WorldWideScience

Sample records for plasticized polyolefin compositions

  1. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists

  2. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  3. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume

    International Nuclear Information System (INIS)

    Han, Ta-Yuan; Lin, Wei-Ting; Cheng, An; Huang, Ran; Huang, Chin-Cheng

    2012-01-01

    Highlights: ► Experimental study is focus on the engineering properties of cement-based composites. ► Different mixes containing fiber and silica fume proportions have been tested. ► The influence of different mixes on the engineering properties has been discussed. ► The properties are included strength, ductility, permeability and microstructure. -- Abstract: This study evaluated the mechanical properties of cement-based composites produced with added polyolefin fibers and silica fume. Material variables included the water-cementitious ratio, the dosage of silica fume, and the length and dosage of polyolefin fiber. Researchers conducted tests on compressive strength, splitting tensile strength, direct tensile strength, resistivity, rapid chloride penetration, and initial surface absorption, and performed microscopic observation. Test results indicate that the specimens containing silica fume have higher compressive strength than the control and specimen made with fibers. The specimens with polyolefin fiber and silica fume have considerably higher tensile strength and ductility than the control and specimens made with silica fume. The specimens containing silica fume and polyolefin fiber demonstrated better resistance to chloride penetration than composites with polyolefin fiber or silica fume. For a given volume fraction, short polyolefin fiber performs better than its long counterpart in improving the properties of concrete. Specimens containing silica fume demonstrated a significant increase in resistivity and decrease in the total charge passed and absorption. Scanning electron microscopy illustrates that the polyolefin fiber acts to arrest the propagation of internal cracks.

  4. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Influence of gamma and e-beam irradiation on microhardness of recycled polyolefin-rubber composites

    International Nuclear Information System (INIS)

    Atabaev, B.G.; Gafurov, U.G.; Fainleib, A.M.; Tolstov, A.

    2006-01-01

    Full text: The dose dependencies of surface Vickers microhardness (H) for gamma and e-beam irradiated (E=5 MeV) recycled polyethylene-rubber and polypropylene-rubber composites has been investigated. The new techniques for measuring of polymer surface microhardness using decoration of indenter imprint under load lower 100g are developed. The measurements under 50g load shown the microhardness sharp decreasing for e-beam irradiation up to dose 50-150 kGy. The optimal dose D opt for improving of viscoelastic properties at minimal microhardness HV for HDPE-rubber blends-100 kGy and PP-rubber blends-75 kGy are defined. The microhardness change depend on irradiation dose can be explained by concurrence of irradiation stimulated chain cross-linking, oxidation and destruction processes. In our work samples of polyolefin powder were irradiated in air to form peroxide and hydroperoxide groups and heated to form polar groups capable of improving the compatibility with the radiation devulcanized rubber particles. The absolute value of microhardness of polyolefin-rubber composites extremely low for polyolefins and close to microhardness of high elastic rubber. The viscoelastic properties can be explained by new model of formation mixing amorphous interface between semicrystalline polyolefin and devulcanized rubber. The work was supported by EC (STCU Project U3009). (author)

  6. Influence of reaction parameters on brown coal-polyolefinic plastic co-pyrolysis behavior

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N. [Institute of Chemistry and Chemical Technology SB RAS, K.Marx Str. 42, 660049 Krasnoyarsk (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Miguel Luesma, 4, 50015 Zaragoza (Spain); Collura, S.; Finqueneisel, G.; Zimny, T.; Weber, J.V. [Laboratoire de Chimie et Applications, Universite de Metz, rue V.Demange, 57500 Saint-Avold (France)

    2007-03-15

    Co-processing of polyolefinic polymers with Kansk-Achinsk (Russia) brown coal was investigated by thermogravimetry (TG) and autoclave pyrolysis under argon and hydrogen pressure in catalytic conditions (or not). Gas chromatography-mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC) were used to analyze the distillate products. Some synergistic effects indicate chemical interaction between the products of thermal decomposition of coal and plastic. In co-pyrolysis under H{sub 2} a significant increasing of coal conversion degree as a function of polymer amount in feedstock was found. Simultaneously the coal promoted formation of distillate products from polymers. Some alkyl aromatic and O-containing substances were detected in co-pyrolysis fraction boiling in the range 180-350 C, indicating interactions between coal and plastic. Iron containing ore materials, modified by mechanochemical treatment, demonstrated a catalytic activity in hydropyrolysis process. In catalytic conditions, increases of the mixtures conversion degree by 9-13 wt.%, of distillate fraction yields by 1.2-1.6 times and a decrease of olefins and polycyclic components were observed. (author)

  7. Polyolefin-Nanocrystal Composites for Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EIC Laboratories Inc. is proposing a lightweight multifunctional polymer/nanoparticle composite for radiation shielding during long-duration lunar missions. Isolated...

  8. Storage of nitroglycerin (NTG) admixed with HBOC-201 for 30 days in polyolefin plastic bags: a pilot study.

    Science.gov (United States)

    Nigam, Savita; McCarron, Richard; Arnaud, Francoise

    2017-10-01

    Hemorrhaged animals have benefited from resuscitation with the hemoglobin-based oxygen carrier (HBOC-201). Co-infusion of nitric oxide (NO) via separate intravascular lines is effective in attenuating HBOC-induced elevation of blood pressure. We tested whether nitroglycerin (NTG) and HBOC-201 can be packaged together as a single drug for resuscitation. Since NTG binds easily to plastics such as polyvinylchloride, we assessed the stability of this combination in oxygen barrier double-layer ethylene-vinyl alcohol/polyolefin bags over a 30-day period. Outcome measures indicative of the stability of HBOC/NTG were reported as changes in levels of hemoglobin (Hb), methemoglobin (MetHb), NTG, and nitrite over time. Individual tightly sealed small aliquots of HBOC/NTG were prepared under nitrogen and analyzed in a timely fashion from 0 to 30 days using hematology instruments, HPLC, FPLC, and chemiluminescence. The level of NTG in the HBOC/NTG mixture was reduced significantly over time whereas it was stable in control mixtures of NTG/saline. The level of total Hb in the HBOC/NTG and HBOC/saline mixtures remained stable over time. MetHb formed and increased to 6% up to day 1 and then slowly decreased in the HBOC/NTG mixture whereas it remained unchanged in the HBOC/saline mixture. Nitrite was produced in the HBOC/NTG group upon mixing, was increased at day 1, and then became undetectable. The reaction between HBOC-201 and NTG occurring upon mixing and developing over time in polyolefin bags makes the long-term storage of this mixed combination inappropriate.

  9. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    identify eco-design criteria for the development and secondly to document the potential environmental improvement of polyolefin recycling using the MDS technology. A preliminary study focusing solely on the carbon footprint benefits of recycling plastic waste compared to virgin production of polymers...... showed that there are large benefits to recycling. However, including other uses of the waste illustrates that the benefits to a large extent depend on that the recycled plastic have such high quality that it can actually replace virgin plastic and also to some extent depends on which energy systems e.......g. energy recovery from incineration substitutes....

  10. Functionalized linear and cyclic polyolefins

    Energy Technology Data Exchange (ETDEWEB)

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  11. Acrylique acid grafted polyolefines. Thermoadhesive applications

    International Nuclear Information System (INIS)

    Guimon, Claude

    1979-01-01

    Radiochemical grafting of polyolefines by peroxidation has been industrialized in France for about 10 years by irradiation of these polymers with an electron accelerator and then treated by acrylic acid. Products obtained show a high adhesivity on metallic surfaces above their melting point. The main application of acrylic acid grafted high density polyethylene is composite film with aluminum foil for thermosealing of plastic bottle caps of sterilized milk. Acrylic acid grafted polypropylene is used in suspension in a volatile liquid for aluminum foil coating satisfying food packaging regulations [fr

  12. Quality restoration of waste polyolefin plastic material through the dissolution-reprecipitation technique

    Directory of Open Access Journals (Sweden)

    Hadi Jasim Arkan

    2014-01-01

    Full Text Available This study examines the restoration of waste plastic polymers based on LDPE, HDPE or PP through dissolution/reprecipitation. Experimental conditions of the recycling process, including type of solvent/non-solvent, original polymer concentration and dissolution temperature were optimized. Results revealed that by using the different prepared solvents/non-solvents at various ratios and temperatures, the polymer recovery was always greater than 94%. The FTIR spectra and the thermal properties (melting point and crystallinity of the polymers before and after recycling were measured using Differential Scanning Calorimetry (DSC. Mechanical properties of the waste polymer before and after recycling were also measured. Besides small occasional deviations, the properties did not change. The tensile strength at maximum load was 7.1, 18.8, and 7.4 MPa for the recycled LDPE, HDPE and PP, respectively and 7.78, 18.54 and 7.86 MPa for the virgin polymer. For the waste, the strength was 6.2, 15.58 and 6.76 MPa.

  13. The use of thermovision technique to estimate the properties of highly filled polyolefins composites with calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowska, Paulina; Klozinski, Arkadiusz [Poznan University of Technology, Institute of Technology and Chemical Engineering, Polymer Division Pl. M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland, Paulina.Jakubowska@put.poznan.pl (Poland)

    2015-05-22

    The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO{sub 3}) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break was also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated.

  14. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  15. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  16. Construction loads experienced by plastic composite ties.

    Science.gov (United States)

    2014-07-01

    Damage to plastic composite ties during handling and track installation has been reported by a number of railroads. Results from : a survey conducted to identify specific handling issues were used to develop field and laboratory tests to measure the ...

  17. Polyolefins to thrive by 1995

    International Nuclear Information System (INIS)

    Morris, G.D.L.

    1993-01-01

    Five factors will shorten the [current] period of distress for global polyolefins producers, says George T. Scott, v.p. and general manager of olefins and derivatives for Chevron Chemical (Houston): lower feedstock costs, the weaker dollar, higher operating rates, higher converter capacity, and technical improvements at the high end of the market. The next two years will be tough, says Scott, but I am hopeful of a full recovery to reinvestment economics by 1995. Scott made his remarks in the keynote address last week at a technical conference in Houston sponsored by the Society of Plastics Engineers (Brookfield, IL). Of the five factors, lower feedstock costs are the most immediate, with ethylene, and especially propylene, mired in neart-term record lows. However, other market watchers point out that the upstream situation must now include cracker feedslates because more merchant polyolefin producers are integrated back to the monomer. With as little as one-quarter of polymer capacity supplied from the merchant olefin market, by some estimates, a dollars/1,000-cubic-feet number is now more important than a cents/pound number. Technical advances at the top of the market are another intriguing factor. In recent years, says Scott, improvements in catalysts and processes have improved operating efficiencies and costs for high-volume trains. The cutting edge work today, however, is for speciality grades and custom-designed molecules for specific applications. Such advances have the double benefit of bringing high margin materials into the market while not adding many new pounds to an oversupplied business

  18. Durability of Capped Wood Plastic Composites

    Science.gov (United States)

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  19. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  20. Composites from wood and plastics

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Composites made from thermoplastics and fillers or reinforcements derived from wood or other natural fibers are a dynamic research area encompassing a wide variety of composite materials. For example, as the use of biopolymers grows, wood and other natural fiber sources are being investigated as renewable sources of fillers and reinforcements to modify performance....

  1. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  2. Durability of wood-plastic composite lumber

    Science.gov (United States)

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  3. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)

  4. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  5. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  6. Filling behaviour of wood plastic composites

    Science.gov (United States)

    Duretek, I.; Lucyshyn, T.; Holzer, C.

    2017-01-01

    Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

  7. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  8. Plastic strain and flux jumps in hard and composite superconductors

    International Nuclear Information System (INIS)

    Maksimov, I.L.; Mints, R.G.

    1981-01-01

    A study is made into the effect of the critical current density dependence upon the value of plastic strain on the critical state stability in hard and composite superconductors under conditions of plastic yield of the material. Criteria of the critical state stability relative to the jointly developing magnetic flux jumps and plastic strain jerks, are found. (author)

  9. Heat release rate of wood-plastic composites

    Science.gov (United States)

    N. M. Stark; R. H. White; C. M. Clemons

    1997-01-01

    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  10. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  11. A Review of Wood Plastic Composites effect on the Environment

    Directory of Open Access Journals (Sweden)

    Ahmed Taifor Azeez

    2017-05-01

    Full Text Available Wood Plastic Composites (WPCs are environmentally friend materials with a wide range of applications in the field of constructions, comprising high mechanical and physical properties with low cost raw materials as plastic wastes and different carpentry process wood reminder. The effects of wood, plastic waste and additives on various properties of the material such as mechanical (modulus of elasticity and modulus of rupture, physical (moisture absorption and fire retardancy have been investigated in order to push the output functions of the products to the limits of work conditions requirements. This study, overviews the importance of Wood Plastic Composites in conserving the environment by depletion post consume plastics from landfills, and the impact of these composites in developing the economic via opening new flourished markets for modern products. Both the ecological and economical requirements oblige the Iraqi government to replace the negatively healthy effects formaldehyde wood composites (medium density fiberboard MDF which are widely consumed in Iraqi markets with Wood Plastic Composites. a long-term strategy plan in which the researchers and the capitals meet under supervision of the government is very necessary and recommended in this paper to establish and develop WPCs industry in Iraq.

  12. Polyolefin-Based Aerogels

    Science.gov (United States)

    Lee, Je Kyun; Gould, George

    2012-01-01

    An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient

  13. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  14. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  15. HYGROSCOPICITY OF WOOD PLASTIC COMPOSITES MADE WITH PADOU FLOUR AND POLYPROPYLENE PELLETS

    OpenAIRE

    Moise Emmanuel NZUDJOM SOUOP; Joseph Albert MUKAM FOTSING

    2012-01-01

    The manufacture of objects in wood-plastic composites which is a material already available in many developed countries seems almost unknown in Cameroon since the production factory of objects in wood-plastic composites does not exist up till here. Interested in the study of properties of wood-plastic composites throughconnection of simple plastic and wood, we have oriented our paper in the elaboration, realization and physical characterization of wood-plastic composites with Padou and polypr...

  16. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  17. Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-04-01

    Full Text Available Polyolefin, as one of the most widely used macromolecule materials, has been one of the most serious threats to the environment. Current treatment methods of waste polyolefin including landfill, incineration, and thermal degradation have suffered from severe problems such as secondary pollution and the generation of other toxic substances. In this article, we report for the first time a high-efficiency method to produce high-value C2H2 from polyolefins using a rotating direct current arc plasma reactor, using polyethylene and polypropylene as feedstocks. The essence of this method is that a reductive atmosphere of pyrolysis enables a thermodynamic preference to C2H2 over other carbon-containing gas and the rotating direct current arc plasma reactor allows for a uniform distribution of high temperature to ensure high conversion of polymers. Thermodynamic simulation of product composition was performed, and the effect of plasma input power, polyolefin feed rate, and working gas flow rate on the pyrolysis results was experimentally investigated. It was found that, with proper parameter control, approximately complete conversion of carbon in polyolefin could be obtained, with a C2H2 selectivity higher than 80% and a C2H2 yield higher than 70%. These results not only create new opportunities for the reuse of polymer waste, but are also instructive for the green production of C2H2.

  18. Characterizing wood-plastic composites via data-driven methodologies

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Robert Badaliance

    2007-01-01

    The recent increase of wood-plastic composite materials in various application areas has underlined the need for an efficient and robust methodology to characterize their nonlinear anisotropic constitutive behavior. In addition, the multiplicity of various loading conditions in structures utilizing these materials further increases the need for a characterization...

  19. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  20. Tension and Compression Creep Apparatus for wood-Plastic Composites

    Science.gov (United States)

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2011-01-01

    Design of structural members made of wood-plastic composites (WPC) is not possible without accurate test data for tension and compression. The viscoelastic behavior of these materials means that these data are required for both the quasi-static stress-strain response, and the long-term creep response. Their relative incompressibility causes inherent difficulties in...

  1. Colemanite: a fire retardant candidate for wood plastic composites

    Science.gov (United States)

    Evren Terzi; Saip Nami Kartal; Sabriye Piskin; Nicole Stark; Aysel Kanturk Figen; Robert H. White

    2018-01-01

    The use of raw boron minerals (i.e. tincalconite, colemanite, and ulexite) was evaluated to increase the fire performance of wood plastic composites (WPCs) in comparison with commercially available fire retardants (FRs). Cone calorimetry and limited oxygen index tests were performed to evaluate the fire properties of WPC specimens. Artificial weathering and 3-point...

  2. Field and Laboratory Decay Evaluations of wood-plastic Composites

    Science.gov (United States)

    Rebecca E. Ibach; Marek Gnatowski; Grace Sun

    2013-01-01

    Experimental wood–plastic composites (WPCs) were made so that they matched the manufacturing process, dimensions, and water absorption of some commercial decking boards. WPC samples from selected formulations were divided into two identical groups. The first group was exposed in exterior conditions in Vancouver, British Columbia, and Hilo, Hawaii, at sun and shadow...

  3. Considerations in the weathering of wood-plastic composites

    Science.gov (United States)

    Nicole M. Stark

    2007-01-01

    During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...

  4. Moisture Sorption in Artificially aged wood-plastic composites

    Science.gov (United States)

    B. Kristoffer Segerholm; Rebecca E. Ibach; Magnus E.P. Wålinder

    2012-01-01

    Moisture sorption in wood-plastic composites (WPCs) affects their durability and dimensional stability. In certain outdoor exposures, the moisture properties of WPCs are altered due to e.g. cracks induced by swelling and shrinkage of the components, as well as UV degradation or biological attack. The aim of this work was to study the effect of different artificial...

  5. Micromechanical validation of a mesomodel for plasticity in composites

    NARCIS (Netherlands)

    van der Meer, F.P.

    2016-01-01

    In this paper, the performance of a recent homogenized orthotropic plasticity model for fiber reinforced composites (Vogler et al. (2013)) is investigated by comparing the model response against a micromechanical model. It is assumed that the micromechanical model which contains a recent

  6. Characterization and evaluation physical properties biodegradable plastic composite from seaweed (Eucheuma cottonii)

    Science.gov (United States)

    Deni, Glar Donia; Dhaningtyas, Shalihat Afifah; Fajar, Ibnu; Sudarno

    2015-12-01

    The characterization and evaluation of biodegradable plastic composed of a mixture PVA - carrageenan - chitosan was conducted in this study. Obtained data were then compared to commercial biodegradable plastic. Characteristic of plastic was mechanical tested such as tensile - strength and elongation. Plastic degradation was studied using composting method for 7 days and 14 days. The results showed that the increase carrageenan will decrease tensile-strength and elongation plastic composite. In addition, increase carrageenan would increase the degraded plastics composite.

  7. Stability of Fentanyl Citrate in Polyolefin Bags.

    Science.gov (United States)

    Donnelly, Ronald F

    2016-01-01

    Fentanyl is used to manage pain because it is a potent lipophilic opiate agonist. The stability of fentanyl in polyolefin bags when diluted to either 10 µg/mL or 50 µg/mL with sodium chloride 0.9% has not been studied. The chemical stability of fentanyl 50 µg/mL packaged in polyvinyl chloride bags has been studied, however, the stability in polyolefin bags is lacking. Polyolefin bags were aseptically filled with either 10-µg/mL or 50-µg/mL fentanyl solution. Containers were then stored at either 5°C and protected from light or 22°C and exposed to light for 93 days. Fentanyl peaks were monitored using a stability-indicatin high-performance liquid chromatographic method. Changes to color, clarity, and pH were also monitored. There were no signs of chemical degradation of fentanyl packaged in polyolefin bags at either 5°C or 22°C after storage for 93 days. Over the course of the study, all solutions remained colorless and clear. The pH showed a slight decrease during the 93 days of storage. The stability of both undiluted (50-µg/mL) and diluted (10-µg/mL) fentanyl solutions when packaged in polyolefin bags was 93 days when stored at either 5°C or 22°C. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  8. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Science.gov (United States)

    2010-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... Standards for composite packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within...

