WorldWideScience

Sample records for plastics electronic components

  1. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  2. Thermal Viscoelastic Analysis of Plastic Components Considering Residual Stress

    Science.gov (United States)

    Choi, Chel Woo; Jeoung, Kab Sik; Moon, Hyung-Il; Kim, Heon Young

    Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity, but plastic components may often become distorted after injection molding due to residual stress after the filling, packing, and cooling processes. In addition, plastic deteriorates depending on various temperature conditions and the operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in the time domain can be expressed by the Prony series using the ABAQUS commercial software package. This paper suggests a process for predicting post-production deformation under cyclic thermal loading. The process was applied to real plastic panels, and the deformation predicted by the analysis was compared to that measured in actual testing, showing the possibility of using this process for predicting the post-production deformation of plastic products under thermal loading.

  3. Electronic components and systems

    CERN Document Server

    Dennis, W H

    2013-01-01

    Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn

  4. Electronic components and technology

    CERN Document Server

    Sangwine, Stephen

    2007-01-01

    Most introductory textbooks in electronics focus on the theory while leaving the practical aspects to be covered in laboratory courses. However, the sooner such matters are introduced, the better able students will be to include such important concerns as parasitic effects and reliability at the very earliest stages of design. This philosophy has kept Electronic Components and Technology thriving for two decades, and this completely updated third edition continues the approach with a more international outlook.Not only does this textbook introduce the properties, behavior, fabrication, and use

  5. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  6. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  7. Advanced Power Electronics Components

    Science.gov (United States)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  8. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, Jessica R. [Department of Radiation Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903 (United States); Davis, Stephen D. [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada); Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  9. VIRTUAL ELECTRONIC COMPONENTS OF THE ELECTRONIC EQUIPMENT

    Directory of Open Access Journals (Sweden)

    E. Lazarevich

    2013-01-01

    Full Text Available The article is present new idea of the creation, developments and improvements of the electronic equipment of complex systems by means of the virtual electronic components. The idea of the virtual electronic components is a presentation and perception of the creation and developments of the equipment on two forming: real – in the manner of standard marketed block of the intellectual property and image – in the manner of virtual component. The real component in most cases slows the development of the electronic equipment. The imaginary component is the «locomotive» of development of the electronic equipment. The Imaginary component contains the scientific has brushed against developer. The scientific has brushed against developer reveals of itself in the manner of virtual component on the modern level of the design rates of microelectronics.

  10. Towards Prognostics for Electronics Components

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is...

  11. Electronic components, tubes and transistors

    CERN Document Server

    Dummer, G W A

    1965-01-01

    Electronic Components, Tubes and Transistors aims to bridge the gap between the basic measurement theory of resistance, capacitance, and inductance and the practical application of electronic components in equipments. The more practical or usage aspect of electron tubes and semiconductors is given emphasis over theory. The essential characteristics of each main type of component, tube, and transistor are summarized. This book is comprised of six chapters and begins with a discussion on the essential characteristics in terms of the parameters usually required in choosing a resistor, including s

  12. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  13. Utilization of Electronic Waste Plastic in Concrete

    Directory of Open Access Journals (Sweden)

    Vivek S. Damal

    2015-04-01

    Full Text Available In India, bitumen pavements are commonly used for highways. Due to the increasing traffic intensity, distress such as rutting and cracking of pavements are very common in Indian roads. Under varying seasonal temperature, flexible pavements tend to become soft in summer and brittle in winter. Investigations revealed that properties of concrete can be better than bitumen roads. But now a day‟s concrete roads are used commonly because concrete roads have more life span than the bitumen roads. In large cities now a day‟s concrete roads are used because concrete roads are more durable, strengthen and having more life span than bitumen roads. Waste plastics and E-waste (electronic waste both by domestic and industrial sectors can be used in the production of asphalt mix. Waste plastic, mainly used for packing are made up of polyethylene, polypropylene, polystyrene. Electronic waste, abbreviated as e-waste, consists of discarded old computers, TVs, refrigerators; radios, etc are basically any electrical or electronic appliance that has reached its end of life. An experimental study is made on the utilization of E-waste particles as fine aggregates in concrete with a percentage replacement ranging from 0 % to 21.5% i.e. (7.5%, 15% and 21.5% on the strength criteria of M30 Concrete. Compressive strength Concrete with and without E- waste plastic as aggregates was observed which exhibits a good strength. The feasibility of utilizing E-waste plastic particles as partial replacement of fine aggregate has been presented. In the present study, compressive strength was investigated for Optimum Cement Content and 7.5% E-plastic content in mix yielded stability and very good in compressive strength of 43 grade cement.

  14. Component Based Electronic Voting Systems

    Science.gov (United States)

    Lundin, David

    An electronic voting system may be said to be composed of a number of components, each of which has a number of properties. One of the most attractive effects of this way of thinking is that each component may have an attached in-depth threat analysis and verification strategy. Furthermore, the need to include the full system when making changes to a component is minimised and a model at this level can be turned into a lower-level implementation model where changes can cascade to as few parts of the implementation as possible.

  15. Towards Prognostics for Electronics Components

    Science.gov (United States)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  16. Recent developments in plastic optical fiber components for automotive applications

    Science.gov (United States)

    Cirillo, James R.; Jennings, Kurt L.; Lynn, Mark A.; Steele, Robert E.

    1993-02-01

    The majority of production applications using plastic optical fiber (POF) have been for illumination applications. These applications continue to be refined and new illumination applications continue to be introduced. Point-to-point data communication applications of POF are beginning to appear in production vehicles. New developments in connection systems and networking components are occurring rapidly. This paper discusses recently developed components for illumination and data communications. The illumination components were designed for three different applications: lamp monitoring, keyhole illumination, and PRNDL indication (gear shift). Components for data communications include two connection systems and two passive stars designed for networking. The two connections systems are a 16 electrical/1 optical system for point-to-point links and a 5 electrical/2 optical for two-way optical communications. The two stars are a 16 node star and 7 node star. Performance characteristics and design advantages are described for all components.

  17. A composite-appropriate integration method of thick functional components in fibre-reinforced plastics

    Science.gov (United States)

    Filippatos, A.; Höhne, R.; Kliem, M.; Gude, M.

    2016-03-01

    The use of integrated structural health monitoring systems for critical composite parts, such as wind turbine blades, fuselage and wing parts, is an promising approach to guarantee a safe and efficient operational lifetime of such components. Therefore, the integration of thick functional components like sensors, actuators and electronic components is often necessary. An optimal integration of such components should be ensured without material imperfections in the composite structure, i.e. voids and resin rich areas, and failure of the functional components. In this paper, first investigations were undertaken for a basic understanding of the mechanical performance of a fibre reinforced plastic component with integrated functional elements. The influence of different materials and treatment methods for the encapsulation of electronic components was experimentally investigated under static and dynamic loading tests. By means of a parametric finite element model, the effects of an encapsulation and various parameters such as the shape and orientation of the electronic components were examined. Several encapsulation variants were investigated in order to minimise the chance of failure initiations. Based both on experimental and numerical results, a preferred composite integration concept was selected for an electronic board and some first recommendations for an optimal integration were derived.

  18. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    2013-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  19. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    1993-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  20. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  1. [Components of plastic disrupt the function of the nervous system].

    Science.gov (United States)

    Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna

    2013-05-27

    Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.

  2. Compatibility and testing of electronic components

    CERN Document Server

    Jowett, C E

    2013-01-01

    Compatibility and Testing of Electronic Components outlines the concepts of component part life according to thresholds of failure; the advantages that result from identifying such thresholds; their identification; and the various tests used in their detection. The book covers topics such as the interconnection of miniature passive components; the integrated circuit compatibility and its components; the semiconductor joining techniques; and the thin film hybrid approach in integrated circuits. Also covered are topics such as thick film resistors, conductors, and insulators; thin inlays for el

  3. Screen printed passive components for flexible power electronics.

    Science.gov (United States)

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-10-30

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  4. Climatic Reliability of Electronic Devices and Components

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2014-01-01

    This article provides an overview of the climatic reliability issues of electronic devices and components with a focus on the metals/alloys usage on PCB a surface together with cleanliness issues, humidity interaction on PCB a surface, and PCB a design and device design aspects. The miniaturization...... of electronic systems and the explosive increase in their usage has increased the climatic reliability issues of electronics devices and components, especially when metal/alloy parts are exposed on the PCB assembly surface or embedded within the multilayer laminate. Problems are compounded by the fact...... that these systems are built by multi-material combinations and additional accelerating factors such as corrosion causing process related residues, bias voltage, and unpredictable user environment. Demand for miniaturised devices has resulted in higher-density packing, with reduction in component size and closer...

  5. Reliability Compliance Testing of Electronic Components for Consumer Electronics

    OpenAIRE

    Peciakowski, E.; Przybyl, E.

    1985-01-01

    In this paper the organisation of reliability compliance testing of electronic components in Poland is discussed. The aim of the testing is to find the reliability of the components to both producer and user and hence to establish reliability for the two parties. The system described is derived from standard methods and has two aims. These are:-1) To enable periodical checks of production to be made.2) To estimate the reliability level of the components produced.Sampling plans are constructed...

  6. Electronic building component catalogue; Realisierung elektronischer Bauteilkatalog

    Energy Technology Data Exchange (ETDEWEB)

    Paolantonio, M. Di

    2007-01-15

    This final report for the Swiss Federal Office of Energy (SFOE) describes an electronic building component catalogue developed to replace earlier printed documentation issued by the Swiss Association of Engineers and Architects SIA. The catalogue, which is available on the Internet, is described and discussed. The paper describes the web site and its features that can be used for the selection of building components such as, for example, double-wall masonry. Here, the thickness of the brickwork and insulation layers can dynamically be selected in order to achieve the insulation properties required. Ecological factors are also dealt with and the XML interface provided for the electronic export of data is described.

  7. System design of electronic vehicles and components

    OpenAIRE

    Смолій, Вікторія Миколаївна

    2015-01-01

    The oscillation mechanical and thermal mathematical models of electronic vehicles that allow to take into account properties and cooperation of making model elements of replacement and design oscillation stability of PCBS and components in the conditions of technological process of their production are worked out

  8. Screen printed passive components for flexible power electronics

    Science.gov (United States)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  9. Multibeam Electron Source using MEMS Electron Optical Components

    Energy Technology Data Exchange (ETDEWEB)

    Someren, B van; Bruggen, M J van; Zhang, Y; Hagen, C W; Kruit, P [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2006-04-01

    Recent developments in electron beam equipment have given rise to ever more complex electron optical (EO) designs. Until now these designs were realized using standard workshop techniques like drilling, turning etc. With the need for even more complex designs to advance electron optics, we use the possibilities of manufacturing EO components with MEMS fabrication techniques. This leads to different design rules in the EO design. One can use one of the strong points of MEMS fabrication, mass manufacturing of identical and reliable components within tight specifications. One of our designs that demonstrates this is presented in this paper, the multi-beam electron source. We are developing an electron source for use in a standard scanning electron microscope that produces 100 beams instead of one. The design is made so that the performance in terms of spot size and current per beam is equal to the performance of the beam from a single beam source, around 1 nm and 25 pA. Furthermore, since we modify the SEM for nanolithography purposes, it is necessary to switch each of the individual beams on and off. For that purpose we integrate an array of blanker electrodes in the source unit.

  10. Cryogenic Applications of Commercial Electronic Components

    Science.gov (United States)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  11. Bromine in plastic consumer products - Evidence for the widespread recycling of electronic waste.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-12-01

    A range of plastic consumer products and components thereof have been analysed by x-ray fluorescence (XRF) spectrometry in a low density mode for Br as a surrogate for brominated flame retardant (BFR) content. Bromine was detected in about 42% of 267 analyses performed on electronic (and electrical) samples and 18% of 789 analyses performed on non-electronic samples, with respective concentrations ranging from 1.8 to 171,000μgg(-1) and 2.6 to 28,500μgg(-1). Amongst the electronic items, the highest concentrations of Br were encountered in relatively small appliances, many of which predated 2005 (e.g. a fan heater, boiler thermostat and smoke detector, and various rechargers, light bulb collars and printed circuit boards), and usually in association with Sb, a component of antimony oxide flame retardant synergists, and Pb, a heavy metal additive and contaminant. Amongst the non-electronic samples, Br concentrations were highest in items of jewellery, a coffee stirrer, a child's puzzle, a picture frame, and various clothes hangers, Christmas decorations and thermos cup lids, and were often associated with the presence of Sb and Pb. These observations, coupled with the presence of Br at concentrations below those required for flame-retardancy in a wider range of electronic and non-electronic items, are consistent with the widespread recycling of electronic plastic waste. That most Br-contaminated items were black suggests the current and recent demand for black plastics in particular is met, at least partially, through this route. Given many Br-contaminated items would evade the attention of the end-user and recycler, their disposal by conventional municipal means affords a course of BFR entry into the environment and, for food-contact items, a means of exposure to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 21 CFR 11.200 - Electronic signature components and controls.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...

  13. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail: jhong@ustc.edu.cn; Yu, Han-Qing

    2016-06-05

    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  14. Lab-scale thermal analysis of electronic waste plastics.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2016-06-05

    In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric-fourier transform infrared-mass spectroscopy (TG-FTIR-MS) system, a high resolution gas chromatography/high resolution mass (HRGC-MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  15. An ultra-lightweight design for imperceptible plastic electronics.

    Science.gov (United States)

    Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao

    2013-07-25

    Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and

  16. Problems of reliability of electronic components

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Kharchenko

    2015-09-01

    Full Text Available This paper describes the problem of increasing the reliability of electronic components (EC used for the fabrication of high-tech products. Two main ways of solving the problem are considered based on analysis of published data. One approach is rejection of EC at the input control using special testing methods combined with burn-in test program. This testing reveals components with “hidden defects”, counterfeit parts and components with incompatible construction materials with both internal and external service conditions. The other approach considers the feature of creating EC with nanoscale parameters. In this case the modular principle is applied for the design of devices that allows significantly reducing the loads on single elements and malfunction of a discrete module causes its disconnection from the scheme followed by reconfiguration of the EC structure. We show that in general the problem of increasing reliability is a complex task related to developing an optimum structure of IC elements, informed choice of materials, testing and optimization of circuit solutions.

  17. Imaging Cytoskeleton Components by Electron Microscopy

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  18. Electron beam processed plasticized epoxy coatings for surface protection

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Mervat S. [National Center for Radiation Research and Technology, Nasr City (Egypt); Mohamed, Heba A., E-mail: hebaamohamed@gmail.com [National Research Center, Dokki (Egypt); Kandile, Nadia G. [University College for Girls, Ain Shams University (Egypt); Said, Hossam M.; Mohamed, Issa M. [National Center for Radiation Research and Technology, Nasr City (Egypt)

    2011-10-17

    Highlights: {center_dot} Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass{sup -1} irradiation dose showed the best adhesion and passed bending tests. {center_dot} The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. {center_dot} The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass{sup -1}) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass{sup -1} irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion

  19. Quality Assurance System for Electronic Components of Aerospace Products

    Institute of Scientific and Technical Information of China (English)

    刁庶; 张倩旭; 吴琼

    2013-01-01

      $%Along with the development of space technology, the quantity of electronic device and components used in the single aerospace product is get ing more and more, and the requirements of quality and reliability for electronic device and components are becoming stricter and stricter as wel . In China,since the basic level of the electronic device and component industry is increasing and the quality control in the product cycle of design, material selection, proces , manufacturing in the electronic device and component producers is guaranteed in some extent, the quality of electronic device and components is improved observably.

  20. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    Science.gov (United States)

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  1. Transistor electronics use of semiconductor components in switching operations

    CERN Document Server

    Rumpf, Karl-Heinz

    2014-01-01

    Transistor Electronics: Use of Semiconductor Components in Switching Operations presents the semiconductor components as well as their elementary circuits. This book discusses the scope of application of electronic devices to increase productivity. Organized into eight chapters, this book begins with an overview of the general equation for the representation of integer positive numbers. This text then examines the properties and characteristics of basic electronic components, which relates to an understanding of the operation of semiconductors. Other chapters consider the electronic circuit ar

  2. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component th

  3. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component

  4. COMPARISON OF GEOMETRIC PRECISION OF PLASTIC COMPONENTS MADE BY SUBTRACTIVE AND ADDITIVE METHODS

    Directory of Open Access Journals (Sweden)

    Paweł Fudali

    2013-09-01

    Full Text Available The paper presents information on manufacturing processes of plastic components. Basic subtractive and additive methods are described. There were also manufactured elements of fan housing by using this two types of methods. Then, the elements were measured using a touch probe. The obtained results were analyzed, on which a comparison of components’ geometric accuracy was performed.

  5. Small Components of the Wave Function of Electron

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper shows that the moving or time-varying large components of four-component wavefunction of electron would induce small components, and vice versa. Then when a wave packet of electron is moving with high speeds or varies rapidly, or its size is sufficiently small, or in the presence of a strong electromagnetic field, its small components and the related effects cannot be ignored. Furthermore, the spin quantum states of both a moving electron and a motionless electron can be affected by some special electrostatic fields. This may open a new pathway for spintronics to the manipulation of electron spins in the absence of applied magnetic fields.

  6. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  7. Effect of components (polymer, plasticizer and solvent as a variable in fabrication of diclofenac transdermal patch

    Directory of Open Access Journals (Sweden)

    Chetna Modi

    2012-01-01

    Full Text Available Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  8. Effect of components (polymer, plasticizer and solvent) as a variable in fabrication of diclofenac transdermal patch.

    Science.gov (United States)

    Modi, Chetna

    2012-03-01

    Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  9. A compact relativistic backward-wave oscillator with metallized plastic components

    Science.gov (United States)

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang

    2014-09-01

    This letter presents the mechanism and realization of a compact relativistic backward-wave oscillator with metallized plastic components. The physical idea, specific structure, and the main testing results are presented. The three periods slow-wave structures with both inner and outer ripples and the coaxial extractor are designed to reduce the volume and increase the efficiency of the device. The metallized plastic components replacing the stainless steel components in the high power microwave (HPM) sources are put forward to reduce the device weight. In the initial experiment, a microwave with frequency of 1.54 GHz, power of 1.97 GW, efficiency of 33.5%, and pulse duration above 47 ns is generated, which proves that this technical route is feasible. Undoubtedly, the technical route can provide a guide to design other types of HPM sources and be benefit to the practical application of the compact HPM systems.

  10. Determination of radiation resistant of electronic components in robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong [Kyungpook National University, Taegu (Korea); Kim, Do Sung [Taegu University, Taegu (Korea); Woo, Hong [Kyungsan University, Kyungsan (Korea)

    1998-04-01

    We investigated the characteristic change for the electronic components of the systems which were used in radiation area, when those were exposured by gamma rays. Bipolar transistor, FET, TTL, CMOS, operational amplifier, some capacitors, and several electronic components were selected for experiment. We applied irradiated gamma ray to the electronic components in the range of 10{sup 6} rad, by {sup 6}0Co(KAERI). We made up appropriate assessment circuit for each electronic component during the performance test, and assessed the reliability and radiation-resistance of them for the each radiation irradiation. (author). 59 refs., 35 figs., 8 tabs.

  11. Numerical Simulation of the Microtron Electron Beam Absorption by the Modified ABS-Plastic

    Science.gov (United States)

    Stuchebrov, S. G.; Miloichikova, I. A.; Melnikov, A. L.; Pereverzeva, M. A.

    2016-01-01

    Each specific task of the electron beam application imposes requirements for the beam profile and shape. One of the methods allows achieving high accuracy and low cost of the filters production is the 3D print method. The required properties of the electron beam interaction with the material can be achieved by using the modified plastic filaments. In this paper, the results of the model creation of the electron beams interaction with the ABS-plastic doped with different concentrations are presented. The depth dose distributions of the electron beam in the modified ABS-plastic are sown. The electron beam profiles and the electron beam distribution in the modified ABS-plastic are illustrated.

  12. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    Energy Technology Data Exchange (ETDEWEB)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Maalouly, Jacqueline, E-mail: j_maalouly@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Rutledge, Douglas N., E-mail: douglas.rutledge@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Chebib, Hanna, E-mail: hchebib@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Ducruet, Violette, E-mail: violette.ducruet@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France)

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of

  13. Numerical Simulation of the Microtron Electron Beam Absorption by the Modified ABS-Plastic

    OpenAIRE

    2016-01-01

    Each specific task of the electron beam application imposes requirements for the beam profile and shape. One of the methods allows achieving high accuracy and low cost of the filters production is the 3D print method. The required properties of the electron beam interaction with the material can be achieved by using the modified plastic filaments. In this paper, the results of the model creation of the electron beams interaction with the ABS-plastic doped with different concentrations are pre...

  14. Technique for Measuring Hybrid Electronic Component Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  15. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    Science.gov (United States)

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied

  16. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding

    Directory of Open Access Journals (Sweden)

    Zeppenfeld Matthias

    2016-09-01

    Full Text Available To overcome challenges for manufacturing of modern smart medical plastic parts by injection molding, e.g. for active implants, the optimization of the interface between electronics and the polymer component concerning adhesion and diffusion behavior is crucial. Our results indicate that a nano-sized SiOxCyHz layer formed by plasma-enhanced chemical vapour deposition (PE-CVD via open air atmospheric pressure plasma jet (APPJ and by use of a hexamthyldisiloxane (HMDSO precursor can form a non-corrosive, anti-permeable and biocompatible coating. Due to the open air character of the APPJ process an inline coating before overmolding could be an easy applicable method and a promising advancement.

  17. Perspectives on climatic reliability of electronic devices and components

    DEFF Research Database (Denmark)

    Ambat, Rajan

    The miniaturization of electronic systems and the explosive increase in their usage has increased the climatic reliability issues of electronics devices and components especially having metal/alloys parts exposed on the Printed Circuit Board Assembly (PCBA) surface or embedded within the multi...... packing with reduction in component size and closer spacing thereby increasing the electric field, while thinner metallic parts needs only nano-grams levels of metal loss for causing corrosion failures. This paper provides an overview of the climatic reliability issues of electronic devices and components...

  18. Deformation effect on plastic and elastic stress components in grains with different bending

    Science.gov (United States)

    Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina

    2016-11-01

    The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.

  19. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Directory of Open Access Journals (Sweden)

    Daniel Vavrik

    2016-11-01

    Full Text Available This work is focused on the inspection of carbon fibre reinforced plastic composites (CFRP combined with metal components. It is well known that the high absorption of metallic parts degrades the quality of radiographic measurements (contrast and causes typical metal artefacts in X-ray computed tomography (CT reconstruction. It will be shown that these problems can be successfully solved utilizing the dual energy CT method (DECT, which is typically used for the material decomposition of complex objects. In other words, DECT can help differentiate object components with a similar overall attenuation or visualise low attenuation components that are next to high attenuation ones. The application of DECT to analyse honeycomb sandwich panels and CFRP parts joined with metal fasteners will be presented in the article.

  20. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  1. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cong-Cong [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer A process for brominated flame retardants (BFRs) removal in plastic was established. Black-Right-Pointing-Pointer The plastic became bromine-free with the structure maintained after this treatment. Black-Right-Pointing-Pointer BFRs transferred into alcohol solvent were easily debrominated by metallic copper. - Abstract: Brominated flame retardants (BFRs) in electrical and electronic (E and E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90 Degree-Sign C, 2 h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  2. RoHS regulated substances in mixed plastics from waste electrical and electronic equipment.

    Science.gov (United States)

    Wäger, Patrick A; Schluep, Mathias; Müller, Esther; Gloor, Rolf

    2012-01-17

    The disposal and recovery of plastics from waste electrical and electronic equipment (WEEE) are of considerable importance, both from an environmental and an economic perspective. This paper presents the results of a study investigating current concentrations of hazardous substances in mixed plastics from WEEE and their implications for an environmentally sound recovery. The study included 53 sampling campaigns for mixed plastics from WEEE. The samples were analyzed with regard to heavy metals (cadmium, chromium, mercury, and lead) and flame retardants (PentaBDE, OctaBDE, DecaBDE, DecaBB) regulated in the RoHS Directive. Besides these substances, other brominated flame retardants known to occur in electronics (HBCD, TBBPA) as well as the total bromine and phosphorus contents were considered. Results show that no mixed plastics fraction from WEEE is completely free from substances regulated in the RoHS Directive. The lowest number and average concentrations were found in flat screen monitors. The highest concentrations were found in mixed plastics from CRT monitors and TVs. Mixed plastics fractions with high average concentrations of heavy metals originate from the treatment of small household appliances (cadmium), ICT equipment (lead), and consumer equipment (lead). Mixed plastics fractions with high average concentrations of brominated flame retardants mainly originate from the treatment of small household appliances for high temperature applications (DecaBDE), CRT monitors (OctaBDE and DecaBDE) and consumer equipment (DecaBDE), in particular CRT TVs (DecaBDE). To avoid a dissipation of hazardous substances into plastics and the environment, it is recommended that mixed plastics from WEEE are subject to a strict quality management.

  3. Optimization Model for Environmental Stress Screening of Electronic Components

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Environmental stress screening (ESS) is a technological process to reduce the costly early field failure ofelectronic components. This paper builds an optimization model for ESS of electronic components to obtain the optimalESS duration. The failure phenomena of ESS are modeled by mix ed distribution, and optimal ESS duration is definedby maximizing life-cycle cost savings under the condition of meeting reliability requirement.

  4. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen

  5. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerou

  6. Antenna with distributed strip and integrated electronic components

    Science.gov (United States)

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  7. Measurements of the electron dose distribution near inhomogeneities using a plastic scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C.M.M.; Mackie, T.R.; Podgorsak, M.B.; Holmes, M.A.; Papanikolaou, N.; Reckwerdt, P.J. [Univ. of Wisconsin, Madison, WI (United States); Cygler, J. [Ottawa Regional Cancer Center, Ontario (Canada); Rogers, D.W.O.; Bielajew, A.F. [National Research Council of Canada, Ottawa, Ontario (Canada); Schmidt, D.G. [Radiation Measurements, Inc., Middleton, WI (United States)] [and others

    1994-07-30

    Accurate measurement of the electron dose distribution near an inhomogeneity is difficult with traditional dosimeters which themselves perturb the electron field. The authors tested the performance of a new high resolution, water-equivalent plastic scintillation detector which has ideal properties for this application. A plastic scintillation detector with a 1 mm diameter, 3 mm long cylindrical sensitive volume was used to measure the dose distributions behind standard benchmark inhomogeneities in water phantoms. The plastic scintillator material is more water equivalent than polystyrene in terms of its mass collision stopping power and mass scattering power. Measurements were performed for beams of electrons having initial energies of 6 and 18 MeV at depths from 0.2-4.2 cm behind the inhomogeneities. The detector reveals hot and cold spots behind heterogeneities at resolutions equivalent to typical film digitizer spot sizes. Plots of the dose distributions behind air, aluminum, lead, and formulations for cortical and inner bone-equivalent materials are presented. The plastic scintillation detector is suited for measuring the electron dose distribution near an inhomogeneity. 14 refs., 9 figs.

  8. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique.

    Science.gov (United States)

    Zhang, Cong-Cong; Zhang, Fu-Shen

    2012-06-30

    Brominated flame retardants (BFRs) in electrical and electronic (E&E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90°C, 2h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  9. Hybrid Integration of Taguchi Parametric Design, Grey Relational Analysis, and Principal Component Analysis Optimization for Plastic Gear Production

    Directory of Open Access Journals (Sweden)

    Nik Mizamzul Mehat

    2014-01-01

    Full Text Available The identification of optimal processing parameters is an important practice in the plastic injection moulding industry because of the significant effect of such parameters on plastic part quality and cost. However, the optimization design of injection moulding process parameters can be difficult because more than one quality characteristic is used in the evaluation. This study systematically develops a hybrid optimization method for multiple quality characteristics by integrating the Taguchi parameter design, grey relational analysis, and principal component analysis. A plastic gear is used to demonstrate the efficiency and validity of the proposed hybrid optimization method in controlling all influential injection moulding processing parameters during plastic gear manufacturing. To minimize the shrinkage behaviour in tooth thickness, addendum circle, and dedendum circle of moulded gear, the optimal combination of different process parameters is determined. The case study demonstrates that the proposed optimization method can produce plastic-moulded gear with minimum shrinkage behaviour of 1.8%, 1.53%, and 2.42% in tooth thickness, addendum circle, and dedendum circle, respectively; these values are less than the values in the main experiment. Therefore, shrinkage-related defects that lead to severe failure in plastic gears can be effectively minimized while satisfying the demand of the global plastic gear industry.

