefania; Fadda, Elisabetta; Murru, Raffaele; Schirru, Lucia; Secci, Maria Antonietta; Costa, Gianna; Asunis, Isadora; Cuccu, Stefania; Fenu, Giuseppe; Lorefice, Lorena; Carboni, Nicola; Mura, Gioia; Rosatelli, Maria Cristina; Marrosu, Maria Giovanna

    2012-01-01

    Vitamin D response elements (VDREs) have been found in the promoter region of the MS-associated allele HLA-DRB1*15∶01, suggesting that with low vitamin D availability VDREs are incapable of inducing *15∶01 expression allowing in early life autoreactive T-cells to escape central thymic deletion. The Italian island of Sardinia exhibits a very high frequency of MS and high solar radiation exposure. We test the contribution of VDREs analysing the promoter region of the MS-associated DRB1 *04∶05, *03∶01, *13∶01 and *15∶01 and non-MS-associated *16∶01, *01, *11, *07∶01 alleles in a cohort of Sardinians (44 MS patients and 112 healthy subjects). Sequencing of the DRB1 promoter region revealed a homozygous canonical VDRE in all *15∶01, *16∶01, *11 and in 45/73 *03∶01 and in heterozygous state in 28/73 *03∶01 and all *01 alleles. A new mutated homozygous VDRE was found in all *13∶03, *04∶05 and *07∶01 alleles. Functionality of mutated and canonical VDREs was assessed for its potential to modulate levels of DRB1 gene expression using an in vitro transactivation assay after stimulation with active vitamin D metabolite. Vitamin D failed to increase promoter activity of the *04∶05 and *03∶01 alleles carrying the new mutated VDRE, while the *16∶01 and *03∶01 alleles carrying the canonical VDRE sequence showed significantly increased transcriptional activity. The ability of VDR to bind the mutant VDRE in the DRB1 promoter was evaluated by EMSA. Efficient binding of VDR to the VDRE sequence found in the *16∶01 and in the *15∶01 allele reduced electrophoretic mobility when either an anti-VDR or an anti-RXR monoclonal antibody was added. Conversely, the Sardinian mutated VDRE sample showed very low affinity for the RXR/VDR heterodimer. These data seem to exclude a role of VDREs in the promoter region of the DRB1 gene in susceptibility to MS carried by DRB1* alleles in Sardinian patients. PMID:22848563

  15. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    Science.gov (United States)

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  16. Phylogenetic relationships and species delimitation in pinus section trifoliae inferrred from plastid DNA.

    Directory of Open Access Journals (Sweden)

    Sergio Hernández-León

    Full Text Available Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae, a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%, the greatest proportion of variable sites (74.9%, and the most unique sequences (75 haplotypes. Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities.

  17. Phylogenetic relationships and species delimitation in pinus section trifoliae inferrred from