  9. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  10. Influence of radiative irradiation on structure and physical-mechanical properties of polyolefins

    International Nuclear Information System (INIS)

    Kakhramanov, N.T.; Mamedova, N.A.; Gasanova, A.A.

    2014-01-01

    Full text : Today in the world it is synthesized a large number of polymer materials, which in one or another way satisfy the requirements for plastic construction products used in the various branches of industry and agriculture. In this work the main attention is paid to investigation of influence of radiative irradiation dose on structural peculiarities and basic physical-mechanical characteristics of cross-linked polyolefins

  11. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    Science.gov (United States)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing

  12. Manufacture of wood/plastic composites by radiation

    International Nuclear Information System (INIS)

    Iwamoto, Takeo

    1976-01-01

    The manufacture and use of wood/plastic composite (WPC) as an example of wood matrix and wood sawdust/plastic composites (SDP) as an example of plastic matrix are reviewed. The raw material for WPC are mostly vinyl monomers, particularly methyl methacrylate and styrene. The reaction in WPC polymerization is radical polymerization. Researches on the radiation sources mostly resulted in gamma-ray. Electron beam can be applied only to thin products. The future use of WPC may be for furnitures, sporting goods, decorative parts and the like. Vital study on the reduction of manufacturing costs is required, for example, the improvement of reaction and the adoption of continuous process must be considered. The raw materials for SDP are wood sawdust, vinyl monomer (mostly methyl methacrylate) and resins. Electron beam accelerators are the most preferable radiation source because of its high efficiency and safe operation. SDP shows good forming property. The most preferable use of SDP is as interior materials for prefabricated houses, for example, opening frames for bath rooms. Some combination of the technologies of wood engineering, chemical engineering and radiation engineering must be established to develop and maintain the demands. The present radiation sources are forced to grow to large scale industrially, but the establishment of radiation source technology which can be enlarged stepwise is important to keep pace with the development. (Iwakiri, K.)

  13. Effect of boron compounds on the thermal and combustion properties of wood-plastic composites

    OpenAIRE

    Altuntaş, Ertuğrul; Karaoğul, Eyyup; Alma, Mehmet Hakkı

    2017-01-01

    In this study, the thermal properties and fire resistancesof the wood plastic composites produced with waste lignocellulosic materialswere investigated. For this purpose, lignocellulosic waste, high densitypolyethylene, (HDPE) sodium borate (borax) and boric acid was used to producethe wood-plastic composites. A twin-screw extruder was used during theproduction of the wood plastic composites. The produced composite granule waspressed at 175 °C hot press. The effects of boric acid and borax ad...

  14. Performance of waste-paper/PETG wood–plastic composites

    Directory of Open Access Journals (Sweden)

    Lijie Huang

    2018-05-01

    Full Text Available Wood–plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD, and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60–80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%, while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%. This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  15. Performance of waste-paper/PETG wood–plastic composites

    Science.gov (United States)

    Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei

    2018-05-01

    Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  16. Valorisation of waste plastic bags in cement-mortar composites as ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... Keywords: Waste plastic bags, cement-plastic-mortar composite, aggregates coating ..... and closely attached to the aggregate by physical bonds and ... transformation steps, known as fusing material behaviour. In fact,.

  17. Composition variability and equivalence of Shonka TE plastic

    International Nuclear Information System (INIS)

    Spokas, J.J.

    1973-01-01

    A number of conducting plastic mixtures had been developed by Francis R. Shonka, and collaborators, in the Physical Sciences Laboratory of Illinois Benedictine College (formerly St. Procopius College). Several of these mixtures have been used widely in radiation research. In particular, a tissue-equivalent (muscle) formulation designated A-150 has been used extensively in the dosimetry, research and measurements of gamma, neutron and pion beams. Certain confusion has arisen concerning the composition of A-150. The definition of A-150 is reviewed and what is known of the composition is summarized. The equivalence of A-150 and ICRU ''muscle'' with respect to photons is discussed as a function of photon energy using the latest data on extra-nuclear photon cross sections. (U.S.)

  18. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  19. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  20. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  1. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  2. Evaluation of bolted connections in wood-plastic composites

    Science.gov (United States)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was

  3. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  4. On the homogenization of metal matrix composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2014-01-01

    The homogenized response of metal matrix composites (MMC) is studied using strain gradient plasticity. The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free...

  5. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  6. Constancy in composition of polystyrene and polymethylmethacrylate plastics

    International Nuclear Information System (INIS)

    Schulz, R.J.; Nath, R.

    1979-01-01

    Variations in the atomic compostion, and mass and electron densities of polystyrene and polymethylmethacrylate (PMM) plastics were assessed from experimentally determined mass attenuation coefficients for 125 I and 137 Cs gamma rays. The means and standard deviations in the mass densities of 16 samples of PMM and 10 samples of polystyrene were found to be 1.174 +- 1.4% and 1.042 +- 0.6% g/cm 3 , respectively. Based upon transmission measurements on various solutions of ethyl alcohol in water, the standard deviations in the effective atomic numbers of PMM and polystyrene were determined to be 0.77% and 1.3%, respectively. Based upon experimentally determined mass attenuation coefficients for 137 Cs, the standard deviations in electron density for PMM and polystyrene were 0.5% and 1.2%, respectively. Similar measurements on tap water and two grades of distilled water failed to detect any differences in atomic composition

  7. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  8. Engineering Biodegradable Flame Retardant Wood-Plastic Composites

    Science.gov (United States)

    Zhang, Linxi

    Wood-plastic composites (WPCs), which are produced by blending wood and polymer materials, have attracted increasing attentions in market and industry due to the low cost and excellent performance. In this research, we have successfully engineered WPC by melt blending Polylactic Acid (PLA) and Poly(butylene adipate-co-terphthalate) (PBAT) with recycled wood flour. The thermal property and flammability of the composite are significantly improved by introducing flame retardant agent resorcinol bis(biphenyl phosphate) (RDP). The mechanical and morphological properties are also investigated via multiple techniques. The results show that wood material has increased toughness and impact resistance of the PLA/PBAT polymer matrix. SEM images have confirmed that PLA and PBAT are immiscible, but the incompatibility is reduced by the addition of wood. RDP is initially dispersed in the blends evenly. It migrates to the surface of the sample after flame application, and serves as a barrier between the fire and underlying polymers and wood mixture. It is well proved in the research that RDP is an efficient flame retardant agent in the WPC system.

  9. Stability of tacrolimus solutions in polyolefin containers.

    Science.gov (United States)

    Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K

    2016-02-01

    Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. Applications of polyolefins in the nuclear industry

    International Nuclear Information System (INIS)

    Erambert, M.; Goavec, P.

    1984-01-01

    The environment of a nuclear power plant often imposes impossible conditions on wires and cables. Cable manufacturers make great use of polymers, and the properties of the latter are limited in all the fields imposed: radiation, ageing, fire, corrosion. ACOME presents a cross-linked fireproof polyolefin, the properties of which have been verified in long-term tests: with very different ageing temperatures and times, very variable dose rates and very long simultaneous cycles. After all the tests proposed, the mechanical characteristics still made winding on cores possible. The electrical characteristics were very good, and fireproofing was unaffected [fr

  11. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  12. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  13. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  14. Statistical reliability analyses of two wood plastic composite extrusion processes

    International Nuclear Information System (INIS)

    Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.

    2011-01-01

    Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.

  15. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Science.gov (United States)

    2010-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  16. Platelet storage in Fresenius/NPBI polyolefin and BTHC-PVC bags: a direct comparison.

    Science.gov (United States)

    Hornsey, V S; McColl, K; Drummond, O; Macgregor, I R; Prowse, C V

    2008-08-01

    New platelet storage systems, such as changes in the plastic of the storage bags, require validation. In this study, pooled buffy coat platelets stored in Fresenius/NPBI polyolefin bags were compared with those stored in Fresenius/NPBI butyryl-trihexyl citrate (BTHC) plasticized polyvinyl chloride (PVC). The CompoSelect thrombocyte polishing filter system (1000 mL polyolefin bag) and the CompoStop F730 system (1300 mL BTHC-PVC bag) were used to prepare paired, plasma-suspended, buffy coat platelet concentrates. Samples were taken up to day 7 for in vitro analysis. In a separate experiment, 12 units were prepared using the CompoStop F730 system and samples taken after leucofiltration for FXIIa assay. By day 7, platelet concentrates stored in BTHC-PVC demonstrated significantly higher pH levels (7.32 +/- 0.05 vs. 7.26 +/- 0.05) and a greater degree of cell lysis as shown by increased lactate dehydrogenase levels (497 +/- 107 vs. 392 +/- 81 U L(-1)). The supernatants contained higher concentrations of soluble P-selectin and the chemokine 'regulated on activation, normal T-cell expressed and presumably secreted', which are released from the alpha-granules during activation. The ATP concentrations were significantly lower in BTHC-PVC. Platelet counts, mean platelet volume and hypotonic shock response were similar for both bags. FXIIa antigen concentrations were 0.6 +/- 0.2 ng mL(-1) indicating that activation of the contact factor pathway had not occurred. Although the CompoStop F730 leucoreduction filter did not activate the contact system, platelets stored in 100% plasma in BTHC-PVC bags demonstrated different in vitro characteristics from those stored in polyolefin. Further work is required to demonstrate whether these differences will affect in vivo recovery and survival.

  17. Simulated small-angle scattering patterns for a plastically deformed model composite material

    NARCIS (Netherlands)

    Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.

    2000-01-01

    The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to

  18. How craftsmen and home hobbyists can make and use wood-plastic composite materials.

    Science.gov (United States)

    Howard N. Rosen

    1974-01-01

    An inexpensive method that can be used by the home hobbyist, craftsman, or small businessman for making wood-plastic composites is described. Several examples are given to demonstrate the ease and versatility of the method.

  19. In Situ Manufacturing of Plastics and Composites to Support H&R Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and BAE Systems propose to develop processes to manufacture plastics and composites for radiation shielding based on In Situ Resources Utilization...

  20. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  1. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Blomfeldt, Thomas O. J.; Hedenqvist, Mikael S.

    2012-01-01

    was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content...... in plasticized films increased with glycerol content but was independent of xylan:NFC ratio in unplasticized films. Sorbitol- and MPEG-plasticized films showed equilibrium moisture contents of approximately 10 wt% independent of plasticizer content. Tensile testing revealed increases in tensile strength...... with increased NFC content in the xylan:NFC composition range from 50:50 to 80:20 and plasticizer addition generally provided less brittle films. The oxygen permeability of unplasticized xylan-NFC films fell into a range which was similar to that for previously measured pure NFC films and was statistically...

  2. Challenges in Materials Transformation Modeling for Polyolefins Industry

    Science.gov (United States)

    Lai, Shih-Yaw; Swogger, Kurt W.

    2004-06-01

    Unlike most published polymer processing and/or forming research, the transformation of polyolefins to fabricated articles often involves non-confined flow or so-called free surface flow (e.g. fiber spinning, blown films, and cast films) in which elongational flow takes place during a fabrication process. Obviously, the characterization and validation of extensional rheological parameters and their use to develop rheological constitutive models are the focus of polyolefins materials transformation research. Unfortunately, there are challenges that remain with limited validation for non-linear, non-isothermal constitutive models for polyolefins. Further complexity arises in the transformation of polyolefins in the elongational flow system as it involves stress-induced crystallization process. The complicated nature of elongational, non-linear rheology and non-isothermal crystallization kinetics make the development of numerical methods very challenging for the polyolefins materials forming modeling. From the product based company standpoint, the challenges of materials transformation research go beyond elongational rheology, crystallization kinetics and its numerical modeling. In order to make models useful for the polyolefin industry, it is critical to develop links between molecular parameters to both equipment and materials forming parameters. The recent advances in the constrained geometry catalysis and materials sciences understanding (INSITE technology and molecular design capability) has made industrial polyolefinic materials forming modeling more viable due to the fact that the molecular structure of the polymer can be well predicted and controlled during the polymerization. In this paper, we will discuss inter-relationship (models) among molecular parameters such as polymer molecular weight (Mw), molecular weight distribution (MWD), long chain branching (LCB), short chain branching (SCB or comonomer types and distribution) and their affects on shear and

  3. Small scale plasticity and compressive properties of composites

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    in the commercial finite element code Abaqus [3]. In addition, in a supplementary study, taken into account the length scale effect of the yielding behavior using a strain gradient dependent plasticity law [4] implemented as a user element [5], it is possible investigating the scale effect on the yielding behavior...

  4. Long term durability of wood-plastic composites made with chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  5. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, J.; Kumpová, Ivana; Pichotka, M.

    6, Part B, November (2016), s. 47-55 ISSN 2214-6571 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GA15-07210S Keywords : dual energy computed tomography * carbon fibre reinforced plastic composite * metal artefact suppression Subject RIV: JI - Composite Material s http://www.sciencedirect.com/science/article/pii/S2214657116300107

  6. Elastic-plastic deformation of fiber composites with a tetragonal structure

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, E.IU.; Svistkova, L.A. (Permskii Politekhnicheskii Institut, Perm (USSR))

    1991-02-01

    Results of numerical solutions are presented for elastic-plastic problems concerning arbitrary loading of unidirectional composites in the transverse plane. The nucleation and evolution of microplastic zones in the matrix and the effect of this process on the macroscopic characteristics of the composite are discussed. Attention is also given to the effect of the fiber shape on the elastic-plastic deformation of the matrix and to deformation paths realized in simple microdeformation processes. The discussion is illustrated by results obtained for a composite consisting of a VT1-0 titanium alloy matrix reinforced by Ti-Mo fibers.

  7. Strong Adhesion of Silver/Polypyrrole Composite onto Plastic Substrates toward Flexible Electronics

    Science.gov (United States)

    Kawakita, Jin; Hashimoto, Yasuo; Chikyow, Toyohiro

    2013-06-01

    Flexible electronics require sufficient adhesion to substrates, such as a plastic or a polymer, of the electric wiring for devices. A composite of a conducting metal and a polymer is a candidate alternative to pure metals in terms of wire flexibility. The purpose of this study was to evaluate the adhesiveness of a silver/polypyrrole composite to plastic substrates and to clarify the mechanism of adhesion. The composite was prepared on various plastic substrates by dropping its fluid dispersion. Its adhesiveness was evaluated by the peel-off test and its interfacial structure was characterized by microscopy measurements. Some polymers including Teflon with generally weak adhesion to different materials showed a high adhesiveness of more than 90%. The strong adhesion was related to the anchoring effect of the composite penetrating into the pores near the surface of the substrate.

  8. Plasticity dependent damage evolution in composites with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2015-01-01

    . (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress......A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model...... by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al...

  9. Technological physics and special materials: wood-plastic composites obtained by radiation polymerization

    International Nuclear Information System (INIS)

    Peteu, Gh.; Iliescu, V.

    1995-01-01

    General estimates and references are made in connection with the role of technological physics in obtaining materials with specific features. The first part of the paper presents the modification of weak wood essences as well as technological processes at bench-scale and semi industrial scale of wood-plastic composites, under various irradiation conditions. Two technological installations for the fabrication of wood-plastic composites on both scales with technical and practical specifications of their performances are presented. Experimental data for different wood-plastic composite systems using some local wood essences in combination with several polymer and copolymer systems are given. Impregnation and polymerization levels are mentioned for every specific system. The radiation dose rate and integrated dose are given for every experimental polymerization system. The features of the wood-plastic composites are compared with the initial wood essences. Finally, a few technical and economic assessments of wood-plastic composites and their implications in the domestic economy are presented. (author)

  10. Valorization of post-consumer waste plastic in cementitious concrete composites

    International Nuclear Information System (INIS)

    Marzouk, O. Yazoghli; Dheilly, R.M.; Queneudec, M.

    2007-01-01

    The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5 mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy

  11. Preparation of a new gamma irradiated PVC-Olive oil cake plastic composite material

    International Nuclear Information System (INIS)

    Messaud, F.A.; Almsmary, Y.A.; Elwerfalli, S.M.; Benayad, S.M.; Haraga, S.O.; Benfaid, N.A.; Kabar, Y.M.

    2003-01-01

    This paper dealt with the investigation on preparing new plastic composite material, utilizing polyvinyl chloride polymer (a commercial product in abu-kammash chemical complex) and olive oil cake (a waste of many olive oil production factories), followed by gamma irradiation (26.3 Kg ry) o induce crosslinking of the polymer. The new material possess good, electrical and mechanical properties as compared to plastic products of (PVC plastic pipe factory), and which could be used as new construction anti corrosive material, such as special roofing and partitioning or household goods

  12. X-ray testing of fiber composite plastics

    International Nuclear Information System (INIS)

    Altmann, O.; Lembke, B.

    1984-01-01

    Besides the ultrasonic test, X-raying is the most important non-destructive test procedure for supporting fibre composite structures. This report presents some auxiliary means and test results regarding the limits of fault detectibility during the X-raying of fiber composite structures, preferrably carbon fiber laminates (CFRP). (orig.) [de

  13. Determination of the dose and dose distribution in radiation-linked polyolefins

    International Nuclear Information System (INIS)

    Andress, B.; Fischer, P.; Repp, H.H.; Roehl, P.

    1984-01-01

    The method serves the determination of the radiation dose and dose distribution in polyolefins cross-linked by electron beams; the cross-linking takes place in the presence of an additive which is inserted in the polyolefin by radiation. After the cross-linking the fraction of the additive which is not inserted will be extracted from the polyolefin and afterwards the total extinction of the polyolefin will be determined by photometry. This process allows in particular the determination of the quality of the irradiation conditions for the electron-beam cross-linking of medium-voltage cables insulated by polyolefins. (orig.) [de

  14. Strength of cellulosic fiber/starch acetate composites with variable fiber and plasticizer content

    DEFF Research Database (Denmark)

    Joffe, Roberts; Madsen, Bo; Nättinen, Kalle

    2015-01-01

    In this experimental study, the performance of injection-molded short flax and hemp fibers in plasticized starch acetate were analyzed in terms of strength. Parameters involved in the analysis are a variable fiber and plasticizer content. The measured strength of the composites varies in the range...... of 12–51 MPa for flax fibers and 11–42 MPa for hemp fibers, which is significantly higher than the properties of the unreinforced starch acetate matrix. The micro-structural parameters used in modeling of composite strength were obtained from optical observations and indirect measurements. Some...

  15. Chemical constituent influence on ionizing radiation treatment of a wood–plastic composite

    International Nuclear Information System (INIS)

    Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2016-01-01

    A dose range of 0–200 kGy was used to irradiate polyethylene-based wood plastic composite (WPC) specimens. An evaluation of mechanical properties in bending resulted in an increase in ultimate strength, but little effect to stiffness. The bending test results were compared to previous testing in order to examine reproducibility. Hardness tests were also conducted, revealing an increase at a dose range of 0–250 kGy. - Highlights: • Feasibility of electron beam treatment of a wood plastic composite. • No significant impact on modulus of elasticity. • Increase in ultimate strength and hardness.

  16. Cracking and impact performance characteristics of plastic composite ties.

    Science.gov (United States)

    2012-03-01

    As followup to a workshop on Engineered Composite Ties sponsored by the American Railway Engineering and Maintenance-of-Way Association and the Federal Railroad Administration, the Transportation Technology Center, Inc., in Pueblo, CO, conducted a se...