  10. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  11. Perspectives on climatic reliability of electronic devices and components

    DEFF Research Database (Denmark)

    Ambat, Rajan

    The miniaturization of electronic systems and the explosive increase in their usage has increased the climatic reliability issues of electronics devices and components especially having metal/alloys parts exposed on the Printed Circuit Board Assembly (PCBA) surface or embedded within the multi......-layer laminate. Problems are compounded by the fact that these systems are built by multi-material combinations and additional accelerating factors such as corrosion causing process related residues, bias voltage, and unpredictable user environment. Demand for miniaturised device has resulted in higher density...

  12. On the OSL curve shape and preheat treatment of electronic components from portable electronic devices

    DEFF Research Database (Denmark)

    Woda, Clemens; Greilich, Steffen; Beerten, Koen

    2010-01-01

    The shape of the OSL decay curve and the effect of longer time delays between accidental exposure and readout of alumina-rich electronic components from portable electronic devices are investigated. The OSL decay curve follows a hyperbolic decay function, which is interpreted as an approximation...

  13. Dynamic response of soldered electronic components under impact loading

    OpenAIRE

    Wood, Andrew Calvin

    2011-01-01

    The objective of this research was to analyze the effects of impact loading on electronic component failure. A standard fiberglass composite printed circuit board (PCB) card was used in two impact tests. The first test consisted of a PCB card with four adhered strain gauges, which were mounted inside an aluminum box fabricated for testing. Impact testing was conducted with weights ranging from 0 to 30 lb., and the corresponding strain values were recorded. For the second set of impact tes...

  14. Component technologies for a recirculating linac free-electron laser

    Science.gov (United States)

    Litvinenko, Vladimir N.; Madey, John M. J.; Vinokurov, Nikolai A.

    1994-05-01

    The key component technologies required for a high average power free-electron laser (FEL) are described. Some basic aspects of approaches for high average power (scalable to megawatt level) accelerators and FELs are presented. A short description of the Novosibirsk 100 kW average power near infrared (IR) FEL driven by a race-track microtron-recuperator is given. The current status and plans for this facility are provided by Institute of Nuclear Physics (Novosibirsk).

  15. Electronic Components and Circuits for Extreme Temperature Environments

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  16. Highly Selective Screening of Estrogenic Compounds in Consumer-Electronics Plastics by Liquid Chromatography in Parallel Combined with Nanofractionation-Bioactivity Detection and Mass Spectrometry.

    Science.gov (United States)

    Jonker, Willem; Ballesteros-Gómez, Ana; Hamers, Timo; Somsen, Govert W; Lamoree, Marja H; Kool, Jeroen

    2016-11-15

    The chemical safety of consumer products is an issue of emerging concern. Plastics are widely used, e.g. as casings of consumer electronics (TVs, computers, routers, etc.), which are present in houses and offices in continuously increasing numbers. In this study, we investigate the estrogenic activity of components of plastics coming from electronics' casings. A recently developed fractionation platform for effect-directed analysis (EDA) was used. This platform combines reversed-phase liquid chromatography in parallel with bioassay detection via nanofractionation and with online high-resolution time-of-flight mass spectrometry (TOFMS) for the identification of bioactives. Four out of eight of the analyzed plastics samples showed the presence of estrogenic compounds. Based on the MS results these were assigned to bisphenol A (BPA), 2,4-di-tert-butylphenol, and a possible bisphenol A analog. All samples contained flame retardants, but these did not show any estrogenicity. The observed BPA, however, could be an impurity of tetrabromo-BPA (TBBPA) or TBBPA-based flame retardants. Due to the plausible migration of additives from plastics into the environment, plastics from consumer electronics likely constitute a source of estrogenic compound contamination in the indoor environment.

  17. Three dimensional photograph of electron tracks through a plastic scintillator

    CERN Document Server

    Filipenko, Mykhaylo; Hufschmidt, Patrick; Anton, Gisela; Campbell, Michael; Gleixner, Thomas; Leuchs, Gerd; Tick, Timo; Vallerga, John; Wagenpfeil, Michael; Michel, Thilo

    2014-01-01

    The reconstruction of particle trajectories makes it possible to distinguish between different types of charged particles. In the era of particle colliders and high luminosities, this was one of the key aspects for the discovery of many new particles, lately the Higgs-boson. In high-energy physics, where trajectories are rather long. large size trackers muste be used to achieve sufficient position resolution. This is not the case in low-energy particle physics experiments, where particle trajectories are very short. With current position-sensitive detection technologies it is difficult to obtain sufficient position resolution for particle identification in large sensitive volumes since all these detectors are based on the read-out of the ionization signal. This limitation is due to the diffusion of the drifting electrons. In this paper we demonstrate a "proof-of-principle" experiment for a new method for the tracking of charged particles. It takes advantage of the scintillation signal which is not affected by...

  18. Transmission electron microscopic examination of phosphoric acid fuel cell components

    Science.gov (United States)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  19. A new pair of hard-soft plastic combination for precision manufacturing of two component plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2011-01-01

    Two component (2k) injection moulding is growing rapidly even in the field of precision micro moulding. Besides combining different material properties in the same product, two component moulding can eliminate many assembly steps in manufacturing process chain. One of the biggest technical...... challenges associated with 2k moulding is the unavailability of suitable two component material combinations which can meet the diverse requirement from product and process point of view. This paper presents a new pair of commercial polymer materials (BASF Ultramid A3EG10 and Kraiburg TPE Thermolast K TC5PCZ......-of-the-art two component micro moulding machine named Formica Plast from Desma Tec. The tests performed on the demonstrator showed potential for the material pair to be used in high precision two component moulding applications. The adhesion between the two materials, replication quality of the 2k part, sealing...

  20. Analytic method for material aging and quality analyzing to forecast long time stability of plastic micro heliostat components

    Science.gov (United States)

    Sauerborn, Markus; Liebenstund, Lena; Raue, Markus; Mang, Thomas; Herrmann, Ulf; Dueing, Andreas

    2017-06-01

    The Solar-Institute Jülich (SIJ) developed the micro heliostat system - a small sized heliostat - during the last years. One special performance of the micro heliostat is the option to integrate inexpensive plastic elements. The use of plastic as a cost reducer in the heliostat technique is also offering the chance to integrate complex designed components with a higher quality and special system function. The plastic for this application requires a high standing against UV radiation and thermal cycles with a daily extreme temperature variation. The temperature range inside the closed micro heliostat box can annually fluctuate between -20 °C and 80 °C in the worst case. Special aging tests were designed and performed for the first time in cooperation with the Institute for Applied Polymer Science (IAP) in order to identify and qualify a resistance plastic for the micro heliostat. This systematic plastic aging testing for the micro heliostat is introduced here. The tests were carried out under extreme ambient situations, which simulate the temperature and irradiation conditions that the heliostat has to stand for years. A particular climate of arid areas with continuous high solar radiation was defined for these tests. Two accelerating aging methods were adapted to reach adequate aging results in a reduced time. The aging of the investigated kinds of plastics were followed by tensile test, impact test, measuring Shore hardness, dynamic-mechanical analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy to compare the different types of polymers. Parallel to these tests running real outdoor tests were performed, to control this accelerated aging. To have adequate conditions that the plastic in a micro heliostat has to stand, an identical closed test box with a glass cover was designed. The test samples inside the box were irradiated by the sun. The wanted forecast for the analyzed plastic was defined by the comparison of the real and

  1. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  2. Numerical Simulation of the Medical Linear Accelerator Electron Beams Absorption by ABS-Plastic doped with Metal

    Science.gov (United States)

    Stuchebrov, S. G.; Miloichikova, I. A.; Krasnykh, A. A.

    2016-07-01

    In this paper the numerical simulation results of the dose spatial distribution of the medical electron beams in ABS-plastic doped with different concentrations of lead and zinc are shown. The dependences of the test material density on the lead and zinc mass concentrations are illustrated. The depth dose distributions of the medical electron beams in the modified ABS-plastic for three energies 6 MeV, 12 MeV and 20 MeV are tested. The electron beam shapes in the transverse plane in ABS-plastic doped with different concentrations of lead and zinc are presented.

  3. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view.

  4. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo......-imaging camera was used to measure the thermal field distribution. Ideas for future research involving improvement of the experimental setup and modeling verification are given....

  5. A new active solder for joining electronic components

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  6. Functional models of power electronic components for system studies

    Science.gov (United States)

    Tam, Kwa-Sur; Yang, Lifeng; Dravid, Narayan

    1991-01-01

    A novel approach to model power electronic circuits has been developed to facilitate simulation studies of system-level issues. The underlying concept for this approach is to develop an equivalent circuit, the functional model, that performs the same functions as the actual circuit but whose operation can be simulated by using larger time step size and the reduction in model complexity, the computation time required by a functional model is significantly shorter than that required by alternative approaches. The authors present this novel modeling approach and discuss the functional models of two major power electronic components, the DC/DC converter unit and the load converter, that are being considered by NASA for use in the Space Station Freedom electric power system. The validity of these models is established by comparing the simulation results with available experimental data and other simulation results obtained by using a more established modeling approach. The usefulness of this approach is demonstrated by incorporating these models into a power system model and simulating the system responses and interactions between components under various conditions.

  7. High energy electron beam joining of ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  8. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  9. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  10. On valence electron density, energy dissipation and plasticity of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pang, J.J.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore (Singapore); Liew, K.M., E-mail: kmliew@cityu.edu.hk [Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon (Hong Kong)

    2013-11-15

    Highlights: ► Relationship between valence electron density and plasticity of metallic glasses. ► Poisson's ratio increases as electron density decreases. ► Energy dissipation proposed to understand plasticity. ► Low electron density indicates small activation energy. -- Abstract: In conventional crystalline alloys, valence electron density (VED) is one of the most significant factors in determining their phase stability and mechanical properties. Extending the concept to metallic glasses (MGs), it is found, not totally surprisingly, that their mechanical properties are VED-dependent as in crystalline alloys. Interestingly, the whole VED region can be separated into two zones: Zone 1 consists of Mg-, Ca-, and RE-based (RE for rare earth) alloys; Zone 2 consists of the rest of MGs. In either zone, for each type of MGs, Poisson's ratio generally decreases as VED increases. From the energy dissipation viewpoint proposed recently, the amorphous plasticity is closely related to the activation energy for the operation of shear-transformation-zones (STZs). Smaller STZ activation energy suggests higher ductility because STZs with lower activation energy are able to convert deformation work more efficiently into configurational energy rather than heat, which yields mechanical softening and advances the growth of shear bands (SBs). Following this model, it is revealed that the activation energies for STZ operation and crystallization are certainly proportional to VED. Thus, it is understood that, in Zone 2, MGs have a smaller VED and hence lower activation energies which are favorable for ductility and Poisson's ratio. In Zone 1, MGs have the lowest VED but apparent brittleness because either of low glass transition temperature and poor resistance to oxidation or of a large fraction of covalent bonds.

  11. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    Science.gov (United States)

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  12. Emergency Dosimetry Using Ceramic Components in Personal Electronic Devices

    Science.gov (United States)

    Kouroukla, E. C.; Bailiff, I. K.; Terry, I.

    2014-02-01

    The rapid assessment of radiation dose to members of the public exposed to significant levels of ionizing radiation during a radiological incident presents a significant difficulty in the absence of planned radiation monitoring. However, within most personal electronic devices components such as resistors with alumina substrates can be found that have potentially suitable properties as solid state dosimeters using luminescence measurement techniques. The suitability of several types of ceramic-based components (e.g., resonators, inductors and resistors) has been previously examined using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques to establish their basic characteristics for the retrospective determination of absorbed dose. In this paper, we present results obtained with aluminum oxide surface mount resistors extracted from mobile phones that further extend this work. Very encouraging results have been obtained related to the measurement of luminescence sensitivity, dose response, reusability, limit of detection, signal reproducibility and known-dose recovery. However, the alumina exhibits a rapid loss of the latent luminescence signal with time following irradiation attributed to athermal (or anomalous) fading. The issues related to obtaining a reliable correction protocol for this loss and the detailed examinations required of the fading behavior are discussed.

  13. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-05-31

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... communications devices, including mobile phones and components thereof. The complaint names as respondents HTC... Trade Commission has received a complaint entitled Certain Portable Electronic Communications...

  14. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Science.gov (United States)

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements... limited exclusion order against certain electronic digital media devices and components thereof...

  15. 78 FR 6130 - Certain Electronic Digital Media Devices and Components Thereof: Commission Determination To...

    Science.gov (United States)

    2013-01-29

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Digital Media Devices and Components Thereof: Commission Determination To... certain electronic digital media devices and components thereof by reason of infringement of...

  16. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    Science.gov (United States)

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives.

  17. 76 FR 47610 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of...

    Science.gov (United States)

    2011-08-05

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of... of certain electronic digital media devices and components thereof by reason of infringement of... electronic digital media devices and components thereof ] that infringe one or more of claims 1, 3-6, and...

  18. Mechanisms of plastic deformation in AZ31 magnesium alloy investigated by acoustic emission and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janecek, Milos [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic)], E-mail: janecek@met.mff.cuni.cz; Kral, Robert [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Dobron, Patrik [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Chmelik, Frantisek [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic); Supik, Vladimir [Department of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, D-03010 Cottbus (Germany); Hollaender, Frank [Department of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, D-03010 Cottbus (Germany)

    2007-07-25

    The effect of deformation conditions on plastic deformation and acoustic emission (AE) in hot-rolled magnesium alloy AZ31 has been investigated in the temperature range of 20-200 deg. C by constant strain rate tensile tests. Two sets of samples differing in the preheating temperature before individual passes of hot rolling have been studied. Both the yield stress and the tensile strength decrease with increasing temperature of deformation. The ductility was found to increase significantly with increasing temperature of deformation in both specimens. Unstable plastic deformation (Portevin-Le Chatelier effect) has been observed for all used strain rates both at room and elevated temperatures. Plastic instabilities were accompanied by a pronounced AE activity. The AE bursts were correlated with the individual regions of plastic instabilities on the deformation curve. Mechanisms controlling plastic instabilities are suggested respecting the microstructure evolution as observed by optical and transmission electron microscopy.

  19. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  20. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  1. Evolution of Dislocation Subsystem Components During Plastic Deformation Depending on Parameters of Strengthening Phase with L12 Superstructure

    Science.gov (United States)

    Daneyko, O. I.; Kovalevskaya, T. A.; Kulaeva, N. A.; Kolupaeva, S. N.; Shalygina, T. A.

    2017-09-01

    The paper presents results of mathematical modelling of plastic deformation in dispersion-hardened materials with FCC crystal system and L12 superstructure particles. Research results show that the size and the distance between particles of the strengthening phase affect the strain hardening and the evolution of the dislocation subsystem of the FCC alloy hardened with coherent L12 superstructure particles. It is found that increased size of ordered particles or decreased distance between them enhances the abnormal growth in the flow stress and the density of the dislocation subsystem components. Investigations show that prismatic dislocation loops predominate in the dislocation subsystem of materials having a nano-dispersion strengthening phase.

  2. Plastic and heritable components of phenotypic variation in Nucella lapillus: an assessment using reciprocal transplant and common garden experiments.

    Directory of Open Access Journals (Sweden)

    Sonia Pascoal

    Full Text Available Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1s than F(2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.

  3. Respiratory electron transfer in Escherichia coli : components, energetics and regulation

    NARCIS (Netherlands)

    Bekker, M.

    2009-01-01

    The respiratory chain that is housed in the bacterial cytoplasmic membrane, generally transfers electrons from NADH to oxygen; in the absence of oxygen it can use several alternative electron acceptors, such as nitrate and fumarate. Transfer of electrons through this chain is usually coupled to the

  4. Respiratory electron transfer in Escherichia coli : components, energetics and regulation

    NARCIS (Netherlands)

    Bekker, M.

    2009-01-01

    The respiratory chain that is housed in the bacterial cytoplasmic membrane, generally transfers electrons from NADH to oxygen; in the absence of oxygen it can use several alternative electron acceptors, such as nitrate and fumarate. Transfer of electrons through this chain is usually coupled to the

  5. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  6. Electrostatic separator for micronized mixtures of metals and plastics originating from waste electric and electronic equipment

    Science.gov (United States)

    Messal, Sara; Corondan, Razvan; Chetan, Ionut; Ouiddir, Rabah; Medles, Karim; Dascalescu, Lucian

    2015-10-01

    In spite of their extensive use for processing mixtures of granules exceeding 1 mm in size, very few industrial electrostatic separators are capable of handling micronized metals and plastics originating from waste electric and electronic equipment. The aim of the present work is to validate the possibility of using a novel belt-type electrostatic separator for the selective sorting of such particulate mixtures, the dimensions of which are in the order of 0.1 mm. In this type of separator, the metal particles get charged by electrostatic induction in contact with the grounded metal belt electrode, while the plastics remain uncharged in the electric field and are collected separately. The experiments are performed with 2-g samples of a mixture composed in equal proportions (50% - 50%) of Aluminium and Acrylonitrile Butadiene Styrene (ABS) particles of average diameter ranging between 125 μm and 250 μm. They enabled the evaluation of the effects and the interaction of two control variables of the process: the angle of inclination of the roll-type electrode and the high voltage applied to it.

  7. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    Science.gov (United States)

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  8. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Science.gov (United States)

    2010-07-01

    ... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof, and... certain electronic devices with image processing systems, components thereof, and associated software that... importation, and the sale within the United States after importation of certain electronic devices with...

  9. Fundamental microstructural issues associated with severe plastic deformation: Applications of transmission electron microscopy

    Science.gov (United States)

    Esquivel, Erika Vanessa

    This study deals with the microstructural response of several metals and alloys to severe plastic deformation (SPD) in the form of shock wave loading, impact cratering, explosive welding, and ballistic penetration. Microstructural issues that will be addressed include dynamic recrystallization, adiabatic shear bands, and microbands and microtwins. Other relevant issues are stacking fault free energy (SFE), shock wave geometry and grain boundary contributions to the deformation response. The study focuses mainly on the deformation behavior correlated from the microstructural response of nickel and 304 stainless steel, but the behavior of other metals and alloys such as aluminum, copper, brass, tungsten-tantalum and steel are also discussed. These metals cover a wide range of SFE in the face centered cubic systems (FCC) as well as body centered cubic (BCC) structures. There is an emphasis on the microstructure as seen through the transmission electron microscope (TEM) but this is complemented by light microscopy to provide a more global microscopic context. Observations revealed that microtwins will form in planar shock wave treatment of FCC metals and alloys above a critical shock twinning pressure, which is itself a function of SFE. In hypervelocity impact craters, microbands will form for higher SFE materials such as Al, Ni, and Cu, whereas microtwins form exclusively in lower SFE material such as brass, and a combination of both microbands and microtwins will form in materials of intermediate SFE. Both SFE and shock wave geometry influence the material behavior in response to such dynamic processes such that SFE dictates the feasibility of cross-slip and the shock wave geometry, being planar promotes slip along primary slip planes while a spherical shock wave encourages cross-slip. In ballistic penetration it has been observed that overlapping shear bands, associated with dynamic recovery and recrystallization structures allow the penetrator to 'flow.' In all

  10. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  11. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... Trade Commission has received a complaint entitled Certain Electronic Devices, Including Mobile Phones... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components...

  12. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Energy Technology Data Exchange (ETDEWEB)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan [Centre for Nondestructive Evaluation, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  13. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Science.gov (United States)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-02-01

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  14. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission...

  15. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Science.gov (United States)

    2010-04-01

    ... components and controls for acceptable electronic signatures? 73.11 Section 73.11 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURES AND PRACTICES ELECTRONIC SIGNATURES; ELECTRONIC SUBMISSION OF FORMS Electronic Signatures §...

  16. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  17. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  18. Thermal response of ceramic components during electron beam brazing

    Energy Technology Data Exchange (ETDEWEB)

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  19. Attenuated total reflectance-mid infrared spectroscopy (ATR-MIR) coupled with independent components analysis (ICA): A fast method to determine plasticizers in polylactide (PLA).

    Science.gov (United States)

    Kassouf, Amine; Ruellan, Alexandre; Jouan-Rimbaud Bouveresse, Delphine; Rutledge, Douglas N; Domenek, Sandra; Maalouly, Jacqueline; Chebib, Hanna; Ducruet, Violette

    2016-01-15

    Compliance of plastic food contact materials (FCMs) with regulatory specifications in force, requires a better knowledge of their interaction phenomena with food or food simulants in contact. However these migration tests could be very complex, expensive and time-consuming. Therefore, alternative procedures were introduced based on the determination of potential migrants in the initial material, allowing the use of mathematical modeling, worst case scenarios and other alternative approaches, for simple and fast compliance testing. In this work, polylactide (PLA), plasticized with four different plasticizers, was considered as a model plastic formulation. An innovative analytical approach was developed, based on the extraction of qualitative and quantitative information from attenuated total reflectance (ATR) mid-infrared (MIR) spectral fingerprints, using independent components analysis (ICA). Two novel chemometric methods, Random_ICA and ICA_corr_y, were used to determine the optimal number of independent components (ICs). Both qualitative and quantitative information, related to the identity and the quantity of plasticizers in PLA, were retrieved through a direct and fast analytical method, without any prior sample preparations. Through a single qualitative model with 11 ICs, a clear and clean classification of PLA samples was obtained, according to the identity of plasticizers incorporated in their formulations. Moreover, a quantitative model was established for each formulation, correlating proportions estimated by ICA and known concentrations of plasticizers in PLA. High coefficients of determination (higher than 0.96) and recoveries (higher than 95%) proved the good predictability of the proposed models.

  20. A brief perspective on the evolution of plastic electronics--from highly conducting polymers to conjugated organic semiconductors.

    Science.gov (United States)

    Skabara, Peter J

    2013-10-18

    This Viewpoint reflects on the work published in J. Chem. Soc., Chem. Commun. in 1977 by the Nobel Prize winners Shirakawa, MacDiarmid and Heeger. This paper, which is one of the most cited ChemComm articles of all time, motivated the rapid development of conducting (conjugated) polymers and the birth of plastic electronics.

  1. An elasto-plastic approach to estimate lifetime of notched components under variable amplitude fatigue loading: a preliminary investigation

    Directory of Open Access Journals (Sweden)

    N. Zuhair Faruq

    2016-07-01

    Full Text Available The present paper is concerned with the formulation of an elasto-plastic strain based approach suitable for assessing fatigue strength of notched components subjected to in-service variable amplitude cyclic loading. The hypothesis is formed that the crack initiation plane is closely aligned with the plane of maximum shear strain amplitude, its orientation and the associated stress/strain quantities being determined using the Maximum Variance Method. Fatigue damage is estimated by applying the Modified Manson-Coffin Curve Method (MMCCM along with the Point Method (PM. In the proposed approach, the required critical distance is treated as a material property whose value is not affected either by the sharpness of the notch being assessed or by the profile of the load spectrum being applied. The detrimental effect of non-zero mean stresses and degree of multiaxiality of the local stress/strain histories is also considered. The accuracy and reliability of the proposed design methodology was checked against several experimental data taken from the literature and generated under different uniaxial variable amplitude load histories. In order to determine the required local stress/strain states, refined elasto-plastic finite element models were solved using commercial software ANSYS®. This preliminary validation exercise allowed us to prove that the proposed approach is capable of estimates laying within an error factor of about 2. These preliminary results are certainly promising, strongly supporting the idea that the proposed design strategy can successfully be used to assess the fatigue lifetime of notched metallic components subjected to in-service multiaxial variable amplitude loading sequences.

  2. Surveyor television camera, selected materials and electronic components, Appendix C

    Science.gov (United States)

    Carroll, W. F.

    1972-01-01

    The locations of various parts of the Surveyor camera are presented. Tables were prepared with emphasis on: (1) exterior parts and surfaces that are directly exposed to space, (2) parts that shield others from space radiation, (3) representative or unique materials, and (4) electronic devices that may contain unique or well-characterized materials.

  3. Photosynthetic Reaction Centers as Active Molecular Electronic Components. Phase I

    Science.gov (United States)

    1993-08-13

    SDS bring to 1 liter with H20, pH to 8.3 10% APS = 10% (w/v) Ammonium persulfate Assemble gel plates and spacers (how depends on apparatus). Mix up...the synthesis of polypyrrole microtubules in 12 Biological Components Corporation Phase I Final Report SBIR ARMY 92-103 commercially available

  4. 76 FR 58841 - Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...

    Science.gov (United States)

    2011-09-22

    ... FR 12994-5 (Mar. 9, 2011). The complaints allege violations of section 337 of the Tariff Act of 1930... COMMISSION Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...; and 5,923,711, and of certain electronic devices having a Blu-Ray disc player and components...

  5. 78 FR 49764 - Certain Electronic Digital Media Devices and Components Thereof; Commission's Final Determination...

    Science.gov (United States)

    2013-08-15

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Commission's Final Determination...'') (collectively, ``Samsung''), from importing certain electronic digital media devices that infringe one or more... digital media devices and components thereof by reason of infringement of certain claims of the '949,...

  6. Studies on electron-beam irradiation and plastic deformation of medical-grade ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Krystyna, E-mail: krystyna.czaja@uni.opole.p [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland); SudoL, Marek [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland)

    2011-03-15

    Separated and combined electron-beam irradiation and plastic deformation effects on the structures of ultra-high molecular weight polyethylene (UHMWPE) were studied. It was found that the concentration of carbonyl (ketones, esters and peresters), hydroxyl and vinyl groups increases with the growing dose of adsorbed electrons. It also tends to exhibit a slight increase in the melting point and crystallinity of the samples. A mechanical stress in the polymer was found to accelerate radiation-induced degradation. It was concluded that each of the factors studied (i.e. electron beam sterilization and plastic deformation) had a different impact on the polymer structure. The change in the sequence of action of these factors can dramatically influence the process of UHMWPE destruction. Some effects may be limited or enhanced by the action of other factors. Therefore, the resulting effects of destructive factors depend qualitatively and quantitatively on their intensity and order.

  7. 77 FR 44671 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

    Science.gov (United States)

    2012-07-30

    ... Japan; Nintendo of America, Inc. of WA; Novatel Wireless, Inc. of CA; Samsung Electronics Co., Ltd. of Korea; Samsung Electronics America, Inc. of NJ; Sierra Wireless, Inc. of Canada, Sierra Wireless America... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

  8. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Science.gov (United States)

    2012-08-24

    .... Samsung Electronics Co., Ltd., Samsung Main Building, 250, Taepyeongno 2-ga, Jung-gu, Seoul 100-742, Republic of Korea. Samsung Electronics America, Inc., 105 Challenger Road, Ridgefield Park, NJ 07660... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of Investigation...

  9. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  10. Polybrominated diphenyl ethers (PBDEs) in China: policies and recommendations for sound management of plastics from electronic wastes.

    Science.gov (United States)

    Ni, Kun; Lu, Yonglong; Wang, Tieyu; Shi, Yajuan; Kannan, Kurunthachalam; Xu, Li; Li, Qiushuang; Liu, Shijie

    2013-01-30

    Polybrominated diphenyl ethers (PBDEs), used as flame retardants (BFRs), are incorporated in plastics of most electronic equipment. Among BFR mixtures, deca-BDE is the most widely used commercial additive in the polymer industry and the use of deca-BDE is currently not subject to any restrictions in China. However, debate over environmental and health risks associated with deca-BDE still remains. Regulatory agencies in developed countries have adopted and/or established environmentally sound strategies for the management of potential threat posed by PBDEs to the environment and human health. No regulations or management policies for PBDEs currently exist in China at either central or provincial government levels. Large amounts of plastics containing PBDEs are still in use and must be disposed of after their lifetimes, creating outdoor reservoirs for the future dispersal of PBDEs into the environment. Concerted action is needed not only to regulate the production and use of PBDEs but also to find ways to effectively manage waste electrical and electronic products that contain PBDEs. This article is the first to investigate the policy issues and current problems related to the use of PBDEs in China. In addition, we estimate the mass flows of PBDEs contained in Waste Electrical and Electronic Equipment (WEEE) in China. We suggest alternatives to PBDEs and sound management of plastics used in electrical and electronic equipment (EEE) that contain PBDEs.