  17. Development of optical marker for polyolefin processes

    International Nuclear Information System (INIS)

    Marchini, Leonardo Guedes

    2013-01-01

    Research and publications about luminescent polymers have been developed in the last years for the academic innovation; however the industrial application has been very limited in this area. Processed Optical markers are few explored due the difficult to process luminescent polymeric materials with stable luminescence. The materials used to process luminescent polypropylene (PP) were polyamide 6 (PA6) doped with europium complex [Eu(tta) 3 (H 2 O) 2 ] obtained through the dilution and casting process. The polyolefins because they are inert, do not fit the common procedure of doping, in consequence, in this work luminescent polypropylene was indirectly prepared by polyamide 6 doped with europium complex through extrusion process. Product characterization was done using Thermal gravimetry analysis (TG), Differential Scanning Calorimetric (DSC), X-Ray Diffraction (XRD), Infrared spectroscopy (FTIR) and spectro fluorescence of emission and excitation. The blend PP/PA6:Eu(tta) 3 presented luminescent properties, after semi-industrial process, as observed in the narrow bands of intra configuration transitions- 4f 6 relatives to energy levels 7 F 0 → 5 L 6 (394nm), 7 F 0 → 5 D 3 (415nm), 7 F 0 → 5 D 2 (464nm), 7 F 0 → 5 D 1 (525nm) e 7 F 0 → 5 D 0 (578nm) of emission spectrum. Red light of the pellets or film is emitted when excited in UV lamp (365nm). TG results showed under O 2 atmosphere that PP doped with PA6:Eu(tta) 3 was more stable than pure PP. In this work was processed luminescent PP/PA6:Eu(tta) 3 with properties of thermal and photo stability which can be used as optical marker in polymer processing. (author)

  18. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Machinability of glass fiber reinforced plastic (GFRP) composite ...

    African Journals Online (AJOL)

    This paper deals with the study of machinability of GFRP composite tubes of different fiber orientation angle vary from 300 to 900. Machining studies were carried out on an all geared lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitride (CBN) and Poly-Crystalline Diamond (PCD). Experiments ...

  20. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  1. Enhanced antioxidant activity of polyolefin films integrated with grape tannins.

    Science.gov (United States)

    Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A

    2016-06-01

    A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Magnetic fluid equipment for sorting of secondary polyolefins from waste

    NARCIS (Netherlands)

    Rem, P.C.; Di Maio, F.; Hu, B.; Houzeaux, G.; Baltes, L.; Tierean, M.

    2012-01-01

    The paper presents the researches made on the FP7 project „Magnetic Sorting and Ultrasound Sensor Technologies for Production of High Purity Secondary Polyolefins from Waste” in order to develop a magnetic fluid equipment for sorting of polypropylene (PP) and polyethylene (PE) from polymers mixed

  3. Modeling polyolefin deformation resistance in a growing microparticle

    NARCIS (Netherlands)

    Agarwal, U.S.

    2004-01-01

    When polyolefins are produced on heterogeneous catalysts, they encapsulate the catalyst fragments and present diffusional resistance to further monomer transport to the catalyst fragments. In addition, the deposited polymer layer brings in viscoelastic resistance, since it must be deformed to make

  4. Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour

    Science.gov (United States)

    Rebecca E. Ibach; Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Yongming Fan; Jianmin Gao

    2014-01-01

    The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by...

  5. Wood-plastic composites utilizing wood flours derived from fast- growing trees common to the midwest

    Science.gov (United States)

    There are several non- or under-utilized hardwood trees common to the Midwestern states. Wood flour (WF) derived from fast-growing Midwest trees (Osage orange, Black Locust and Red Mulberry) were evaluated as a source of bio-based fiber reinforcements. Wood plastic composites (WPC) of high density p...

  6. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Science.gov (United States)

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  7. Wood plastic composites from modified wood. Part 3. Durability of WPCs with bioderived matrix

    NARCIS (Netherlands)

    Westin, M.; Larsson-Brelid, P.; Segerholm, B.K.; Oever, van den M.J.A.

    2008-01-01

    The decay resistance of fully bio-derived wood plastic composites, WPCs, was tested in both laboratory and field tests. The laboratory tests were performed according to modified versions of AWPA E10 (soil-block test) and ENV 807 (tests in three un-sterile soils) and the field tests according to EN

  8. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 2 4...

  9. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  10. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  11. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  12. Properties of flat-pressed wood plastic composites containing fire retardants

    Science.gov (United States)

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  13. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  14. Exterior Decay of Wood-Plastic Composite Boards: Characterization and Magnetic Resonance Imaging

    Science.gov (United States)

    Rebecca Ibach; Grace Sun; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2016-01-01

    Magnetic resonance imaging (MRI) was used to evaluate free water content and distribution in wood-plastic composite (WPC) materials decayed during exterior exposure near Hilo, Hawaii. Two segments of the same board blend were selected from 6 commercial decking boards that had fungal fruiting bodies. One of the two board segments was exposed in sun, the other in shadow...

  15. Characterization of Hexsyn, a polyolefin rubber.

    Science.gov (United States)

    McMillin, C R

    1987-07-01

    Hexsyn is the Goodyear Tire and Rubber Company tradename for a polyolefin rubber synthesized from 1-hexene with 3-5% methylhexadiene as the source of residual double bonds for vulcanization. Under license from Goodyear, this same polymer has been manufactured by Lord Corporation for the hinge portion of finger joint prostheses using the tradename Bion. This rubber is currently licensed to the University of Akron and to the Cleveland Clinic Foundation for use in biomedical applications, and is being used primarily for biocompatible and highly fatigue resistant rubber components in ventricular assist and artificial heart systems. Results are presented from the physical, mechanical, and biological characterization of Hexsyn. Procedures are described for the synthesis, compounding, and post-molding extraction for Hexsyn. The physical testing of Hexsyn reported includes determinations of its density at 23 and 37 degrees C, initial hardness and hardness after aging in oxygen, blood, pseudoextracellular fluid and polyethylene glycol 600, typical molecular weights determined by gel permeation chromatography/low angle laser light scattering and intrinsic viscosity, thermal analyses by differential scanning calorimetry of Hexsyn gum, and vulcanized Hexsyn after exposure to blood and blood/fatigue conditions. Also reported are results of differential thermal analyses, thermomechanical analyses of virgin and annealed samples, and thermogravimetric analyses conducted in helium and in air. Dynamic mechanical analyses of Hexsyn include Clash-Berg and Rheovibron tests. Swelling was conducted to determine lot-to-lot and sheet-to-sheet variation for quality control and also a number of solvents were used so that the polymer-solvent interaction parameters could be determined. The permeability of Hexsyn to water, water vapor, and a variety of gases is reported. The permeability by contact angle measurements, refractive index, residual solvent analyses, migration of blood components

  16. Can Latin America fill the U.S. polyolefin deficit?

    International Nuclear Information System (INIS)

    Sagel, E.

    2006-01-01

    Strategic issues for the North American polyolefin industry were discussed with reference to oil and gas price forecasts, oil capacity increases, and high density polyethylene production and ethylene integration costs. The overall polyolefin trade balance in North America was also explored. It was cautioned that unless a significant amount of new capacity is built in the United States, it is anticipated that by 2008, the United States will become a net importer of polyolefin resins. Currently exported product will be used increasingly in the domestic market to meet demand growth. This shift from being a net exporter of resins can be attributed to the high cost of feedstocks and the lack of investment in new capacity throughout the region. In contrast, there have been several proposals for new capacity in Latin America in the past several years. Since there is already an important level of commerce and trade between North and South America, countries with access to the Caribbean basin, are logistically well situated to serve the North American market. The availability of low cost feedstocks in countries such as Trinidad, Venezuela and Bolivia add to the attractiveness of the region for the development of new petrochemical capacity. This paper examined the status of the different proposed projects in Latin America and analyzed the potential opportunities that exist for North American producers to collaborate in those projects. The general trade balance of the continent was reviewed in order to verify if the traditional seclusion of America's polyolefin market can be maintained in the future. It was concluded that even if all projects in Latin America are launched, the Americas will still be in a net deficit position. Under the right circumstances, the Middle East will be the global supplier of commodity polyolefins that could extend to the Americas. It was emphasized that companies should be prepared for feedstock advantaged investments, alliances, acquisitions and

  17. High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder.

    Science.gov (United States)

    Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong

    2018-06-01

    A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  19. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    Science.gov (United States)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  20. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  1. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  2. Novel Nano composite Optical Plastics: Dispersion of Titanium in Polyacrylates

    International Nuclear Information System (INIS)

    Suri, G.; Tyagi, M.; Seshadri, G.; Khandal, R.K.; Verma, G.L.

    2010-01-01

    Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40-1.50) refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO 2 , the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO 2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti) polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO 2 -containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO 2 . Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  3. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  4. Influence of Cellulose on the Mechanical and Thermal Stability of ABS Plastic Composites

    Directory of Open Access Journals (Sweden)

    K. Crews

    2016-01-01

    Full Text Available Microcrystalline cellulose was explored as possible biodegradable fillers in the fabrication of ABS plastic composites. TGA indicates that upon inclusion of cellulose microcrystals the thermal stability of the ABS plastics was improved significantly when compared to the neat ABS plastic counterparts. Furthermore, inclusion of extracted cellulose from plant biomass showed a higher thermal stability with maximum decomposition temperatures around 131.95°C and 124.19°C for cellulose from cotton and Hibiscus sabdariffa, respectively, when compared to that of the purchased cellulose. In addition, TMA revealed that the average CTE value for the neat ABS and 1 : 1 ratio of cellulose to ABS fabricated in this study was significantly lower than the reported CTE (ca. 73.8 μm/m°C.

  5. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    Science.gov (United States)

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  7. The size, mass, and composition of plastic debris in the western North Atlantic Ocean.

    Science.gov (United States)

    Morét-Ferguson, Skye; Law, Kara Lavender; Proskurowski, Giora; Murphy, Ellen K; Peacock, Emily E; Reddy, Christopher M

    2010-10-01

    This study reports the first inventory of physical properties of individual plastic debris in the North Atlantic. We analyzed 748 samples for size, mass, and material composition collected from surface net tows on 11 expeditions from Cape Cod, Massachusetts to the Caribbean Sea between 1991 and 2007. Particles were mostly fragments less than 10mm in size with nearly all lighter than 0.05 g. Material densities ranged from 0.808 to 1.24 g ml(-1), with about half between 0.97 and 1.04 g ml(-1), a range not typically found in virgin plastics. Elemental analysis suggests that samples in this density range are consistent with polypropylene and polyethylene whose densities have increased, likely due to biofouling. Pelagic densities varied considerably from that of beach plastic debris, suggesting that plastic particles are modified during their residence at sea. These analyses provide clues in understanding particle fate and potential debris sources, and address ecological implications of pelagic plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    International Nuclear Information System (INIS)

    Félix, Juliana S.; Domeño, Celia; Nerín, Cristina

    2013-01-01

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC

  9. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Félix, Juliana S., E-mail: jfelix@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Domeño, Celia, E-mail: cdomeno@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Nerín, Cristina, E-mail: cnerin@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain)

    2013-03-15

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  10. The role of lubracants in reactive compatibilization of polyolefin blends

    Czech Academy of Sciences Publication Activity Database

    Hlavatá, Drahomíra; Kruliš, Zdeněk; Horák, Zdeněk; Lednický, František; Hromádková, Jiřina

    2001-01-01

    Roč. 176, - (2001), s. 93-106 ISSN 1022-1360. [International Conference on Polymer Modification, Degradation and Stabilization /1./. Palermo , 03.09.2000-07.09.2000] R&D Projects: GA ČR GA106/99/0556; GA AV ČR IBS4050008; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyolefins * recycling * reactive compatibilization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  11. Turning of wood plastic composites by water jet and abrasive water jet

    OpenAIRE

    Hutyrová, Z.; Ščučka, J. (Jiří); Hloch, S. (Sergej); Hlaváček, P. (Petr); Zeleňák, M. (Michal)

    2015-01-01

    The paper deals with the verification of suitability of water jet and abrasive water jet application for the disintegration of rotating samples of wood plastic composites (WPCs) with diameter d=36 mm. The influence of selected technological factors (traverse speed of cutting head v [mm/ min] and size of abrasive particles [MESH]) on the topography of resulting surfaces has in particular been studied. Surface topography and quality have been assessed using the methods of optical and co...

  12. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    -, September 2015 (2015), s. 1-9 ISSN 0268-3768 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * size of abrasive particles * surface quality * traverse speed Subject RIV: JQ - Machines ; Tools Impact factor: 1.568, year: 2015 http://link.springer.com/article/10.1007/s00170-015-7831-6

  13. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    2016-01-01

    Roč. 84, 5-8 (2016), s. 1615-1623 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * turning * traverse speed * size of abrasive particles Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-015-7831-6

  14. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  15. Study on the cause of discoloration of radiation-exposed polyolefin

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Joonpyo; Kang, Philhyun; Oh, Seunghwan; Kim, Hyunbin

    2013-01-15

    Olefinic polymers, such as polyethylene and polypropylene, have a wide variety of known end use applications. Olefinic polymers have been disclosed to be useful in the manufacture of shaped articles for medical used and for food packaging uses where the articles must undergo stabilization for be disinfected. Notwithstanding the significant known advantages of sterilization by means of high energy radiation, several disadvantages are known to be associated with such sterilization techniques. Most of all, when treated with radiation energy in an amount sufficient to achieve the desired sterilization, such polyolefin compositions may become discolored. This coloration may occur for a variety of reasons such as the use of certain additives in the polymer, as well as the presence of high amounts of catalytic residues. In this study, effects of structure of antioxidant and UV stabilizer on the discoloration of olefinic polymer resin were investigated. Furthermore, The mechanism of discoloration of olefinic polymer was suggested.

  16. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  17. Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Fugen Daver

    2016-12-01

    Full Text Available Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i composite composition; (ii compatibilizers content; (iii carbon nanotubes that formed a percolation network.

  18. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  19. Comparison of solute-binding properties of plastic materials used as pharmaceutical product containers.

    Science.gov (United States)

    Jenke, Dennis; Couch, Tom; Gillum, Amy

    2010-01-01

    Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.

  20. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  1. Microstructure and properties of ceramics and composites joined by plastic deformation.

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K. C.; Singh, D.; Chen, N.; Gutierrez-Mora, F.; Lorenzo-Martin, M. de la, Cinta; Dominguez-Rodriguez, A.; Routbort, J. L.; Energy Systems; Univ. of Seville

    2008-12-01

    A review is presented of the design of suitable materials systems for joining by high-temperature plastic deformation, details of the joining techniques, microstructures and properties of the resulting composite bodies, and prospects and limitation for this type of joining technology. Joining parameters and resulting forms are discussed for Al{sub 2}O{sub 3}/mullite particulate composites, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} particulate/Al{sub 2}O{sub 3} particulate and whisker-reinforced composites, hydroxyapatite bioceramics, La{sub 0.85}Sr{sub 0.15}MnO{sub 3} electronic ceramics, MgF{sub 2} optical ceramics, and Ni{sub 3}Al intermetallics. Results are contrasted with those obtained by other methods of joining brittle, high-temperature materials, with special focus on durability and mechanical properties.

  2. Microstructure and properties of ceramics and composites joined by plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. [Argonne National Laboratory, Argonne, IL 60439-4838 (United States)], E-mail: ken.goretta@aoard.af.mil; Singh, D.; Chen Nan [Argonne National Laboratory, Argonne, IL 60439-4838 (United States); Gutierrez-Mora, F.; Cinta Lorenzo-Martin, M. de la [Argonne National Laboratory, Argonne, IL 60439-4838 (United States); University of Seville, Seville 41080 (Spain); Dominguez-Rodriguez, A. [University of Seville, Seville 41080 (Spain); Routbort, J.L. [Argonne National Laboratory, Argonne, IL 60439-4838 (United States)

    2008-12-20

    A review is presented of the design of suitable materials systems for joining by high-temperature plastic deformation, details of the joining techniques, microstructures and properties of the resulting composite bodies, and prospects and limitation for this type of joining technology. Joining parameters and resulting forms are discussed for Al{sub 2}O{sub 3}/mullite particulate composites, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} particulate/Al{sub 2}O{sub 3} particulate and whisker-reinforced composites, hydroxyapatite bioceramics, La{sub 0.85}Sr{sub 0.15}MnO{sub 3} electronic ceramics, MgF{sub 2} optical ceramics, and Ni{sub 3}Al intermetallics. Results are contrasted with those obtained by other methods of joining brittle, high-temperature materials, with special focus on durability and mechanical properties.

  3. Effect of the Addition of Carbon Nanomaterials on Electrical and Mechanical Properties of Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Xingli Zhang

    2017-11-01

    Full Text Available Wood Plastic Composites (WPCs are a new generation of green composites that could optimize the use of harvested trees and increase the entire value chain. In this study, the electrical and mechanical properties of WPCs containing carbon blacks (CB, flake graphite (FG and carbon nanotubes (CNTs have been investigated. The electrical property of WPCs is improved significantly owing to the introduction of these carbon nanomaterial fillers. The volume and surface resistivity values of the investigated composites all obviously decreased with the increase in filler content, especially CNTs, which displayed the most satisfactory results. Based on a series of laboratory experiments carried out to investigate the mechanical performance, it can be concluded that the addition of the carbon nanomaterial fillers decreases the mechanical properties of WPCs slightly with the increase in filler content because of the weak interfacial interactions between the fillers and polymer matrix.

  4. Application of NIR hyperspectral imaging for post-consumer polyolefins recycling

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-06-01

    An efficient large-scale recycling approach of particulate solid wastes is always accomplished according to the quality of the materials fed to the recycling plant and/or to any possible continuous and reliable control of the different streams inside the processing plants. Processing technologies addressed to recover plastics need to be extremely powerful, since they must be relatively simple to be cost-effective, but also accurate enough to create high-purity products and able to valorize a substantial fraction of the plastic waste materials into useful products of consistent quality in order to be economical. On the other hand, the potential market for such technologies is large and the boost of environmental regulations, and the oil price increase, has made many industries interested both in "general purpose" waste sorting technologies, as well as in developing more specialized sensing devices and/or inspection logics for a better quality assessment of plastic products. In this perspective recycling strategies have to be developed taking into account some specific aspects as i) mixtures complexity: the valuable material has to be extracted from the residue, ii) overall production: the profitability of plastic can be achieved only with mass production and iii) costs: low-cost sorting processes are required. In this paper new analytical strategies, based on hyperspectral imaging in the near infrared field (1000-1700 nm), have been investigated and set up in order to define sorting and/or quality control logics that could be profitably applied, at industrial plant level, for polyolefins recycling.

  5. The Effect of Methylation and Anti-Oxidant on Discoloration of Weathered Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Peivand Darabi

    2011-01-01

    Full Text Available As the outdoor application of Wood Plastic Composites (WPCs become more widespread, the resistance of these products against weathering, particularly ultraviolet (UV light becomes more important. When WPCs are exposed to outdoor ultraviolet light, rain, snow and atmosphere pollution, they will be degraded which can be indicated by color fade. To investigate the effects of methylation and Anti-Oxidant separately and together on discoloration of weathered wood plastic composites, composites of poplar wood flour and high density polyethylene.Were made according to the ASTMD 2565, samples were placed in Atlas Xenon apparatus for 250 and 2000 hours. Discoloration and FT-IR spectra of the samples were measured and compared. The results have shown that methylation in short term and long term can relatively reduce the discoloration of weathered samples and also in short term can hinder the photodegradation. FT-IR spectra showed that, in long term, neither of the treatments could protect lignin from irradiation within wood flour. But methylation limited the depth of penetration of weathering. The Antioxidant did not have an influence on color change in a long period of time, but was able to relatively decrease it in short term.