  11. Temperature control of electronic components using fluidised beds

    Science.gov (United States)

    Bean, R.

    1981-06-01

    This paper introduces the concept of fluidized bed cooling applied to electronic systems. It is shown that, when fluidized with air, the cooling efficiency and the pumping power are principally dependent on particle characteristics; in particular the mean diameter should not be less than 100 microns. Design rules are developed and applied to two types of fluid-bed systems: (1) a small bed of alumina particles cooling single devices of 40 W power dissipation where the fluidizing air is the main heat transporting medium, and (2) a large bed of cenospheres with a simple integrated heat exchanger to extract more than 1 KW of heat from complete sub-rack assemblies of up to 40 printed circuit boards, for a fluidizing power of about 3 W. The effect of board spacing on the overall thermal performance is considered, and a minimum spacing of 10-20 mm is shown to be required to maintain cooling efficiency.

  12. Monolayers and multilayers of conjugated polymers as nanosized electronic components.

    Science.gov (United States)

    Zotti, Gianni; Vercelli, Barbara; Berlin, Anna

    2008-09-01

    Conjugated polymers (CPs) are interesting materials for preparing devices based on nanoscopic molecular architectures because they exhibit electrical, electronic, magnetic, and optical properties similar to those of metals or semiconductors while maintaining the flexibility and ease of processing of polymers. The production of well-defined mono- and multilayers of CPs on electrodes with nanometer-scale, one-dimensional resolution remains, however, an important challenge. In this Account, we describe the preparation and conductive properties of nanometer-sized CP molecular structures formed on electrode surfaces--namely, self-assembled monolayer (SAM), brush-type, and self-assembled multilayer CPs--and in combination with gold nanoparticles (AuNPs). We have electrochemically polymerized SAMs of carboxyalkyl-functionalized terthiophenes aligned either perpendicular or parallel to the electrode surface. Anodic coupling of various pyrrole- and thiophene-based monomers in solution with the oligothiophene-based SAMs produced brush-like films. Microcontact printing of these SAMs produced patterns that, after heterocoupling, exhibited large height enhancements, as measured using atomic force microscopy (AFM). We have employed layer-by-layer self-assembly of water-soluble polythiophene-based polyelectrolytes to form self-assembled multilayers. The combination of isostructural polycationic and polyanionic polythiophenes produced layers of chains aligned parallel to the substrate plane. These stable, robust, and dense layers formed with high regularity on the preformed monolayers, with minimal interchain penetration. Infrared reflection/adsorption spectroscopy and X-ray diffraction analyses revealed unprecedented degrees of order. Deposition of soluble polypyrroles produced molecular layers that, when analyzed using a gold-coated AFM tip, formed gold-polymer-gold junctions that were either ohmic or rectifying, depending of the layer sequence. We also describe the electronic

  13. Standard practice for radiologic examination of semiconductors and electronic components

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice provides the minimum requirements for nondestructive radiologic examination of semiconductor devices, microelectronic devices, electromagnetic devices, electronic and electrical devices, and the materials used for construction of these items. 1.2 This practice covers the radiologic examination of these items to detect possible defective conditions within the sealed case, especially those resulting from sealing the lid to the case, and internal defects such as extraneous material (foreign objects), improper interconnecting wires, voids in the die attach material or in the glass (when sealing glass is used) or physical damage. 1.3 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this practice. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applic...

  14. Designing Electronic Components and Devices from Inorganic Molecular Scaffolds

    Science.gov (United States)

    2012-07-04

    CH3)3 1 Et3N,CuI Pd(OAc)3, PPh3 Trimethylsilyethyne Reflux 90oC, 24h PdCl2(PPh3)2 KOAc O-(triflate)-4- Bromo-8- Quinolinate Dioxane...triflate)-4- Bromo-8- Quinolinate Dioxane, reflux C8H17 H17C8 N OTf 3 8-MeO-Q C8H17H17C8 Br + 4 Pd(OAc)2 PPh3 Na2CO3 B(OH)2 (HO)2B Pd(PPh3)2Cl2...undergraduate research environment . Students designed and studied new and unique materials on the atomic scale that have desirable electronic and optical

  15. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    Directory of Open Access Journals (Sweden)

    Vishakha Kaushik

    2015-09-01

    Full Text Available Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  16. An overview of the NASA electronic components information management system

    Science.gov (United States)

    Kramer, G.; Waterbury, S.

    1991-01-01

    The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

  17. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

    Directory of Open Access Journals (Sweden)

    Ji-Su Kim

    2015-04-01

    Full Text Available This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1 a section average approach and (2 a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  18. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  19. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Moiré fringe method of using warping deformation measurement of electronic components

    Science.gov (United States)

    Huang, Yanping; Huang, Biaobing; Xu, Hongji; Yan, Dongmei; Li, Wenpeng

    2010-10-01

    Computers, mobile phones, cameras and video equipment and other electronic products, Moving in the light, thin, small, high speed, high reliability, multi-functional aspects of development, Namely, 3G technology and the SOC of. Therefore, the various components of the packaging technology have become increasingly demanding, Electronic components of residual stress after encapsulation and the use of temperature changes during, Body will be made electronic packaging warpage, Seriously affect the quality of the product. Therefore, to establish a set of micron, sub-micron-level detection method for testing. In this paper, Moiré fringe method to measure warpage of electronic packages body volume, Was first proposed application of Rayleigh-Sommerfeld diffraction theory, Proof presented in this paper with a small spacing diffraction grating problems arising from the assumption can be overcome, Greatly improved the precision deformation measurement of electronic components.

  1. Study and simulation of the read-out electronics design for a high-resolution plastic scintillating fiber based hodoscope

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, José María, E-mail: jose.maria.blasco@uv.es [Universitat de València, Calle Gascó Oliag n" o5, 46010, Valencia (Spain); Sanchis, E. [Universitat de València, Calle Gascó Oliag n" o5, 46010, Valencia (Spain); Granero, D. [Eresa Grupo Médico (Spain); Martín, J.D.; González, V.; Sanchis-Sánchez, E. [Universitat de València, Calle Gascó Oliag n" o5, 46010, Valencia (Spain)

    2015-06-01

    Highlights: • Plastic Scintillating Fibers for high-resolution hodoscopy. • Silicon photodiode read-out electronics design. • Plastic scintillating fibers coupled to Silicon photodiodes read-out. • Charged particle detection with plastic scintillating fibers. - Abstract: This work presents the study and simulation of a high-resolution charged particle detection device for beam positioning, monitoring and calibration, together with its read-out proposal. To provide the precise positional information of the beam, the detection system has been based on Plastic Scintillating Fibers (PSF), while the read-out on a Silicon-PhotoDiode (Si-PD) array. To carry out the study, a PSF prototype with one detection plane has been experimentally tested with a β particle source. Besides, Monte Carlo simulations of the complete system have also been conducted. Both simulations and experimental tests give consistency to the results obtained. The work presented in this article show the usefulness of this proposal for high-precision charged particle positioning, achieving resolutions up to 100 µm.

  2. 78 FR 33110 - Certain Electronic Digital Media Devices and Components Thereof; Determination To Review a Remand...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Determination To Review a Remand... the sale within the United States after importation of certain electronic digital media devices and..., including in the JP published unexamined application HII-288766 (``Kawano'') and the YP-T7J portable...

  3. High Value Recycling of Plastics in Electrical and Electronic Equipment%电子电器用塑料的高值化再利用

    Institute of Scientific and Technical Information of China (English)

    杜拴丽; 李迎春; 李洁; 王志强

    2012-01-01

    The characteristics of plastics in electrical and electronic equipment, the prospects and process route for re-use and recycling technology of the plastics were discussesed. Respectively according to thermosetting plastics and thermoplastics among the plastics, different recycling methods were used to achieve the high value recycling of the electrical and electronic equipment plastics .%介绍了电子电器用塑料的特点、回收再利用的前景以及回收再利用的工艺流程.分别针对其中的热固性塑料和热塑性塑料,采用不同的回收再利用的方法,实现了电子电器用塑料的高值化回收再利用.

  4. Principal component analysis for neural electron/jet discrimination in highly segmented calorimeters

    CERN Document Server

    Vassali, M R

    2001-01-01

    A neural electron/jet discriminator based on calorimetry is developed for the second-level trigger system of the ATLAS detector. As preprocessing of the calorimeter information, a principal component analysis is performed on each segment of the two sections (electromagnetic and hadronic) of the calorimeter system, in order to reduce significantly the dimension of the input data space and fully explore the detailed energy deposition profile, which is provided by the highly-segmented calorimeter system. It is shown that projecting calorimeter data onto 33 segmented principal components, the discrimination efficiency of the neural classifier reaches 98.9% for electrons (with only 1% of false alarm probability). Furthermore, restricting data projection onto only 9 components, an electron efficiency of 99.1% is achieved (with 3% of false alarm), which confirms that a fast triggering system may be designed using few components. (6 refs).

  5. Radiation heat exchange between electronic components on a circuit board and the walls of its enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.; Cengel, Y.A. (Univ. of Nevada, Reno, NV (United States))

    Radiation heat transfer between rectangular electronic components on a printed circuit board and the walls of its enclosure is studied analytically using a Monte Carlo method. The radiation heat transfer between the electronic components and the cover is determined for the cases of diffuse and specular surfaces with constant properties, and for diffuse and specular surfaces with variable temperature and direction-dependent properties. The radiation interchange between the components and the cover of the enclosure are determined and presented for various dimensionless parameters and surface emissivities in tabular and graphical forms. The radiation heat transfer, in general, is found to be comparable in magnitude to natural-convection heat transfer at operating conditions encountered in practice. It is shown that radiation can serve as an effective heat transfer mechanism for the cooling of electronic components in sealed enclosures cooled externally.

  6. Intersectin 1 is a component of the Reelin pathway to regulate neuronal migration and synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Jakob, Burkhard; Kochlamazashvili, Gaga; Jäpel, Maria; Gauhar, Aziz; Bock, Hans H; Maritzen, Tanja; Haucke, Volker

    2017-05-23

    Brain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans. Reelin signals via the lipoprotein receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), but the exact mechanism by which these receptors control cellular function is poorly understood. We report that loss of the signaling scaffold intersectin 1 (ITSN1) in mice leads to defective neuronal migration and ablates Reelin stimulation of hippocampal long-term potentiation (LTP). Knockout (KO) mice lacking ITSN1 suffer from dispersion of pyramidal neurons and malformation of the radial glial scaffold, akin to the hippocampal lamination defects observed in VLDLR or ApoER2 mutants. ITSN1 genetically interacts with Reelin receptors, as evidenced by the prominent neuronal migration and radial glial defects in hippocampus and cortex seen in double-KO mice lacking ITSN1 and ApoER2. These defects were similar to, albeit less severe than, those observed in Reelin-deficient or VLDLR/ ApoER2 double-KO mice. Molecularly, ITSN1 associates with the VLDLR and its downstream signaling adaptor Dab1 to facilitate Reelin signaling. Collectively, these data identify ITSN1 as a component of Reelin signaling that acts predominantly by facilitating the VLDLR-Dab1 axis to direct neuronal migration in the cortex and hippocampus and to augment synaptic plasticity.

  7. Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil.

    Science.gov (United States)

    Kassouf, Amine; El Rakwe, Maria; Chebib, Hanna; Ducruet, Violette; Rutledge, Douglas N; Maalouly, Jacqueline

    2014-08-11

    Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration.

  8. Recycling of plastic wastes from electric and electronic sector new developments; Reciclado de residuos plasticos del sector electrico y electronico. Nuevos desarrollos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Larrauri, E.; Cacho, I.

    1999-07-01

    Automated technologies for the identification and sorting of plastic wastes have been developed to get an adequate and cost-effective recycling. When dealing with plastics from end-of-live electric and electronic equipment not only the polymeric matrix but also fillers and/or flame retardant additives and/or pigments, need to be taken in account. At present, several specific projects are being carried out by GAIKER in order to solve the technological challenge of recycling plastics from the electric and electronic sector. (Author)

  9. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy

    Science.gov (United States)

    Beaulieu, Luc; Beddar, Sam

    2016-10-01

    While scintillation dosimetry has been around for decades, the need for a dosimeter tailored to the reality of modern radiation therapy—in particular a real-time, water-equivalent, energy-independent dosimeter with high spatial resolution—has generated renewed interest in scintillators over the last 10 years. With the advent of at least one commercial plastic scintillation dosimeter and the ever-growing scientific literature on this subject, this topical review is intended to provide the medical physics community with a wide overview of scintillation physics, related optical concepts, and applications of plastic scintillation dosimetry.

  10. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  11. Indications and Outcomes of the Components Separation Technique in the Repair of Complex Abdominal Wall Hernias: Experience From the Cambridge Plastic Surgery Department

    OpenAIRE

    Adekunle, Shola; Pantelides, Nicholas M.; Hall, Nigel R; Praseedom, Raaj; Malata, Charles M.

    2013-01-01

    Objectives: The components separation technique (CST) is a widely described abdominal wall reconstructive technique. There have, however, been no UK reports of its use, prompting the present review. Methods: Between 2008 and 2012, 13 patients who underwent this procedure by a single plastic surgeon (C.M.M.) were retrospectively evaluated. The indications, operative details, and clinical outcomes were recorded. Results: There were 7 women and 6 men in the series with a mean age of 53 years (ra...

  12. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  13. Electron-acoustic solitary pulses and double layers in multi-component plasmas

    CERN Document Server

    Mannan, A; Shukla, P K

    2013-01-01

    We consider the nonlinear propagation of fi?nite amplitude electron-acoustic waves (EAWs) in multi-component plasmas composed of two distinct groups of electrons (cold and hot components), and non-isothermal ions. We use the continuity and momentum equations for cold inertial electrons, Boltzmann law for inertialess hot electrons, non-isothermal density distribution for hot ions, and Poisson's equation to derive an energy integral with a modi?ed Sagdeev potential (MSP) for nonlinear EAWs. The MSP is analyzed to demonstrate the existence of arbitrary amplitude EA solitary pulses (EASPs) and EA double layers (EA-DLs). Small amplitude limits have also been considered and analytical results for EASPs and EA-DLs are presented. The implication of our results to space and laboratory plasmas is briely discussed.

  14. Analysis of electron spin resonance spectra of irradiated gingers: Organic radical components derived from carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoki, Rumi, E-mail: yamaoki@gly.oups.ac.j [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Kimura, Shojiro [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Ohta, Masatoshi [Faculty of Engineering, Niigata University, 8050 Igarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan)

    2010-04-15

    Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.

  15. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail.

  16. Linear electrostatic waves in a three-component electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  17. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Magdy M., E-mail: magdysenna@hotmail.com [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Mostafa, Abo El-Khair B. [Chemistry Department, College for Girls, Ain Shams University, Cairo (Egypt); Mahdy, Sanna R.; El-Naggar, Abdel Wahab M. [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2016-11-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  18. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  19. Analysis of the thermal response of plasma facing components during a runaway electron impact

    Science.gov (United States)

    Ward, Robert Cameron

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10--300 MeV, and may potentially cause extensive damage to plasma facing components through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of plasma facing components to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts which control the operation of an electron-photon monte carlo code to calculate the interaction of the runaway electrons with the plasma facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials using the modified heat conduction equation; a code to process, scale, transform, and convert the electron monte carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and post-processing of the data. The electron-photon monte carlo code used was the Electron-Gamma-Shower (EGS) code, developed and maintained by the National Research Center of Canada. The other codes were written in C++ for this study. The thermal code, called QTTN, solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system was validated using a series of analytical solutions and simulations of experiments. QTTN and EPQ was verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully. EPQ was then employed in a parametric study to simulate a typical runaway electron disruption impact on the FIRE design's plasma facing components. The results of the FIRE parametric study

  20. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    Science.gov (United States)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  1. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi.

    Science.gov (United States)

    LeGeros, R Z; Orly, I; LeGeros, J P; Gomez, C; Kazimiroff, J; Tarpley, T; Kerebel, B

    1988-03-01

    A review of the use of scanning electron microscopy (SEM) and electron probe microanalyses in the study of dental calculus showed that such studies provided confirmatory and supplementary data on the morphological features of human dental calculi but gave only limited information on the identity of the crystalline or inorganic components. This study aimed to explore the potential of combined SEM and microanalyses in the identification of the crystalline components of the human and animal dental calculi. Human and animal calculi were analyzed. Identification of the crystalline components were made based on the combined information of the morphology (SEM) and Ca/P molar ratios of the crystals with the morphology and Ca/P molar ratio of synthetic calcium phosphates (brushite or DCPD; octacalcium phosphate, OCP; Mg-substituted whitlockite, beta-TCMP; CO3-substituted apatite, (CHA); and calcite. SEM showed similarities in morphological features of human and animal dental calculi but differences in the forms of crystals present. Microanalyses and crystal morphology data suggested the presence of CaCO3 (calcite) and CHA in the animal (cat, dog, tiger) and of OCP, beta-TCMP and CHA in human dental calculi. X-ray diffraction and infrared (IR) absorption analyses confirmed these results. This exploratory study demonstrated that by taking into consideration what is known about the crystalline components of human and animal dental calculi, combined SEM and microanalyses can provide qualitative identification.

  2. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi

    Energy Technology Data Exchange (ETDEWEB)

    LeGeros, R.Z.; Orly, I.; LeGeros, J.P.; Gomez, C.; Kazimiroff, J.; Tarpley, T.; Kerebel, B.

    1988-03-01

    A review of the use of scanning electron microscopy (SEM) and electron probe microanalyses in the study of dental calculus showed that such studies provided confirmatory and supplementary data on the morphological features of human dental calculi but gave only limited information on the identity of the crystalline or inorganic components. This study aimed to explore the potential of combined SEM and microanalyses in the identification of the crystalline components of the human and animal dental calculi. Human and animal calculi were analyzed. Identification of the crystalline components were made based on the combined information of the morphology (SEM) and Ca/P molar ratios of the crystals with the morphology and Ca/P molar ratio of synthetic calcium phosphates (brushite or DCPD; octacalcium phosphate, OCP; Mg-substituted whitlockite, beta-TCMP; CO/sub 3/-substituted apatite, (CHA); and calcite. SEM showed similarities in morphological features of human and animal dental calculi but differences in the forms of crystals present. Microanalyses and crystal morphology data suggested the presence of CaCO/sub 3/ (calcite) and CHA in the animal (cat, dog, tiger) and of OCP, beta-TCMP and CHA in human dental calculi. X-ray diffraction and infrared (IR) absorption analyses confirmed these results. This exploratory study demonstrated that by taking into consideration what is known about the crystalline components of human and animal dental calculi, combined SEM and microanalyses can provide qualitative identification.

  3. Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization

    Science.gov (United States)

    Monier-Vinard, Eric; Laraqi, Najib; Dia, Cheikh-Tidiane; Nguyen, Minh-Nhat; Bissuel, Valentin

    2015-01-01

    Electronic components are continuously getting smaller and embedding more and more powered functions which exacerbate the temperature rise in component/board interconnect areas. For still air conditions, the heat spreading of the component power is mainly done through the surrounding metallic planes of its electronic board. Their design optimization is henceforth mandatory to control the temperature and to preserve component reliability. To allow the electronic designer to early analyze the limits of the power dissipation of miniaturized devices, an analytical model of a multi-layered electronic board was established with the purpose to assess the validity of conventional board modeling approach. For decades, numerous authors have been promoting a homogenous single layer model that summed up the layers of the board using effective orthotropic thermal properties. The derived compact model depends on thermal properties approximation which is commonly based on parallel conduction model given a linear rule of mixture. The work presents the thermal behavior comparison of a detailed multi-layer representation to its deducted compact model for an extensive set of variable parameters, such as heat transfer coefficients, effective thermal conductivities calculation models, number of trace layers, trace coverage or source size. The results highlight the fact that the conventional practices for PCB modeling can dramatically underestimate source temperatures when their size is getting very small.

  4. Preliminary study on electron paramagnetic resonance (EPR) signal properties of mobile phone components for dose estimation in radiation accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Ha, Wi Ho; Park, Sun Hoo; Lee, Jin Kyeong; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-12-15

    We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by {sup 137}C{sub s} gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity (R{sup 2} > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

  5. Carrier generation and electronic properties of a single-component pure organic metal

    Science.gov (United States)

    Kobayashi, Yuka; Terauchi, Takeshi; Sumi, Satoshi; Matsushita, Yoshitaka

    2017-01-01

    Metallic conduction generally requires high carrier concentration and wide bandwidth derived from strong orbital interaction between atoms or molecules. These requisites are especially important in organic compounds because a molecule is fundamentally an insulator; only multi-component salts with strong intermolecular interaction--namely, only charge transfer complexes and conducting polymers--have demonstrated intrinsic metallic behaviour. Herein we report a single-component electroactive molecule, zwitterionic tetrathiafulvalene(TTF)-extended dicarboxylate radical (TED), exhibiting metallic conduction even at low temperatures. TED exhibits d.c. conductivities of 530 S cm-1 at 300 K and 1,000 S cm-1 at 50 K with copper-like electronic properties. Spectroscopic and theoretical investigations of the carrier-generation mechanism and the electronic states of this single molecular species reveal a unique electronic structure with a spin-density gradient in the extended TTF moieties that becomes, in itself, a metallic state.

  6. Investigation of soil mineral component in the Baikal Region by X-ray electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Belozerova, Olga Uu., E-mail: obel@igc.irk.r [Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, Favorky St., 1 A, 664033 Irkutsk (Russian Federation)

    2009-11-15

    The procedure of X-ray electron probe microanalysis (EPMA) has been developed for the investigation of soil mineral component. In terms of reproducibility and accuracy, the suggested EPMA procedure satisfies the requirements of analysis of the second category. The phase and chemical composition of soil mineral component were investigated by X-ray electron probe microanalysis with the aim of environmental pollution estimation in Lake Baikal Region. The investigations of soil mineral component by EPMA from regions with various man-caused loading degrees allow identification of basic pollution sources and their influence on the environment and estimation of anthropogenic accumulation in clear background regions and regions with high man-caused loading degree.

  7. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  8. Irradiation of electronic components and circuits at the Portuguese Research Reactor: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.G.; Ramos, A.R.; Fernandes, A.C.; Santos, J.P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal)

    2015-07-01

    The behavior of electronic components and circuits under radiation is a concern shared by the nuclear industry, the space community and the high-energy physics community. Standard commercial components are used as much as possible instead of radiation hard components, since they are easier to obtain and allow a significant reduction of costs. However, these standard components need to be tested in order to determine their radiation tolerance. The Portuguese Research Reactor (RPI) is a 1 MW pool-type reactor, operating since 1961. The irradiation of electronic components and circuits is one area where a 1 MW reactor can be competitive, since the fast neutron fluences required for testing are in most cases well below 10{sup 16} n/cm{sup 2}. A program was started in 1999 to test electronics components and circuits for the LHC facility at CERN, initially using a dedicated in-pool irradiation device and later a beam line with tailored neutron and gamma filters. Neutron filters are essential to reduce the intensity of the thermal neutron flux, which does not produce significant defects in electronic components but produces unwanted radiation from activation of contacts and packages of integrated circuits and also of the printed circuit boards. In irradiations performed within the line-of-sight of the core of a fission reactor there is simultaneous gamma radiation which complicates testing in some cases. Filters can be used to reduce its importance and separate testing with a pure gamma radiation source can contribute to clarify some irradiation results. Practice has shown the need to introduce several improvements to the procedures and facilities over the years. We will review improvements done in the following areas: - Optimization of neutron and gamma filters; - Dosimetry procedures in mixed neutron / gamma fields; - Determination of hardness parameter and 1 MeV-equivalent neutron fluence; - Temperature measurement and control during irradiation; - Follow-up of reactor

  9. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  10. Mechanical and Fatigue Testing of Rapid Prototyped Aerospace Titanium Component by Electron Beam Melting Process

    Science.gov (United States)

    Forbush, Arrian B.

    The mechanical and fatigue behavior of a Ti-6Al-4V structural component that was manufactured by electron beam melting (EBM) was studied. Ti-6Al-4V EBM components were subjected to cyclic loading and monotonic loading tests. The results indicated that the EBM component did not fail before the fasteners in both tests. This was a preliminary study regarding an attempt to model an EBM component to validate the physical tests. An attempt was made to model the monotonic and cyclic testing in the linear elastic region using finite elements with the assumed loading conditions to investigate the stress distributions at each loading condition. Additionally, an attempt was made to use finite element modeling to validate the experimental results within the elastic range.

  11. Detection of counterfeit electronic components through ambient mass spectrometry and chemometrics.

    Science.gov (United States)

    Pfeuffer, Kevin P; Caldwell, Jack; Shelley, Jake T; Ray, Steven J; Hieftje, Gary M

    2014-09-21

    In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.

  12. Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    Science.gov (United States)

    Struk, Peter M.; Oeftering, Richard C.

    2010-01-01

    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same.

  13. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.

    Science.gov (United States)

    Fujimura, Takuya; Ramasamy, Elamparuthi; Ishida, Yohei; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, Vaidhyanathan

    2016-02-21

    To achieve the goal of energy transfer and subsequent electron transfer across three molecules, a phenomenon often utilized in artificial light harvesting systems, we have assembled a light absorber (that also serves as an energy donor), an energy acceptor (that also serves as an electron donor) and an electron acceptor on the surface of an anionic clay nanosheet. Since neutral organic molecules have no tendency to adsorb onto the anionic surface of clay, a positively charged water-soluble organic capsule was used to hold neutral light absorbers on the above surface. A three-component assembly was prepared by the co-adsorption of a cationic bipyridinium derivative, cationic zinc porphyrin and cationic octaamine encapsulated 2-acetylanthracene on an exfoliated anionic clay surface in water. Energy and electron transfer phenomena were monitored by steady state fluorescence and picosecond time resolved fluorescence decay. The excitation of 2-acetylanthracene in the three-component system resulted in energy transfer from 2-acetylanthracene to zinc porphyrin with 71% efficiency. Very little loss due to electron transfer from 2-acetylanthracene in the cavitand to the bipyridinium derivative was noticed. Energy transfer was followed by electron transfer from the zinc porphyrin to the cationic bipyridinium derivative with 81% efficiency. Analyses of fluorescence decay profiles confirmed the occurrence of energy transfer and subsequent electron transfer. Merging the concepts of supramolecular chemistry and surface chemistry we realized sequential energy and electron transfer between three hydrophobic molecules in water. Exfoliated transparent saponite clay served as a matrix to align the three photoactive molecules at a close distance in aqueous solutions.

  14. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.

    Science.gov (United States)

    Taurino, R; Cannio, M; Mafredini, T; Pozzi, P

    2014-01-01

    In this study, X-ray fluorescence (XRF) spectroscopy was used, in combination with micro-Raman spectroscopy, for a fast determination of bromine concentration and then of brominated flame retardants (BFRs) compounds in waste electrical and electronic equipments. Different samples from different recycling industries were characterized to evaluate the sorting performances of treatment companies. This investigation must be considered of prime research interest since the impact of BFRs on the environment and their potential risk on human health is an actual concern. Indeed, the new European Restriction of Hazardous Substances Directive (RoHS 2011/65/EU) demands that plastics with BFRs concentration above 0.1%, being potential health hazards, are identified and eliminated from the recycling process. Our results show the capability and the potential of Raman spectroscopy, together with XRF analysis, as effective tools for the rapid detection of BFRs in plastic materials. In particular, the use of these two techniques in combination can be considered as a promising method suitable for quality control applications in the recycling industry.

  15. Dynamics of electron currents in nanojunctions with time-varying components and interactions

    Science.gov (United States)

    Cuansing, Eduardo C.; Bayocboc, Francis A.; Laurio, Christian M.

    2017-08-01

    We study the dynamics of the electron current in nanodevices where there are time-varying components and interactions. These devices are a nanojunction attached to heat baths and with dynamical electron-phonon interactions, and a nanojunction with photon beams incident and reflected at the channel. We use the two-time nonequilibrium Green's functions technique to calculate the time-dependent electron current flowing across the devices. We find that whenever a sudden change occurs in the device, the current takes time to react to the abrupt change, overshoots, oscillates, and eventually settles down to a steady value. With dynamical electron-phonon interactions, the interaction gives rise to a net resistance that reduces the flow of current across the device when a source-drain bias potential is attached. In the presence of dynamical electron-photon interactions, the photons drive the electrons to flow. The direction of flow, however, depends on the frequencies of the incident photons. Furthermore, the direction of electron flow in one lead is exactly opposite to the direction of flow in the other lead thereby resulting in no net change in current flowing across the device.

  16. Failure analysis a practical guide for manufacturers of electronic components and systems

    CERN Document Server

    Bâzu, Marius

    2011-01-01

    Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers nee

  17. A New Approach to Provide Reliable Data Systems Without Using Space-Qualified Electronic Components

    Science.gov (United States)

    Häbel, W.

    This paper describes the present situation and the expected trends with regard to the availability of electronic components, their quality levels, technology trends and sensitivity to the space environment. Many recognized vendors have already discontinued their MIL production line and state of the art components will in many cases not be offered in this quality level because of the shrinking market. It becomes therefore obvious that new methods need to be considered "How to build reliable Data Systems for space applications without High-Rel parts". One of the most promising approaches is the identification, masking and suppression of faults by developing Fault Tolerant Computer systems which is described in this paper.

  18. Making environmental sensors on plastic foil

    Directory of Open Access Journals (Sweden)

    Danick Briand

    2011-09-01

    Full Text Available With the emergence of the printed electronics industry, the development of sensing technologies on non conventional substrates such as plastic foils is on-going. In this article, we review the work performed and the trends in the development of environmental sensors on plastic and flexible foils. Our main focus is on the integration of temperature, humidity, and gas sensors on plastic substrates targeting low-power operation for wireless applications. Some perspectives in this dynamic field are also provided showing the potential for the realization of several types of transducers on substrates of different natures and their combination with other components to realize smart systems.

  19. Evidence of weak ferromagnetism in doped plasticized polyaniline (PANI-DDoESSA)0.5 from electron spin resonance measurements.

    Science.gov (United States)

    Santana, V T; Nascimento, O R; Djurado, D; Travers, J P; Pron, A; Walmsley, L

    2013-03-20

    X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis.

  20. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  1. Different electronic charges in two-component superconductor by coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuguang, E-mail: shixg@bjfu.edu.cn

    2015-07-17

    Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number.

  2. Recommendations for Enabling Manual Component Level Electronic Repair for Future Space Missions

    Science.gov (United States)

    Struk, Peter M.; Easton, John W.; Funk, Gregory P.; Latta, Gary S.; Ganster, Andrew W.; Estes, Brett E.

    2011-01-01

    Long duration missions to the Moon and Mars pose a number of challenges to mission designers, controllers, and the crews. Among these challenges are planning for corrective maintenance actions which often require a repair. Current repair strategies on the International Space Station (ISS) rely primarily on the use of Orbital Replacement Units (ORUs), where a faulty unit is replaced with a spare, and the faulty unit typically returns to Earth for analysis and possible repair. The strategy of replace to repair has posed challenges even for the ISS program. Repairing faulty hardware at lower levels such as the component level can help maintain system availability in situations where no spares exist and potentially reduce logistic resupply mass.This report provides recommendations to help enable manual replacement of electronics at the component-level for future manned space missions. The recommendations include hardware, tools, containment options, and crew training. The recommendations are based on the work of the Component Level Electronics Assembly Repair (CLEAR) task of the Exploration Technology Development Program from 2006 to 2009. The recommendations are derived based on the experience of two experiments conducted by the CLEAR team aboard the International Space Station as well as a group of experienced Miniature/Microminiature (2M) electronics repair technicians and instructors from the U.S. Navy 2M Project Office. The emphasis of the recommendations is the physical repair. Fault diagnostics and post-repair functional test are discussed in other CLEAR reports.

  3. Analyzer of high-load electron beams with resolution in two energy components, space and time

    Directory of Open Access Journals (Sweden)

    Alexander V. Arkhipov

    2015-03-01

    Full Text Available The new apparatus is developed for experimental determination of electron energy and spatial distributions in dense medium-energy long-pulsed magnetically confined beams – typically, 10 A/cm2, 60 keV, 100 µs, 0.1 T. To provide most detailed and unambiguous information, direct electrostatic cut-off method is used for electron energy analysis. In combination with variation of the magnetic field in the analysis area, this method allows to determine both (axial and transverse components of electron energy. Test experiments confirmed ∼1% energy resolution being predicted from calculations, accounting for electrode shapes, space-charge effects and non-adiabatic energy transfer effects in varied magnetic field. Space and time resolution of the apparatus are determined by the input aperture size (∼1 mm and cut-off electric field pulse-length (∼5–10 µs respectively.

  4. Planarity and multiple components promote organic photovoltaic efficiency by improving electronic transport.

    Science.gov (United States)

    Goldey, Matthew B; Reid, Daniel; de Pablo, Juan; Galli, Giulia

    2016-11-23

    Establishing how the conformation of organic photovoltaic (OPV) polymers affects their electronic and transport properties is critical in order to determine design rules for new OPV materials and in particular to understand the performance enhancements recently reported for ternary blends. We report coupled classical and ab initio molecular dynamics simulations showing that polymer linkage twisting significantly reduces optical absorption efficiency, as well as hole transport rates in donor polymers. We predict that blends with components favoring planar geometries contribute to the enhancement of the overall efficiency of ternary OPVs. Furthermore, our electronic structure calculations for the PTB7-PID2-PC71BM system show that hole transfer rates are enhanced in ternary blends with respect to their binary counterpart. Finally, our results point at thermal disorder in the blend as a key reason responsible for device voltage losses and at the need to carry out electronic structure calculations at finite temperature to reliably compare with experiments.

  5. Electronic transmission and switch effect in kappa-component Fibonacci nanowires.

    Science.gov (United States)

    Li, Jia; Zhang, Ruili; Li, De; Peng, Ruwen; Wang, Mu

    2010-11-01

    We present the electronic transport in the k-component Fibonacci (KCF) nanowires, in which kappa different incommensurate intervals are arranged according to a substitution rule. For the KCF nanowires with an identical kappa, by increasing the length of the nanowire, the minima in transmission extend gradually into the band gap over which the transmission is blocked. Meanwhile more transmission peaks appear. For finite KCF nanowire, by increasing the number of different incommensurate intervals kappa, the width of electronic band gap is enlarged. Moreover, when the value of kappa is sufficiently large, the transmission is shut off, except at a few resonant energies. These properties make it possible to use the KCF nanowires as switching devices. Furthermore, a dimensional spectrum of singularities associated with the transmission spectrum demonstrates that the electronic propagation in the KCF nanowire shows multifractality. These investigations open a unique way to control quantum transport in nanodevices.

  6. Principal component analysis of global maps of the total electronic content

    Science.gov (United States)

    Maslennikova, Yu. S.; Bochkarev, V. V.

    2014-03-01

    In this paper we present results of the spatial distribution analysis of the total electron content (TEC) performed by the Principal Component Analysis (PCA) with the use of global maps of TEC provided by the JPL laboratory (Jet Propulsion Laboratory, NASA, USA) for the period from 2004 to 2010. We show that the obtained components of the decomposition of TEC essentially depend on the representation of the initial data and the method of their preliminary processing. We propose a technique for data centering that allows us to take into account the influence of diurnal and seasonal factors. We establish a correlation between amplitudes of the first components of the decomposition of TEC (connected with the equatorial anomaly) and the solar activity index F10.7, as well as with the flow of high energy particles of the solar wind.

  7. Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation

    NARCIS (Netherlands)

    Berg, D. van den; Barink, M.; Giesen, P.; Meinders, E.R.; Yakimets, I.

    2010-01-01

    Thin polymer substrates are promising materials for flexible electronics with many advantages. However, the dimensional stability of polymer substrates is low. Nowadays, this is overcome by laminating polymer substrates onto a rigid carrier. Nevertheless, carrier-less processing will be a foreseen n

  8. Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation

    NARCIS (Netherlands)

    Berg, D. van den; Barink, M.; Giesen, P.; Meinders, E.R.; Yakimets, I.

    2011-01-01

    Thin polymer substrates are promising materials for flexible electronics with many advantages. However, the dimensional stability of polymer substrates is low. Nowadays, this is overcome by laminating polymer substrates onto a rigid carrier. Nevertheless, carrier-less processing will be a foreseen n

  9. Optimization of the irradiation conditions of some control components and materials for the nuclear power plants and the radiation stability of certain types of plastic lubricants

    Science.gov (United States)

    Pešek, M.; Reřichová, M.; Třebicky, V.; Chvojka, M.

    Fail-safe operation of various safeguard devices, operational and auxiliary equipments and control components, e.g. servomotors other engines and various appliances, is required for a safe operation of nuclear power plants. Non-metal materials, control components, motors and other appliances have to be tested and their properties evaluated after γ-irradiation with doses corresponding to the assumed long term radiation commitment and also to the irradiation caused by an eventual accident. The radiation stability of greases used in devices exposed to high doses of the ionizing radiation presents a rather serious and important problem. The results of some tests and the evaluation of the properties of irradiated plastic lubricants are described.

  10. Atomic-scale analysis of plastic deformation in thin-film forms of electronic materials

    Science.gov (United States)

    Kolluri, Kedarnath

    Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and

  11. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    Science.gov (United States)

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  12. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    Science.gov (United States)

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  13. Evaluation of Power Electronic Components and Systems at Cryogenic Temperatures For Space Missions

    Science.gov (United States)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2005-01-01

    Power electronic circuits and systems designed for deep space applications and outer planetary exploration are required to operate reliably and efficiently under extreme temperature conditions. This requirement is dictated by the fact that the operational environments associated with some of the space missions would encompass temperatures as low as -183 C. The development and utilization of electronics capable of low temperature operation would not only fulfill the advanced technology requirements, but also would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. These benefits are generally achieved by the improved intrinsic properties of some of the electronic materials at low temperature, reduced device losses, and the elimination of heating elements used in conventional systems at low temperatures. Power electronic circuits are widely used in space power systems in the areas of power management, conditioning, and control. In this work, the performance of certain power electronic components and systems was investigated under low temperature. These include inductors, capacitors, pulse-width-modulation (PWM) controllers, and advanced commercial DC/DC converter modules. Different properties were determined as a function of temperature in the range of 20 C to -140 C, at various current and voltages levels. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  14. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.

    Science.gov (United States)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-11-01

    This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further "sustainable" recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both "traditional" (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  15. Staining plastic blocks with triiodide to image cells and soft tissues in backscattered electron SEM of skeletal and dental tissues

    Directory of Open Access Journals (Sweden)

    A Boyde

    2012-07-01

    Full Text Available Backscattered electron scanning electron microscopy (BSE SEM is an invaluable method for studying the histology of the hard, mineralised components of poly-methyl methacrylate (PMMA or other resin embedded skeletal and dental tissues. Intact tissues are studied in micro-milled or polished block faces with an electron-optical section thickness of the order of a half to one micron and with the area of the section as big as a whole – large or small – bone organ. However, BSE SEM does not give information concerning the distribution of uncalcified, ‘soft’, cellular and extracellular matrix components. This can be obtained by confocal microscopy of the same block and the two sorts of images merged but the blocks have to be studied in two microscope systems. The present work shows a new, simple and economic approach to visualising both components by using the triiodide ion in Lugol's iodine solution to stain the block surface prior to the application of any conductive coating – and the latter can be omitted if charging is suppressed by use of poor vacuum conditions in the SEM sample chamber. The method permits the use of archival tissue, and it will be valuable in studies of both normal growth and development and pathological changes in bones and joints, including osteoporosis and osteoarthritis, and tissue adaptation to implants.

  16. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Santella, Chiara; Cafiero, Lorenzo; De Angelis, Doina; La Marca, Floriana; Tuffi, Riccardo; Vecchio Ciprioti, Stefano

    2016-08-01

    Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.

  17. Three-dimensional photograph of electron tracks through a plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Filipenko, Mykhaylo; Hufschmidt, Patrick; Anton, Gisela; Gleixner, Thomas; Wagenpfeil, Michael; Michel, Thilo [University of Erlangen-Nuremberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Iskhakov, Timur; Leuchs, Gerd [Max-Planck Institute for the Science of Light, Erlangen (Germany); Campbell, Michael; Tick, Timo [European Organization for Nuclear Research, CERN, Geneve 23 (Switzerland); Vallerga, John [University of California, Experimental Astrophysics Group, Space Science Laboratory, Berkeley, CA (United States)

    2014-11-15

    The reconstruction of particle trajectories makes it possible to distinguish between different types of charged particles. In high-energy physics, where trajectories are rather long (several meters), large size trackers must be used to achieve sufficient position resolution. However, in low-background experiments like the search for neutrinoless double beta decay, tracks are rather short (some mm to several cm, depending on the detector in use) and three-dimensional trajectories could only be resolved in gaseous time-projection chambers so far. For detectors of a large volume of around one cubic meter (large in the scope of neutrinoless double beta search) and therefore large drift distances (several decimeters to 1 m), this technique is limited by diffusion and repulsion of charge carriers. In this work we present a ''proof-of-principle'' experiment for a new method of the three-dimensional tracking of charged particles by scintillation light: we used a setup consisting of a scintillator, mirrors, lenses, and a novel imaging device (the hybrid photon detector) in order to image two projections of electron tracks through the scintillator. We took data at the T-22 beamline at DESY with relativistic electrons with a kinetic energy of 5 GeV and from this data successfully reconstructed their three-dimensional propagation path in the scintillator. With our setup we achieved a position resolution in the range of 170-248 μm. (orig.)

  18. Report: recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE).

    Science.gov (United States)

    Schlummer, Martin; Mäurer, Andreas; Leitner, Thomas; Spruzina, Walter

    2006-12-01

    Shredder residues produced in plants processing waste electric and electronic equipment are excluded from material recycling due to a variety of polymeric materials and the presence of brominated flame retardants (BFR), which might contain banned polybrominated diphenyl ethers or toxic polybrominated dioxins and furans (PBDD/F). Herein we present a technological approach to transfer a significant portion of the shredder residue into recycled polymers. The technological approach consists of a density-based enrichment of styrenics, which are subjected to a solvolysis process (CreaSolv process) in a second stage. This stage allows the elimination of non-target polymers and extraction of BFR and PBDD/F. Pilot processing of 11.5 and 50 kg shredder residues indicated a material yield of about 50% in the density stage and 70-80% in the CreaSolv process, and an effective removal of BFR additives. The recycled products were proved to comply with threshold values defined by the European directive on the restriction of hazardous substances (RoHS) and the German Chemikalienverbotsverordnung. Mechanical material properties exhibited high tensile and flexural modules as well as slight impact strength, which qualify the products for applications in new electronic equipment.

  19. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics

    Science.gov (United States)

    Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David

    2017-01-01

    The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

  20. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    Science.gov (United States)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  1. Study on Solder Joint Reliability of Plastic Ball Grid Array Component Based on SMT Products Virtual Assembly Technology

    Institute of Scientific and Technical Information of China (English)

    HUANG Chunyue; WU Zhaohua; ZHOU Dejian

    2006-01-01

    Based on surface mount products virtual assembly technology, the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters, including the upper pad diameter,the stencil thickness, the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters' levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis, and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter, the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm, the stencil thickness of 0.175 mm, the chip weight on asingle solder joint of 28×10-5 N and the upper pad diameter of 0.5 mm.

  2. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    Science.gov (United States)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  3. Integrated tool for fabrication of electronic components by laser direct write

    Science.gov (United States)

    Mathews, Scott A.; Zhang, Chengping; Kegresse, Todd; Liu, David

    2002-06-01

    A prototype workstation has been developed that allows the fabrication of passive electronic components at low temperatures using a laser direct-write process. The work station combines a variety of laser processing techniques onto a single, integrated platform. These techniques include material deposition, laser micromachining, laser sintering, and laser trimming. One particular process, referred to as 'mill and fill', combines the laser micromachining ability of the tool with 'off-the-shelf' conductor pastes to allow the fabrication of high density metalization at very low temperatures. The present work describes the details of the 'mill and fill' process and shows examples of prototype devices fabricated using this technique.

  4. Wheat Gluten-Laminated Paperboard with Improved Moisture Barrier Properties: A New Concept Using a Plasticizer (Glycerol Containing a Hydrophobic Component (Oleic Acid

    Directory of Open Access Journals (Sweden)

    Sung-Woo Cho

    2012-01-01

    Full Text Available This paper presents a novel approach to reduce the water vapor transmission rate (WVTR and water absorbance of wheat gluten/paperboard laminates by introducing a hydrophobic component (oleic acid (OA into the hydrophilic plasticizer (glycerol. Whereas the paperboard showed immeasurably high WVTR, the laminate with gluten/glycerol yielded finite values. More importantly, by incorporating 75 wt.% OA into the plasticizer, the WVTR and water absorbance were reduced by, respectively, a factor of three and 1.5–2. Of particular interest was that the mechanical properties were not changing dramatically between 0 and 50 wt.% OA. The results showed clear benefits of combining a gluten film with paperboard. Whereas the paperboard provided toughness, the WG layer contributed with improved moisture barrier properties. In addition, WVTR indicated that the paperboard reduced the swelling of the outer gluten/glycerol layer in moist conditions; a free standing gluten/glycerol film would yield infinite, rather than finite, WVTR values.

  5. Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): untangling the role of multiple components of pollination.

    Science.gov (United States)

    Spigler, Rachel B

    2017-01-01

    Plasticity of floral traits in response to pollination can enable plants to maximize opportunities for pollen import and export under poor pollination conditions, while minimizing costs under favourable ones. Both floral longevity and display are key traits influencing pollination. While pollination-induced flower wilting is widely documented, we lack an understanding of the multifactorial complexity of this response, including the influence of other pollination components, costs of extended longevity and subsequent impacts on floral display. Plasticity of floral longevity was experimentally evaluated in Sabatia angularis in response to multiple pollination factors: pollen addition, removal, and source (self, single-donor outcross, multiple-donor outcross) and timing of pollination. Effects of pollen quantity were further evaluated by exploiting variation in autonomous self-pollen deposition. Delayed pollination costs were tested comparing seed set from early versus late pollinations. Finally, I compared floral display metrics (peak floral display, time to peak flower, flowering duration, mean flowering rate) between experimentally pollinated and control plants. Floral longevity was highly plastic in response to pollen addition and its timing, and the response was dose-dependent but insensitive to pollen source. Pollen removal tended to extend floral longevity, but only insofar as it precluded pollination-induced wilting via autonomous self-pollination. Under delayed pollination, the wilting response was faster and no cost was detected. Pollination further led to reduced peak floral displays and condensed flowering periods. Floral longevity and display plasticity could optimize fitness in S. angularis, a species prone to pollen limitation and high inbreeding depression. Under pollinator scarcity, extended floral longevities offer greater opportunities for pollen receipt and export at no cost to seed set, reproductive assurance via autonomous self-pollination and

  6. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Wang, Xiaofeng

    2016-08-01

    Highlights: • An annular cathode for HCPEB irradiation of circular components was designed. • The processing window for the annular cathode is obtained. • Irradiation thickness uniformity along the circumferential direction exceeds 90%. - Abstract: In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  7. Indications and Outcomes of the Components Separation Technique in the Repair of Complex Abdominal Wall Hernias: Experience From the Cambridge Plastic Surgery Department

    Science.gov (United States)

    Adekunle, Shola; Pantelides, Nicholas M.; Hall, Nigel R.; Praseedom, Raaj; Malata, Charles M.

    2013-01-01

    Objectives: The components separation technique (CST) is a widely described abdominal wall reconstructive technique. There have, however, been no UK reports of its use, prompting the present review. Methods: Between 2008 and 2012, 13 patients who underwent this procedure by a single plastic surgeon (C.M.M.) were retrospectively evaluated. The indications, operative details, and clinical outcomes were recorded. Results: There were 7 women and 6 men in the series with a mean age of 53 years (range: 30-80). Patients were referred from a variety of specialties, often as a last resort. The commonest indication for CST was herniation following abdominal surgery. All operations except 1 were jointly performed with general surgeons (for bowel resection, stoma reversal, and hernia dissection). The operations lasted a mean of 5 hours (range: 3-8 hours). There were no major intra- and postoperative problems, except in 1 patient who developed intra-abdominal compartment syndrome, secondary to massive hemorrhage. All patients were satisfied with the cosmetic improvement in their abdominal contours. None of the patients have developed a clinical recurrence after a mean follow-up of 16 months (range: 3-38 months). Conclusions: The components separation technique is an effective method of treating large recalcitrant hernias but appears to be underutilized in the United Kingdom. The management of large abdominal wall defects requires a multidisciplinary approach, with input across a variety of specialities. Liaison with plastic surgery teams should be encouraged at an early stage and the CST should be more widely considered when presented with seemingly intractable abdominal wall defects. PMID:24058718

  8. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William K. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in air or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.

  9. Development of Standardized Power Electronic Components, Subsystems, and Systems for Increased Modularity and Scalability

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Pink, C.; Price, J.; Kroposki, B.; Kern, G.

    2007-11-01

    Power electronics devices hold substantial promise for making distributed energy applications more efficient and cost effective. This project is motivated towards developing and testing inverters that will allow distributed energy systems to provide ancillary services such as voltage and VAR regulation, and increased grid reliability by seamlessly transitioning between grid-tied and stand-alone operation modes. The objectives of this project are to identify system integration and optimization issues and technologies and to provide solutions through research, analysis, and testing of power electronic interfaces for distributed energy applications that are cost-competitive and have substantially faster response times than conventional technologies. In addition, the testing of power electronics interfaces will develop a technical basis for performance assessment for distributed energy systems, subsystems, and components that will finally create a foundation for standardized measurements and test procedures. The ultimate goal for this research is to advance the potential benefits of distributed energy to provide ancillary services, enhance power system reliability, and allow customer choice.

  10. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIPS ANALYSIS ANTIMUTAGENIC BENZALACETONE DERIVATIVES BY PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Yuliana Yuliana

    2010-06-01

    Full Text Available Quantitative Electronic Structure Activity Relationship (QSAR analysis of a series of benzalacetones has been investigated based on semi empirical PM3 calculation data using Principal Components Regression (PCR. Investigation has been done based on antimutagen activity from benzalacetone compounds (presented by log 1/IC50 and was studied as linear correlation with latent variables (Tx resulted from transformation of atomic net charges using Principal Component Analysis (PCA. QSAR equation was determinated based on distribution of selected components and then was analysed with PCR. The result was described by the following QSAR equation : log 1/IC50 = 6.555 + (2.177.T1 + (2.284.T2 + (1.933.T3 The equation was significant on the 95% level with statistical parameters : n = 28 r = 0.766  SE  = 0.245  Fcalculation/Ftable = 3.780 and gave the PRESS result 0.002. It means that there were only a relatively few deviations between the experimental and theoretical data of antimutagenic activity.          New types of benzalacetone derivative compounds were designed  and their theoretical activity were predicted based on the best QSAR equation. It was found that compounds number 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 47, 48, 49 and 50  have  a relatively high antimutagenic activity.   Keywords: QSAR; antimutagenic activity; benzalaceton; atomic net charge

  11. Identification and Hierarchy of Main Electronic Health Record Components in Occupational Medicine

    Directory of Open Access Journals (Sweden)

    Dorin TRIFF

    2010-12-01

    Full Text Available Starting from the legal requirements relating to structuring of medical records in occupational medicine and international requirements regarding the certification of electronic health records we have focused on structuring and then evaluating an EHR model in occupational medicine that integrates the main functions and certification criteria required by the European and US certification bodies. The application we designed, called Medmun, structured for use in occupational medicine practices based on the model of medical file provided by the Romanian legislation, integrates both necessary components of occupational medicine practice for administration of characteristic information related to socio-economic unit, work place, health surveillance as well as components of specific EHR functionality. The application has been submitted for free evaluation by specialist physicians of five counties over a period of nine months and subsequently assessed using a questionnaire on the usefulness of specific functional components in the EHR occupational medicine practice. The model was positively evaluated after experimental employment by occupational health practitioners. They consider that absence of legislative support for EHR implementation in medical practice is the main obstacle to the use of such applications in occupational medicine practice.

  12. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  13. 76 FR 32373 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Science.gov (United States)

    2011-06-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components Thereof; Notice of Institution of Investigation AGENCY: U.S. International Trade Commission....

  14. Exploring the Relationships between the Electronic Health Record System Components and Patient Outcomes in an Acute Hospital Setting

    Science.gov (United States)

    Wiggley, Shirley L.

    2011-01-01

    Purpose: The purpose of this study was to examine the relationship between the electronic health record system components and patient outcomes in an acute hospital setting, given that the current presidential administration has earmarked nearly $50 billion to the implementation of the electronic health record. The relationship between the…

  15. 76 FR 54496 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Science.gov (United States)

    2011-09-01

    ... Lincolnshire, Illinois. 76 FR. 32373-74. The complaint alleges violations of section 337 of the Tariff Act of... COMMISSION In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components..., and the sale within the United States after importation of certain electronic devices having a...

  16. A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature.

    Science.gov (United States)

    Kogo, Atsushi; Ikegami, Masashi; Miyasaka, Tsutomu

    2016-06-21

    Thin plastic film-based CH3NH3PbI3-xClx perovskite solar cells were fabricated at low process temperature using a bilayer comprising an amorphous SnOx and mesoporous brookite TiO2 as electron collectors. Void-less high quality heterojunction structures achieve hysteresis-less photovoltaic performance with a power conversion efficiency as high as 13.4% and mechanical stability against cyclic bending.

  17. Evaluation of scaling factors for the PTW RW3 plastic mannequin in electron beams; Evaluacion de los factores de puesta en escala para el maniqui plastico RW3 de PTW en haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Moral Sanchez, S. C.; Bragado Alvarez, L.; Erzilbengoa, M.; Guisasola Berasategui, M. A.

    2011-07-01

    The International Code of Practice TRS-398 dosimetry published by the International Atomic Energy Agency (IAEA, 2004) are presented as a guide, the values ??for the scaling factor of depth, cp1, the factor scaling of flow, and the nominal density h1, p, 1, for some plastic materials discouraging in any case, its use in electron beam qualities R50> 4 g / cm (10Mev Energies above). In our study, we evaluated these scaling factors for the RW3 plastic phantom (PTW Freiburg).

  18. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  19. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  20. [Hepatitis B virus components and cytoplasmic virus-like corpuscles in chronic hepatitis (electron microscopic study)].

    Science.gov (United States)

    Kendrey, G

    1977-04-01

    Author in the needle-biopsy specimen of the liver of a HBsAg positive patient previously treated with immunosupressive preparates (Corticosteroid + Imuran) in the nuclei of hepatocytes by the aid of electron microscope revealed ring-shaped particula of 20-25 nm in diameter (core), in the cytoplasma of ground-glass hepatocytes in the canals of the rough-surfaced endoplasmic reticulum filamentous formations in average of 23nm in diameter (surface antigen). In addition in a few number cytoplasmic core particula have also been revealed. Dane-particula were not seen. Further in the cytoplasma round or ring-shaped virus-like bodies of unknown origin of 80 nm in diameter were found. These particula could be easily distinguished from the Dane particula and from the B virus components (a second virus infection?). Author believe, that the immunsupressive therapy could play some role in the occurrence of the B virus components, since before the therapy with Imuran they could not be detected in the liver.

  1. Study of microwave components for an electron cyclotron resonance source: Simulations and performance

    Indian Academy of Sciences (India)

    S K Jain; Deepak Sharma; V K Senecha; P A Naik; P R Hannurkar

    2014-08-01

    A high power (2 kW, CW) magnetron-based microwave system operating at 2.45 GHz has been designed, tested, characterized, and used to produce plasma. The system consists of a microwave source, an isolator, a directional coupler, a threestub tuner, a high voltage break, a microwave vacuum window, and a microwave launcher. These microwave components were simulated using microwave studio software. The low power and full term characterization of the microwave system has been done using vector network analyzer. The system was tested for 2 kW continuous wave of microwave power using glass-water load. The microwave system has been developed to study the microwave interaction with plasma at different operation regimes (Gases: Nitrogen, argon and hydrogen; Gas pressure : $10^{−5}–10^{−3}$ mbar; Microwave power : 300–1000W; Magnetic field: 875–1000 G) and to extract the proton beam current with hydrogen produced plasma. A plasma density $\\sim 5 \\times 10^{11}$ cm−3 and average electron temperature of ∼13 eV was obtained. This article describes various aspects of the microwave system including design, fabrication, characterization and performance studies of the microwave components.