  6. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  7. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    Science.gov (United States)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  8. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    Science.gov (United States)

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  9. Interphase and intergranular stress generation in composites exhibiting plasticity in both phases

    International Nuclear Information System (INIS)

    Daymond, Mark R; Hartig, Christian; Mecking, Heinrich

    2005-01-01

    The internal stress state of Fe-Cu composites has been measured by in situ deformation studies using neutron diffraction. A range of volume fractions from 17% Fe to 83% Fe (remainder Cu) have been investigated. Both phase specific and grain family specific elastic strains have been determined. The results are compared with predictions from a multiphase elasto-plastic self-consistent model, and are found to be in good agreement. The selection of parameters used in the model to improve agreement between experimental and predicted results is suggested to be due to changing geometrical constraint

  10. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  11. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  12. Development of highly fire-retardant irradiated polyolefin cables

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji; Inui, Toshifumi; Uda, Ikujiro (Sumitomo Electric Industries Ltd., Osaka (Japan))

    1982-12-01

    In recent years, motors, automobiles, heaters, etc., have been made into light weight and compact form in view of labour-saving and energy-saving. For this purpose, the wires for the electrical appliances used for these equipment are required to reduce insulation thickness and to improve heat resistance. On the other hand, the requirement for fire-retardant property has become severer than before from the viewpoint of safety. As an insulation for the wires which meets such requirement, the polyolefin cross-linked by irradiation was investigated, and the heat-resistant, highly fire-retardant, polyolefin-insulated wires have been developed, which have passed vertical combustion test (VW-1) and have the insulation thickness of 0.4 mm (voltage rating 300V) and UL standard 125 deg C and 150 deg C grades. Fire-retardant polyolefin resin is normally obtained by adding halogen series flame retarders. The selection of flame retarders requires the investigation on high thermal stability, high flame retardation, no impedance to cross-linking, and good dispersion into polymers. The evaluation of heat resistance performed on two points, thermal aging and thermal deformation. The use of oxidation inhibitors is indispensable to improve the anti-thermal aging capability, but it is important to balance the requirements well by combining oxidation inhibitors, considering thermal deformation, colouring and discolouration. By comparative test with silicone rubber, cross-linked polyethylene and cross-linked PVC-insulated wires, the characteristics of highly fire-retardant wires, insulated with polyethylene cross-linked by irradiation, are described about the fire retardation, thermal deformation, thermal aging resistance, electrical characteristics and oil resistance.

  13. Modification of cadmium pigments for colouring of polyolefins

    International Nuclear Information System (INIS)

    Kalinskaya, T.V.; Livshits, I.M.

    1976-01-01

    Modification conditions are studied of cadmium pigments, obtained by different methods, aliphatic acids(C 5 , C 8 and C 17 ). It is found, that cadmium pigments can adsorb acids with the number of atoms of carbon not less than 8. Stearic acid adsorption on lemon cadmium pigment taken as an example has shown the efficiency of pigment modification influence on its dispersancy in non-polar medium. Modification of yellow cadmium pigments of stearic acid makes possible to obtain pigment output forms ensuring a good particle distribution during polyolefine colouring

  14. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads

  15. Analytical method for predicting plastic flow in notched fiber composite materials

    International Nuclear Information System (INIS)

    Flynn, P.L.; Ebert, L.J.

    1977-01-01

    An analytical system was developed for prediction of the onset and progress of plastic flow of oriented fiber composite materials in which both externally applied complex stress states and stress raisers were present. The predictive system was a unique combination of two numerical systems, the ''SAAS II'' finite element analysis system and a micromechanics finite element program. The SAAS II system was used to generate the three-dimensional stress distributions, which were used as the input into the finite element micromechanics program. Appropriate yielding criteria were then applied to this latter program. The accuracy of the analytical system was demonstrated by the agreement between the analytically predicted and the experimentally measured flow values of externally notched tungsten wire reinforced copper oriented fiber composites, in which the fiber fraction was 50 vol pct

  16. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Directory of Open Access Journals (Sweden)

    Graciaa A.

    2010-06-01

    Full Text Available In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC. A non-linear behaviour is shown. The modulus of elasticity (MOE is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE.

  17. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Science.gov (United States)

    Ben Mbarek, T.; Robert, L.; Hugot, F.; Orteu, J. J.; Sammouda, H.; Graciaa, A.; Charrier, B.

    2010-06-01

    In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC) with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC). A non-linear behaviour is shown. The modulus of elasticity (MOE) is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM) is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE).

  18. In line wood plastic composite pyrolyses and HZSM-5 conversion of the pyrolysis vapors

    International Nuclear Information System (INIS)

    Lin, Xiaona; Zhang, Zhijun; Tan, Shun; Wang, Fengqiang; Song, Yongming; Wang, Qingwen; Pittman, Charles U.

    2017-01-01

    Graphical abstract: HZSM-5 can be used to catalytic convert Wood Fiber-Polypropylene or Wood Fiber-Polypropylene pyrolysis vapors into aromatic compounds in reasonable selectivities. This provides a recycling utilization WPCs wastes method. - Highlights: • Converting wood/plastic composites (WPC) wastes into aromatics. • Recycling WPC by fast pyrolysis coupled with vapor catalytic cracking. • Selective production of aromatics from WPCs and their components over HZSM-5. • Acid site concentration inside zeolite was critical for maximizing aromatic yield. • Synergistic effects between wood and plastics enhanced aromatics production. - Abstract: Wood powder-high density polyethylene (WPE) and wood powder-polypropylene (WPP) composites were pyrolyzed at 550 °C in the presence of HZSM-5 catalysts using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Immediately passing the pyrolysis vapors through the HZSM-5 changed the product distribution by producing aromatic hydrocarbons and eliminating tar formation. Zeolite HZSM-5 was employed with three different silica-to-alumina ratios (25, 50, 260). The influence of catalysts on the yields of aliphatic and aromatic hydrocarbons, furan derivatives, lignin-derived compounds and acetic acid was studied. High yields of aliphatic hydrocarbons formed in WPE or WPP pyrolysis alone. The highest yields of aromatic hydrocarbons from WPE or WPP pyrolysis vapors over HZSM-5 occurred with a zeolite framework Si/Al ratio of 25 (more acid sites), suggesting that the concentration of acid sites inside the zeolite was critical for maximizing aromatic yield. Exposing vapors to HZSM-5 increased the hydrocarbon yields and reduced the amount of acetic acid produced, resulting in increased calorific value. The yields of typical aromatics from catalytic pyrolysis of WPP mixture and composites were higher than those of the calculated values of poplar wood and PP catalytic pyrolysis individually, indicating that a

  19. A new hyperspectral imaging based device for quality control in plastic recycling

    Science.gov (United States)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  20. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  1. Thermoplastic Elastomers From Chemically or Irradiation Activated Polyolefin Wastes and Ground Tyre Rubber

    International Nuclear Information System (INIS)

    Tolstov, A.M.; Grigoryeva, A.L.; Bardash, O.P.

    2005-01-01

    Thermoplastic elastomers (TPE) are known as materials with unique combination of elastomeric properties and thermo plasticity. Among the TPE of different type the polymer blends of thermoplastics and rubbers are the most commonly used. Recently a very effective technology of dynamic vulcanization of rubber component inside thermoplastic matrix has been developed. As a result of rubber vulcanization and dispersion inside thermoplastic the new type of TPE so-called thermoplastic dynamic vulcanizations (TPV) are obtained. In our work we have applied the technology of dynamic vulcanization for recycled components (PP, HDPE, GTR). It has appeared that such components are not mixed well and the resulting TPV have poor mechanical properties. To solve a problem of poor compatibility of the components used we carried out a pre-modification (functionalization) of the component surfaces by gamma-irradiation or by chemically or gamma-irradiation induced grafting of reactive monomers. Both the polyolefin (HDPE) and GTR were functionalized before mixing. The monomers were selected by such a way that being grafted to be able to react to each other in interface during the components blending. For example, we used maleic anhydride and acrylamide. The effect of better compatibility has appeared in higher tensile characteristics of TPV synthesized

  2. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Science.gov (United States)

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET

  3. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    Science.gov (United States)

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the

  4. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Directory of Open Access Journals (Sweden)

    Sonja Oberbeckmann

    Full Text Available Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate (PET drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates and diatoms (e.g. Coscinodiscophytina, Bacillariophytina. The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact

  5. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer.

    Science.gov (United States)

    Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya

    2017-12-01

    The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.

  6. Production of palm frond based wood plastic composite by using twin screw extruder

    Science.gov (United States)

    Russita, M.; Bahruddin

    2018-04-01

    Wood plastic composite (WPC) is the blending product from wood as filler and polymer thermoplastic as matric. Palm frond waste is a material with selulose about 68%, so it has potential to be developed as raw material for WPC. The purpose of this research was to learn how to produce WPC based on palm frond use twin screw extruder. It used popropilen as matric. As for aditif, it used Maleated Polypropilene (MAPP) as compatibilizer and paraffin as plasticizer. The size of palm frond is 40 – 80 mesh. WPC is made from blending polipropylene, palm frond, MAPP and paraffin with dry mixing method in room temperature. Then, PP, Palm frond and additive from dry mixing is fed into twin screw extruder at 190°C and 60 rpm. It use palm frond/polypropylene 60/40, MAPP 5% w/w and paraffin 2% w/w. From the result, it shown that WPC based on palm frond met the standards forcommercial WPC. It has tensile strength up to 19.2 MPa, bending strength 43.6 MPa and water adsorption 0,32% w/w. So, WPC based on palm frond has prospective to be developed for commercial WPC.

  7. Impregnating Systems for Producing Wood-Plastic Composite Materials and Resinified Woods by Radiochemical Means

    International Nuclear Information System (INIS)

    Laizier, J.; Laroche, R.; Marchand, J.

    1969-01-01

    The effect of the nature of the components in the impregnation mixture on the characteristics of wood-plastic combinations has been studied in the case of beech by applying a wide variety of compositions. In particular, the effect of water (in the impregnator, and in the form of moisture in the wood) on the characteristics of the products obtained has been determined. It has been shown that, in place of the conventional method for preparing resinified woods (using a ternary monomer-solvent-water mixture), it is possible to use a method involving comonomers, which obviate the need to dry the wood after treatment. The evaluation of the results obtained is based on the value of the impregnation rate and on the modifications in microscopic structure; these emphasize the differences between the types of filler and enable comparisons to be drawn with the dimensional stabilities observed. Measurements of variations in dimensions and the recurrence of moisture have made it possible to establish a classification based on the types of monomer used and the operating conditions. It is shown that a whole range of products is obtained, the properties of which differ widely and are comparatively easily adaptable to the purpose specified. These properties illustrate clearly the differences and characteristics of resinified woods as opposed to conventional wood-plastic materials. (author) [fr

  8. Plasticity of Streptomyces coelicolor membrane composition under different growth conditions and during development

    Directory of Open Access Journals (Sweden)

    Mario eSandoval-Calderón

    2015-12-01

    Full Text Available Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921 and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.

  9. Fatigue damage characterization in plain-wave carbon-carbon fabric reinforced plastic composites

    International Nuclear Information System (INIS)

    Khan, Z.; Al-sulaiman, F.S.; Farooqi, J.K.

    1997-01-01

    In this paper fatigue damage mechanisms in 8 ply Carbon-Carbon Fabric reinforced Plastic Laminates obtained from polyester resin-prepreg plain weave carbon-carbon fabric layers have been investigated. Enhanced dye penetrant, X-ray radiography, optical microscopy, edge replication, and scanning electron fractography have been employed to examine the fatigue damage in three classes of laminates having the unidirectional (O)/sub delta/, the angle-plied (0,0,45,-45)/sub s/ fiber orientations. It is shown the laminates that have off axis plies, i.e.,0,0,45,-45), and (45,-45,0,0) /sub s/, the fatigue damage is initiated through matrix cracking. This matrix cracking induces fiber fracture in adjacent plies near the matrix crack tip. This event is followed by the man damage event of delamination of the stacked plies. It is shown that the delamination was the major damage mode, which caused the eventual fatigue failure in the angle-plied composites. The unidirectional composite (O)/sub delta/ laminates failed predominantly by lateral fracture instead of delamination. Fiber fracture was observed in the prime damage mode in unidirectional (O)/sub delta/ composite laminates. (author)

  10. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  11. Manufacturability of Wood Plastic Composite Sheets on the Basis of the Post-Processing Cooling Curve

    Directory of Open Access Journals (Sweden)

    Sami Matthews

    2015-10-01

    Full Text Available Extruded wood-plastic composites (WPCs are increasingly regarded as promising materials for future manufacturing industries. It is necessary to select and tune the post-processing methods to be able to utilize these materials fully. In this development, temperature-related material properties and the cooling rate are important indicators. This paper presents the results of natural cooling in a factory environment fit into a cooling curve function with temperature zones for forming, cutting, and packaging overlaid using a WPC material. This information is then used in the evaluation of manufacturability and productivity in terms of cost effectiveness and technical quality by comparing the curve to actual production time data derived from a prototype post-process forming line. Based on this information, speed limits for extrusion are presented. This paper also briefly analyzes techniques for controlling material cooling to counter the heat loss before post-processing.

  12. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. Published by Elsevier Ltd.

  13. Analysis of a ceramic filled bio-plastic composite sandwich structure

    International Nuclear Information System (INIS)

    Habib Ullah, M.; Islam, M. T.

    2013-01-01

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz

  14. Analysis of a ceramic filled bio-plastic composite sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Habib Ullah, M. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia); Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 (Malaysia); Islam, M. T. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia)

    2013-11-25

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz.

  15. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Williams, Joseph B

    2008-10-07

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments.

  16. Eco-efficiency analysis methodology on the example of the chosen polyolefins production

    OpenAIRE

    K. Czaplicka-Kolarz; D. Burchart-Korol; P. Krawczyk

    2010-01-01

    the chosen polyolefins production. The article presents also main tools of eco-efficiency analysis: Life Cycle Assessment (LCA) and Net Present Value (NPV).Design/methodology/approach: On the basis of LCA and NPV of high density polyethylene (HDPE) and low density polyethylene (LDPE) production, eco-efficiency analysis is conducted.Findings: In this article environmental and economic performance of the chosen polyolefins production was presented. The basis phases of eco-efficiency methodology...

  17. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  18. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  19. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage

    International Nuclear Information System (INIS)

    Jamekhorshid, A.; Sadrameli, S.M.; Barzin, R.; Farid, M.M.

    2017-01-01

    Highlights: • A composite of wood–plastic-MEPCM has been produced. • Compression molding has been used for the composite preparation. • Thermal and properties were investigated using DSC analysis and cycling test. • Leakage test has been performed for the encapsulated PCM. • The composites can be used as a building material for thermal energy management. - Abstract: Application of phase change materials (PCMs) in lightweight building is growing due to the high latent heat of fusion of PCMs and their ability to control temperature by absorbing and releasing heat efficiently. Wood-plastic composites (WPC) are materials used in the interior parts of buildings that have improved properties compared to conventional materials. However, these materials have low energy storage capacity, which can be improved by incorporating PCM in them. Leakage of PCM is a major obstacle to the industrial applications, which can be solved through the use of microencapsulated PCM (MEPCM). This paper presents the performance tests conducted for a composite of wood-plastic-MEPCM for using in buildings for thermal storage. The wood-plastic-MEPCM composites were produced in this project using compression molding and their thermal and mechanical properties were investigated using DSC analysis, cycling test, leakage test, and three point bending analysis. The results showed that there is no leakage of PCM during phase change. The results also indicated that the composite has reasonable thermal properties, but its mechanical properties need to be improved by increasing the pressure during the molding process or by using extrusion method. The produced composites can be used as a building material for thermal energy management of building.

  20. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models

    Science.gov (United States)

    González, C.; Segurado, J.; LLorca, J.

    2004-07-01

    The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.

  1. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  2. Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay

    Science.gov (United States)

    Anke Schirp; Rebecca E. Ibach; David E. Pendleton; Michael P. Wolcott

    2008-01-01

    Much of the research on wood-plastic composites (WPC) has focused on formulation development and processing while high biological durability of the material was assumed. The gap between assumption and knowledge in biodeterioration of WPC needs to be reduced. Although some information on the short-term resistance of WPC against biological degradation is available, long-...

  3. Magnetic resonance imaging used for the evaluation of water presence in wood plastic composite boards exposed to exterior conditions

    Science.gov (United States)

    Marek Gnatowski; Rebecca Ibach; Mathew Leung; Grace Sun

    2014-01-01

    Two wood plastic composite (WPC) boards, one experimental and one commercial, were exposed to exterior conditions and evaluated non-destructively using a clinical magnetic resonance imaging (MRI) unit for moisture content (MC) and distribution. The experimental board was exposed in Vancouver, British Columbia, for more than 8 years, and the commercial board was exposed...

  4. Degradação de poliolefinas utilizando catalisadores zeolíticos Degradation of polyolefins using zeolitic catalysts

    Directory of Open Access Journals (Sweden)

    Maria Letícia M. Valle

    2004-03-01

    Full Text Available Neste trabalho foi estudada a degradação de alguns dos principais constituintes dos rejeitos plásticos (polietileno de alta densidade (HDPE, polietileno de baixa densidade (LDPE e polipropileno (PP, empregando-se um catalisador exausto de unidades de craqueamento de fluidos (FCC e um catalisador zeolítico (ADZ3 sintetizado em laboratório. Utilizando técnicas de termogravimetria (TG-DTG e cromatografia gasosa (CG, foi possível avaliar os produtos gerados no craqueamento destas poliolefinas. Na degradação catalítica de poliolefinas com catalisadores zeolíticos, verificou-se a obtenção preferencial de gasolina, GLP e diesel, produtos importantes na matriz energética brasileira. O catalisador de FCC exausto foi mais seletivo para a produção de gasolina e GLP, enquanto que a produção de diesel foi mais favorecida com o catalisador ADZ3.In this work the degradation of some of the main plastics responsible for waste, viz. high density polyethylene (HDPE, low density polyethylene (LDPE and polypropylene (PP, was studied using a spent FCC catalyst (fluid cracking catalyst and a zeolitic catalyst (ADZ3 synthesized in laboratory. Using thermogravimetry (TG-DTG and gas chromatography (GC techniques, it was possible to evaluate the products from these polyolefins cracking. The catalytic degradation of polyolefins led to a preferential production of LPG, diesel and gasoline, which are important products of the Brazilian energetic matrix. The spent FCC catalyst was more selective for production of LPG and gasoline, whereas the diesel production was more favored with the ADZ3 catalyst.

  5. Extruded blend films of poly(vinyl alcohol) and polyolefins: common and hard-elastic nanostructure evolution in the polyolefin during straining as monitored by SAXS

    International Nuclear Information System (INIS)

    Stribeck, Norbert; Zeinolebadi, Ahmad; Fakirov, Stoyko; Bhattacharyya, Debes; Botta, Stephan

    2013-01-01

    Straining of PVA/PE and PVA/PP blends (70:30) is monitored by small-angle x-ray scattering (SAXS). Sheet-extruded films with different predraw ratio are investigated. The discrete SAXS of predrawn samples originates from polyolefin nanofibrils inside of polyolefin microfibrils immersed in a PVA matrix. PE nanofibrils deform less than the macroscopic strain without volume change. PP nanofibrils experience macroscopic strain. They lengthen but their diameter does not decrease. This is explained by strain-induced crystallization of PP from an amorphous depletion shell around the core of the nanofibril. The undrawn PVA/PE film exhibits isotropic semicrystalline nanostructure. Undrawn PVA/PP holds PP droplets containing oriented stacks of semicrystalline PP like neat precursors of hard-elastic thermoplasts. Respective predrawn films are softer than the undrawn material, indicating conversion into the hard-elastic state. Embedding of the polyolefin significantly retards neck formation. The polyolefin microfibrils can easily be extracted from the water-soluble matrix. (paper)

  6. Enhanced mechanical properties of single walled carbon nanotube-borosilicate glass composite due to cushioning effect and localized plastic flow

    Directory of Open Access Journals (Sweden)

    Sujan Ghosh

    2011-12-01

    Full Text Available A borosilicate glass composite has been fabricated incorporating Single Wall Carbon Nanotubes (SWCNT in the glass matrix by melt-quench technique. Hardness and the fracture toughness of the composite, were found to increase moderately with respect to the base glass. Interestingly one can observe accumulation of SWCNT bundles around the crack zone though no such accumulation was observed in the crack free indentation zone. The enhanced hardness of the composite was discussed by correlating the cushioning as well as toughening behavior of the agglomerated SWCNT bundles. On the other hand enhanced plastic flow was proposed to be the prime reason for the accumulation of SWCNT bundles around the crack, which increases the toughness of the composite by reducing the crack length. Moreover to ascertain the enhanced plasticity of the composite than that of the glass we calculated the recovery resistance of glass and the composite where recovery resistance of composite was found to be higher than that of the glass.