  2. Microfabrication of passive electronic components with printed graphene-oxide deposition

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2014-03-01

    Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.

  3. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del [Center of Radiation Technology, IPEN-CNEN/SP, P. O.BOX 11049, 05422-700 Sao Paulo (Brazil)

    2007-07-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  5. Electron diffraction study of the plastic relaxation of MgO epitaxially grown on BCC FeV(001) alloys by varying the lattice mismatch

    Science.gov (United States)

    Bonell, Frédéric; Andrieu, Stéphane

    2017-02-01

    The epitaxial growth of MgO on Fe1 - xVx buffer layers with adjustable lattice parameter is studied by electron diffraction (RHEED) in real time. At the onset of plastic relaxation in the MgO layer, a clear splitting of the diffraction rods is observed in directions, as well as an increase in their length in the directions. Splitting along is also made visible through image background subtraction. These features originate from the surface strain above misfit dislocations, as previously proposed to account for satellite spots in LEED measurements. This explanation is supported by simulations of the diffraction patterns using kinematic diffraction theory. Observation of the diffraction rods splitting is shown to be a powerful way to check the presence of dislocations in MgO tunnel barriers and to accurately determine the critical thickness of plastic relaxation.

  6. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Maddaluno, G. E-mail: maddaluno@frascati.enea.it; Maruccia, G.; Merola, M.; Rollet, S

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m{sup 2} and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  7. Experimental Study on Heat Transfer Enhancement of Natural Circulation Liquid Cooling System for Electronic Component

    Institute of Scientific and Technical Information of China (English)

    张正国; 李倩侠; 方晓明; 本田博司

    2004-01-01

    The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.

  8. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  9. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.

  10. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01+-0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately ...

  11. The Preparation of Waterborne Two Components Polyurethane Coatings for the Silicon Polyurethane Plastic Floor%用于硅PU塑胶地坪的水性双组分聚氨酯涂料的研制

    Institute of Scientific and Technical Information of China (English)

    史立平; 孔志元; 何庆迪; 蔡青青

    2015-01-01

    The second component of waterborne two components polyurethane coatings was prepared by hydroxyl acrylic emulsion and high efficient additives. And the water dispersible isocyanate was as the first component. The prepared coatings had excellent adhesion,chemical resistance and weather resistance when it was painted on the silicon polyurethane plastic substrate,which greatly improved the durability of silicon polyurethane plastic floor.%采用羟基丙烯酸乳液及高效助剂制得水性双组分聚氨酯涂料的乙组分,以水可分散型异氰酸酯为甲组分,制得的双组分涂料在硅PU塑胶基材上具有极佳的附着力、耐化学介质性及耐候性,大大提高了硅PU塑胶地坪的耐久性.

  12. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stenvall, Erik, E-mail: erik.stenvall@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Tostar, Sandra [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Boldizar, Antal [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Foreman, Mark R.StJ. [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Möller, Kenneth [Chemistry and Materials Technology, SP, 50115 Borås (Sweden)

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  13. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. SABIC Innovative Plastics: Be the World Best Plastic Resin Manufacturer

    Institute of Scientific and Technical Information of China (English)

    Jenny Du

    2007-01-01

    @@ "SABIC Innovative Plastics is a global supplier of plastic resins, manufacturing and compounding polycarbonate, ABS, SAN, ASA, PPE, PC/ABS, PBT and PEI resins, as well as the LNP* line of high performance specialty compounds," said Hiroshi Yoshida, the Global Market Director for Electronics of SABIC Innovative Plastics based in Tokyo at the press conference held by SABIC Innovative Plastics, November 8th 2007, Shanghai.

  15. Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting

    Science.gov (United States)

    Scherillo, F.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Squillace, A.; Langella, A.; Carrino, L.

    2016-10-01

    Additive Layer Manufacturing is one of the most promising and investigated manufacturing system due to its advantages to produces near net shape components, also with a very complex shape, in a single shot. Among the different techniques now available, the Electron Beam Melting (EBM) is of particular interest in the production of metal components. Particularly the application of this technique to titanium alloys allows to produces components with a very low buy to fly ratio. In the present paper the microstructure attained is accurately described and mini tensile tests performed allowed to understand the fracture behavior of specimen with the specific microstructure realized under static load.

  16. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg.

  17. Experimental study of water absorption of electronic components and internal local temperature and humidity into electronic enclosure

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in large spans of temperature and humidity during day and night shifts. Corrosion failures are still seen due to the effects of temperature, humidity...... and corrosion accelerating species in the atmosphere, and moreover the surface region of printed circuit board assemblies is often contaminated by various contaminating species. In order to evaluate the level of humidity at which failures such as electrochemical migration start to appear on printed circuit......–75 % RH was reached, corresponding to the deliquescence relative humidity level of NaCl. The overall effect of climate (humidity and temperature) has been studied on the internal climate of typical electronic enclosures. The varied parameters included material used for casing, s ize of opening...

  18. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  19. 78 FR 75336 - Notice of Intent To Grant an Exclusive License; Aviation Devices and Electronic Components, L.L.C.

    Science.gov (United States)

    2013-12-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of Navy Notice of Intent To Grant an Exclusive License; Aviation Devices and Electronic Components... the Government-Owned inventions described in Patent Cooperation Treaty (PCT) Application No. PCT...

  20. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  1. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. [National Centre for Physics (NCP), Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Eliasson, B. [SUPA, Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2015-08-15

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  2. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Science.gov (United States)

    Ali, S.; Eliasson, B.

    2015-08-01

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  3. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components.

  4. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  5. Photonic flash soldering of thin chips and SMD components on foils for flexible electronics

    NARCIS (Netherlands)

    Ende, D.A. van den; Hendriks, R.; Cauchois, R.; Kusters, R.H.L.; Cauwe, M.; Groen, W.A.; Brand, J. van den

    2014-01-01

    Ultrathin bare die chips and small-size surface mount device components were successfully soldered using a novel roll-to-roll compatible soldering technology. A high-power xenon light flash was used to successfully solder the components to copper tracks on polyimide (PI) and polyethylene terephthala

  6. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  7. A new approach to provide high-reliability data systems without using space-qualified electronic components

    Science.gov (United States)

    Haebel, Wolfgang

    2004-08-01

    This paper describes the present situation and the expected trends with regard to the availability of electronic components, their quality levels, technology trends and sensitivity to the space environment. Many recognized vendors have already discontinued their MIL production line and state of the art components will in many cases not be offered in this quality level because of the shrinking market. It becomes therefore obvious that new methods need to be considered "How to build reliable Data Systems for space applications without High-Rel parts". One of the most promising approaches is the identification, masking and suppression of faults by developing fault-tolerant computer systems which is described in this paper.

  8. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    Data.gov (United States)

    National Aeronautics and Space Administration — This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic...

  9. Stakeholder engagement: a key component of integrating genomic information into electronic health records.

    Science.gov (United States)

    Hartzler, Andrea; McCarty, Catherine A; Rasmussen, Luke V; Williams, Marc S; Brilliant, Murray; Bowton, Erica A; Clayton, Ellen Wright; Faucett, William A; Ferryman, Kadija; Field, Julie R; Fullerton, Stephanie M; Horowitz, Carol R; Koenig, Barbara A; McCormick, Jennifer B; Ralston, James D; Sanderson, Saskia C; Smith, Maureen E; Trinidad, Susan Brown

    2013-10-01

    Integrating genomic information into clinical care and the electronic health record can facilitate personalized medicine through genetically guided clinical decision support. Stakeholder involvement is critical to the success of these implementation efforts. Prior work on implementation of clinical information systems provides broad guidance to inform effective engagement strategies. We add to this evidence-based recommendations that are specific to issues at the intersection of genomics and the electronic health record. We describe stakeholder engagement strategies employed by the Electronic Medical Records and Genomics Network, a national consortium of US research institutions funded by the National Human Genome Research Institute to develop, disseminate, and apply approaches that combine genomic and electronic health record data. Through select examples drawn from sites of the Electronic Medical Records and Genomics Network, we illustrate a continuum of engagement strategies to inform genomic integration into commercial and homegrown electronic health records across a range of health-care settings. We frame engagement as activities to consult, involve, and partner with key stakeholder groups throughout specific phases of health information technology implementation. Our aim is to provide insights into engagement strategies to guide genomic integration based on our unique network experiences and lessons learned within the broader context of implementation research in biomedical informatics. On the basis of our collective experience, we describe key stakeholder practices, challenges, and considerations for successful genomic integration to support personalized medicine.

  10. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  11. Coupled Cluster Calculations of the Ground and Excited Electronic States Using Two- and Four-Component Relativistic Spinors

    Directory of Open Access Journals (Sweden)

    Rajat K. Chaudhuri

    2003-12-01

    Full Text Available Abstract: The coupled cluster based linear response theory which is applicable to the direct calculation of atomic and molecular properties are presented and applied to compute the ionization potentials and excitation energies of light and moderately heavy atoms. The e®ect of electron correlation on the ground and excited states is studied using Hartree-Fock, Dirac-Fock and approximate two-component relativistic spinors.

  12. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    Science.gov (United States)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  13. Identification of brominated flames retardants used in plastics from end of life electric-electronic equipment; Identificacion de retardadores a la llama bromados en plasticos de equipos electricos y electronicos al final de su vida util

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Laboa, G.; Pinedo, C.

    2001-07-01

    The main objective of the present work is the qualitative and semi-quantitative identification of the most common brominated flame retardants used in some relevant plastics from End of life Electric-Electronic Equipment, in order to obtain a reliable recycled materials regarding the tendencies of the Draft WEEE (Wastes from Electric and Electronic Equipment) and the Draft RoHS (Restriction of certain hazardous substances in Electrical and Electronic Equipment) Directives. (Author) 6 refs.

  14. Electronic Components and Systems for the Control of the LHC Machine

    CERN Document Server

    Rausch, R

    2000-01-01

    The present estimation of the LHC underground control electronics gives a total of 10.400 crates of which some 4.400 will be connected to the machine control network. Electronic equipment will be housed under the cryostats, along the tunnel, in the alcoves and in the galleries parallel to the machine tunnel. In the regular arcs and in the dispersion suppressers areas the radiation level is expected to be relatively low. But, despite this low radiation level, radiation tests results obtained in previous years demonstrate that all electronic equipment needs to be qualified in a test facility providing an LHC like radiation environment. The radiation qualification of all tunnel electronics is essential in order to guaranty a reliable operation over the lifetime of the machine. The object of this paper is to give a review of the various electronic systems as they are planned today and to provide simulation results concerning the radiation environment of the CERN on-line test facility used for qualification of ele...

  15. Qualification of electronic components and systems in a LHC Tunnel Radiation Environment

    CERN Document Server

    Rausch, R; Wijnands, Thijs

    2002-01-01

    Around 10.200 electronic crates will be installed in the LHC underground areas of which some 4.200 will be connected to the machine control network. Some of the electronic equipment will be housed under the cryostats of the main dipoles inside the tunnel. Other equipment will be placed alongside the tunnel, in the alcoves or in galleries parallel to the machine. In the regular arcs and in the dispersion suppressors areas the expected annual dose is low, i.e. only a few Gy/y. However, preliminary radiation tests showed that electronic equipment fails even at such low dose rates. Since radiation qualification of all tunnel electronics is essential in order to guarantee its reliable operation over the lifetime of the machine, a LHC radiation test facility was commissioned in the North Experimental Area of the SPS accelerator. This paper presents the simulation study concerning the radiation environment of the LHC Radiation Test Facility and gives an overview of the various underground electronic systems as they ...

  16. Determination of electron temperature temporal evolution in laser-induced plasmas through Independent Component Analysis and 3D Boltzmann plot

    Science.gov (United States)

    Bredice, F.; Pacheco Martinez, P.; Sarmiento Mercado, R.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Sirven, J. B.; El Rakwe, M.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.

    2017-09-01

    In this paper we present the application of Independent Component Analysis to a set of time-resolved LIBS spectra, acquired on a brass sample at different delay times. The decomposition of the LIBS spectra in few Independent Components with a given temporal evolution is then exploited for obtaining the temporal evolution of the plasma electron temperature, through the application of the three-dimensional Boltzmann plot method recently proposed by the authors. This method allows the determination of the electron temperature temporal evolution without any knowledge of the spectral parameters (transition probability, degeneracy of the levels, etc.…) of the emitting lines. Only the knowledge of the energy of the upper level of the transition is required. The reduction of the LIBS spectral dataset to few Independent Components and associated proportions, further simplifies the determination of the plasma electron temperature temporal evolution, since the intensity of the emission lines does not need to be calculated. The results obtained are compared with the ones obtained using classical two-dimensional Boltzmann plot approach.

  17. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation

    Energy Technology Data Exchange (ETDEWEB)

    Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be [Applied Physics Research Group, APHY, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel (Belgium); Tchitnga, Robert [Laboratory of Electronics, Automation and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67, Dschang (Cameroon); Woafo, Paul [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)

    2013-12-15

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bit rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.

  18. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    Science.gov (United States)

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  19. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse.

    Science.gov (United States)

    Girardet, Clémence; Lebrun, Bruno; Cabirol-Pol, Marie-Jeanne; Tardivel, Catherine; François-Bellan, Anne-Marie; Becquet, Denis; Bosler, Olivier

    2013-07-01

    Synchronization of circadian rhythms to the 24-h light/dark (L/D) cycle is associated with daily rearrangements of the neuronal-glial network of the suprachiasmatic nucleus of the hypothalamus (SCN), the central master clock orchestrating biological functions in mammals. These anatomical plastic events involve neurons synthesizing vasoactive intestinal peptide (VIP), known as major integrators of photic signals in the retinorecipient region of the SCN. Using an analog-sensitive kinase allele murine model (TrkB(F616A) ), we presently show that the pharmacological blockade of the tropomyosin-related kinase receptor type B (TrkB), the high-affinity receptor of brain-derived neurotrophic factor (BDNF), abolished day/night changes in the dendrite enwrapping of VIP neurons by astrocytic processes (glial coverage), used as an index of SCN plasticity on electron-microscopic sections. Therefore, the BDNF/TrkB signaling pathway exerts a permissive role on the ultrastructural rearrangements that occur in SCN under L/D alternance, an action that could be a critical determinant of the well-established role played by BDNF in the photic regulation of the SCN. In contrast, the extent of glial coverage of non-VIP neighboring dendrites was not different at daytime and nighttime in TrkB(F616A) mice submitted to TrkB inactivation or not receiving any pharmacological treatment. These data not only show that BDNF regulates SCN structural plasticity across the 24-h cycle but also reinforce the view that the daily changes in SCN architecture subserve the light synchronization process.

  20. Study and simulation of the read-out electronics design for a high-resolution plastic scintillating fiber based hodoscope

    Science.gov (United States)

    Blasco, José María; Sanchis, E.; Granero, D.; Martín, J. D.; González, V.; Sanchis-Sánchez, E.

    2015-06-01

    This work presents the study and simulation of a high-resolution charged particle detection device for beam positioning, monitoring and calibration, together with its read-out proposal. To provide the precise positional information of the beam, the detection system has been based on Plastic Scintillating Fibers (PSF), while the read-out on a Silicon-PhotoDiode (Si-PD) array. To carry out the study, a PSF prototype with one detection plane has been experimentally tested with a β particle source. Besides, Monte Carlo simulations of the complete system have also been conducted. Both simulations and experimental tests give consistency to the results obtained. The work presented in this article show the usefulness of this proposal for high-precision charged particle positioning, achieving resolutions up to 100 μm.

  1. Electronic Components and Systems and their Radiation Qualification for Use in the LHC Machine

    CERN Document Server

    Rausch, R

    1999-01-01

    Studies, taking into account the expected radiation doses for the different sections in the LHC accelerator tunnel, such as regular arcs and dispersion suppressors, show that electronic equipment can be considered for installation under the magnets. An estimate based on work carried out for String 2, the LHC Magnet String Program and extrapolated to the whole LHC machine gives a total of several thousands electronic crates to be housed under the magnets. This represents a substantial installation and a large expenditure. In order to qualify electronic equipment for installation in the LHC tunnel, from its radiation hardness point of view at the dose levels considered, an on-line radiation test facility has ben created and installed along a secondary beam line in the north experimental area of the SPS accelerator. The object of this paper is to present the type of electronic equipment and systems planned to be installed in the tunnel of the LHC and to give some preliminary results on radiation tests made for t...

  2. Reliability improvement of electronic circuits based on physical failure mechanisms in components

    NARCIS (Netherlands)

    Brombacher, A.C.; Boer, de H.A.; Bennion, M.; Fennema, P.H.; Hermann, O.E.

    1991-01-01

    Traditionally the position of reliability analysis in the design and production process of electronic circuits is a position of reliability verification. A completed design is checked on reliability aspects and either rejected or accepted for production. This paper describes a method to model physic

  3. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Science.gov (United States)

    2012-01-26

    ... for capturing and transmitting images, and components thereof. The complaint names Apple Inc. of Cupertino, CA; High Tech Computer Corp. (a/k/a HTC Corp.) of Taiwan; HTC America, Inc. of Bellevue, WA; and Exedea, Inc. of Houston, TX, as respondents. The complainant, proposed respondents, other...

  4. All-printed carbon nanotube finFETs on plastic substrates for high-performance flexible electronics.

    Science.gov (United States)

    Shi, Jingsheng; Guo, Chun Xian; Chan-Park, Mary B; Li, Chang Ming

    2012-01-17

    The performance of all-printed flexible electronics is still much lower than silicon devices and significantly limits their commercially viable production. All-printed flexible carbon nanotube (CNT) fin field-effect transistors (FETs) with dielectric-wrapped CNT network are demonstrated with remarkable performance, making it possible to mass-produce high-performance, all-printed flexible electronics on large-area substrates. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    Science.gov (United States)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  6. Analysis Methods on Components of Harmful Air Pollutants on Plastic Avenue%塑胶场所有害气体成分分析方法的探究

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 杨然存; 王伟科; 夏涵泊; 胡家应

    2016-01-01

    在介绍塑胶场地材料和工艺的基础上,从主要来源、产生危害和环境限值等方面对塑胶场所存在的主要有害气体成分进行了讨论,指出了主要污染物不同于室内空气中的污染物成分.针对塑胶场所有害气体成分的采样和检测方法进行了综述,总结了污染物测定的研究进展和发展趋势,提出了建立有效测定塑胶场所有害气体成分分析方法的理论思想、基本要求和技术性支持,最后,对塑胶场所有害气体成分分析方法的发展趋势进行了展望,为标准的制定提供借鉴和参考.%Based on introducing the materials and processes used in plastic field, this article discusses the components of main harmful air pollutants in terms of sources, harm and environmental limits, and points out that the difference of main pollutants between plastic field and indoor space, reviews the detective methods and sampling technologies of hazardous air pollutants, summarizes the research evolution and progress of the determination of pollutants, and puts forward the theoretical ideas, basic requirements, technical supports for the analysis methods of the components of harmful air pollutants in the plastic venue. Finally, it proposes the determinations of harmful air pollutants in plastic field so as to provide a reference for relevant standards development.

  7. De novo designed coiled-coil proteins with variable conformations as components of molecular electronic devices.

    Science.gov (United States)

    Shlizerman, Clara; Atanassov, Alexander; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2010-04-14

    Conformational changes of proteins are widely used in nature for controlling cellular functions, including ligand binding, oligomerization, and catalysis. Despite the fact that different proteins and artificial peptides have been utilized as electron-transfer mediators in electronic devices, the unique propensity of proteins to switch between different conformations has not been used as a mechanism to control device properties and performance. Toward this aim, we have designed and prepared new dimeric coiled-coil proteins that adopt different conformations due to parallel or antiparallel relative orientations of their monomers. We show here that controlling the conformation of these proteins attached as monolayers to gold, which dictates the direction and magnitude of the molecular dipole relative to the surface, results in quantitative modulation of the gold work function. Furthermore, charge transport through the proteins as molecular bridges is controlled by the different protein conformations, producing either rectifying or ohmic-like behavior.

  8. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  9. Quantitative comparison of electronic component/solder joint stress relief in encapsulated assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, D.A.

    1979-01-01

    A quantitative comparison was made of various stress relief bends with and without sleeving in three commonly used encapsulants. Silicone rubber and heat shrinkable polyolifin sleeving were used on right angle, full loop, and hump style lead bends. Small (from 254 ..mu..m to 762 ..mu..m diameter) and large (762 ..mu..m to 1.27 mm diameter) wires were used to simulate small and large component leads. The component leads were encapsulated in microballoon-filled epoxy, 128 kg/m/sup 3/ urethane foam, and 320 kg/m/sup 3/ urethane foam. Ten test samples were fabricated in each configuration; five were used for tensile loading, and five were used for compressive loading.

  10. Shock Analysis Method for Systematic Performance Evaluation of Component Embedded in Handheld Electronic Devices

    Directory of Open Access Journals (Sweden)

    C.S. Chin

    2006-01-01

    Full Text Available It is important to identify the robustness of product (or embedded component inside the product against shock due to free drop. With the increasing mobile and fast-paced lifestyle of the average consumer, much is required of the products; such as consumers expect mobile products to continue to operate after drop impact. Since free drop test is commonly used to evaluate the robustness of small component embedded in MP3 player, it is difficult to produce a repeatable shock reading due to highly uncontrolled orientation during the impact on ground. Hence attention has been focus on shock table testing, which produces a higher repeatable result. But it failed to demonstrate the actual shock with the presence of rotational movement due to free drop and also it suffers from a similar limitation of repeatability. From drop to drop, shock tables can vary about ± 5% in velocity change but suitable for making a consistent tracking the product improvement.

  11. Professional Trajectory of Engineers in the Maquiladora Electronics Industry: The Case of Sanyo Video Components

    OpenAIRE

    María Ruth Vargas Leyva

    2000-01-01

    This is a study of the career trajectories of engineers in the company Sanyo Video Components. Three stages in the development of the professional career are recognized: initial career stage, mid-career and late stage career. Results indicate that the career’s trajectory is internally determined by the area of career development and job hierarchy. In external mobility, there are limitations of individual and family type; those of an individual type are age and area of career developmen...

  12. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages

    Directory of Open Access Journals (Sweden)

    Marjaana eSuorsa

    2015-09-01

    Full Text Available Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF, electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PGR5-PGRL1–and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.

  13. Synthesis and Physical Property of Multi-Functional Siloxane Protective Coating Materials Applicable for Electronic Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Hyun; Cho, Hyeon Mo; Lee, Myong Euy [Yonsei Univ., Wonju (Korea, Republic of)

    2014-06-15

    Four multialkoxy-functionalized siloxane base-polymers were synthesized through either hydro-silylation or condensation reactions in order to prepare multi-networked siloxane polymers having appropriate physical properties for protective coating in fabrications of electronics. Formulations of 4 base-polymers gave coating materials and. Product A showed well-controlled flowing and leveling properties, and product A-2 was successfully applied to protective insulating coating for junction areas of connectors and chips in PDP controller. Tack free time, extrusion rate, dielectric breakdown voltage, hardness, thermal stability, water resistance and flame resistance of products and were examined.

  14. Silicon grating structures for optical fiber interfacing and III-V/silicon opto-electronic components

    Science.gov (United States)

    Roelkens, Gunther; Vermeulen, Diedrik; Li, Yanlu; Muneeb, Muhammad; Hattasan, Nannicha; Ryckeboer, Eva; Deconinck, Yannick; Van Thourhout, Dries; Baets, Roel

    2013-02-01

    In this paper, we review our work on efficient, broadband and polarization independent interfaces between a silicon-on-insulator photonic IC and a single-mode optical fiber based on grating structures. The high alignment tolerance and the fact that the optical fiber interface is out-of-plane provide opportunities for easy packaging and wafer-scale testing of the photonic IC. Next to fiber-chip interfaces we will discuss the use of silicon grating structures in III-V on silicon optoelectronic components such as integrated photodetectors and microlasers.

  15. Forced Convective Air Cooling from Electronic Component Arrays in a Parallel Plate Channel

    Institute of Scientific and Technical Information of China (English)

    D.Y.Cai; Y.P.Gan; 等

    1994-01-01

    This paper discusses air forced convection heat transfer from inline protruding elements arranged in eight rows.The streamwise and spanwise spacings between elements were varied using a splitter plate that can be positioned at three different modular configurations.A set of empirical formulas was presented to correlate the experimental data for the design of air cooling systems.Arrays of componets with one odd-size module have been tested also.Experimental results show that blocks near the entrance and behind the odd-size module have improved performance compared with uniform arrangements.Accordingly,temperature sensitive components are suggested to be arranged in these locations.

  16. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    Science.gov (United States)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  17. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that the quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.

  18. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components

    DEFF Research Database (Denmark)

    Tang, Ning; Skibsted, Leif Horsfelt

    2017-01-01

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)=O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine...... by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH† and ΔS†), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed...... to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found...

  19. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Kirka, Michael M [ORNL; Pint, Bruce A [ORNL; Ryan, Daniel [Solar Turbines, Inc.

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  20. Effect of Chronic Morphine Consumption on Synaptic Plasticity of Rat’s Hippocampus: A Transmission Electron Microscopy Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Heidari

    2013-01-01

    Full Text Available It is well known that the synapses undergo some changes in the brain during the course of normal life and under certain pathological or experimental circumstances. One of the main goals of numerous researchers has been to find the reasons for these structural changes. In the present study, we investigated the effects of chronic morphine consumption on synaptic plasticity, postsynaptic density thickness, and synaptic curvatures of hippocampus CA1 area of rats. So for reaching these goals, 24 N-Mary male rats were randomly divided into three groups, morphine (n=8, placebo (n=8, and control (n=8 groups. In the morphine group, complex of morphine (0.1, 0.2, 0.3, and 0.4 mg/mL and in the placebo (sucrose group complex of sucrose (% 0.3 were used for 21 days. After the end of drug treatment the animals were scarified and perfused intracardinally and finally the CA1 hippocampal samples were taken for ultrastructural studies, and then the obtained data were analyzed by SPSS and one-way analysis of variance. Our data indicated that synaptic numbers per nm3 change significantly in morphine group compared to the other two groups (placebo and control (P<0.001 and also statistical analysis revealed a significant difference between groups in terms of thickness of postsynaptic density (P<0.001 and synaptic curvature (P<0.007. It seems that morphine dependence in rats plays a main role in the ultrastructural changes of hippocampus.

  1. Anisotropy of the electron component in a cylindrical magnetron discharge. I. Theory of the multiterm analysis.

    Science.gov (United States)

    Porokhova, I A; Golubovskii, Yu B; Behnke, J F

    2005-06-01

    A general multiterm representation of the phase space electron distribution function in terms of spherical tensors is used to solve the Boltzmann kinetic equation in crossed electric and magnetic fields. The problem is formulated for an axisymmetric cylindrical magnetron discharge with the homogeneous magnetic field being directed axially and the electric field between the coaxial cathode and anode varying in radius only. A spherical harmonic representation of the velocity distribution function in Cartesian coordinates becomes especially cumbersome in the presence of the magnetic field. In contrast, the employment of a spherical tensor representation leads to a compact hierarchy of equations that accurately take into account the spatial inhomogeneities and anisotropy of the plasma in crossed fields. To describe the spatially inhomogeneous plasma the hierarchy of the kinetic equations is formulated in terms of the total energy and the radial coordinate. Appropriate boundary conditions at the electrodes for the tensor expansion coefficients are obtained.

  2. Inkjet deposited circuit components

    Science.gov (United States)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  3. Professional Trajectory of Engineers in the Maquiladora Electronics Industry: The Case of Sanyo Video Components

    Directory of Open Access Journals (Sweden)

    María Ruth Vargas Leyva

    2000-11-01

    Full Text Available This is a study of the career trajectories of engineers in the company Sanyo Video Components. Three stages in the development of the professional career are recognized: initial career stage, mid-career and late stage career. Results indicate that the career’s trajectory is internally determined by the area of career development and job hierarchy. In external mobility, there are limitations of individual and family type; those of an individual type are age and area of career development; those of a family type are civil state, spouse’s occupation and the presence and number of children. The results of other studies are confirmed in relation to the engineers’ practical training in the business, based on the initial career stage, the step from the technical dimension to the administrative, and the decrease in promotion potential which comes with age, as well as the professional conversion process of engineers who have various types of professional training.

  4. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  5. Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search

    Science.gov (United States)

    Skripnikov, L. V.

    2016-12-01

    A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions in terms of the electron electric dipole moment, eEDM, and dimensionless constant, kT,P, characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction. The ACME collaboration has recently improved limits on these quantities using a beam of ThO molecules in the electronic H3Δ1 state [J. Baron et al., Science 343, 269 (2014)]. We apply the combined direct relativistic 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, Eeff, parameter of the T,P-odd pseudoscalar-scalar interaction, WT,P, and hyperfine structure constant in Δ31 state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and kT,P constant. We have investigated the electron correlation for all of the 98 electrons of ThO simultaneously up to the level of the coupled cluster with single, double, and noniterative triple amplitudes, CCSD(T), theory. Contributions from iterative triple and noniterative quadruple cluster amplitudes for the valence electrons have been also treated. The obtained values are Eeff = 79.9 GV/cm, WT,P = 113.1 kHz. The theoretical uncertainty of these values is estimated to be about two times smaller than that of our previous study [L. V. Skripnikov and A. V. Titov, J. Chem. Phys., 142, 024301 (2015)]. It was found that the correlation of the inner- and outer-core electrons contributes 9% to the effective electric field. The values of the molecule frame dipole moment of the Δ31 state and the H3Δ1 →X1Σ+ transition energy of ThO calculated within the same methods are in a very good agreement with the experiment.

  6. Laser sintering of conductive carbon paste on plastic substrate

    Science.gov (United States)

    Kinzel, Edward C.; Kelkar, Rohan; Xu, Xianfan

    2010-02-01

    This work investigates fabrication of functional conductive carbon paste onto a plastic substrate using a laser. The method allows simultaneous sintering, patterning, and functionalization of the carbon paste. Experiments are carried out to optimize the laser processing parameters. It is shown that sheet resistance values obtained by laser sintering are close to the one specified by the manufacturer using conventional sintering method. Additionally, a heat transfer analysis using numerical methods is conducted to understand the relationship between the temperature during sintering and the sheet resistance values of sintered carbon wires. The process developed in this work has the potential of producing carbon-based electronic components on low cost plastic substrates.

  7. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    LI ShuaiHui; SHU YongHua; FAN Jing

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present wor0k employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  8. Separation of electron-transfer and coupled chemical reaction components of biocatalytic processes using Fourier transform ac voltammetry.

    Science.gov (United States)

    Fleming, Barry D; Zhang, Jie; Bond, Alan M; Bell, Stephen G; Wong, Luet-Lok

    2005-06-01

    The underlying electron-transfer and coupled chemical processes associated with biologically important catalytic reactions can be resolved using a combination of Fourier transform ac voltammetry with an analysis of the separated dc and ac components. This outcome can be achieved because the response associated with generation of the catalytic current is essentially confined to the steady-state dc component, whereas the electron-transfer step is dominant in the fundamental and higher harmonics. For the mediated oxidation of glucose with glucose oxidase, it was found that the underlying reversible redox chemistry of the mediator, ferrocenemonocarboxylic acid, as detected in the third and higher harmonics, was totally unaffected by introduction of the catalytic process. In contrast, for the catalytic reduction of molecular oxygen by cytochrome P450, slight changes in the P450 redox process were detected when the catalytic reaction was present. Simulations of a simple catalytic reaction scheme support the fidelity of this novel FT ac voltammetric approach for examining mechanistic nuances of catalytic forms of electrochemical reaction schemes.

  9. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  10. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  11. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  12. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  13. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    Science.gov (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  14. Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search

    CERN Document Server

    Skripnikov, L V

    2016-01-01

    A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions it terms of the electron electric dipole moment, eEDM, and dimensionless constant, $k_{T,P}$, characterizing the strength of the T,P-odd pseudoscalar$-$scalar electron$-$nucleus neutral current interaction. ACME collaboration has recently obtained and improved limits on these quantities using a beam of ThO molecules in the $H^3\\Delta_1$ state [Science 343, 269 (2014)]. We apply the combined direct 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, Eeff, parameter of the T,P-odd pseudoscalar$-$scalar interaction, $W_{T,P}$, and HFS constant in $^3\\Delta_1$ state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and $...

  15. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  16. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  17. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  18. Effect of Main Components on the Linear Thermal Expansion Coefficient of Wood-Plastic Composite%木塑复合材料配方组成对其线性热膨胀系数的影响

    Institute of Scientific and Technical Information of China (English)

    蔡培鑫; 吕群; 梁梦杰; 来国桥

    2011-01-01

    Wood plastic composites(WPC) were prepared by extrusion with PP, HDPE,POE,EPDM or their blends as a plastic substrate and wood flour as a filler. The effects of the thermal expansion characteristics of the components, the plastic substrate composition and wood flour content in the formulas on the linear thermal expansion coefficient of WPC were studied. The results showed that the order of linear thermal expansion coefficients of main raw materials in WPC was that wood flour < PP < PE < toughening agent and the linear thermal expansion coefficient of WPC increased with increasing the plastic content because that the linear thermal expansion coefficient of the plastic was much greater than wood flour. The linear thermal expansion coefficient of WPC decreased with increasing PP/PE ratio in the formula and increased with increasing the amount of toughening agents EPDM or POE.%以PP、HDPE、POE、EPDM或其共混物作为塑料基体,以木粉作为填充料,用挤出成型法制备了PP/PE基和PP基木塑复合材料(WPC),研究了配方中各组分的热膨胀特性、配方中塑料基体组成变化、以及配方中木粉含量变化等因素对所制得的WPC线性热膨胀系数的影响.结果表明:制备WPC的主要原料线性热膨胀系数的大小顺序为:木粉<聚丙烯<聚乙烯<增韧剂,其中各塑料成分的线性热膨胀系数均远大于木粉,随着WPC中塑料含量增加,WPC的线性热膨胀系数增加;随着配方中PP/PE比值增加,WPC的线性热膨胀系数减小;随着配方中增韧剂EPDM或POE用量增加,WPC的线性热膨胀系数增大.

  19. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    Science.gov (United States)

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  20. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations

    Science.gov (United States)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Kuncic, Z.

    2014-11-01

    A Monte Carlo model of a novel electronic portal imaging device (EPID) has been developed using Geant4 and its performance for imaging and dosimetry applications in radiotherapy has been characterised. The EPID geometry is based on a physical prototype under ongoing investigation and comprises an array of plastic scintillating fibres in place of the metal plate/phosphor screen in standard EPIDs. Geometrical and optical transport parameters were varied to investigate their impact on imaging and dosimetry performance. Detection efficiency was most sensitive to variations in fibre length, achieving a peak value of 36% at 50 mm using 400 keV x-rays for the lengths considered. Increases in efficiency for longer fibres were partially offset by reductions in sensitivity. Removing the extra-mural absorber surrounding individual fibres severely decreased the modulation transfer function (MTF), highlighting its importance in maximising spatial resolution. Field size response and relative dose profile simulations demonstrated a water-equivalent dose response and thus the prototype’s suitability for dosimetry applications. Element-to-element mismatch between scintillating fibres and underlying photodiode pixels resulted in a reduced MTF for high spatial frequencies and quasi-periodic variations in dose profile response. This effect is eliminated when fibres are precisely matched to underlying pixels. Simulations strongly suggest that with further optimisation, this prototype EPID may be capable of simultaneous imaging and dosimetry in radiotherapy.

  1. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Anton, E-mail: tkacha@rpi.edu; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force. - Highlights: • Self-assembly of semiconductor dies into arrays using diamagnetic levitation. • Control over the die orientation in vertical and lateral dimensions. • Simulation shows good scalability of assembly time with the number of dies. • Suitable for assembly of LED panels, displays and microcell photovoltaics.

  2. Dynamic Mechanical Properties and Thermal Effect of an Epoxy Resin Composite, Encapsulation's Element of a New Electronic Component

    Science.gov (United States)

    Rmili, W.; Deffarges, M. P.; Chalon, F.; Ma, Z.; Leroy, R.

    2013-11-01

    Epoxy resin is used in many industrial applications principally in the microelectronic field to protect integrated circuits. However, these components are subject to various environments such as moisture and thermal fluctuations during packaging. Consequently, mechanical, physical and chemical properties of the resin can be affected. For an epoxy resin composite designed for a future application, an evaluation of the relevant properties was carried out using a dynamic mechanical analyzer and a thermogravimetric analysis (TGA) instrument. The surface morphology was investigated using scanning electron microscopy to examine the impact of post-cured treatment through evolution of the rigidity and of the glass transition temperature. Subsequently, a temperature classification was proposed to define the temperature limit for safe use of the material. Finally, temperature degradation was observed and confirmed by TGA tests. Results from all of these analyses bring understanding to the phenomenon of thermal degradation and its influence on the stability of the epoxy resin composite.

  3. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  4. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  5. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  6. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  7. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Romano, F. P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Musumarra, A.; Altana, C.; Caliri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  8. Complex reduction coefficient for a cylindrical electron beam with variable amplitude of the variable current component in the TWT

    Directory of Open Access Journals (Sweden)

    Chasnyk V. I.

    2013-12-01

    Full Text Available The conventional approach to calculating the space charge for the traveling-wave tube (TWT with phase velocity jumps is to use the same values of the depression coefficient as the ones for homogeneous helical TWTs. However, if the variable component of the exciting current in the expressions for determining the reduction coefficient is changed in amplitude, then the reduction factor is a complex value. Perhaps the neglect of this fact can significantly affect the volume discharge calculated value, and hence the non-synchronization parameter, for those of its values, which are characteristic of the TWT with a phase velocity jump. In this paper, formulas has been obtained for computation of real and imaginary parts of the complex reduction coefficient for a cylindrical electrons beam with exponential variable amplitude of variable current component in the TWT. Influence of complex reduction coefficient on the parameters of the TWT operating in the linear mode is estimated. It is shown that taking into account the imaginary part of the reduction coefficient for linear operation of the TWT makes it possible to change the estimated amount of space charge 1.5 to 2 times, which in its turn has quite a strong effect on the formation of the initial conditions of the nonlinear mode and, subsequently, on the output characteristics of the TWT.

  9. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted.

  10. AIMS simulation study of ultrafast electronically nonadiabatic chemistry of methyl azide and UV-VIS spectroscopic study of azido-based energetic plasticizer bis(1,3-diazido prop-2-yl)malonate

    Science.gov (United States)

    Ghosh, Jayanta; Banerjee, Shaibal; Bhattacharya, Atanu

    2017-09-01

    To gain insight into the ultrafast electronically nonadiabatic chemistry of azido-based energetic plasticizer, we have explored the nonadiabatic chemical dynamics of an azido-based model analog molecule, methyl azide (MAz), using ab initio multiple spawning (AIMS) simulation and electronic structure theory calculations. Molecular nitrogen (N2) is predicted to be the initial product of MAz following its electronic excitation to the S1 electronically excited state. AIMS-based simulation reveals that electronically excited azido-based molecules undergo extremely fast (approximately in 40 femtoseconds) relaxation to the ground state via the (S1/S0)CI conical intersection. Furthermore, this relaxation process involves the Nsbnd N bond elongation along with the bending of N3 moiety. This is the first report on the electronically non-adiabatic chemical dynamics (in ultrafast time domain) of methyl azide. Finally, using ultraviolet-visible (UV-VIS) spectroscopy, we comment on the electronically nonadiabatic chemistry of azido-based energetic plasticizer, bis(1,3-diazido prop-2-yl)malonate.

  11. Plastic solar cell interface and morphological characterization

    Science.gov (United States)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and

  12. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  13. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  14. With radiation crosslinking of engineering plastics into the next millennium

    Science.gov (United States)

    Gehring, Joachim

    2000-03-01

    Much basic research has been done on the crosslinking behaviour of so-called "engineering plastics". Up to now the industrial conversion to actual manufacture of multifunctional electronic components has gained ever increasing importance in the plastics industry and will continue to do so in the coming years. Examples of this are SMD (surface mounted device) technology, and 3D-MID (3-dimensional moulded interconnected devices) technology. These techniques require materials with high short-term temperature stability. In this paper it will be discussed which engineering plastics are significant for the radiation crosslinking process, for both technical and commercial reasons. The main topics will be the crosslinking behaviour of Polybutylenterephthalate (PBT) and Polyamide (PA). The importance and the challenges to the irradiation industry, as well as practical applications, will be shown.

  15. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  16. Non-invasive determination of ethanol, propylene glycol and water in a multi-component pharmaceutical oral liquid by direct measurement through amber plastic bottles using Fourier transform near-infrared spectroscopy.

    Science.gov (United States)

    Broad, N W; Jee, R D; Moffat, A C; Eaves, M J; Mann, W C; Dziki, W

    2000-11-01

    Fourier transform near-infrared (FT-NIR) spectroscopy was used to quantify rapidly the ethanol (34-49% v/v), propylene glycol (20-35% v/v) and water (11-20% m/m) contents within a multi-component pharmaceutical oral liquid by measurement directly through the amber plastic bottle packaging. Spectra were collected in the range 7302-12,000 cm-1 and calibration models set-up using partial least-squares regression (PLSR) and multiple linear regression. Reference values for the three components were measured using capillary gas chromatography (ethanol and propylene glycol) and Karl Fischer (water) assay procedures. The calibration and test sets consisted of production as well as laboratory batches that were made to extend the concentration ranges beyond the natural production variation. The PLSR models developed gave standard errors of prediction (SEP) of 1.1% v/v for ethanol, 0.9% v/v for propylene glycol and 0.3% m/m for water. For each component the calibration model was validated in terms of: linearity, repeatability, intermediate precision and robustness. All the methods produced statistically favourable outcomes. Ten production batches independent of the calibration and test sets were also challenged against the PLSR models, giving SEP values of 1.3% v/v (ethanol), 1.0% v/v (propylene glycol) and 0.2% m/m (water). NIR transmission spectroscopy allowed all three liquid constituents to be non-invasively measured in under 1 min.

  17. The rise of plastic bioelectronics

    Science.gov (United States)

    Someya, Takao; Bao, Zhenan; Malliaras, George G.

    2016-12-01

    Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

  18. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    Science.gov (United States)

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  19. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  20. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    Directory of Open Access Journals (Sweden)

    Rowshanfarzad P

    2015-11-01

    Full Text Available Pejman Rowshanfarzad,1 Peter Häring,2 Hans L Riis,3 Sune J Zimmermann,3 Martin A Ebert1,4 1School of Physics, The University of Western Australia, Crawley, WA, Australia; 2German Cancer Research Center (DKFZ, Medical Physics in Radiation Oncology, Heidelberg, Germany; 3Radiofysisk Laboratorium, Odense University Hospital, Odense C, Denmark; 4Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia Background: In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods: The EPID sag, gantry sag, changes in source-to-detector distance (SDD, EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results: The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion: The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. Keywords: linac, Siemens, arc, sag, EPID, gantry

  1. 基于Android的电子表单构件的研究与实现%Research and implementation of electronic form component based on Android

    Institute of Scientific and Technical Information of China (English)

    胡星; 武友新

    2015-01-01

    To solve the problems of electronic form design in different mobile client applications ,the electronic form component mode and the system framework of electronic form component were proposed based on the basic principles of software component design .According to the system framework of electronic form component ,the implementation technology and methods of elec‐tronic form component based on Android were given ,which made electronic form model and common control of electronic form be reused ,simplified the design of electronic form ,improved and enhanced the fitness of electronic form in different application sys‐tems ,improved the reusability of code .%为解决不同移动应用系统中电子表单的设计问题,根据软件构件设计的基本原则,提出一种电子表单构件模型和电子表单构件的系统框架。依据电子表单构件的系统框架,给出基于Android的电子表单构件的实现技术和方法,做到电子表单模型和电子表单通用控件的重用,简化电子表单的设计,提高并增强电子表单在不同应用系统中的可适应度,提高代码的复用性。

  2. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  4. 49 CFR 192.193 - Valve installation in plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  5. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  6. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  7. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  8. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  9. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    Science.gov (United States)

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  10. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.

    Science.gov (United States)

    Cheng, Lan; Gauss, Jürgen

    2011-08-28

    We report the implementation of analytic energy gradients for the evaluation of first-order electrical properties and nuclear forces within the framework of the spin-free (SF) exact two-component (X2c) theory. In the scheme presented here, referred to in the following as SFX2c-1e, the decoupling of electronic and positronic solutions is performed for the one-electron Dirac Hamiltonian in its matrix representation using a single unitary transformation. The resulting two-component one-electron matrix Hamiltonian is combined with untransformed two-electron interactions for subsequent self-consistent-field and electron-correlated calculations. The "picture-change" effect in the calculation of properties is taken into account by considering the full derivative of the two-component Hamiltonian matrix with respect to the external perturbation. The applicability of the analytic-gradient scheme presented here is demonstrated in benchmark calculations. SFX2c-1e results for the dipole moments and electric-field gradients of the hydrogen halides are compared with those obtained from nonrelativistic, SF high-order Douglas-Kroll-Hess, and SF Dirac-Coulomb calculations. It is shown that the use of untransformed two-electron interactions introduces rather small errors for these properties. As a first application of the analytic geometrical gradient, we report the equilibrium geometry of methylcopper (CuCH(3)) determined at various levels of theory.

  11. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  12. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  13. Potential for Reuse of E-Plastics through Processing by Compression Molding

    Directory of Open Access Journals (Sweden)

    William Mills

    2016-05-01

    Full Text Available The amounts of e-waste, consisting of metal (e-metals and plastic (e-plastics streams from electronic goods, are increasing in the United States and elsewhere. The e-metals waste streams are being recycled to a reasonable degree due to the value of precious metals. E-plastic waste streams currently are not recycled or reused to a significant extent. As a result, most e-plastics are disposed of by landfilling or thermal treatment, or sent overseas for alleged recycling or reuse, any of which could result in unsafe worker exposure and release into the environment. Two of the major barriers to e-plastics’ reuse or recycling are the mixed plastic content and the presence in the e-plastics of flame retardants (FR, of which two classes in particular, the brominated flame retardants (BFR and organo-phosphorus flame retardants (OPFR, have associated health concerns. The major goal of this project is to investigate the possibility of direct reuse of e-plastics in compression molding. Preliminary data generated have identified a molding procedure that yields remanufactured e-plastics having a tensile strength of 29.3 MPa. This moderate strength level is suspected to be due to inclusions of plastic bits that did not melt and internal voids from out-gassing. Handheld X-ray fluorescence (XRF was utilized to characterize elemental components in the e-plastics tested for compression molding. Several high “hits” for Br were found that could not be predicted visually. The preliminary XRF data for BFR and OPFR in this work are helpful for environmental and occupational hazard assessments of compression molding activities. Additionally, methods are suggested to characterize the metals, BFR, and OPFR content of the e-plastics using several different additional laboratory analytical techniques to determine the suitability for cost-effective and easy-to-use technologies.

  14. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  15. Flexible Displays Made with Plastic Electronics%采用塑料电子技术制造的柔性显示器

    Institute of Scientific and Technical Information of China (English)

    Seamus Burns; 杨明; 熊绍珍

    2011-01-01

    Plastic Logic has designed and constructed a full-scale manufacturing facility for flexible display modules fabricated using organic semiconductors("plastic electronics").These display modules are lightweight,flexible,and robust and are used in the QUEpro%Plastic Logic公司设计并建造了一个采用有机半导体制造柔性显示组件("塑料电子学")的全尺寸制造工厂。这些显示组件具有重量轻、可弯曲、坚固的优点,并用于QUEproReader产品上——这是于2010年1月推出的一款专为商务人士打造的便携电子阅读器。

  16. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  17. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Mr. Ashish Choubey

    2011-09-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point

  18. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Ashish Choubey

    2011-12-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point.

  19. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  20. Implementation of power electronic components (EGEM, electrical engineering series); Mise en oeuvre des composants electroniques de puissance (Traite EGEM, serie Genie Electrique)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, R.

    2005-05-01

    This book treats of the main parts of the environment of power microprocessors. The first chapter deals with capacitors which are essential passive components of static converters. The second chapter treats of connectors for power electronics having the lowest possible static inductance. This chapter details the modeling of proper connectors design. The operation of converters is often explained using the notion of switching cell as defined by H. Foch in the 1980's. The understanding of its operation and its precise modeling are the topic of the third chapter. In chapter 4, the thermal aspects (cooling problems) linked with the use of power electronic components are presented. Finally, the last chapter explains the advantage of the integration on silicon of power electronic modules. (J.S.)

  1. Universal formulation of second-order generalized Møller-Plesset perturbation theory for a spin-dependent two-component relativistic many-electron Hamiltonian

    Science.gov (United States)

    Nakano, Masahiko; Seino, Junji; Nakai, Hiromi

    2017-05-01

    We have derived and implemented a universal formulation of the second-order generalized Møller-Plesset perturbation theory (GMP2) for spin-dependent (SD) two-component relativistic many-electron Hamiltonians, such as the infinite-order Douglas-Kroll-Hess Hamiltonian for many-electron systems, which is denoted as IODKH/IODKH. Numerical assessments for He- and Ne-like atoms and 16 diatomic molecules show that the MP2 correlation energies with IODKH/IODKH agree well with those calculated with the four-component Dirac-Coulomb (DC) Hamiltonian, indicating a systematic improvement on the inclusion of relativistic two-electron terms. The present MP2 scheme for IODKH/IODKH is demonstrated to be computationally more efficient than that for DC.

  2. 原料对塑胶跑道用单组分聚氨酯胶粘剂性能的影响%The Influence of Material on Performance of One-Component Polyurethane Adhesive Used in Plastic Racetrack

    Institute of Scientific and Technical Information of China (English)

    丁卫国

    2014-01-01

    研究了塑胶跑道用单组分聚氨酯胶粘剂各个组分对其性能影响。综合分析表明,当聚醚多元醇N-340 G的相对分子质量在4000~5000、特种助剂E的使用量在10%左右时,合成的胶粘剂机械性能和性价比最值;老化实验结果表明,同等条件下,用胶粘剂6制得的样品老化后仍比其它品种胶粘剂的机械性能高。%The mechanical performance influence of material on one-component polyurethane adhesive used in the plastic racetrack was studied. The analysis showed that the synthetic adhesive mechanical performance was the best and it had the best performance cost ratio when the molecular mass of the polyether polyols(N-340G) was 4000~5000 and the special additive E dosage was up to 10%. The result of the aging test showed that the mechanical performance of adhesive 6 was higher than the other kinds of adhesive after aging test at the same condition.

  3. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  4. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  5. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  6. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue.

    Science.gov (United States)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  7. Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation

    Science.gov (United States)

    Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.

    2017-08-01

    High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3  ×  106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.

  8. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing

  9. The diffuse neutrino flux from supernovae: upper limit on the electron neutrino component from the non-observation of antineutrinos at SuperKamiokande

    CERN Document Server

    Lunardini, C

    2006-01-01

    I derive an upper bound on the electron neutrino component of the diffuse supernova neutrino flux from the constraint on the antineutrino component at SuperKamiokande. The connection between antineutrino and neutrino channels is due to the similarity of the muon and tau neutrino and antineutrino fluxes produced in a supernova, and to the conversion of these species into electron neutrinos and antineutrinos inside the star. The limit on the electron neutrino flux is 5.5 cm^-2 s^-1 above 19.3 MeV of neutrino energy, and is stronger than the direct limit from LSD by three orders of magnitude. It represents the minimal sensitivity required at future direct searches, and is intriguingly close to the reach of the SNO and ICARUS experiments. The electron neutrino flux will have a lower bound if the electron antineutrino flux is measured. Indicatively, the first can be smaller than the second at most by a factor of 2-3 depending on the details of the neutrino spectra at production.

  10. The effect of temperature and transmembrane potentials on the rates of electron transfer between membrane-bound biological redox components.

    Science.gov (United States)

    Kuznetsov, A M; Ulstrup, J

    1981-06-12

    We have investigated rate data for the temperature and free energy dependence of the primary electron-transfer processes in bacterial photosynthesis. Rather than representing the whole electronic-nuclear coupling by a frequently applied discrete single-mode model, we have incorporated a continuum of modes characterized by a certain distribution function. In this way, we can illuminate the role of both a broad distribution of low-frequency modes representing the medium and a narrow distribution representing local nuclear modes. Furthermore, it emerges from the calculations that both sets are important in the overall scheme of primary photosynthetic electron-transfer processes. By means of this model and quantum-mechanical rate theory, we can reproduce a number of important features of the primary photosynthetic processes concerning in particular the temperature (tunnelling or thermally activated nuclear motion) and free energy dependence ('normal', 'activation-less', or 'inverted' regions) of the rate constants and estimate such parameters as nuclear-reorganization energy electron-exchange integrals and electron-transfer distances. We have finally considered some of the important factors which determine the potential drop across the membrane and estimated the extent to which variations in the potential drop affect the rate constants of the electron-transfer processes.

  11. Proposal for the Award, without Competitive Tendering, of a Blanket Contract for the Supply of WorldFIP Fieldbus Electronic Components and Associated Software

    CERN Document Server

    2003-01-01

    This document concerns the award of a blanket contract for the supply of WorldFIP Fieldbus electronic components and associated software. The Finance Committee is invited to agree to the negotiation, without competitive tendering, of a contract with ALSTOM (FR) for the supply of WorldFIP Fieldbus electronic components and associated software for a total amount not exceeding 900 000 euros (1 360 000 Swiss francs) for a period of three years, not subject to revision. The amount in Swiss francs has been calculated using the present rate of exchange. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: NL - 20%; FR - 65%; KR - 15%.

  12. Analysis of seven stages supply chain management in electronic component inventory optimization for warehouse with economic load dispatch using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ajay Singh Yadav

    2017-06-01

    Full Text Available The purpose of the proposed study is to give a new dimension on warehouse with Economic Load Dispatch using genetic algorithm processes in Seven Stages - 10 Member Supply Chain in Electronic component inventory optimization to describe the certain and uncertain market demand which is based on supply reliability and to develop more realistic and more flexible models. we hope that the proposed study has a great potential to solve various practical tribulations related to the warehouse using genetic algorithm processes in Seven Stages - 10 Member Supply Chain in Electronic component inventory optimization and also provide a general review for the application of soft computing techniques like genetic algorithms to use for improve the effectiveness and efficiency for various aspect of warehouse with Economic Load Dispatch using genetic algorithm.

  13. About Electronic Components & Devices Business of Risk Management Audits%谈对电子元器件企业风险管理的审核

    Institute of Scientific and Technical Information of China (English)

    孙丽

    2011-01-01

    通过对电子元器件企业风险管理的审核,帮助企业认识风险管理的重要性,帮助企业做出合理的决策,取得成效。%Through electronic components devices business of risk management audits.Assist enterprise to understand the significance of risk management to help enterprises to make reasonable decision and achievements.

  14. Distinguishing by principal component analysis of o-xylene, m-xylene, p-xylene and ethylbenzene using electron ionization mass spectrometry.

    Science.gov (United States)

    Samokhin, Andrey; Revelsky, Igor

    2011-01-01

    The possibility of distinguishing between o-, m-, p-xylene and ethylbenzene on the basis of only their 70 eV electron ionization (EI) mass spectra has been investigated. These four isomers were distinguished by principal component analysis (PCA) of respective EI mass spectra (recorded under identical conditions). Considered mass spectra contained either eleven or five m/z values, which had intensity greater than 5% or 10% of base peak, respectively.

  15. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  16. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  17. Experimental and numerical investigation of flow field and heat transfer from electronic components in a rectangular channel with an impinging jet

    Directory of Open Access Journals (Sweden)

    Calisir Tamer

    2015-01-01

    Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.

  18. A two-component model for the electron distribution function in a high-current pseudospark or back-lighted thyratron

    Science.gov (United States)

    Bauer, Hannes R.; Kirkman, George; Gundersen, Martin A.

    1990-04-01

    Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or backlighted thyratron switch plasma with a peak electron density of 1-3 x 10 to the 15th/cu cm and peak current density of about 10 kA/sq cm. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies of about 100 eV and density (1-10) x 10 to the 13th/cu cm into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2 = 10 to the 16th/cu cm and electron temperature of 0.8-1 eV, the estimated beam density is about (1-10) x 10 to the 13th/cu cm.