  7. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  8. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  9. EFFECTS OF ETHYLENE VINYL ACETATE CONTENT ON PHYSICAL AND MECHANICAL PROPERTIES OF WOOD-PLASTIC COMPOSITES

    Directory of Open Access Journals (Sweden)

    Dongfang Li,

    2012-05-01

    Full Text Available To investigate the effects of different ethylene vinyl acetate (EVA contents on the performance of wood plastic composites (WPCs made from poplar wood flour (PWF and high density polyethylene (HDPE, physical properties tests, mechanical properties tests, and scanning electron microscope (SEM tests were employed. The thermal stability and functional groups of PWF treated by EVA were evaluated by thermogravimetric analysis (TGA, differential thermal analysis (DTA, and Fourier transform infrared spectroscopy (FTIR, respectively. The results showed that the hardness, water uptake, and thickness swelling of the WPCs was reduced with increasing content of EVA. The MOR and tensile strength of the WPC treated by 15% EVA content were enhanced by 17.48% and 9.97%, respectively, compared with those of the WPC without EVA. TGA results showed that the thermal stability of PWF treated by EVA was improved. FTIR analysis indicated that PWF was reacted and coated with EVA. SEM results showed that gaps and voids hardly existed in the sections of the WPCs treated by EVA. This research suggests that the flexibility and mechanical properties of WPCs could be improved by adding EVA. The best condition of EVA content could be 15%.

  10. Radiation degradation of poly(olefin sulphone)s - Fundamental research to practical applications

    International Nuclear Information System (INIS)

    Bowden, M.J.; O'Donnell, J.H.

    1985-01-01

    The degradation of poly(olefin sulphone)s by high energy radiation, particularly by γ-rays and electron beams, provides an example of the application of fundamental science to high technology industry. Scientific interest in the radiation degradation of these polymers was first aroused by the discovery that they underwent highly specific bond scission in the backbone chain as the primary result of absorption of high energy radiation and in fact they were the first polymers in which such an effect had been demonstrated. This conclusion was initially based mainly on evidence from electron spin resonance spectroscopy and was subsequently verified by studies of molecular weight changes. These studies showed that the poly(olefin sulphone)s not only degraded by main chain scission but were also among the most radiation-sensitive polymers known. The extremely high sensitivity of poly(olefin sulphone)s to radiation-induced main-chain scission has found application in the field of microelectronics. Electron beam writing on poly(olefin sulphone) films is used to produce lithographic masks for the manufacture of integrated circuits on silicon wafers. Poly(1-butene sulphone) (PBS) is currently used in the production of a substantial proportion of the masks for the industry. The fundamental aspects of the radiation degradation of poly(olefin sulphone)s and the practical applications to high technology are reviewed. (author)

  11. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, M. [Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, 90-924 Lodz, Wolczanska 213 (Poland)

    2010-10-15

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel-like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, ''gasoline'' fraction of the liquid hydrocarbons mixture (C{sub 4}-C{sub 10}) made over 50% of the liquid product. It may by used for fuel production or electricity generation. (author)

  12. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    International Nuclear Information System (INIS)

    Stelmachowski, M.

    2010-01-01

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 deg. C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, 'gasoline' fraction of the liquid hydrocarbons mixture (C 4 -C 10 ) made over 50% of the liquid product. It may by used for fuel production or electricity generation.

  13. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling

    International Nuclear Information System (INIS)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-01-01

    Highlights: ► The article shows WEEE plastics characterization from a recycling unit in Portugal. ► The recycling unit has low machinery, with hand sorting of plastics elements. ► Most common polymers are PS, ABS, PC/ABS, HIPS and PP. ► Most plastics found have no identification of plastic type or flame retardants. ► Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile–butadiene–styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  14. Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans.

    Science.gov (United States)

    Ryan, Peter G

    2008-08-01

    I compare plastic ingested by five species of seabirds sampled in the 1980s and again in 1999-2006. The numbers of ingested plastic particles have not changed significantly, but the proportion of virgin pellets has decreased 44-79% in all five species: great shearwater Puffinus gravis, white-chinned petrel Procellaria aequinoctialis, broad-billed prion Pachyptila vittata, white-faced storm petrel Pelagodroma marina and white-bellied storm petrel Fregetta grallaria. The populations sampled range widely in the South Atlantic and western Indian Oceans. The most marked reduction occurred in great shearwaters, where the average number of pellets per bird decreased from 10.5 to 1.6. This species migrates between the South and North Atlantic each year. Similar decreases in virgin pellets have been recorded in short-tailed shearwaters Puffinus tenuirostris in the Pacific Ocean and northern fulmars Fulmarus glacialis in the North Sea. More data are needed on the relationship between plastic loads in seabirds and the density of plastic at sea in their foraging areas, but the consistent decrease in pellets in birds suggests there has been a global change in the composition of small plastic debris at sea over the last two decades.

  15. On Loosening Plastic Composite under Active Load and Its Influence on the Deformation and Strength Properties

    Directory of Open Access Journals (Sweden)

    K. F. Komkov

    2015-01-01

    Full Text Available Processing the test results of the composite, which is a mechanical mixture of metal particles with a plastic polymer binder, has shown that its deformation and strength properties are substantially different from those of stable plastic material. The specimen tests for tensile and compression with measuring transverse deformations, as well as torsion tests of tubular samples have revealed that the process of its deformation is accompanied by a change in the original structure.The composite instability is caused by the fact that during this process, it acquires considerable loosening that depends on the type of the stress-state. Hard metal particles are hardly deformed at any stress-state, but they form a layer of bonds that affect the mixture behavior under force action. The total deformation is the plastic flow of the binder on which deformation, caused both by sliding and by loss of the surface layer bonds, is superimposed.The analysis shows that with destruction at tensile test the non-linear part of the bulk deformation (dilatancy is 6 times more than "conditionally" elastic (3.5 times compressed. The objective of this work is to develop a technique for determining a dilatancy, define its influence on deformation and strength properties of the composite, and improve the mathematical model of the material. The proposed model based on the tensor-nonlinear equations describes loosening, as an additional component of the mean deformation and as a mean stress component, hereinafter referred to as: the first - by the deformation, the second – by the stress. A ratio value of the nonlinear part of deformation with the quadratic tensor argument to the linear part, which reaches 0.3, shows the need for such equations. It also shows the influence of deformation on the relationship between the deviators.To enhance capabilities of mathematical model is possible after including therein the equations for the spherical part of the tensor of deformation

  16. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stenvall, Erik, E-mail: erik.stenvall@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Tostar, Sandra [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Boldizar, Antal [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Foreman, Mark R.StJ. [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Möller, Kenneth [Chemistry and Materials Technology, SP, 50115 Borås (Sweden)

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  17. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    International Nuclear Information System (INIS)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Möller, Kenneth

    2013-01-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive

  18. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Preparation and Characterization of Wood Plastic Composite Made Up of Durian Husk Fiber and Recycled Polystyrene Foam.

    Directory of Open Access Journals (Sweden)

    Koay Seong Chun

    2018-01-01

    Full Text Available Polystyrene foam is one of the major plastic waste that hardly to recycle. The present research is aims to recycle polystyrene foam as raw material to produce wood plastic composites (WPC. The WPC was produced from recycled polystyrene (rPS and durian husk fiber (DHF using melt compound and compression moulding processes. This paper is focus on effect of fiber content on tensile and thermal properties of rPS/DHF composite. The results found the tensile strength modulus of this WPC increased at higher fiber content, but elongation at break was reduced. However, this composites exhibited an early thermal degradation when subjected to high temperature and this was commonly found among WPC. The thermal degradation of rPS/DHF composites yielded high percentage of char residue due to char formation of DHF. Overall, the rPS/DHF composites with 60 phr fiber content able to achieved strength slight above 16 MPa without any chemical treatment additives. This indicates the rPS/DHF composites can be a potential WPC if further modify with to improve its strength.

  20. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    Science.gov (United States)

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  1. Topological analysis of long-chain branching patterns in polyolefins.

    Science.gov (United States)

    Bonchev, D; Markel, E; Dekmezian, A

    2001-01-01

    Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.

  2. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea.

    Science.gov (United States)

    Gewert, Berit; Ogonowski, Martin; Barth, Andreas; MacLeod, Matthew

    2017-07-15

    We collected plastic debris in the Stockholm Archipelago using a manta trawl, and additionally along a transect in the Baltic Sea from the island of Gotland to Stockholm in a citizen science study. The samples were concentrated by filtration and organic material was digested using hydrogen peroxide. Suspected plastic material was isolated by visual sorting and 59 of these were selected to be characterized with Fourier transform infrared spectroscopy. Polypropylene and polyethylene were the most abundant plastics identified among the samples (53% and 24% respectively). We found nearly ten times higher abundance of plastics near central Stockholm than in offshore areas (4.2×10 5 plastics km -2 compared to 4.7×10 4 plastics km -2 ). The abundance of plastic debris near Stockholm was similar to urban areas in California, USA, and the overall abundance in the Stockholm Archipelago was similar to plastic abundance reported in the northwestern Mediterranean Sea. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Radiographic testing - optimum radiographs of plastics and composite materials with dosimeter control

    International Nuclear Information System (INIS)

    Kuster, J.

    1978-01-01

    In view of great differencies in X-ray transmission it is more difficult to get optimum radiographs of plastics and especially of reinforced plastics than for example of metals. A procedure will be reported how to get with little effort optimum radiographs especially also in the range of long wavelength radiation corresponding 10 to 25 kV.P. (orig.) [de

  4. Hierarchical finite element modeling of SiCp/Al2124 T4 composites with dislocation plasticity and size dependent failure

    International Nuclear Information System (INIS)

    Suh, Yeong Sung; Kim, Yong Bae

    2012-01-01

    The strength of particle reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite element unit cell model. the proposed method is shown to be very effective by performing finite element strength analysis of SiC p /Al2124 T4 composites that included ductile in the matrix and particle matrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle reinforced metal matrix composites

  5. Composite material making from empty fruit bunches of palm oil (EFB) and Ijuk (Arengapinnata) using plastic bottle waste as adhesives

    Science.gov (United States)

    Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.

    2018-03-01

    Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.

  6. Catalytic quality improvement of waste polyolefin originated fractions

    Directory of Open Access Journals (Sweden)

    Tóth O.

    2018-03-01

    Full Text Available The demand for alternative fuels having low greenhouse gases emission is continuously growing worldwide. Therefore it is preferred to produce new, waste originated components. One option is the recycling of plastic waste with cracking. The produced hydrocarbon fraction is not suitable for fuels thus it is important to improve its quality. The aim of our experimental work was to study the quality improvement of this cracked fraction (PPCGO and crude oil based middle distillates (different composition with co-processing. Our goal was to produce high quality diesel fuel blending components. We studied the effect of process parameters on the quality of products. Ni (2.3% Mo (11.0% P (2.3%/Al2O3 catalyst was used. During the experiments we studied the hydrogenation of olefins, saturation of aromatics and desulphurization. The hydrogenation of olefins was practically complete at 300°C. It took place at significantly higher speed than the desulphurization reactions. In case of light gas oil feedstock the products had significantly lower sulphur contents; below 10 mg/kg already at 340°C. We determined that the cracked fraction had beneficial effect on the performance properties of the products. In case of all feedstock combinations, we found process parameters which can be used to produce high-quality diesel fuel blending components on the tested catalyst.

  7. Thermodynamic analysis of mechanical behaviour in the elastic region of blends of recycled poly (ethylene terephthalate) and recycled polyolefins; Analise termodinamica do comportamento mecanico na regiao elastica de blendas de poli (tereftalato de etileno) reciclado e poliolefinas recicladas

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, Jose M. [Universidade Federal do Parana Univ. (UFPR), Curitiba, PR (Brazil). Inst. de Tecnologia para o Desenvolvimento; Ruvolo Filho, Adhemar [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica]. E-mail: adhemar@power.ufscar.br

    2006-10-15

    This work describes the study using mechanical tests with the blend of recycled poly(ethylene terephthalate) (PET) and recycled polyolefin with and without the addition of polypropylene grafted with maleic anhydride and poly(ethylene-co-octene-1). A thermodynamic approach based on the Helmholtz work function was applied in the analysis of mechanical tests, correlating the effects of energy storage and from the compatibilizer on the elastic region of the materials. For the system studied, the polyolefin-rich region shows higher storage of elastic energy corroborating the morphology images obtained from SEM analysis. The thermodynamic analysis seems a useful tool to evaluate the compatibilizer effect in polymeric immiscible blends. In this work, more specifically, this method was used to analyze the mechanical behavior of different compositions of recycled polymeric commodity materials. (author)

  8. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    2010-04-08

    The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additional products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum

  9. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  10. Supporting the development process for building products by the use of research portfolio analysis: A case study for wood plastics composite materials

    OpenAIRE

    Friedrich, Daniel; Luible, Andreas

    2016-01-01

    Today’s plastics are increasingly compounded using renewable fibres. Such composites raised the interest of the massively bulk-plastics consuming building industry. However, “green” products are still rare and their development constitutes a challenge particularly for small companies. Our study evaluated European scientific projects in composites from which we derived a Research Portfolio serving as future matrix for ideation. It was found that research databanks can serve as basis for str...

  11. Elastic-plastic creep response of structures under composite time history

    Energy Technology Data Exchange (ETDEWEB)

    Zudans, Z [Franklin Inst. Research Labs., Philadelphia, Pa. (USA)

    1975-12-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems.

  12. Elastic-plastic creep response of structures under composite time history

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)

  13. All-natural bio-plastics using starch-betaglucan composites

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Kirkensgaard, Jacob Judas Kain; Giosafatto, Concetta Valeria L.

    2017-01-01

    functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β...... BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems....

  14. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-07-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet, in real structural applications, laminated composites can exhibit plasticity and progressive damage initiated mainly by shear loading. We investigated the damage and plasticity induced by the addition of carbon nanotubes to the matrix of a glass fiber/epoxy composite system. We characterized both the modified epoxy resin and the associated modified laminates using classical mesoscale analysis. We used dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy and classical mechanical testing to characterize samples with different concentrations of nanofillers. Since the samples were prepared using the solvent evaporation technique, we also studied the influence of this process. We found that in addition to the global increase in elastic regime properties, the addition of carbon nanotubes also accelerates the damage process in both the bulk resin and its associated glass-fiber composite. © 2013 Elsevier Ltd.

  15. Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni_5Zr eutectic composites

    International Nuclear Information System (INIS)

    Maity, T.; Singh, A.; Dutta, A.; Das, J.

    2016-01-01

    The evolution of microstructure and the mechanical properties of a series of (Ni_0_._9_1_2Zr_0_._0_8_8)_1_0_0_-_xAl_x (0≤x≤4) eutectic composites, constitute of γ-Ni and Ni_5Zr nanolamellar phases, have been presented. Al dissolves in γ-Ni phase preferentially, decreases its hardness and refines the microstructure. Strain rate jump test was performed in order to investigate the rate sensitivity. It has been found that activation volume increases from 39b"3 to 46b"3 upon Al addition. The strain rate sensitivity of the composites has been estimated to be ~0.008. The scanning and transmission electron microscopic studies have confirmed that dislocation meditated flow in nano-lamellar phases dominates the plastic deformation mechanism. Analysis based on Stroh's pile-up model suggests that the required shear stress for slip decreases and that for cleavage crack nucleation increases around a dislocation pile-up at the lamellae interface, upon Al addition. The nano-lamellar Ni_5Zr strengthen the composite, whereas, dislocation slip endorses the global plasticity of high strength Ni-Zr-(Al) nanoeutectic composites.

  16. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid: A Mixture Design study

    Directory of Open Access Journals (Sweden)

    M. K. Fehri

    2016-04-01

    Full Text Available Blends consisting of commercial poly(lactic acid (PLA, poly(lactic acid oligomer (OLA8 as plasticizer and a sulfonic salt of a phthalic ester and poly(D-lactic acid as nucleating agents were prepared by melt extrusion, following a Mixture Design approach, in order to systematically study mechanical and thermal properties as a function of composition. The full investigation was carried out by differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA and tensile tests. The crystallization half-time was also studied at 105 °C as a function of the blends composition. A range of compositions in which the plasticizer and the nucleation agent minimized the crystallization half-time in a synergistic way was clearly identified thanks to the application of the Mixture Design approach. The results allowed also the identification of a composition range to maximize the crystallinity developed during the rapid cooling below glass transition temperature in injection moulding, thus allowing an easier processing of PLA based materials. Moreover the mechanical properties were discussed by correlating them to the chemical structural features and thermal behaviour of blends.

  17. New plastic recycling technology | Science Inventory | US EPA

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy degradation processes. This news column provides a digest of recent technical reports relating to clean technology and environmental policy,

  18. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Directory of Open Access Journals (Sweden)

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  19. Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woo Chae; Kim, Ji Hoon; Yang, In Young [Chosun University, Gwangju (Korea, Republic of); Lee, Kil Sung [Humancomposites CO. Ltd, Gunsan (Korea, Republic of); Cha, Cheon Seok [Dongkang College, Gwangju (Korea, Republic of); Ra, Seung Woo [SEOUL METAL CO. Ltd, Seoul (Korea, Republic of)

    2014-09-15

    In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 0° was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 90° was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

  20. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)

    1999-01-01

    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  2. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    Science.gov (United States)

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  3. AN EXACT ELASTO-PLASTIC SOLUTION OF METAL-MATRIX COMPOSITE CANTILEVER BEAM LOADED BY A SINGLE FORCE AT ITS FREE END

    Directory of Open Access Journals (Sweden)

    Onur SAYMAN

    2001-03-01

    Full Text Available In the present study, an elastic-plastic stress analysis is carried out in a metal matrix composite cantilever beam loaded by a single force at its free end. A composite consisting of stainless-steel reinforced aluminium was produced for this work. The orientation angle of the fibers is chosen as 0°, 30°, 45°, 60° and 90°. The material is assumed to be perfectly plastic in the elasto-plastic solution. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. The composite material is assumed as hardening linearly. The Tsai-Hill theory is used as a yield criterion.

  4. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  5. Japan. Wood-Plastic Composites [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, T. [Central Research Laboratory, Showa Denko K.K., Ota-Ku, Tokyo (Japan)

    1968-10-15

    Radiation chemistry research has made rapid progress in Japan over the last ten years, and many encouraging results have been obtained with radiation polymerization and graft-polymerization as well as in other fields. Several papers on wood-plastic composites (WPC) have been published in Japanese journals, but very little work on actual applications has been reported. This general review of basic studies and studies of the application of WPC in Japan is divided into three parts: radiation methods, chemical methods (catalyst-heat treatment) and the scope of future research and development.

  6. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2014-01-01

    Two plastic wastes obtained as co-products from an industrial process were fed in a pilot-scale bubbling fluidized bed gasifier, having an internal diameter of 0.38 m and a maximum thermal output of about 400 kW. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.2 to 0.3. Olivine, a neo-silicate of Fe and Mg, already tested as a good catalyst for tar removal during gasification of polyolefin plastic wastes, was used as bed material. The results provide the complete composition of the syngas, including the tar, particulate and acid/basic gas contents as well as the chemical and physical characterization of the bed material and entrained fines. The gasification process appears technically feasible, yielding a producer gas of valuable quality for energy applications in an appropriate plant configuration. On the other hand, under the experimental conditions tested, olivine particles show a strongly reduced catalytic activity in all the runs. The differences in the gasification behaviour of the two industrial plastics are explained on the basis of the structure and composition of the wastes, taking also into account the results of a combined material and substance flow analysis. - Highlights: • Pilot-scale investigation of fluidized bed gasification of two industrial plastic wastes. • Tests under conditions of thermal/chemical steady state at various equivalence ratios. • Complete composition of the producer gas, including tar, particulate and acid/basic gases. • Differences in the gasification behaviour of plastic wastes. • Material, substance, and feedstock energy flow analysis for different gasification tests

  7. The Compositional Variation of Microindentation Induced Densified and Plastic Deformation Volumes in Simple Silicate Glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian; Matsuoka, Jun; Yoshida, Satoshi

    2012-01-01

    The densification and plastic deformation occurring in glass subjected to microindentation are established as two independent deformation mechanisms, and thought to be intimately linked to the concept of hardness and crack nucleation (quantified by the load at which radial cracks nucleate at half...

  8. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out

  9. The Tensile Strenght Properties Effect Of Rice-Husk Ash As On The Composite Of Plastic Drinking Bottle Waste

    Directory of Open Access Journals (Sweden)

    Maulida

    2015-04-01

    Full Text Available Abstract Rice-husk ash has a potential to be filler in composite. The study on rice-husk ash utilitation as afiller in polyethylene terephthalate PET matrix of plastic drinking bottle waste was conducted in order to find the ratio of rice-husk ask and PET matrix that would result the best tensile strength which was characterized by using scenning electron microscopy SEM. In this study the PET of plastic drinking bottle waste firstly was cut into smaller pieces and was extruded with the temperature of 265 o C. Then it was mixed with rice-husk ash on ratio of PET plastic drinking bottle waste and rice-husk ash of 955 9010 and 8515. After that it was extruded at temperature of 265 o C before it was pressed by hot press at temperature of 265 o C for five minutes. The highest tensile strength was achieved at 3462 MPa with elongation at break a round 14375 and youngs modulus of 34882 MPa for the ratio of 8515.

  10. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  11. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This work derives the theory, develops efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of this analysis on a real structure. (Auth.)

  12. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.

    Science.gov (United States)

    Reveron, Helen; Fornabaio, Marta; Palmero, Paola; Fürderer, Tobias; Adolfsson, Erik; Lughi, Vanni; Bonifacio, Alois; Sergo, Valter; Montanaro, Laura; Chevalier, Jérôme

    2017-01-15

    Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84vol% Ce-TZP) containing equiaxed alumina (8vol%Al 2 O 3 ) and elongated strontium hexa-aluminate (8vol% SrAl 12 O 19 ) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO 2 in the range 10.0-11.5mol%) on the transformability and mechanical properties of Ce-TZP-Al 2 O 3 -SrAl 12 O 19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0mol% CeO 2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5mol% CeO 2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1GPa) and fracture toughness (>10MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications. Yttria-stabilized (Y-TZP) zirconia ceramics are increasingly used for developing metal-free restorations and dental implants. Despite their success related to their excellent mechanical resistance, Y-TZP can undergo Low Temperature Degradation which could be responsible for restoration damage or even worst the failure of the implant. Current research is focusing on strategies to improve the LTD resistance of Y-TZP or to develop alternative composites with better

  13. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris

    OpenAIRE

    Carter, Dee A.; Oberbeckmann, Sonja; Osborn, A. Mark; Duhaime, Melissa B.

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial com...

  14. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2017-12-01

    Full Text Available Wood-plastic composites (WPCs made by selective laser sintering (SLS approach of 3D printing offer many advantages over single polymer materials, such as low cost, sustainability, and better sintering accuracy. However, WPCs made via SLS are too weak to have widespread applications. In order to increase the mechanical properties of WPCs, a novel type of WPCs containing 0, 0.05, 0.1 and 0.15 wt % carbon nanotubes (CNT, 14 wt % wood fibers, 86 wt % polyether sulfone (PES was manufactured via SLS. The experimental results showed that the addition of small amount of CNTs can significantly increase the mechanical properties of the wood/PES composite material. The tensile strength, bending strength, and elasticity modulus were 76.3%, 227.9%, and 128.7% higher with 0.1 wt % CNTs than those without CNTs. The mechanical properties of specimens first increased and then decreased with the addition of CNTs. The SEM results of the specimens’ fracture morphology indicate that the preferable bonding interfaces between wood flour grains and PES grains were achieved by adding CNTs to the composites. There are two reasons why the composites possessed superior mechanical properties: CNTs facilitate the laser sintering process of WPCs due to their thermal conductivities, and CNTs directly reinforce WPCs.

  16. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.

    Science.gov (United States)

    Sun, Yujie; Hu, Qiongen; Qian, Jiangtao; Li, Ting; Ma, Piming; Shi, Dongjian; Dong, Weifu; Chen, Mingqing

    2016-03-30

    Based on stearyl chloride and native starch, esterified starch were prepared and the chemical structure was characterized by (1)H NMR and FTIR. It was found that stearyl chloride was an efficient agent to fabricate esterified starch with high degree of substitution (DS). During the melt blending of esterified starch (80 wt%) and poly(caprolactone) (PCL, 20 wt%), it was shown the torque of PCL/esterified starch was much lower than that of PCL/native starch without any plasticizer, and further decreased with increasing DS. Compared with PCL/native starch, the tensile properties of PCL/esterified starch composites were significantly enhanced. The tensile strength and elongation at break were increased from 2.7 MPa to 56% for PCL/native starch composites to 9.1 MPa and 626% for PCL/esterified starch ones with DS of 1.50, respectively. SEM observation revealed the esterified starch particles in matrix became smaller and more uniform. In addition, the water resistance and hydrophobic character of PCL/esterified starch composites were improved. PCL composites containing 80 wt% esterified starch with favorable mechanical properties would have great potential applications in broad areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Rajan,Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed

  18. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  20. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  1. Oxygen permeability of nanocomposite-based polyolefin films; Permeabilidade do oxigenio em filmes nanocompositos poliolefinicos

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama-Novak, Jane H.; Amaral, Rafael A.; Ruffino, Vivianne; Habert, A. Claudio; Borges, Cristiano P., E-mail: jane@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Mano, Barbara [BRASKEM S.A., Duque de Caxias, RJ (Brazil)

    2015-07-01

    Polyethylene and polypropylene are vastly employed for packaging due to their high versatility and low cost. However, their films are permeable at different degree to small molecules like gases and the use of additives improves the barrier properties. Therefore, the aim of this work is to investigate the effect of organically modified montmorillonite on oxygen transport properties of PE and PP films. Nanocomposites were prepared by means of polymer dissolution in organic solvent and subsequent nanoparticle addition at 3, 5 and 10% (w/w). Scanning electron microscopy images of the films indicate the presence of microcavities and some agglomerated nanoclay. On the other hand, X-rays diffraction analysis shows clay in well-dispersed state independent of polyolefin type. Enhancement of oxygen barrier is achieved, but this property is dependent on the nanoclay content, polyolefin type and film morphology. (author)

  2. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  3. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    International Nuclear Information System (INIS)

    Blanc, Pauline; Hamel, Matthieu; Dehé-Pittance, Chrystèle; Rocha, Licinio; Pansu, Robert B.; Normand, Stéphane

    2014-01-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared

  4. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Dehé-Pittance, Chrystèle; Rocha, Licinio [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Pansu, Robert B. [Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-06-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared.

  5. Changes in the composition of ichthyoplankton assemblage and plastic debris in mangrove creeks relative to moon phases.

    Science.gov (United States)

    Lima, A R A; Barletta, M; Costa, M F; Ramos, J A A; Dantas, D V; Melo, P A M C; Justino, A K S; Ferreira, G V B

    2016-07-01

    Lunar influence on the distribution of fish larvae, zooplankton and plastic debris in mangrove creeks of the Goiana Estuary, Brazil, was studied over a lunar cycle. Cetengraulis edentulus, Anchovia clupeoides and Rhinosardinia bahiensis were the most abundant fish larvae (56·6%), independent of the moon phase. The full moon had a positive influence on the abundance of Gobionellus oceanicus, Cynoscion acoupa and Atherinella brasiliensis, and the new moon on Ulaema lefroyi. The full and new moons also influenced the number of zoeae and megalopae of Ucides cordatus, protozoeae and larvae of caridean shrimps, and the number of hard and soft plastic debris, both 5 mm. Micro and macroplastics were present in samples from all 12 creeks studied, at densities similar to the third most abundant taxon, R. bahiensis. Cetengraulis edentulus and R. bahiensis showed a strong positive correlation with the last quarter moon, when there was less zooplankton available in the creeks and higher abundance of microplastic threads. Anchovia clupeoides, Diapterus rhombeus, U. lefroyi and hard microplastics were positively associated with different moon phases, when calanoid copepods, Caridean larvae and zoeae of U. cordatus were highly available in the creeks. Cynoscion acoupa, G. oceanicus and A. brasiliensis were strongly associated with the full moon, when protozoeae of caridean shrimps and megalopae of U. cordatus were also highly available, as were hard and soft macroplastics, paint chips (mangrove creeks as nursery habitats. The moon phases influenced the distribution of fish larvae species, zooplankton and plastic debris by changing their compositions and abundances in the mangrove creeks of the Goiana Estuary when under the influence of different tidal current regimes. © 2015 The Fisheries Society of the British Isles.

  6. Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize

    OpenAIRE

    Halász, Katalin; Csóka, Levente

    2013-01-01

    The aim of this work was to study the characteristics of thermal processed poly(lactic acid) composites. Poly(ethylene glycol) (PEG400), microcrystalline cellulose (MCC), and ultrasound-treated microcrystalline cellulose (USMCC) were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorim...

  7. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive

    OpenAIRE

    Montagnier, Olivier; Hochard, Christian

    2011-01-01

    International audience; This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be compu...

  8. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  9. On crack propagation in the welded polyolefin pipes with and without the presence of weld beads

    Czech Academy of Sciences Publication Activity Database

    Mikula, Jakub; Hutař, Pavel; Nezbedová, E.; Lach, R.; Arbeiter, F.; Ševčík, Martin; Pinter, G.; Grellmann, W.; Náhlík, Luboš

    2015-01-01

    Roč. 87, DEC (2015), s. 95-104 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Slow crack growth * Butt weld * Lifetime estimation * Polyolefin pipes * Weld bead Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.997, year: 2015

  10. Stability of levothyroxine injection in glass, polyvinyl chloride, and polyolefin containers.

    Science.gov (United States)

    Frenette, Anne Julie; MacLean, Robert D; Williamson, David; Marsolais, Pierre; Donnelly, Ronald F

    2011-09-15

    The 24-hour stability of a levothyroxine solution admixed and stored in three common infusion containers and infused through polyvinyl chloride (PVC) tubing was evaluated. Levothyroxine sodium 1-μg/mL injection prepared in glass bottles and PVC and polyolefin bags were assayed using high-performance liquid chromatography at 0, 1, 3, 6, 12, and 24 hours; samples drawn directly from the containers, as well as from the distal end of attached PVC tubing, were assayed. The area under the time-versus-concentration curve (AUC) for predicted and delivered doses was calculated; analysis of variance was used for comparison of the percentages of predicted and actual AUC values. The levothyroxine concentration was stable in glass bottles and polyolefin bags through 24 hours (mean ± S.D. percentage of initial concentration remaining, 103.5% ± 2.5% and 100.0% ± 2.9%, respectively). In the PVC infusion bags, the amount of drug decreased to 90% of the initial concentration within 1 hour and then rose and remained within acceptability limits. The levothyroxine concentration of the samples infused through PVC line from glass and polyolefin containers decreased after 1 hour by about 13%; the loss of the drug from the samples infused from PVC bags was higher (18%), presumably due to additive adsorptive effects. In all samples tested, the drug concentration rebounded and remained above 90% to the end of the study. Levothyroxine sodium 1-μg/mL solution was stable for 24 hours in glass bottles and polyolefin bags but when stored in PVC bags, the concentration decreased by 10% after 1 hour.

  11. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  12. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties.

    Science.gov (United States)

    Rahman, Khandkar-Siddikur; Islam, Md Nazrul; Rahman, Md Mushfiqur; Hannan, Md Obaidullah; Dungani, Rudi; Khalil, Hps Abdul

    2013-01-01

    This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm(2), respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.

  14. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  15. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    International Nuclear Information System (INIS)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-01-01

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  16. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  17. An Experimental Study on the Thermal Performance of Phase-Change Material and Wood-Plastic Composites for Building Roofs

    Directory of Open Access Journals (Sweden)

    Min Hee Chung

    2017-02-01

    Full Text Available We assessed the usefulness of phase-change material (PCM-based thermal plates fabricated from wood-plastic composites (WPCs in mitigating the urban heat island effect. The thermal performance of plates containing PCMs with two different melting temperatures and with two different albedo levels was evaluated. The results showed that the PCM with a melting temperature of 44 °C maintained lower surface and inner temperatures than the PCM with a melting temperature of 25 °C. Moreover, a higher surface albedo resulted in a lower surface temperature. However, the thermal performance of PCMs with different melting temperatures but the same surface albedo did not differ. Using PCM-based materials in roof finishing materials can reduce surface temperatures and improve thermal comfort.

  18. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Science.gov (United States)

    Alawdin, Piotr; Bulanov, George

    2017-06-01

    In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  19. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  20. INFLUENCE OF COCONUT SHELL ADDITION ON PHYSICO-MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITES1

    Directory of Open Access Journals (Sweden)

    Éverton Hillig

    2018-04-01

    Full Text Available ABSTRACT In this study, composites with three types of thermoplastic matrix and cellulosic material in a proportion of 40% were produced. The three thermoplastic matrices were high density polyethylene (HDPE, polypropylene (PP and low density polyethylene (LDPE, and the cellulosic materials were pure wood flour (Pinus taeda L or a mixture of wood flour and coconut shell flour (Cocus nucifera L in equal ratios. The objective was to evaluate the influence of addition of coconut shell on the physico-mechanical properties (density, strength and rigidity and the distribution of the cellulosic material in the thermoplastic matrix of the manufactured composites. It was found that the composites had a satisfactory distribution of wood flour in thermoplastic matrices, but the addition of coconut shell promoted bubble formation in the resulting pieces and, thus, interfered with the material properties. The use of a coupling agent promoted interfacial adhesion (cellulose - thermoplastic matrix, which was better in high density polyethylene composites, followed by polypropylene and low density polyethylene. In general, the coconut shell addition caused a decrease of all properties compared to composites made with Loblolly Pine. In addition, the interactions between thermoplastic type and cellulosic matrix type have been statistically confirmed, which caused variations in the studied properties

  1. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  2. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  3. Novel high-strength Fe-based composite materials with large plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzna; Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Siegel, Uwe; Bartusch, Birgit; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2007-07-01

    Among glass-forming alloy systems reported so far, Fe-based bulk metallic glasses play a special role. Compared to other amorphous alloys e.g. Zr-, Ti-based, such glasses show superior mechanical strength. However, due to the general brittleness their wider application as structural materials is strongly restricted. The alternative approach to overcome this defect is to design BMG composites. In this work we present a series of new Fe-Cr-Mo-Ga-(Si,C) composite materials derived from an Fe-Cr-Mo-Ga-C-P-B glassy alloy, with the aim to improve the ductility of this high-strength material. The effect of the composition and the phase formation on the resulting mechanical properties was investigated. It has been found that the formation of a complex microstructure, which essentially consists of soft Ga-rich dendrites embedded in a hard Cr- and Mo-rich matrix, leads to a material with excellent compressive mechanical properties. While the obtained values of true strength are comparable with data reported for Fe-Cr-Mo-Ga-C-P-B BMG, the values of true strain are greatly improved for investigated composites.

  4. Incorporation of Damage and Failure into an Orthotropic Elasto-Plastic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of

  5. Supporting the development process for building products by the use of research portfolio analysis: A case study for wood plastics composite materials

    Directory of Open Access Journals (Sweden)

    Daniel Friedrich

    2016-06-01

    Our study evaluated European scientific projects in composites from which we derived a Research Portfolio serving as future matrix for ideation. It was found that research databanks can serve as basis for strategic innovation planning. We were able to identify several appropriate future technologies and material applications in the field of bio-based plastics composites. Our methodology particularly supports manufacturers with less formalized innovation processes.

  6. Predicting the flexure response of wood-plastic composites from uni-axial and shear data using a finite-element model

    Science.gov (United States)

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2014-01-01

    Wood-plastic composites (WPCs), commonly used in residential decks and railings, exhibit mechanical behavior that is bimodal, anisotropic, and nonlinear viscoelastic. They exhibit different stress-strain responses to tension and compression, both of which are nonlinear. Their mechanical properties vary with respect to extrusion direction, their deformation under...

  7. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  8. Scaling of light emission from detonating bare Composition B, 2,4,6-trinitrotoluene [C7H5(NO2)3], and PE4 plastic explosive charges

    CSIR Research Space (South Africa)

    Mostert, FJ

    2011-10-01

    Full Text Available and configuration. In this study, the emission characteristics at wavelengths between 650 and 940 nm were experimentally investigated for cylindrical bare Composition B, 2,4,6-trinitrotoluene [C7H5(NO2)3], and PE4 plastic explosive charges in the mass (M) range of 0...

  9. Characterization of Wood-Plastic Composites Made with Different Lignocellulosic Materials that Vary in Their Morphology, Chemical Composition and Thermal Stability

    Directory of Open Access Journals (Sweden)

    Ke-Chang Hung

    2017-12-01

    Full Text Available In this study, four kinds of lignocellulosic fibers (LFs, namely, those from Chinese fir (Cunninghamia lanceolata, Taiwan red pine (Pinus taiwanensis, India-charcoal trema (Trema orientalis and makino bamboo (Phyllostachys makinoi, were selected as reinforcements and incorporated into high-density polyethylene (HDPE to manufacture wood-plastic composites (WPCs by a flat platen pressing process. In addition to comparing the differences in the physico-mechanical properties of these composites, their chemical compositions were evaluated and their thermal decomposition kinetics were analyzed to investigate the effects of the lignocellulosic species on the properties of the WPCs. The results showed that the WPC made with Chinese fir displayed a typical M-shaped vertical density profile due to the high aspect ratio of its LFs, while a flat vertical density profile was observed for the WPCs made with other LFs. Thus, the WPC made with Chinese fir exhibited higher flexural properties and lower internal bond strength (IB than other WPCs. In addition, the Taiwan red pine contained the lowest holocellulose content and the highest extractives and α-cellulose contents, which gave the resulting WPC lower water absorption and flexural properties. On the other hand, consistent with the flexural properties, the results of thermal decomposition kinetic analysis showed that the activation energy of the LFs at 10% of the conversion rate increased in the order of Taiwan red pine (146–161 kJ/mol, makino bamboo (158–175 kJ/mol, India-charcoal trema (185–194 kJ/mol and Chinese fir (194–202 kJ/mol. These results indicate that the morphology, chemical composition and thermal stability of the LFs can have a substantial impact on the physico-mechanical properties of the resulting WPCs.