  19. Stability of hybrid modes of a single-component electron plasma containing an admixture of background gas ions

    Science.gov (United States)

    Yeliseyev, Yu. N.

    2014-05-01

    The spectrum of eigenmodes of a waveguide completely filled with a cold electron plasma containing a small admixture of ions produced due to electron-impact ionization of background gas atoms is calculated numerically. The calculations were performed within the entire range of allowable values of the radial electric and longitudinal magnetic fields for both magnetized and unmagnetized ions by using the earlier derived nonlocal dispersion relation [Plasma Phys. Rep. 36, 563 (2010)]. The spectrum consists of three families of electron modes with frequencies equal to the Doppler-shifted upper and lower hybrid frequencies and modified ion cyclotron (MIC) modes. When the Doppler shift caused by electron rotation in the crossed electric and magnetic fields compensates for the hybrid frequency, the electron modes become low-frequency modes and interact with the ion modes. For m = 1, only the lower hybrid modes can be low-frequency ones, whereas at m ≥ 2, both lower and upper hybrid modes can be low-frequency ones. The spectrum of modes having the azimuthal number m = 2 is thoroughly analyzed. It is shown that, in this case, the lower hybrid modes behave similar to the m = 1 modes. The dispersion curves of the upper hybrid modes intersect with all harmonics of the MIC frequency (positive, negative, and zero) and are unstable in the vicinities of the intersections. The maximum value of the instability growth rate is several times higher than the ion plasma frequency. The MIC modes are unstable within a wide range of the field strengths, and their growth rates are two orders of magnitude slower. Instabilities are caused by the relative motion of electrons and ions (the transverse current) and the anisotropy of the ion distribution function.

  20. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components

    Science.gov (United States)

    Lin, Yu-Xiao; Liu, Zhe; Leung, Kevin; Chen, Long-Qing; Lu, Peng; Qi, Yue

    2016-03-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. The agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

  1. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    Science.gov (United States)

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.

  2. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  3. Spatial distribution of the electron component parameters in the nitrogen plasma of a low-pressure electrode microwave Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V., E-mail: krashevskaya-gv@mail.ru; Gogoleva, M. A., E-mail: masha-g@list.ru [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2016-01-15

    Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.

  4. Plastic mechanism of deformation of garnet-- Water weakening

    Institute of Scientific and Technical Information of China (English)

    SU; Wen(苏文); CONG; Bolin(从柏林); YOU; Zhendong(游振东); ZHONG; Zengqiu(钟增球); CHEN; Daizhang(陈代章)

    2002-01-01

    The strongly deformed eclogites are well developed in ultra-high pressure jadeite-quartzite zone of the Dabie Mountains, Eastern China, and garnets had been deformed strongly. Observations by transmission electron microscopy identified not only structure of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also clusters of water molecules present in the deformed garnet. Using infrared spectroscopy, two types of hydrous components are identified as the hydroxyl and free-water in the garnet. Based on analysis of microstructure mechanism of deformation in garnets, and experimental data of petrology, the clusters of water molecules were considered to lead strong plastic deformation of garnet by dislocations because of mechanical weakening.

  5. Plastic anisotropy of straight and cross rolled molybdenum sheets

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, C.-G. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany)], E-mail: oertel@physik.tu-dresden.de; Huensche, I.; Skrotzki, W. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Knabl, W.; Lorich, A.; Resch, J. [PLANSEE Metall GmbH, A-6600 Reutte, Tyrol (Austria)

    2008-06-15

    The microstructure, texture and mechanical properties of molybdenum sheets produced by different rolling processes were investigated by orientation imaging in the scanning electron microscope, X-ray diffraction and tensile tests, respectively. For comparable recrystallization degree of the sheets investigated, straight rolling with low reduction ratio produces {alpha}-fiber textures with a maximum at {l_brace}100{r_brace} <110>. At higher rolling degrees the maximum shifts to {l_brace}112{r_brace} <110>. Cross rolling increases the rotated cube component {l_brace}100{r_brace} <110>. The strong differences in the texture measured are reflected in the plastic anisotropy characterized by differences in the yield stress and Lankford parameter which were measured along directions in the rolling plane at angles of 0 deg., 45 deg. and 90 deg. with the rolling direction. The Taylor-Bishop-Hill theory is used successfully to qualitatively explain the plastic anisotropy.

  6. 49 CFR 192.191 - Design pressure of plastic fittings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  7. From Lobster Shells to Plastic Objects: A Bioplastics Activity

    Science.gov (United States)

    Hudson, Reuben; Glaisher, Samuel; Bishop, Alexandra; Katz, Jeffrey L.

    2015-01-01

    A multiple day activity for students to create large-scale plastic objects from the biopolymer chitin (major component of lobster, crab, and shrimp shells) is described. The plastic objects created are durable and made from benign materials, making them suitable for students to take home to play with. Since the student-created plastic objects are…

  8. Effect of plastic deformation on the structure and mechanical properties of an ultra-low carbon interstitial-free steel in the monolithic material and as a component of a sandwich composite

    Science.gov (United States)

    Gladkovsky, S. V.; Kuteneva, S. V.; Kamantsev, I. S.; Sergeev, S. N.; Safarov, I. M.

    2016-10-01

    The structure and mechanical properties of ultra-low carbon interstitial-free (IF) steel in the annealed state, after warm and cold rolling, and as a component of seven-layer steel-aluminum composite have been studied. A comparative analysis of the results of structural studies using optical microscopy and scanning and transmission electron microscopy have revealed the possibility of the formation of an ultrafinegrained structure in a steel layer during rolling at temperatures ranging from room temperature to 520°C. It has been found that the seven-layer composite has higher strength properties as compared to monolithic samples of the IF steel after analogous regime of the warm rolling.

  9. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Directory of Open Access Journals (Sweden)

    Joana M Dantas

    2015-07-01

    Full Text Available Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs extracellular electron transfer (EET. These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E. These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve

  10. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies.

    Science.gov (United States)

    Dantas, Joana M; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y; Schiffer, Marianne; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e(-)/H(+) transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e(-)/H(+) transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  11. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Science.gov (United States)

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e−/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e−/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  12. UPGRADE TO INITIAL BPM ELECTRONICS MODULE AND BEAMLINE COMPONENTS FOR CALIBRATION OF THE LEDA BEAM POSITION MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.S. BARR; J.D. GILPATRICK; R.B. SHURTER

    2001-06-01

    The Low-Energy Demonstration Accelerator (LEDA), designed and built at the Los Alamos National Laboratory, is part of the Accelerator Production of Tritium (APT) program and provides a platform for measuring high-power proton beam-halo formation. Beam Position Monitors (BPMs) are placed along the FODO lattice and the HEBT. The BPM systems employing log-ratio processor electronics have recently been upgraded for all fifteen BPMs along the accelerator. Two types of calibration are now used. The first corrects for errors within the electronics module and the log-amp transfer function non-conformity. The second is a single-point routine used to correct for cable plant attenuation differences. This paper will also cover the new switching systems used for various system calibration modes as well as various results from LEDA beam runs. New switching algorithms were implemented in order to remove sensitive electronic switches from within the beam tunnel radiation environment. Attention will be paid to the calibration algorithms and switching system interactions, and how well they work in practice.

  13. Upgrade to initial BPM electronics module and beamline components for calibration of the LEDA beam position measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barr, D. S. (Dean S.); Gilpatrick, J. D. (John Douglas); Shurter, R. B. (Robert B.)

    2001-01-01

    The Low-Energy Demonstration Accelerator (LEDA), designed and built at the Los Alamos National Laboratory, is part of the Accelerator Production of Tritium (APT) program and provides a platform for measuring high-power proton beam-halo formation. Beam Position Monitors (BPMs) are placed along the FODO lattice and the HEBT. The BPM systems employing log-ratio processor electronics have recently been upgraded for all fifteen BPMs along the accelerator. Two types of calibration are now used. The first corrects for errors within the electronics module and the log-amp transfer function non-conformity. The second is a single-point routine used to correct for cable plant attenuation differences. This paper will also cover the new switching systems used for various system calibration modes as well as various results from LEDA beam runs. New switching algorithms were implemented in order to remove sensitive electronic switches from within the beam tunnel radiation environment. Attention will be paid to the calibration algorithms and switching system interactions, and how well they work in practice.

  14. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    Energy Technology Data Exchange (ETDEWEB)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  15. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties......, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite...... formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during...

  16. [Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll A-containing bacterium Roseinatronobacter thiooxidans].

    Science.gov (United States)

    Stadnichuk, I N; Ianiushin, M F; Boĭchenko, V A; Lukashev, E P; Boldareva, E N; Solov'ev, A A; Gorlenko, V M

    2009-01-01

    Bioenergetics of the aerobic bacteriochlorophyll a-containing (BCl a) bacterium (ABC bacterium) Roseinatronobacter thiooxidans is a combination of photosynthesis, oxygen respiration, and oxidation of sulfur compounds under alkaliphilic conditions. The photosynthetic activity of Rna. thiooxidans cells was established by the photoinhibition of cell respiration and reversible photobleaching discoloration of the BCl a of reaction centers (RC), connected by the chain of electron transfer with cytochrome c551 oxidation. The species under study, like many purple bacteria and some of the known ABC bacteria, possesses a light-harvesting pigment-protein (LHI) complex with the average number of 30 molecules of antenna BCl a per one photosynthetic RC. Under microaerobic growth conditions, the cells contained bc1 complex and two terminal oxidases: cbb3-cytochrome oxidase and the alternative cytochrome oxidase of the a3 type. Besides, Rna. thiooxidans was shown to have several different soluble low- and high-potential cytochromes c, probably associated with the ability of utilizing sulfur compounds as additional electron donors.

  17. Negative-energy states in the Dirac-Hartree-Fock problem - The effect of omission of two-electron integrals involving the small component

    Science.gov (United States)

    Dyall, Kenneth G.

    1992-01-01

    The effect of omission of two-electron integrals involving basis functions for the small component of the wavefunction on the eigenvalue spectrum in the Dirac-Hartree-Fock problem is studied. From an analysis of the Fock matrix it is shown that omission of these integrals moves the negative-energy states down, not up. Their complete omission does not give rise to intruder states. The appearance of intruder states occurs when only some of the core integrals are omitted, due to the nature of particular contraction schemes used for the core basis functions. Use of radially localized functions rather than atomic functions alleviates the intruder state problem.

  18. A Discussion on Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

    Science.gov (United States)

    Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.

  19. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  20. The effect of the random distribution of electronic components in the output characteristics of the Howland current source

    Science.gov (United States)

    Bertemes-Filho, P.; Felipe, A.

    2013-04-01

    When a Howland source is designed, the components are chosen so that the designed source has the desired characteristics. However, the operational amplifier limitations and resistor tolerances causes undesired behaviours. This work proposes to take in account the influence of the random distribution of the commercial resistors in the Howland circuit over the frequency range of 10 Hz to 10 MHz. The probability density function due to small changes over the resistors was calculated by using an analytical model. Results show that both output current and impedance are very sensitive to the resistor tolerances. It is shown that the output impedance is very dependent on the open-loop gain of the Opamp rather than the resistor tolerances, especially at higher frequencies. This might improve the implementations of real current source used in electrical bioimpedance.

  1. Development of Vacuum Components for the Project of X-ray Free Electron Laser (XFEL/SPring-8)

    Science.gov (United States)

    Bizen, Teruhiko

    Several new vacuum components have been developed for the XFEL/SPring-8 project. Vacuum waveguide flanges were successfully developed. These flanges provide both RF seal and vacuum seal. The vacuum seal mechanism of these flanges can make seal completely even with a deep scratch on the gasket. Solid-lubricated clean bolt and nut were developed for this flange to avoid organic dust pollution in the vacuum that induces RF discharge. A small RF contact for 28 mm inside diameter bellows was developed. This free ends structure RF contact can move freely in all directions and realize large displacement. The vacuum system of in-vacuum type undulator that commonly used in the accelerators is also described briefly.

  2. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices

    NARCIS (Netherlands)

    Wünscher, S.; Abbel, R.; Perelaer, J.; Schubert, U.S.

    2014-01-01

    Well-defined high resolution structures with excellent electrical conductivities are key components of almost every electronic device. Producing these by printing metal based conductive inks on polymer foils represents an important step forward towards the manufacturing of plastic electronic product

  3. Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb

    Institute of Scientific and Technical Information of China (English)

    于红; 于沈晶; 任春生; 修志龙

    2012-01-01

    Polypropene (PP) plastics can be effectively degraded by natural volatile con- stituents from Ledum palustre catalyzed by atmospheric air dielectric barrier (DBD) plasma. The electron spin resonance (ESR) result indicates that the volatile constituents produce radicals in aerobic condition energized by power sources such as light, UV, plasma and so on. The degradation is a novel chemically oxidative way and it is initiated by a series of radical reactions. Lots of active cud oxidative species, radicals, products cud high euergy electromagnetic field in plasma aggravate the degradation process. The results about PP maximum tensile strength (Crbmax) confirm this conclusion. PP plastic heavily loses its extensibility, mechanical integrity and strength in a short time after suffering a synergetic treatment of the herb extract and air DBD plasma with no toxic residues left. The components of herb extract keep almost unchanged and may be reused. This study offers a new approach to manage and recycle typical plastics.

  4. Ion radiation damage in plastic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M

    2006-07-01

    Plastic detectors are widely used for particle identification, micro pore and nano pore technology, neutron, gamma, radon and electron dosimeters. For some applications, plastic detectors have unique advantages among electronic detectors as 4 solid angles for ion identification in nuclear and cosmic ray physics; low-cost for massive use in indoors radon and neutron dosimeters; wide dose-range response for gamma and electron dosimetry; easy to use detectors in active geological faults in prospecting geothermal energy etc. There is a grate diversity of plastic detectors, which further improves their use in a particular application. However, the comparison test between different kinds of plastics can be time consuming, being therefore necessary to have methods for rapidly assessing plastic detectors properties. This invited talk deals in the first part with overview applications in Mexico of plastic detectors mentioned in the first paragraph. In the second part presents a general experimental relationship between the diameter-grow of positive ions tracks in several plastics for light ions, that allow to compare their energy resolution and to predict the track diameter of isotopes beams, as well as to predict the uniformity of micro pores. The formation of Nano pores produced by {sup 238} U ions is also discussed. (Author)

  5. 电子束辐射制备木塑复合材料的研究%Study on Preparation of Wood-plastic Composite Based on Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    胡涛; 李春光; 曾自强; 韩广文

    2016-01-01

    Wood-plastic composites have become an important approach to modify the low-grade and fast-growing wood to the high-grade wood with the excellent perform-ance .The wood-plastic composites were prepared by electron beam irradiation in this paper .The mechanical properties and water absorption of the modified wood were test-ed .The results show that the poplar and China fir can be modified to enhanced wood after impregnated with the modified liquid which contains methyl methacrylate as the main body and irradiated by the electron beam for the total irradiation dose of 50 kGy . The density and the compressive strength parallel to grain of the enhanced wood are improved by 70%-160% compared with the original .The flexural strength and bending elastic modulus increase by 14%-70% ,and water absorption in 24 h decreases from 67%-85% to 11%-25% .The above results indicate that the basic mechanical properties of wood-plastic composites prepared from fast-growing wood such as poplar are close to the level of high-quality mahogany .%木塑复合材料是将低档速生木材改性成为性能优良的中高档木材的重要途径.本研究初步探索了用电子束辐射制备木塑复合材料的工艺,并对改性后木材的力学性能及吸水性进行了测试.结果表明:采用甲基丙烯酸甲酯为主体的改性液浸渍后的杨木和杉木,在总剂量为50 kGy的电子束辐照工艺条件下,可制备出增强改性木材,其密度和顺纹抗压强度较原木材分别提高了70%~160%,抗弯强度和抗弯弹性模量提高了14%~70%,24 h吸水率从67%~85%下降到11%~25%.可见,以杨木等速生木为基材的木塑复合材料的基本力学性能已接近优质红木的水平.

  6. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  7. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  8. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling

    Science.gov (United States)

    Shee, Avijit; Visscher, Lucas; Saue, Trond

    2016-11-01

    We present a formulation and implementation of the calculation of (orbital-unrelaxed) expectation values at the 4-component relativistic coupled cluster level with spin-orbit coupling included from the start. The Lagrangian-based analytical energy derivative technique constitutes the basic theoretical framework of this work. The key algorithms for single reference relativistic coupled cluster have been implemented using routines for general tensor contractions of up to rank-2 tensors in which the direct product decomposition scheme is employed to benefit from double group symmetry. As a sample application, we study the electric field gradient at the bismuth nucleus in the BiX (X = N, P) series of molecules, where the effect of spin-orbit coupling is substantial. Our results clearly indicate that the current reference value for the nuclear quadrupole moment of 209Bi needs revision. We also have applied our method to the calculation of the parity violating energy shift of chiral molecules. The latter property is strictly zero in the absence of spin-orbit coupling. For the H2X2 (X = O,S,Se,Te) series of molecules the effect of correlation is found to be quite small.

  9. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  10. Design, construction and installation of the electromechanical components of the current control of filament of the Pelletron Electron Accelerator; Diseno, construccion e instalacion de las componentes electromecanicas del control de corriente de filamento del acelerador de electrones Pelletron

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar J, R.A.; Valdovinos A, M.; Lopez V, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1985-01-15

    For the operation of the Pelletron electron accelerator is required to have control of the filament current. For it was designed, built and installed an electromechanical system located in the Acceleration Unit inside the Accelerator tank and operated from the Control console. All the components located inside the tank operated under the following conditions: Pressure: until 7.03 Kg/cm{sup 2}; High voltage: 10{sup 6} V (only the insulating arrow); Atmosphere: mixture of N{sub 2} and CO{sub 2} or SF{sub 6}. (Author)

  11. The technology and mechanism of removal of plastic mulch and land preparation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huiyou; HOU Shulin; NA Mingjun; YANG Xiaoli; BAI Shengnan

    2007-01-01

    In this article ,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plastic mulch were introduced, which offered references for the design of removal mechanism and land preparation of plastic mulch and structural optimization combination of working components.

  12. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  13. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  14. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  15. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  16. Laser direct joining of metal and plastic

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Seiji [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kawahito, Yousuke [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: kawahito@jwri.osaka-u.ac.jp

    2008-12-15

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film.

  17. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  18. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  19. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  20. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    Science.gov (United States)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  1. The Two-Component Quantum Theory of Atoms in Molecules (TC-QTAIM): The unified theory of localization/delocalization of electrons, nuclei and exotic elementary particles

    CERN Document Server

    Goli, Mohammad

    2013-01-01

    In this contribution, pursuing our research program extending the atoms in molecules analysis into unorthodox domains, another key ingredient of the two-component quantum theory of atoms in molecules (TC-QTAIM) namely, the theory of localization/delocalization of quantum particles, is disclosed. The unified proposed scheme is able not only to deal with the localization/delocalization of electrons in/between atomic basins, but also to treat nuclei as well as exotic particles like positrons and muons equally. Based on the general reduced second order density matrices for indistinguishable quantum particles, the quantum fluctuations of atomic basins are introduced and then used as a gauge to quantify the localization/delocalization introducing proper indexes. The explicit mass-dependence of the proposed indexes is demonstrated and it is shown that a single localization/delocalization index is capable of being used for all kind of quantum particles regardless of their masses or charge content. For various non-Bor...

  2. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  3. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  4. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  5. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  6. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  7. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  8. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  9. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  10. Eruptive dermal clear cell desmo-plastic mesenchymal tumors with perivascular myoid differentiation in a young boy. A clinical, histopathologic, immunohistochemical and electron microscopy study of 17 lesions.

    Science.gov (United States)

    Tomasini, Carlo; Metze, Dieter; Osella-Abate, Simona; Novelli, Mauro; Kutzner, Heinz

    2014-02-01

    Clear cell tumors of the skin are observed in a wide variety of benign and malignant conditions with different histogenesis, sharing the presence of cells with abundant clear cytoplasm. Herein, we report the clinicopathologic features of a healthy young patient affected by asymptomatic, eruptive and disseminated, benign clear cell dermal tumors since early infancy. Neither family history nor genetic testing and counseling provided further useful information. The lesions were mostly confined to the face and lower left extremity with pink teleangiectatic papules and small nodules. Over a 4-year period, a total of 16 different cutaneous lesions were biopsied and histopathologic and immunohistochemical studies carried out; an additional lesion was also removed for electron microscopy examination. Histopathology evidenced multiple perivascular growths of spindle to oval and round cells intermingled with clear/granular cells throughout the dermis, with prominent desmoplasia and numerous capillary-like vessels with focal hemangiopericytoma-like features. Immunohistochemical neoplastic cells were uniformly positive for h-caldesmon and focally smooth muscle α-actin and CD13 indicating myoid differentiation whereas the consistent diffuse cytoplasmic staining for lysosome antigen, such as CD68PG-M1 and NKI/C3 along with the ultrastructural findings supported the view of a lysosome-mediated apoptotic process. The differential diagnosis with other clear cell cutaneous neoplasms is discussed.

  11. Severe local strain and the plastic deformation of Guinier-Preston zones in the Al-Ag system revealed by three-dimensional electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Inoke, Koji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Room 650, West 4 Building, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); FEI Company Japan Ltd., 13-34, Kohnan 2, Minato-ku, Tokyo 108-0075 (Japan); Kaneko, Kenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Room 650, West 4 Building, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)]. E-mail: kaneko@zaiko.kyushu-u.ac.jp; Weyland, Matthew [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Higashida, Kenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Room 650, West 4 Building, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Room 650, West 4 Building, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2006-06-15

    A severe bulk strain, {gamma} {approx} 1, intentionally introduced into an Al-Ag specimen by the equal-channel angular pressing process caused nearly spherical Guinier-Preston (GP) zones and {l_brace}1 1 1{r_brace} planar {gamma}' phases to be sheared by dislocation motion. Although distortion of GP zones in the Al-Ag system was observed by Nicholson and Nutting in 1961, the three-dimensional morphology or the amount of strain of the deformed GP zones has not been studied to date. The presence of fine-scale distorted (ellipsoidal) GP zones parallel to the {l_brace}1 1 1{r_brace} slip planes is revealed using three-dimensional atomic number, Z-contrast electron tomography. The GP zones lie within localized shear bands, which result from the introduction of the severe strain. The local shear strain, measured at the nanoscale, within the shear band was determined to be 1.83 {+-} 0.272, a value considerably more than previously expected.

  12. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  13. Generalized Plastic Mechanics and Its Application

    Institute of Scientific and Technical Information of China (English)

    Zheng Yingren; Kong Liang

    2006-01-01

    The development of geotechnical plasticity is reviewed and some problems of applying the classical plastic mechanics (CPM) to geomaterials are analyzed, and then CPM's three hypotheses not fitted the deformation mechanism of geomaterials are pointed out. By giving up the three hypotheses, a generalized plastic potential theory can be obtained from solid mechanics directly, and then the traditional plastic mechanics can be changed to a more generalized plastic mechanics, namely generalized plastic mechanics (GPM). The GPM adopts the component theory as theoretical base, so it can reflect the influence of transition of stress path. The unreasonable phenomena such as excessive dilatancy caused by adopting the normality-flow law can be avoided, and the error caused by the arbitrary assumption of plastic potential surfaces cannot be produced. The yield surface theory, hardening laws and stress-strain relations of GPM are given, and a GPM including the rotation of principal stress axes is also established. It is pointed out that the yield condition is a state parameter as well as a test parameter, and it can only be given by test. After the practical application, it is shown that the GPM cannot only be applied to the modeling theory of geomaterials but also to other fields of geomechanics such as limit analysis.

  14. Paper electronics.

    Science.gov (United States)

    Tobjörk, Daniel; Österbacka, Ronald

    2011-05-03

    Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed.

  15. LAMP Joining between Ceramic and Plastic

    Science.gov (United States)

    Kawahito, Yousuke; Nishimoto, Kouji; Katayama, Seiji

    Joining of dissimilar materials is necessary and important from a manufacturing viewpoint. Therefore, the authors have developed a new laser direct joining method between a metal and a plastic which is named Laser Assisted Metal and Plastic (LAMP) joining method. In this research, LAMP joining was applied to join silicon nitride Si3N4 ceramic and polyethylene terephthalate (PET) engineering plastic, although metal was replaced by ceramic. The tensile shear strength of obtained joints was 3100 N at the maximum, which was strong enough to elongate a PET base plate of 2 mm in thickness and 30 mm in width. Moreover, transmission electron microscopes (TEM) observation demonstrates that the ceramic and the plastic are tightly bonded on atomic or molecular sized level.

  16. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP.

    Science.gov (United States)

    Juillan-Binard, Céline; Picciocchi, Antoine; Andrieu, Jean-Pierre; Dupuy, Jerome; Petit-Hartlein, Isabelle; Caux-Thang, Christelle; Vivès, Corinne; Nivière, Vincent; Fieschi, Franck

    2017-02-10

    MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.

  17. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  18. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  19. Development of recycled plastic composites for structural applications from CEA plastics

    Science.gov (United States)

    Bhalla, Agrim

    Plastic waste from consumer electronic appliances (CEAs) such as computer and printer parts including Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS) and PC/ABS were collected using handheld FTIR Spectrophotometer. The blends of these plastics with High Density Polyethylene (HDPE) are manufactured under special processing conditions in a single screw compounding injection molding machine. The blends are thermoplastics have high stiffness and strength, which may enhance the mechanical properties of HDPE like tensile modulus, ultimate tensile strength, tensile break and tensile yield. These composites have a potential to be used for the future application of recycled plastic lumber, thus replacing the traditional wood lumber.

  20. Underappreciated Consequences of Phenotypic Plasticity for Ecological Speciation

    Directory of Open Access Journals (Sweden)

    Benjamin M. Fitzpatrick

    2012-01-01

    Full Text Available Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation. Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation. Plasticity can cause assortative mating, but its influence on gene flow ultimately depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.

  1. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  2. Application of Empirical Electron Theory of Solids and Molecules to Composition Design of Multi-Component Medium-Low-Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    SHI Juyan; XIE Guisheng

    2012-01-01

    For austenitic octahedral segregation structure units,their pure mathematics statistic distributive probability is calculated by the empirical electron theory (EET) of solids and molecules and K-B formula.The practical distributive probability can be obtained only if the statistic distribution of austenitic octahedral segregation structure units and the interaction of the alloying elements in steel are considered.Based on 8 groups of experimental data of original steels,three empirical formulas revealing relationships between material macromechanics factor (Sm) and tensile strength (σb),or impact energy (Aκ),or hardness (HRC) of multi-component medium-low-alloy steels were established,respectively.Through the three empirical formulas,new supersaturated carburizing steel has been successfully designed and developed.The other 2 groups of the original experimental steels are used as the standard steel for testing the percentage error of the new steel.The results show that the calculated values are well consistent with those of measured ones and the new supersaturated carburized steel can meet the requirements of the die assembly of cold-drawn seamless stainless steel tube of Taiyuan Iron & Steel (Group) Company LTD.

  3. 烟草味电子烟油中挥发性成分分析%Analysis of the Volatile Components in Tobacco Flavor Electronic Cigarette Liquids

    Institute of Scientific and Technical Information of China (English)

    王萍娟; 冯守爱; 吴彦; 黄天辉; 刘绍华; 黄东业; 黄世杰; 李小兰; 田兆福

    2014-01-01

    采用二氯甲烷对3家公司的5种电子烟油样品进行萃取,并用气-质联用(GC-MS)法鉴定。通过对 NIST 11谱库的检索,对5种样品中挥发性成分进行了比较分析。结果表明5种样品中的挥发性成分差别较大,共鉴定出40种挥发性成分,依据作用或来源分为雾化剂、烟叶提取物和薄荷提取物三类。其中相对含量水平较高且在5种样品中都检出的成分是丙二醇、烟碱和甘油。3家公司的5种烟草味电子烟油在抽吸品质上有所差异,C 公司样品在抽吸感官感受上相较其他两家公司样品具有明显优势,其中样品 C1又略好于 C2。比较发现,C 公司电子烟油的挥发性成分中含特有的8种多甘醇类化合物,可能是这些物质的协同作用而改善了抽吸品质。%Five kinds of tobacco flavor electronic cigarette liquids origin from three companies were extracted by dichlorometh-ane,40 volatile components were identified by GC-MS.Results indicated that the differences were significant among five kinds of tobacco flavor electronic cigarette liquids.All components were sorted to three groups according their function and origin:fogging agent,tobacco extracts and mint extracts.There were three common compounds with higher content in five samples, including propylene glycol,nicotine and glycerin.There were significant differences in smoking quality of samples from three companies,company C′s showed a notable advantage over the other two companies,sample C1 was slightly better than sample C2.Meanwhile,there were 8 kinds of distinctive multiethylene glycol compound that only existed in samples from company C, but not found in samples from companies A or B.It was probably the combined effect of these substances that improved the sensory quality of tobacco flavor electronic cigarette liquids.