  10. On the Effect of Unit-Cell Parameters in Predicting the Elastic Response of Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Fatemeh Alavi

    2013-01-01

    Full Text Available This paper presents a study on the effect of unit-cell geometrical parameters in predicting elastic properties of a typical wood plastic composite (WPC. The ultimate goal was obtaining the optimal values of representative volume element (RVE parameters to accurately predict the mechanical behavior of the WPC. For each unit cell, defined by a given combination of the above geometrical parameters, finite element simulation in ABAQUS was carried out, and the corresponding stress-strain curve was obtained. A uniaxial test according to ASTM D638-02a type V was performed on the composite specimen. Modulus of elasticity was determined using hyperbolic tangent function, and the results were compared to the sets of finite element analyses. Main effects of RVE parameters and their interactions were demonstrated and discussed, specially regarding the inclusion of two adjacent wood particles within one unit cell of the material. Regression analysis was performed to mathematically model the RVE parameter effects and their interactions over the modulus of elasticity response. The model was finally employed in an optimization analysis to arrive at an optimal set of RVE parameters that minimizes the difference between the predicted and experimental moduli of elasticity.

  11. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  12. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  13. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  14. Radiation processing of composite materials on the basis of coconut hair and plastics

    International Nuclear Information System (INIS)

    Owolabi, O.; Czvikovszky, T.

    1983-01-01

    Composite materials containing coconut hair as fibrous reinforcements and synthetic polyester resin as matrix were prepared. The coconut hair, together with the unsaturated polyester resin and other required ingredients (fillers, complexing agents, etc.) were pre-processed in a BRABENDER-type kneader or similar equipment to produce a bulk moulding compound ('BMC' or 'Premix') and later hot pressed for 10 minutes at 130 degC and 30 bars to produce sheets of 2 mm thickness. The tensile-, flexural- and impact strength of the sheets were measured and served as the main basis of comparison. The effect of increasing coconut hair percentage was studied. The effect of preirradiation of the coconut hair, pretreatment with hot sodium hydroxide solution and a combination of the two, to improve the coupling of the coconut hair and synthetic polyester were also studied. Composite materials were also made from a mixture of coconut hair and chopped glass fibers as reinforcements in the same BMC material. The radiation-treated coconut fiber gives a useful composite material for hot-press moulding. (author)

  15. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    Science.gov (United States)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  16. Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties.

    Science.gov (United States)

    Muneer, Faraz; Andersson, Mariette; Koch, Kristine; Menzel, Carolin; Hedenqvist, Mikael S; Gällstedt, Mikael; Plivelic, Tomás S; Kuktaite, Ramune

    2015-03-09

    In the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C. The nanomorphology of the composites showed the MPS having semicrystalline structure of a characteristic lamellar arrangement with an approximately 100 Å period observed by small-angle X-ray scattering and a B-type crystal structure observed by wide-angle X-ray scattering analysis. WG has a structure resembling the hexagonal macromolecular arrangement as reported previously in WG films. A larger amount of β-sheets was observed in the samples 70/30 and 30/70 WG-MPS processed at 130 °C with 45% glycerol. Highly polymerized WG protein was found in the samples processed at 130 °C versus 110 °C. Also, greater amounts of WG protein in the blend resulted in greater extensibility (110 °C) and a decrease in both E-modulus and maximum stress at 110 and 130 °C, respectively. Under ambient conditions the WG-MPS composite (70/30) with 45% glycerol showed excellent gas barrier properties to be further explored in multilayer film packaging applications.

  17. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  18. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition

    Science.gov (United States)

    2015-05-01

    Liquid Chromatography (HPLC) Method. Fresenius J. Anal. Chem. 1996, 356, 445–451. 5. Ivy, M.A.; Gallagher, L.T.; Ellington, A.D.; Anslyn, E.V...6. Wypych, G. Handbook of Plasticizers; ChemTec Publishing: Ontario, Canada, 2004. 7. Mayer, M.; Meyer, B . Characterization of Ligand Binding

  19. Thermal Oxidation of Polyolefins by Mild Pro-Oxidant Additives Based on Iron Carboxylates and Lipophilic Amines: Degradability in the Absence of Light and Effect on the Adhesion to Paperboard

    Directory of Open Access Journals (Sweden)

    Tuan-Anh Nguyen

    2015-08-01

    Full Text Available Marine and inland pollution by non-degradable plastic bags and other plastic articles is a topic of great concern. Natural degradation processes based on oxidation of plastic pollutants could possibly contribute to limit the extent of pollution. Thermal degradation of polyolefins in the absence of light by non-polluting pro-oxidants has not been presented before. In this study, we show that two amines, stearyl amine and [(3-(11-aminoundecanoyl amino propane-1-] silsesquioxane (amino-POSS in combination with ferric stearate (FeSt3 tremendously accelerate the thermal oxidation of polyolefins compared with reference samples. Both amines and FeSt3 are to a large extent based on renewable resources. Polyethylene and polypropylene samples containing less than 100 ppm of iron and 1% of amine were extremely brittle after 10 days in a circulation oven in the absence of light. No significant degradation could be seen with samples containing iron but no amine. In a different application, the initial oxidation of polyethylene can be used in order to increase its adhesion to cardboard. Excellent adhesion between polyethylene and cardboard is important for liquid packaging based on renewable resources. Amino-POSS has been chosen for food packaging applications due to its expected lower leakage from polyethylene (PE compared with stearyl amine. Film samples of PE/amino-POSS/FeSt3 blends were partly oxidized in a circulation oven. The oxidation was documented by increased carbonyl index (CI and melt flow index (MFI. The limited extent of oxidation has been proved by unchanged tensile strength and only moderate changes in elongation at break when compared to reference polyethylene films containing no FeSt3 or amino-POSS. The PE/amino-POSS/FeSt3 blends were compression moulded to paperboard. The adhesion of non-aged blends to paperboard decreased with increasing amino-POSS content which is in good compliance with an earlier reported lubricant effect of high

  20. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    Science.gov (United States)

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  1. Production of polymer composites by radiation and chemical treatments from recycled plastic wastes and their applications

    International Nuclear Information System (INIS)

    Khaffaga, M.R.A.

    2009-01-01

    Different applied methods have been proposed for the recycling of poly (ethylene terephthalate)(PET) and its blends with other polymers to obtain useful products. These methods are based on blending with different polymers or compounding with radiation synthesized copolymers based on maleic anhydride with methyl methacrylate, styrene and vinyl acetate. On the other hand, the methods proposed to improve the miscibility of mixed polymers are based on different methods of gamma and electron beam irradiation at various doses (30-50 kGy). Also , the addition of compatibilizers based on LDPE graft copolymer with comonomer composed of ethylene glycol (EG) and acrylic acid (AAc) as well as radiation synthesized copolymer based on acrylic acid and styrene (Sty) monomers during mixing. The modified properties were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), mechanical testing and studying the affinity for acid, based and disperse dyes. Based on the results obtained throughout this work, few conclusions may made:(1) The composites of PET with copolymers is effective than the blending with other polymers. (2) The pre method of gamma or electron beam irradiation is effectively improved the miscibility of PET/LDPE or PET/PS blends than the direct method of irradiation.(3) The addition of EG/AAc or AAc/Sty copolymers during mixing improved the miscibility than the use of graft copolymer.

  2. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    Science.gov (United States)

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  4. Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case

    Directory of Open Access Journals (Sweden)

    Cíntia Madureira Orth

    2012-06-01

    Full Text Available The production of fiberglass reinforced plastic composite parts may cause serious damages to the health of workers and/or the environment, especially due to the generation of process trimmings, noise level and gas emission.  In view of that, this essay aims at assessing the main impacts of the Molding and Finish processes of an automotive plant on the environment and occupational health. It was observed that the open molding method adopted by the studied plant is the main cause of the generation of residues and that the waste of raw materials as trimmings may reach up to 30%. The final destination of those trimmings, which represent 45% of all the residues generated by the factory, is the industrial landfill. It was also observed that, due to the use of open molds, the levels of styrene and fiber dust were above the tolerance limits, presenting risks to the health of the workers.  Therefore, the studied company should consider the possibility of adopting less aggressive technologies, such as that used in closed molds. The reduction of the negative impacts of the productive processes in their source should be part of the company’s policy. Furthermore, the prevention must be continuous and improved every day.

  5. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  6. Development and Characterization of a Rate-Dependent Three-Dimensional Macroscopic Plasticity Model Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2015-01-01

    Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material

  7. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    Science.gov (United States)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  9. Polyamide 4,6 nanocomposites with and without the use of a maleated polyolefin elastomer as a toughener

    International Nuclear Information System (INIS)

    Chiu, Fang-Chyou; Deng, Tsung-Lin

    2011-01-01

    In this study, polyamide 4,6 (PA 4,6)-based nanocomposites were successfully prepared using a twin screw extruder. A commercial organo-montmorillonite (denoted as 30B) and a commercial maleated polyolefin elastomer (denoted as POEMA) served as the reinforcing filler and toughener, respectively. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results confirmed the nano-scaled dispersion of 30B in the composites. Nevertheless, the presence of POEMA slightly depreciated the dispersibility of 30B. Polarized light microscope (PLM) observations showed that the inclusions of 30B and POEMA led to the formation of diffused/broken PA 4,6 spherulites. Differential scanning calorimetry (DSC) results indicated that the addition of 30B retarded the crystallization of PA 4,6; the addition of POEMA led to a similar retardation effect on PA 4,6 crystallization. Interesting melting behaviors associated mainly with the crystal annealing of PA 4,6 upon heating were observed for the fast-cooled samples. The presence of POEMA was noted to hamper the annealing process of PA 4,6 crystals. The thermal stability enhancement of PA 4,6 in the presence of 30B was further raised to a higher extent when POEMA was included in the matrix. The rigidity, including the storage/Young's/flexural moduli, of PA 4,6 significantly increased after adding 30B. These properties, however, declined after the additional incorporation of POEMA. The PA 4,6/POEMA/30B nanocomposites basically displayed balanced impact strength between those of the neat PA 4,6 and PA 4,6/POEMA blends.

  10. Possible preparation of wood-plastic composites based on unsaturated polyester resins and styrene by radiation and chemical methods in combination

    International Nuclear Information System (INIS)

    Pesek, M.; Pultar, F.; Jarkovsky, J.; Andr, J.

    1983-01-01

    Using the radiation chemical method it is possible to prepare wood-plastic composites using doses of 1 to 2.5 kGy. The impregnation mixture in the wood gelatinates and subsequent curing using chemical initiators takes place without outflow of the mixture from the wood and without formation of incrustations. The basic components of the impregnation mixtures used were unsaturated polyester resins; styrene or methyl methacrylate was used as the thinner. The proven initiator of polymerization was 2,2'-azobisisobutyronitrile. The technology is described of wood impregnation and radiation or chemical curing. The effects were monitored of viscosity, temperature, radiation dose and the concentrations of the individual components of the impregnation mixtures and initiators of polymerization on the process of the preparation of wood-plastic composites. (M.D.)

  11. Efeitos do tipo de poliestireno de alto impacto nas propriedades de compósitos termoplásticos com farinha de resíduo de madeira The effects of the high impact polystyrene morphology on the properties of wood-plastic composites

    Directory of Open Access Journals (Sweden)

    Wladimir L. Vianna

    2004-12-01

    molhabilidade do reforço pela resina e as interações reforço-matriz.The technology of wood-plastics composites includes concepts of compatibility and processability, with important challenges to optimize grade formulations, processing and stabilization of the composite system. Owing to the low thermal stability in wood flour processing, commodities such as polyolefins, styrene and polyvinylchloride represent the large majority of the thermoplastics employed in cellulosic composites. High impact polystyrene (HIPS is a versatile thermoplastic as a result of variations in composition and morphology of the rubber dispersed phase in the styrenic matrix. In addition to its relatively low processing temperature, such characteristics make HIPS a suitable polymer for wood-plastic composite applications as an optimum stiffness-toughness balance can be achieved by fine control of HIPS morphological parameters and the composite formulation. In the present study, commercial grades of HIPS with different flow index and particle size distribution were used in the preparation of wood-plastic composites. The mechanical properties and the heat distortion temperatures of the composites are discussed in terms of the HIPS characteristics and the filler content in the composite. By simply applying the rule of mixtures, it was shown that owing to their relatively low specific gravity, the wood waste flour might be cost-effective in replacing mineral fillers or glass fibers in plastic composites with a better performance in terms of specific strength and rigidity. Electron microscopy analysis of fractured surfaces was used to illustrate wood flour dispersion, wettability and matrix-filler interactions.

  12. Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2

    Directory of Open Access Journals (Sweden)

    Jesica Castelo-Quibén

    2018-05-01

    Full Text Available Metal–carbon–carbon nanofibers composites obtained by catalytic pyrolysis of urban plastic residues have been prepared using Fe, Co or Ni as pyrolitic catalysts. The composite materials have been fully characterized from a textural and chemical point of view. The proportion of carbon nanofibers and the final content of carbon phases depend on the used pyrolitic metal with Ni being the most active pyrolitic catalysts. The composites show the electro-catalyst activity in the CO2 reduction to hydrocarbons, favoring all the formation of C1 to C4 hydrocarbons. The tendency of this activity is in accordance with the apparent faradaic efficiencies and the linear sweep voltammetries. The cobalt-based composite shows high selectivity to C3 hydrocarbons within this group of compounds.

  13. Characteristic of bioplastic’s physical and mechanical (Study on Tapioca Concentration and Composition Mixture of Plasticizer

    Directory of Open Access Journals (Sweden)

    Bambang Admadi Harsojuwono

    2016-03-01

    Full Text Available This study aims to (1 the effect of the concentration of starch and  ratio mixture of plasticizer to the physical and mechanical characteristics of bioplastics (2 determine the concentration of starch and plasticizer RATIO mixture  that results in physical and mechanical characteristics of bio plastics best. The experiment was conducted using a factorial randomized block design. The first factor is the concentration of tapioca consisting of 3 levels 4%, 5% and 6% (w / w. The second factor is the   mixture plasticizer ratio  of glycerol and sorbitol   consisting of 5 levels ie (100: 0%, (95: 5%, (90:10%, (85:15%, (80:20% b / b. Each combination of treatments classified into 2 time  processing bio plastics, so there are 30 experimental units. Variables observed water content, elongation at break, tensile strength and Young's modulus . The data obtained were analyzed of variant and  test of Duncan's. The results showed that the concentration of tapioca and  mixture plasticizer had no effect on water content but significant effect on the elongation at break, tensile strength and Young's modulus. The concentration of starch 6% with a ratio of mixture of plasticizers glycerol: sorbitol ( 100: 0 produces the best characteristics of bioplastics with water content of 3.98%, elongation at break of 18.75%, the tensile strength of 930 MPa and a Young's modulus of 50 MPa.

  14. The effect of recycled Natural Rubber Glove (rRG) Plasticizers to Deflection and Flexural Strength Properties of PP/MMt/rRG Smart Composites and Its Inflammability

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Saputri, L. N. M. Z.; Ariesta, N.

    2018-03-01

    Had been synthesized PP/rRG/MMt+ZB smart material composite in solution reactive processes with various rRG concentration. The addition of rRG plasticizers will improve the deflection properties and increase the filler capacity MMt loading to reach the optimum concentration. The addition of 3% rRG is capable of loading filler capacity MMt to 23% as the optimum condition. At the optimum conditions it can increase the deflection (Defl) and flexural strength (FS) up to 16% and 15% respectively compared to that of the composites without rRG. The rRG plasticizer serves as a bio-compatibilizer that can reduce surface tension of the mixture and leads to decrease the Defl., follow by the increase of loading filler capacity and well interaction finally can increase the FS properties. The increase of loading filler MMt up to 23% can also improve the inflammability of the composites. Time to Ignition (TTI) increase by 5% and Burning Rate (BR) decrease by 4.5% compared to that of the composites which is containing MMt 20% without rRG.

  15. An applied investigation of corn-based distillers dried grains with solubles in the production of natural fiber-plastic composites

    Science.gov (United States)

    Castillo, Hugo Eudosio

    The main objective of this research was to examine uses for distillers dried grains with solubles (DDGS), a coproduct of ethanol production plant, in the fiber-reinforced plastic composites industry. Initially the effort intended to take advantage of the DDGS components, using chemical reactions, to produce coupling agents to improve the physical properties of the composite. Four different chemicals plus water were used to convert proteins into soluble amino acids. The results were not as expected, and appeared to show an early pyrolysis of DDGS components. This may be due to regeneration of proteins when pH of solutions is neutralized. Procedures were then investigated to utilize DDGS for different markets. Considering that oils and proteins of DDGS can thermally decompose, it seemed important to separate the major components and work with DDGS fiber alone. A procedure to extract oil from DDGS using ethanol and then to hydrolyze proteins with ethanol diluted with water, acid and sodium sulfite, was developed. The resulting DDGS fiber or residual material, with a low content of oil and proteins, was used as filler in a propylene matrix with a lubricant and coupling agent to make natural fiber plastic composites (NFPC). Composites containing wood flour (WPC) were prepared simultaneously with those of DDGS fiber to compare tensile properties and fracture surfaces of the specimens by scanning electron microscope (SEM). This study demonstrates that DDGS fiber can replace wood fiber as a filler in NFPC.

  16. Study of elastic and thermal parameters of a composite material fluoro-plastic - thermo-exfoliated graphite by photothermoacoustic method

    International Nuclear Information System (INIS)

    Kozachenko, V.V.; Kucherov, I.Ya.; Revo, S.L.

    2004-01-01

    Full text: The composite materials (CM) with success are widely used in a science and in an industry. From the practical point of view important for CM the mechanical and thermal properties are. Therefore, study of these properties for them is the important problem. At change of a temperature state of materials of their property in many cases are featured by combinations of elastic and thermal parameters E/1-σ=E n and χ/ρc=D T , where E, -σ, ρ and c are the Young's modulus, Poisson's ratio, thermal conductivity coefficient, density and specific heat of materials, respectively. Now for examination of substances in various aggregate states has received development a photothermoacoustic (PTA) method. As shown in this work, use a PTA method with piezoelectric detection of a PTA signal from a layered plate, under certain conditions, allows immediately determining the reduced Young's modulus E n and thermal diffusivity D T . Therefore, the purpose of this work was study the PTA effect with piezoelectric detection of an informative signal from CM. Were explored steel-copper CM such as 'sandwich' and fluoro plastic-thermo exfoliated graphite FP-TEG CM. Explored triplex structure as a plate made of a CM sample and a two-layer piezoelectric transducer. The surface of a CM is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. The rather low frequencies of modulation are considered, at which length of ultrasonic waves is much more than the reference sizes of structure (quasi-static approach). The amplitudes ratio and phase difference of voltages oscillations taken from separate layer of piezoelectric transducer, as functions of physical and geometrical parameters of structure and a frequency of a light flux modulation is found. Experimentally the

  17. Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132 deg. C and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162 deg. C, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  18. Electrochemical properties of polyolefine nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Park, Keung-Shik; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Pill-Kwang [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132degC and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162degC, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  19. Combating oil spill problem using plastic waste.

    Science.gov (United States)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags.

    Science.gov (United States)

    DeAngelis, Michael; Ferrara, Alexander; Gregory, Kaleigh; Zammit, Kimberly; Zhao, Fang

    2018-04-01

    Adenosine is a potent endogenous mediator of vasodilation. Compounded sterile solutions of adenosine are used in cardiac catheterization lab to perform stress tests on the heart. These tests are used to determine the fractional flow reserve (FFR) and are commonly used in the management and diagnosis of cardiovascular conditions. The purpose of this study was to assess the physical and chemical stability of 2 mg/mL adenosine in 0.9% Sodium Chloride Injection, USP in polyvinyl chloride [PVC]) and polyolefin infusion bags stored at room temperature (20°C-25°C) and under refrigeration (2°C-8°C). The compounding and analytical methods used in this study were very similar to those described in the prior publications from the authors' laboratory. To ensure a uniform starting concentration of all stability samples, a batch of 2 mg/mL adenosine solution was prepared and then packaged into empty PVC and polyolefin infusion bags. These stability samples were prepared in triplicate for each bag type and storage temperature (a total of 12 samples). The infusion bag samples were assessed for stability immediately after preparation and after 1 day, 3 days, 7 days, and 14 days. At each time point, the infusion bags were first visually inspected against a light background for color change, clarity, and particulates. Aliquots were drawn from each sample at each time point for pH analysis and high-performance liquid chromatography (HPLC) analysis. Over 14 days of storage at room temperature or refrigeration, no considerable change in visual appearance or pH was observed in any bags. All samples retained 90% to 110% of the initial drug concentration. No significant degradation peaks were observed in the HPLC chromatograms.