  4. Screening Plastic-Encapsulated Solid-State Devices

    Science.gov (United States)

    Buldhaupt, L.

    1984-01-01

    Suitability of plastic-encapsulated solid-state electronic devices for use in spacecraft discussed. Conclusion of preliminary study was plasticencapsulated parts sufficiently reliable to be considered for use in lowcost equipment used at moderate temperature and low humidity. Useful to engineers as guides to testing or use of plastic encapsulated semiconductors in severe terrestrial environments.

  5. 废旧印刷电路板中电子元器件回收处理技术进展%Review on the Recycling Technologies of Electronic Components from Waste Printed Circuit Boards

    Institute of Scientific and Technical Information of China (English)

    孙春旭; 郭杰; 王建波; 许振明

    2016-01-01

    Electronic components are widely used in the electronic and electrical appliances.However,large quantities of electronic components are coming into discarding period due to the endless requirement for new products and market explosion for electronic and electrical products.The valuable materials and toxic materials of electronic components are analyzed.The new recycling processes for electronic components are reviewed,including the disas-sembling technologies (unsoldering methods and separation methods)and recycling technologies.On this basis,some new trends and suggestions on recovery of electronic components in waste printed circuit boards (WPCBs)are put for-ward.%电子元器件广泛应用于电子电器设备中,但由于产品更新换代和电子电器产业市场的膨胀,大量的电子元器件被丢弃。对电子元器件的资源性和危害性进行分析,综合评述了电子元器件回收利用的最新研究进展和成果,主要包括电子元器件的拆卸技术(解锡方法和分离方法)和回收技术。在此基础上,提出了废旧印刷电路板中电子元器件的无害化和资源化回收研究新动向及发展建议。

  6. Dimensioning of a two-phase loop for the study of the cooling of power electronics components; Dimensionnement d`une boucle diphasique pour l`etude du refroidissement des composants d`electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Bricard, A. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France). STTGRETh

    1996-12-31

    After having chosen between different cooling solutions for a given power electronics component, the dimensioning of a two-phase forced convection loop is described. The power electronics component is a 12 x 12 mm silicon pellet which can dissipate up to 400 W/cm{sup 2} heat fluxes. In a first step, the minimum size of channels is determined according to fluid characteristics, pressure drop and critical fluxes. In a second step, the coupled dimensioning of both the evaporator and the condenser is determined for different values of pipes diameter and mass flow rates. (J.S.) 8 refs.

  7. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  8. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  9. Towards EPC compatible plastic RFID tags

    NARCIS (Netherlands)

    Myny, K.; Steudel, S.; Vicca, P.; Smout, S.; Beenhakkers, M.J.; Aerle, N.A.J.M. van; Furthner, F.; Putten, B. van der; Tripathi, A.K.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2010-01-01

    A target application for plastic RFID tags is Electronic Product Coding (EPC). The EPC-specifications set some demanding requirements for RFID tags. In this work, we review the work that has been done to fulfill some of these specifications. We describe a complete 64-bit RFID tag that is inductively

  10. Towards EPC compatible plastic RFID tags

    NARCIS (Netherlands)

    Myny, K.; Steudel, S.; Vicca, P.; Smout, S.; Beenhakkers, M.J.; Aerle, N.A.J.M. van; Furthner, F.; Putten, B. van der; Tripathi, A.K.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2010-01-01

    A target application for plastic RFID tags is Electronic Product Coding (EPC). The EPC-specifications set some demanding requirements for RFID tags. In this work, we review the work that has been done to fulfill some of these specifications. We describe a complete 64-bit RFID tag that is inductively

  11. New Opportunities in Developing Engineering Plastics

    Institute of Scientific and Technical Information of China (English)

    Yang Weicai

    2007-01-01

    @@ Owing to their excellent mechanical property, electric behavior, chemical resistance, heat resistance, abrasion resistance, size stability, weather resistance, lighter weight than metal materials and small energy consumption in molding, engineering plastics are extensively used in the sectors-electronic/electric, automobile, construction and office equipment.

  12. Towards EPC compatible plastic RFID tags

    NARCIS (Netherlands)

    Myny, K.; Steudel, S.; Vicca, P.; Smout, S.; Beenhakkers, M.J.; Aerle, N.A.J.M. van; Furthner, F.; Putten, B. van der; Tripathi, A.K.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2010-01-01

    A target application for plastic RFID tags is Electronic Product Coding (EPC). The EPC-specifications set some demanding requirements for RFID tags. In this work, we review the work that has been done to fulfill some of these specifications. We describe a complete 64-bit RFID tag that is

  13. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  14. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  15. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  16. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    2013-01-01

    Practical Electronics Handbook, Third Edition provides the frequently used and highly applicable principles of electronics and electronic circuits.The book contains relevant information in electronics. The topics discussed in the text include passive and active discrete components; linear and digital I.C.s; microprocessors and microprocessor systems; digital-analogue conversions; computer aids in electronics design; and electronic hardware components.Electronic circuit constructors, service engineers, electronic design engineers, and anyone with an interest in electronics will find the book ve

  17. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    Energy Technology Data Exchange (ETDEWEB)

    Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Zhao, H. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Léonard, F. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Derguti, F.; Todd, I. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Prangnell, P.B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-04-15

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.

  18. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  19. The plastic-associated microorganisms of the North Pacific Gyre.

    Science.gov (United States)

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution.

  20. Local limit loads in components with competing failure locations

    Energy Technology Data Exchange (ETDEWEB)

    Thumser, R. [Materialforschungs- und pruefungsanstalt Weimar, Bauhaus Univ., Weimar (Germany)

    2011-04-15

    The plastic limit load is an important feature of the S-N curve. The classical way of plastic limit load calculation using elastic-ideal plastic material behaviour is restricted to one location of the component. Complex components normally have several fatigue critical locations, for all of them the local plastic limit loads has to be determined. By the classical way the plastic limit load can be evaluated only for one of them. A new method is presented. The local plastic notch factor K{sub p} and the corresponding plastic limit loads are calculated applying Neuber's rule to FE calculations with plastic hardening material. The new method is validated on the basis of six different notched specimens. The need and capability is exemplarily shown on a specimen with two competing failure locations. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics

    Science.gov (United States)

    Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.

    2017-08-01

    Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.

  2. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  3. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  4. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  5. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  6. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  7. Circuit bridging of components by smoke

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.J.; Nowlen, S.P.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-01

    Smoke can adversely affect digital electronics; in the short term, it can lead to circuit bridging and in the long term to corrosion of metal parts. This report is a summary of the work to date and component-level tests by Sandia National Laboratories for the Nuclear Regulatory Commission to determine the impact of smoke on digital instrumentation and control equipment. The component tests focused on short-term effects such as circuit bridging in typical components and the factors that can influence how much the smoke will affect them. These factors include the component technology and packaging, physical board protection, and environmental conditions such as the amount of smoke, temperature of burn, and humidity level. The likelihood of circuit bridging was tested by measuring leakage currents and converting those currents to resistance in ohms. Hermetically sealed ceramic packages were more resistant to smoke than plastic packages. Coating the boards with an acrylic spray provided some protection against circuit bridging. The smoke generation factors that affect the resistance the most are humidity, fuel level, and burn temperature. The use of CO{sub 2} as a fire suppressant, the presence of galvanic metal, and the presence of PVC did not significantly affect the outcome of these results.

  8. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  9. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  10. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  11. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  12. Molecular kinesis in cellular function and plasticity.

    Science.gov (United States)

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  13. Ventral striatal plasticity and spatial memory.

    Science.gov (United States)

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J A; Annese, Valentina; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-04-27

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein-induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.

  14. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  15. Parameter Changes of Electron Components Based on Temperature Variation%基于温度变化的电子元器件参数响应研究磁

    Institute of Scientific and Technical Information of China (English)

    雷芸; 邱云峰

    2015-01-01

    论文针对武器装备中电子元器件在实际工作环境中性能参数随温度变化较大的特点,以及一些元器件在筛选过程中必须进行的高低温测试问题。以常见的电容器、电阻器和集成运算放大器为研究对象,通过研究这两类器件在不同温度条件下特性参数的变化规律,并通过实验数据的处理和分析,为提高电子元器件的可靠性水平提供了分析手段,为电子元器件可靠性高低温测试必要性提供佐证。%According to the parameter great changes of electron components in actual working environment ,and high and low temperature test must be carried out on some components in the screening test .Typical capacitor ,resistor and inte‐grated operational amplifier are take as research object ,variation of electron components is realized through the research on these two devices under different temperature conditions ,and through the processing and analysis of experimental data ,the analysis method for improving reliability of electronic components is provided ,the evidence of necessity that high and low temperature test on electronic components is provided .

  16. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    Science.gov (United States)

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  18. 萘系减水剂与缓凝成份复合效应试验研究%Laboratory Study of Composition Effect of Naphthalene Plasticizer and Retarding Component

    Institute of Scientific and Technical Information of China (English)

    张彦春; 胡晓波

    2001-01-01

    在总掺量一定的情况下,就萘磺酸盐高效减水剂与不同缓凝组分、缓凝型减水剂等复合后对水泥净浆流动度、缓凝作用、胶砂强度发展等性能的影响作用进行了试验分析,结果表明各不同组份复合的相容性不同,复合效应也存在差别。%Based on composite testing of naphthalene superplasticizer and different retarders as well as retarding water reducer,in which the overall amount of admixture is certain,this paper analyzes the influence of these multicomponent admixtures on flowability of neat cement、retarding action and development of strength of colloidal mortar.The result shows that compatibilities of different components are different,and composition effects are also different.

  19. Influence of shape and size of the particles on jigging separation of plastics mixture.

    Science.gov (United States)

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one.

  20. Technical Difficulties of Environmental Protection Acceptance for Cement Projects in Electronic Components Manufacturing Industry%电子元件行业环保验收监测技术难点研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    This paper discussed the technical difficulties of environmental protection for the acceptance and monitoring of e-lectronic components manufacturing industry based on the practical experience and regulatory requirements in combination with technical guidelines for environmental protection acceptance of completed construction projects and the current situation in elec-tronic components manufacturing industry .In view of the technical difficulties of the process analysis of electronic components in-dustry, the determination of pollution factors, the verification of hazardous waste, and the implementation of the inspection and acceptance standards.This works provide a reference for environmental protection in electronic components manufacturing industry construction projects for check/acceptance completed project.%根据建设项目竣工环境保护验收规范要求及当前电子元件行业的发展情况,结合工作实践,探讨新形势下电子元件行业项目竣工环境保护验收监测工作中的技术难点,针对电子元件行业工艺分析及特征污染因子的确定、危险废物核查、验收监测标准执行等技术难点提出了具体解决建议,为电子元件行业项目竣工环境保护验收监测提供参考。

  1. 滴灌和淹灌栽培模式下水稻光合生理、荧光参数及产量构成因素分析%Photosynthetic physiology, chlorophyll fluorescence parameters and yield components of rice under drip irrigation with plastic film mulching and continuous lfooding

    Institute of Scientific and Technical Information of China (English)

    王志军; 叶春秀; 董永梅; 李有忠; 田又升; 陈林; 孙国清; 谢宗铭

    2016-01-01

    -CO2 response curves, chlorophyll lfuores-cence parameters, activities of protective enzymes, osmolyte contents of lfag leaves at full panicle stage and yield components of four rice lines named T-04 ,T-43,T-66 and T-69 were collected and analyzed, respectively. The results obtained are as follows: (1) photosynthetic pigment contents of all four accessions under drip irriga-tion with plastic iflm mulching were lower than that under lfooding irrigation, but were not signiifcantly differ-ence at 5% level. (2) As for the followingphotosynthetic parameters such as net photosynthetic rate (Pn), sto-matal conductance (Gs), the maximum net photosynthetic rate under saturation light or saturation CO2 (Pn,max), the light saturation point (LSP), and carboxylation efifciency (CE) of rice under drip irrigation were all signiif-cantly lower than that under lfooding one, but most of the following parameters such as intercellular CO2 con-centration (Ci), light compensation point (LCP), CO2 compensation point (CCP), photorespiratory rate (Rp), ap-parent quantum efifciency (AQY), and respiration rate (Rd) were signiifcantly higher than that under lfooding one. (3) Considering chlorophyll lfuorescence parameters such as the effective quantum yield of photosystem II (ΦPSII), photochemical quenching (qP), and the maximal quantum yield of photosystem II (Fv/Fm) were higher than that under lfooding one, but electron transport rate (ETR), minimal lfuorescence (Fo), and maximal lfuores-cence (Fm) were lower than that of flooding one. There was little difference between non-photochemical quenching (NPQ). (4) Both the contents of soluble protein (SP) and soluble sugar (SS) were lower than that un-der lfooding one, but the content of malondialdehyde (MDA) was higher than that under lfooding. Activity of superoxide dismutase (SOD) was higher than that under lfooding, but for activities of catalase (CAT) and per-oxidase (POD), there were little differences between the two cultivation methods. (5

  2. Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-12-01

    Full Text Available The emergence of L-DOPA-induced dyskinesia (LID in patients with Parkinson disease (PD could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1 and basal ganglia (BG output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD.

  3. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  4. Plastic Logic quits e-reader market

    Science.gov (United States)

    Perks, Simon

    2012-07-01

    A UK firm spun out from the University of Cambridge that sought to be a world leader in flexible organic electronic circuits and displays has pulled out of the competitive e-reader market as it struggles to find a commercial outlet for its technology. Plastic Logic announced in May that it is to close its development facility in Mountain View, California, with the loss of around 40 jobs.

  5. Ventral striatal plasticity and spatial memory

    OpenAIRE

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J. A.; ANNESE, VALENTINA; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-01-01

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasti...

  6. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  7. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes.

    Science.gov (United States)

    Zahran, Elsayed M; New, Andrea; Gavalas, Vasilis; Bachas, Leonidas G

    2014-02-21

    The nature of the plasticizer plays a pivotal role in the analytical performance of polymer membrane ion sensors. Conventional plasticizers suffer leaching or migration from the membrane and exudation, both of which could limit the lifetime of sensors based on plasticized membranes. Herein, we describe the use of polyester sebacate (PES), a model polymeric plasticizer, in the preparation of poly (vinyl chloride) (PVC) membrane ion-selective electrodes (ISEs) using valinomycin as ionophore. PVC membrane electrodes plasticized with polyester sebacate demonstrated potentiometric response characteristics that compared favorably to ones plasticized with the conventional and similarly structured plasticizer bis(2-ethylhexyl) sebacate (DOS). Increasing the content of polyester sebacate in the membrane enhanced the response and improved the selectivity of valinomycin-based ISEs toward potassium over sodium. Various methods, including electrochemical impedance spectroscopy, UV-vis spectroscopy, dark field optical microscopy, and potentiometry were employed to study the effect of plasticizer on the leaching of the membrane components and the lifetime of both DOS- and PES-plasticized membranes. PES-plasticized electrodes maintained Nernstian response and high selectivity for more than four months, an improvement over DOS-plasticized membrane electrodes. This was attributed to enhanced retention of the membrane components because of the high polymeric nature of the polyester sebacate. These characteristics suggest that polyester sebacate is a good candidate to replace the conventional plasticizers in preparing PVC membrane electrodes with longer lifetime.

  8. Preserving in Plastic.

    Science.gov (United States)

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  9. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  10. Discrete dislocation plasticity

    NARCIS (Netherlands)

    van der Giessen, E.; Finel, A; Maziere, D; Veron, M

    2003-01-01

    Conventional continuum mechanics models of inelastic deformation processes axe size scale independent. In contrast, there is considerable experimental evidence that plastic flow in crystalline materials is size dependent over length scales of the order of tens of microns and smaller. At present ther

  11. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  12. Persisting Plastic Addiction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The policy on curbing plastic shopping bag use implemented three years ago has produced mixed results In a bustling farmers’market tucked in a narrow street in Xisanqi residential community in north Beijing,stalls selling vegetables,fruits and other foods line the sidewalk.

  13. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  14. Investigation of the plastic fracture of high strength steels

    Science.gov (United States)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  15. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  16. Laser based metal and plastics joining for lightweight design

    Science.gov (United States)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  17. Prediction of the nonlinear creep deformation of plastic products

    OpenAIRE

    Spoormaker, Jan; Skrypnyk, Ihor; Heidweiller, Anton

    2015-01-01

    Based on an example of the non-linear creep deformations of an air inlet, thispaper demonstrates modern capabilities in the FEA modeling of complex 3D visco-elastic deformations in relation to the design of plastic products. The importance of such capabilities for designing complex plastic components is discussed. Because commercial FEA packages do not yet render these capabilities "off the shelf", the non-linear visco-elasticity model is incorporated through a user subroutine. The specifics ...

  18. Serbia: A new process for waste rubber and plastic recycling

    Directory of Open Access Journals (Sweden)

    Ozren Ocic

    2010-02-01

    Full Text Available This paper intends to describe a new technological process for waste rubber and plastic recycling up to the commercial components in safe environmental friendly way. Researches and all relevant technical-technological data related to this process are checked at constructed pilot plant. The future construction of these units for waste rubber and plastic recycling will allow interested parties to achieve the environmental effectiveness and economic efficiency.

  19. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    Science.gov (United States)

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  20. Investigations on Electronic Materials

    OpenAIRE

    E. Pugnor; T. Kormány

    1982-01-01

    Electronics has been described as a materials oriented technology. In this sense a short review is given concerning: the connection of materials characterization to the design and processing of electronic components; the most important materials characterization methods used for electronic materials; the strategy of organizing a complete material characterization system for selected electronic components.

  1. Cellular Plasticity in Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Dima Y. Jadaan

    2015-01-01

    Full Text Available Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET, a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.

  2. Telemedicine and Plastic Surgery: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Denis Souto Valente

    2015-01-01

    Full Text Available Background. Telemedicine can be defined as the use of electronic media for transmission of information and medical data from one site to another. The objective of this study is to demonstrate an experience of telemedicine in plastic surgery. Methods. 32 plastic surgeons received a link with password for real-time streaming of a surgery. At the end of the procedure, the surgeons attending the procedure by the Internet answered five questions. The results were analyzed with descriptive statistics. Results. 27 plastic surgeons attended the online procedure in real-time. 96.3% considered the access to the website as good or excellent and 3.7% considered it bad. 14.8% reported that the transmission was bad and 85.2% considered the quality of transmission as good or excellent. 96.3% classified the live broadcasting as a good or excellent learning experience and 3.7% considered it a bad experience. 92.6% reported feeling able to perform this surgery after watching the demo and 7.4% did not feel able. 100% of participants said they would like to participate in other surgical demonstrations over the Internet. Conclusion. We conclude that the use of telemedicine can provide more access to education and medical research, for plastic surgeons looking for medical education from distant regions.

  3. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    Science.gov (United States)

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  4. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  5. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  6. Migration of plasticizers phthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk.

    Science.gov (United States)

    Guart, A; Bono-Blay, F; Borrell, A; Lacorte, S

    2011-05-01

    This study investigates the potential migration of plasticisers, plastic components and additives from several plastic water bottles. Compounds studied were phthalates (dimethyl phthalate, di-n-butyl phthalate, benzylbutyl phthalate, bis(2-ethylhexyl) phthalate), bis(2-ethylhexyl) adipate, octylphenol, 4-nonylphenol and bisphenol A. Polycarbonate (PC), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene terephthalate (PET) and polystyrene (PS) plastics used in the water bottling sector were tested using three kinds of total or specific migration tests: (1) standard method UNE-EN ISO 177; (2) ultrasonic forced extraction; and (3) standard method UNE-EN 13130-1. In addition, bottled waters contained in different plastic materials were analysed to determine the potential migration of target compounds in real conditions. In all cases, samples were solid-phase extracted using Oasis HLB 200 mg cartridges and analysed using GC-MS in scan-acquisition mode. Bisphenol A and 4-nonylphenol were detected in incubated samples, indicating that migration from food plastics can occur at the experimental conditions tested. The total daily intake was calculated according to the levels detected in bottled water and the assessment of the consumers' risk was evaluated taking into consideration toxicological and legislative values.

  7. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  8. Evolutionary plasticity of insect immunity.

    Science.gov (United States)

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  11. Sensory and motor components of reproductive behavior : pathways and plasticity

    NARCIS (Netherlands)

    Holstege, Gert; Van der Horst, Veronique G.J.M.

    Reproductive behavior in most mammalian species consists of a highly stereotyped pattern of movements, is elicited by specific sensory stimuli and is sex steroid dependent. The present paper describes a concept of the pathways in the midbrain, brainstem and spinal cord which control the receptive

  12. Direct Observations of Correlation between Si-2p Components and Surface States on Si(110)-16 × 2 Single-Domain Surface Using Si-L23VV Auger-Electron and Si-2p Photoelectron Coincidence Measurements

    Science.gov (United States)

    Kakiuchi, Takuhiro; Yoshizaki, Yuya; Kubota, Hiroyuki; Sato, Yuki; Nagaoka, Shin-ichi; Mase, Kazuhiko

    2017-05-01

    A Si(110)-16 × 2 single-domain (SD) surface is investigated in a site-selective way using Si L23VV Auger-electron Si-2p photoelectron coincidence spectroscopy (Si-L23VV-Si-2p APECS) and Si-2p photoelectron Si-L23VV Auger-electron coincidence spectroscopy (Si-2p-Si-L23VV PEACS). The Si(110)-16 × 2 SD consists of five Si-2p surface components (SC1-SC5) and has four semiconducting surface states (S1-S4). The Si-L2VV-Si-2p1/2 APECS spectrum of the Si(110)-16 × 2 SD measured in coincidence with Si-2p1/2 photoelectrons of SC3, SC4, and SC5 shows two small shoulders in the higher Auger electron kinetic energy (AeKE) region. These shoulders suggest Auger processes involving the surface states S1 and S3. The spectral weights of SC3, SC4, and SC5 Si-2p components are greatly enhanced in the Si-2p-Si-L23VV PEACS spectrum measured at Auger electrons with an AeKE of +5.0 eV relative to the Si L23VV peak. On the other hand, the spectral weights of SC1 and SC2 Si-2p components in the Si-2p-Si-L23VV PEACS spectrum show a maximum peak at a relative AeKE of +3 eV. These results directly support the correlations between the five surface components (SC1-SC5) and four surface states (S1-S4) in the adatom-buckling model for the Si(110)-16 × 2 SD proposed by Sakamoto et al. [https://doi.org/10.1103/PhysRevB.79.045304" xlink:type="simple">Phys. Rev. B 79, 045304 (2009)].

  13. Sn-PILC: A novel Efficient and Recyclable Catalyst for One-pot Three Component Povarov’s Inverse-electron-demand Hetero Diels-Alder Reaction for a Facile Synthesis of Tetrahydropyranoquinoline Derivatives under Neat Conditions

    Directory of Open Access Journals (Sweden)

    Megha Rai

    2016-07-01

    Full Text Available The Povarov’s inverse-electron-demand hetero Diels–Alder one-pot three components reaction of aromatic aldehyde, aromatic amine with DHF has been developed using Sn-PILC as a catalyst under a neat condition which may helpful to society to get pharmacologically more active compounds. In the present study a novel series of tetrahydroquinoline 4(a-f were synthesized and characterized by IR, 1HNMR, 13CNMR, Mass spectral analysis and elemental analysis. The synthetic details and characterization results are discussed. DOI: http://dx.doi.org/10.17807/orbital.v8i3.801

  14. A study on the microstructure of a nitrate ester plasticized polyether propellant dissolved in HCl and KOH solutions

    Directory of Open Access Journals (Sweden)

    YONG LIU

    2010-07-01

    Full Text Available Understanding of how the properties and performance of nitrate ester plasticized polyether (NEPE propellants relate to microstructure is complicated by numerous components that have different characteristics. One approach to alleviating these complications is to observe a microstructure that has lost one or several components. This article examines the dissolution process, mass loss and change of the ion concentration of propellants in acid and alkali solutions. A scanning electron microscope was used to observe the dissolved residual of the propellants. The results revealed that the main constituents of NEPE propellant have different dissolving properties in solutions of HCl and KOH. By monitoring the dissolution process of NEPE propellant in HCl and KOH solutions, it was found that the microstructure of the propellant is generally compact and the polymer binder not only binds all the other components, but also protects the inner part of the propellant in solution.

  15. Relative contribution of combined kinetic and exchange energy terms vs the electronic component of molecular electrostatic potential in hardness potential derivatives.

    Science.gov (United States)

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2013-11-14

    The relative contribution of the sum of kinetic [(10/9)CFρ(r)2/3] and exchange energy [(4/9)CXρ(r)1/3] terms to that of the electronic part of the molecular electrostatic potential [Vel(r)] in the variants of hardness potential is investigated to assess the proposed definition of Δ+h(k) = −[VelN+1(k) – VelN(k)] and Δ–h(k) = −[VelN(k) – VelN–1(k)] (Saha; et al. J. Comput. Chem. 2013, 34, 662). Some substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) (undergoing electrophilic aromatic substitution), carboxylic acids, and their derivatives are chosen to carry out the theoretical investigation as stated above. Intra- and intermolecular reactivity trends generated by Δ+h(k) and Δ–h(k) are found to be satisfactory and are correlated reasonably well with experimental results.

  16. Biodegradable foam plastics based on castor oil.

    Science.gov (United States)

    Wang, Hong Juan; Rong, Min Zhi; Zhang, Ming Qiu; Hu, Jing; Chen, Hui Wen; Czigány, Tibor

    2008-02-01

    In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.

  17. 体育器材管理系统设计与实现%Design and implementation of electronic components database management system

    Institute of Scientific and Technical Information of China (English)

    郭海生

    2011-01-01

    设计一种智能化体育器材管理系统,有效地提高了体育器材使用效率与有效管理问题,阐述了解决问题的方案,采用模块化原理,把系统按照功能分成3个模块,并基于串口通信原理,实现了上位机和控制终端的通信问题,并利用VC++6.0加以实现,结果表明,该系统具有界面友好、易操作、管理效率高的特点,并可推广应用到其他许多需要自主管理的场合。%This paper designs a intelligent devices management system, effectively solved the existing components of open laboratory waste problem. This paper expounds the problem solving scheme, modular system according to the principle, function into three parts, and based on the principle of serial communication, realizing the PC and control problem of communication terminal, and using VC ++6.0 realization. The results show that the system has a friendly interface, easy operation and management, the efficiency high characteristic, effectively solve the problem of open laboratory management of components, can be applied to many other needs independent management.

  18. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  19. Electromigration-induced plasticity and texture in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-31

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.

  20. Plastic Surgery Residents' Understanding and Attitudes Toward Biostatistics: A National Survey.

    Science.gov (United States)

    Susarla, Srinivas M; Lifchez, Scott D; Losee, Joseph; Hultman, Charles Scott; Redett, Richard J

    2016-08-01

    An understanding of biostatistics is a critical skill for the practicing plastic surgeon. The purpose of the present study was to assess plastic surgery residents' attitudes and understanding of biostatistics. This was a cross-sectional study of plastic surgery residents. A survey assessing resident attitudes regarding biostatistics, confidence with biostatistical concepts, and objective knowledge of biostatistics was distributed electronically to trainees in plastic surgery programs in the United States. Bivariate and regression analyses were used to identify significant associations and adjust for confounders/effect modifiers. One hundred twenty-three residents responded to the survey (12.3% response rate). Respondents expressed positive attitudes regarding biostatistics in plastic surgery practice, but only moderate levels of confidence with various biostatistical concepts. Both attitudes and confidence were positively associated with the number of plastic surgery journals read monthly and formal coursework in biostatistics (P biostatistics in the practice of plastic surgery but have only a fair understanding of core statistical concepts.