  1. Compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in multilayer polyolefin containers.

    Science.gov (United States)

    Bougouin, Christelle; Thelcide, Chloë; Crespin-Maillard, Fabienne; Maillard, Christian; Kinowski, Jean Marie; Favier, Mireille

    2005-10-01

    The compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in 5% dextrose injection and 0.9% sodium chloride injection was studied. Test solutions of ondansetron hydrochloride 0.16 mg/mL and methylprednisolone sodium succinate 2.4 mg/mL were prepared in triplicate and tested in duplicate. Total volumes of 4 and 2 mL of ondansetron hydrochloride solution and methylprednisolone sodium succinate solution, respectively, were added to 50-mL multilayer polyolefin bags containing 5% dextrose injection or 0.9% sodium chloride injection. Bags were stored for 24 hours at 20-25 degrees C and for 48 hours at 4-8 degrees C. Chemical compatibility was measured with high-performance liquid chromatography, and physical compatibility was determined visually. Ondansetron hydrochloride was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Methylprednisolone sodium succinate was stable for up to 48 hours at 4-8 degrees C. When stored at 20-25 degrees C, methylprednisolone sodium succinate was stable for up to 7 hours in 5% dextrose injection and up to 24 hours in 0.9% sodium chloride injection. Compatibility data for solutions containing ondansetron hydrochloride plus methylprednisolone sodium succinate revealed that each drug was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Ondansetron 0.16 mg/mL (as the hydrochloride) and methylprednisolone 2.4 mg/mL (as the sodium succinate) mixed in 50-mL multilayer polyolefin bags were stable in both 5% dextrose injection and 0.9% sodium chloride injection for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C.

  2. Utilization possibilities of hydrocarbon fractions obtained by waste plastic pyrolysis: energetic utilization and applications in polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Miskolczi, Norbert; Borsodi, Nikolett; Angyal, Andras [University of Pannonia, MOL Department of Hydrocarbon and Coal Processing (Hungary)], email: mnorbert@almos.uni-pannon.hu, email: borsodinikolett@almos.uni-pannon.hu, email: angyala@almos.uni-pannon.hu

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are urgently needed. Each year about 300M tons of plastic wastes are produced world-wide and governments are now focusing on recycling and reusing these products to save significant amounts of energy. The aim of this paper was to analyze the products which can be obtained from waste plastic and determine their possible uses. Pyrolysis of commercial waste plastics was done in a reactor at 500-600 degree celsius and the products were then analyzed using several methods. Results showed that the pyrolysis produces gases, naphtha, middle distillates and heavy oils. The properties of these products were also determined and it was found that they have the potential to be used in fuel-like and additive producing applications. This study highlighted that pyrolysis of waste polymers can yield useful products.

  3. IMAGING WOOD PLASTIC COMPOSITES (WPCs: X-RAY COMPUTED TOMOGRAPHY, A FEW OTHER PROMISING TECHNIQUES, AND WHY WE SHOULD PAY ATTENTION

    Directory of Open Access Journals (Sweden)

    Lech Muszyński

    2009-08-01

    Full Text Available Wood plastic composites are complex, anisotropic, and heterogeneous materials. A key to increasing the share of the WPC materials in the market is developing stronger, highly engineered WPCs characterized by greater structural performance and increased durability. These are achieved by enhanced manufacturing processes, more efficient profile designs, and new formulations providing better interaction between the wood particles and the plastic matrix. Significant progress in this area is hard to imagine without better understanding of the composite performance and internal bond durability on the micro-mechanical level, and reliable modeling based on that understanding. The objective of this paper is to present a brief review of promising material characterization techniques based on advanced imaging technologies and inverse problem methodology, which seem particularly suitable for complex heterogeneous composites. Full-field imaging techniques and specifically X-ray computed tomography (CT combined with numerical modeling tools have a potential to advance the fundamental knowledge on the effect of manufacturing parameters on the micromechanics of such materials and their response to loads and environmental exposure.

  4. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    Energy Technology Data Exchange (ETDEWEB)

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  5. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    International Nuclear Information System (INIS)

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-01-01

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology

  6. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  7. Hybrid-Plus in lightweight construction? Metal-plastic composites; Hybrid-Plus in Struktur-Leichtbauweise? Metall-Kunststoffverbund

    Energy Technology Data Exchange (ETDEWEB)

    Michel, P [Rehau AG und Co., Rehau (Germany)

    2008-07-01

    New dimensions in lightweight structures construction are expected from an advanced technology that produces one hundred percent positively bonded plastic-metal bonds with highly interesting features. The example of a car boot cover is presented to illustrate the technology. (orig.)

  8. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites.

    Science.gov (United States)

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-12-08

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

  9. Propagation/depropagation equilibrium and structural factors in the radiation degradation of poly(olefin sulfone)s

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects

  10. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    Science.gov (United States)

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  12. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  13. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching

    DEFF Research Database (Denmark)

    Neubauer, Nicole; Scifo, Lorette; Navratilova, Jana

    2017-01-01

    The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigm...... investigated scenarios, with upper limits of 10 mg/m2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE)....

  14. Irradiatable polymer composition with improved oxidation resistance

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1977-01-01

    A method is described for the incorporation of a substantially insoluble organic phosphite into a polymer composition such as polyolefin polymers or ethylene copolymers to prevent oxidation of the polymer at elevated temperatures after radiation-induced crosslinking. The crosslinking is readily achieved without affecting the antioxidant properties of the organic phosphite. Particularly suitable organic compounds are derivatives of pentaerythritol, dipentaerythritol, and tripentaerythritol in cooncentrations of 1 to 3% of the mixture to be irradiated

  15. Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films

    Science.gov (United States)

    2014-01-01

    A novel hybrid binder system for extrudable composite propellant,” International Journal of Energetic Materials and Chemical Propulsion, Vol. 11...Vol. 27, No. 5, 2002, pp. 262-266. 6 Wang, Y., Travas-Sejdic, J., Steiner, R., “Polymer gel electrolyte supported with microporous polyolefin

  16. Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1991-06-01

    In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs

  17. Synthesis of Highly Branched Polyolefins Using Phenyl Substituted α-Diimine Ni(II Catalysts

    Directory of Open Access Journals (Sweden)

    Fuzhou Wang

    2016-04-01

    Full Text Available A series of α-diimine Ni(II complexes containing bulky phenyl groups, [ArN = C(NaphthC = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1; Ar = 2,4-Me2-6-PhC6H2 (C2; Ar = 2-Me-4,6-Ph2C6H2 (C3; Ar = 4-Me-2,6-Ph2C6H2 (C4; Ar = 4-Me-2-PhC6H3 (C5; Ar = 2,4,6-Ph3C6H2 (C6, were synthesized and characterized. Upon activation with either diethylaluminum chloride (Et2AlCl or modified methylaluminoxane (MMAO, all Ni(II complexes showed high activities in ethylene polymerization and produced highly branched amorphous polyethylene (up to 145 branches/1000 carbons. Interestingly, the sec-butyl branches were observed in polyethylene depending on polymerization temperature. Polymerization of 1-alkene (1-hexene, 1-octene, 1-decene and 1-hexadecene with C1-MMAO at room temperature resulted in branched polyolefins with narrow Mw/Mn values (ca. 1.2, which suggested a living polymerization. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature and types of monomers.

  18. Execution of a protocol for the supplier selection of a high density polyolefin

    International Nuclear Information System (INIS)

    Flores Pina, Lizette

    2013-01-01

    A new supplier of high-density polyolefin is selected for a medical industry, as a contingency plan in case the current provider presents problems of raw material supply. The Purchasing Department has coordinated the selection of the new resin supplier, providing high quality standards, deadlines and convenient price. The new resin obtained from the new provider was subjected to the protocol. The necessary tests were established for the comparison between the two resins (resin current and new resin). The tests were executed in a laboratory supported by the company in the United States. The tests most significant have corresponded to infrared Fourier transform tests, differential scanning calorimetry, melt flow rate and thermo gravimetry. Tests have defined the main characteristics of both resins with positive results and complying with the specifications set by the protocol. The two resins were established as such to be used in the production process of the product. Comparison phase of results are completely proceeding to execute the validation of the resin to run a test then preset design [es

  19. Explanation of enhanced mechanical degradation rate for radiation- aged polyolefins as the aging temperature is decreased

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.; Wise, J.; Malone, M.G.

    1994-01-01

    Degradation rates are normally increased by increasing the responsible environmental stresses. We describe results for a semi-crystalline, crosslinked polyolefin material that contradicts this assumption. In particular, under combined radiation plus thermal environments, this material mechanically degrades much faster at room temperature than it does at elevated temperatures. The probable explanation for this phenomenon relates to the importance on mechanical properties of the tie molecules connecting crystalline and amorphous regions. Partial melting and reforming/ reorganization of crystallites occurs throughout the crystalline melting region (at least room temperature up to 126 C), with the rate of such processes increasing with an increase in temperature. At low temperatures, this process is sufficiently slow such that a large percentage of the radiation-damaged tie molecules will still connect the amorphous and crystalline regions at the end of aging, leading to rapid reductions in tensile properties. At higher temperatures, the enhanced annealing rate will lead, during the aging, to the establishment of new, undamaged tie molecules connecting crystalline and amorphous regions. This healing process will reduce the degradation rate. Evidence in support of this model is presented

  20. Channeling Polyolefin Molecular Structure - Bulk Property Correlation Strategies for Industrial Applicability

    Science.gov (United States)

    Hule, Rohan; Thurman, Derek; Doufas, Antonios

    Polyolefins occupy a significant volume of the polymer products portfolio in commodity and high value applications. Quantifying and optimizing structure-property relationships enables growth in new markets. It is well recognized that coupling lab-based, comprehensive methodologies with bulk properties of interest to industrial environments offer the greatest potential of technology advancement, ultimately leading to commercial success. It is imperative to recognize the existing gap of knowledge translation between lab measurements and industrial-scale operability. This study highlights experimental HDPEs synthesized from dual, single-site, co-supported catalysts that exhibit enhanced solid-state properties such as stiffness, impact and ESCR surpassing conventional trends. Commercial resins across distinct sub-families were included as well. Commonality amongst these resins is bimodality and broad MW distribution with well-defined splits and spreads. Investigations on commercially relevant parameters such as melt strength, melt elasticity and shear thinning established excellent performance for experimental bimodals, corroborating potential benefits compared to commercial HDPEs. To summarize, the effort highlights well-recognized pathways such as improvements in mechanical and melt properties that can be attributed to apposite tuning of polymer chain architecture and MW distribution with implications across myriad markets. Ultimately, this may serve as a pathway for producing innovative products that deliver business success and growth.

  1. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar; Lubineau, Gilles

    2013-01-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet

  2. Development of a composite polyethylene--fiberglass-reinforced-plastic high-integrity container for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Lowenberg, H.; Shaw, M.D.

    1989-01-01

    This paper reports on a program to develop a high-integrity container (HIC) for handling, transportation, and disposal of low-level radioactive wastes. The HIC, made of a composite material, consists of an inner layer of polyethylene bonded to an outer casing of fiberglass-reinforced plastic. Preliminary handmade prototype units containing about 0.22 m 3 , called HIC-7, have been fabricated and exposed to some of the U.S. Nuclear Regulatory Commission (NRC) and state tests. The HICs withstood over twice the external pressure from maximum burial conditions and twice the Type A package internal pressure requirements. In addition, freedrops on compacted soil and an unyielding surface showed no deleterious effects

  3. Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite

    International Nuclear Information System (INIS)

    Peters, F; Wieneke, S; Ohms, G; Viöl, W; Hünnekens, B; Militz, H

    2017-01-01

    In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s. (paper)

  4. Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite

    Science.gov (United States)

    Peters, F.; Hünnekens, B.; Wieneke, S.; Militz, H.; Ohms, G.; Viöl, W.

    2017-11-01

    In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s.

  5. Compatibility of butorphanol with granisetron in 0.9% sodium chloride injection packaged in glass bottles or polyolefin bags.

    Science.gov (United States)

    Chen, Fu-Chao; Xiong, Hui; Liu, Hui-Min; Fang, Bao-Xia; Li, Peng

    2015-08-15

    The stability of admixtures containing butorphanol and granisetron in polyolefin bags and glass bottles stored at 4 and 25 °C was studied. Commercial solutions of butorphanol tartrate and granisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL; the resulting mixtures were packaged in polyolefin bags and glass bottles. The admixtures were assessed for periods of up to 48 hours after storage at 25 °C without protection from room light and up to 14 days at 4 °C with protection from room light. The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against room light and dark backgrounds. HPLC analysis demonstrated that the percentages of the initial concentrations of butorphanol and granisetron in the various solutions remained above 97% during the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL in 0.9% sodium chloride injection in polyolefin bags or glass bottles remained stable for 48 hours when stored at 25 °C exposed to room light and for 14 days when stored at 4 °C protected from room light. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    Science.gov (United States)

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  7. Comparative Life Cycle Studies on Poly(3-hydroxybutyrate)-Based Composites as Potential Replacement for Conventional Petrochemical Plastics

    NARCIS (Netherlands)

    Pietrini, M.; Roes, A.L.; Patel, M.K.; Chiellini, E.

    2007-01-01

    A cradle-to-grave environmental life cycle assessment (LCA) of a few poly(3-hydroxybutyrate) (PHB) based composites has been performed and was compared to commodity petrochemical polymers. The end products studied are a cathode ray tube (CRT) monitor housing (conventionally produced from high-impact

  8. Tensile and Water Absorption Properties of Biodegradable Composites Derived from Cassava Skin/ Polyvinyl Alcohol with Glycerol as Plasticizer

    International Nuclear Information System (INIS)

    Dayangku Intan Munthoub; Wan Aizan Wan Abdul Rahman

    2011-01-01

    Natural organic and abundant resources biopolymers received more attention due to their low cost, availability and degradability after usage. Cassava skin was used as natural fillers to the polyvinyl alcohol (PVA). Cassava skin/ poly vinyl alcohol blends were compounded using melt extrusion twin screw extruder and test samples were prepared using the compression method. Various ratios of cassava skin and glycerol were investigated to identify suitable composition based on the water absorption and tensile properties. The water absorption of the cassava skins/ PVA samples increased at higher composition of cassava skin due to their hydrophilic properties but decrease with glycerol content. The strength of the cassava skins/ PVA samples increased with the higher composition of cassava skin up to 70 wt % while gradually decreased with the increasing composition of glycerol. The Young modulus increased with glycerol content but decreased with fibre loading up to 70 wt %. Elongation at break decreased with fibre loading and glycerol up to 70 wt % and 30 phr, respectively. (author)

  9. Plasticity and fracture modeling of three-layer steel composite Tribond® 1200 for crash simulation

    NARCIS (Netherlands)

    Eller, Tom; Ramaker, Kenny; Greve, Lars; Andres, M.T.; Hazrati Marangalou, Javad; van den Boogaard, Antonius H.

    2017-01-01

    A constitutive model is presented for the three-layer steel composite Tribond® 1200. Tribond® is a hot forming steel which consists of three layers: a high strength steel core between two outer layers of ductile low strength steel. The model is designed to provide an accurate prediction of the

  10. Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer

    Science.gov (United States)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Sharanappa, Chapi; Raghu, S.; Devendrappa, H.

    2017-12-01

    Bio-plasticizer based polyaniline (PANI)/lithium perchlorate (LiClO4) composites were synthesized by the facile in situ method. The composites were characterized using the Fourier transform infrared spectroscopy (FT-IR) to identify the chemical interactions. A band appeared at 1502 cm-1 due to the presence of the -H2CO- group and CH2 scissor mode vibration for the PAL15% composite. This considerable change in the morphology of LiClO4 homogeneous dispersion in a PANI matrix was investigated by scanning electron microscopy (SEM). The UV-Visible absorption (UV-Vis) showed 300-400 nm attributed to the π- π* transition and exhibited a red shift from 535 nm to 617 nm in the visible region, indicating a decrease in band gap. The variations in dielectric constant with the addition of lithium perchlorate (LiClO4) at different temperatures and in the frequency range of 20 Hz-1 MHz were assessed through impedance analysis. The temperature dependent electrical conductivity increased with increasing temperature as well as dopant concentration. High conductivity of 1.41 × 10-3 S/cm corresponding to activation energy of 0.02 eV and 2.95 eV optical band gap for 15 wt.% of LiClO4 concentration was observed. The cyclic voltammetry measurement revealed a typical rectangular shape of the integral area, suggesting that the composite has strong electrochemical strength and is a possible candidate for electrochemical super capacitor and solar cell applications.

  11. Composite Monopack for 120mm Mortar, With Plastic Pallet Adapters on a 42" x 53" Wooden Pallet, MIL-STD-1660 Tests, "Design Criteria for Ammunition Unit Loads", and Extreme Temperature Tests

    National Research Council Canada - National Science Library

    Dugan, Jeffery L

    2005-01-01

    ... (AMSRD-AAR-AIL-P) to conduct MIL-STD-1660 Tests to determine if the composite monopack for the 120MM mortar, with plastic pallet adapters on a 42" x 53" wooden pallet, designed by US Army ARDEC and manufactured...

  12. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  13. The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizuddin Ab Ghani

    2011-01-01

    Full Text Available Water absorption is a major concern for natural fibers as reinforcement in wood plastic composites (WPCs. This paper presents a study on the comparison analysis of water absorption between two types of twin-screw extruders, namely, counterrotating and corotating with presence of variable antioxidants content. Composites of mixed fibres between rice husk and saw dust with recycled high-density polyethylene (rHDPE were prepared with two different extruder machines, namely, counterrotating and corotating twin screw, respectively. The contents of matrix (30 wt% and fibres (62 wt% were mixed with additives (8 wt% and compounded using compounder before extruded using both of the machines. Samples were immersed in distilled water according to ASTM D 570-98. From the study, results indicated a significant difference among samples extruded by counterrotating and corotating twin-screw extruders. The counterrotating twin-screw extruder gives the smallest value of water absorption compared to corotating twin-screw extruder. This indicates that the types of screw play an important role in water uptake by improving the adhesion between natural fillers and the polymer matrix.

  14. Combating oil spill problem using plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Junaid, E-mail: junaidupm@gmail.com [Department of Chemical Engineering, University of Karachi (Pakistan); Ning, Chao; Barford, John [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); McKay, Gordon [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  15. Combating oil spill problem using plastic waste

    International Nuclear Information System (INIS)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-01-01

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy

  16. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Qingde Li

    2017-01-01

    Full Text Available Red pottery clay (RPC was modified using a silane coupling agent, and the modified RPC (mRPC was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA and ultraviolet (UV-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence and ΔE* (color reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading.

  17. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    Science.gov (United States)

    Golovkina, L. S.; Orlova, A. I.; Boldin, M. S.; Sakharov, N. V.; Chuvil'deev, V. N.; Nokhrin, A. V.; Konings, R.; Staicu, D.

    2017-06-01

    Powders based on the complex garnet-type oxide Y2.5Nd0.5Al5O12 - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm3 (0%)), 97.6% (TD = 4.88 g/cm3 (10%)), 94.4% (TD = 5.06 g/cm3 (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied.

  18. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Golovkina, L.S., E-mail: golovkina_lyudmila@mail.ru [Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod (Russian Federation); Orlova, A.I.; Boldin, M.S.; Sakharov, N.V.; Chuvil' deev, V.N.; Nokhrin, A.V. [Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod (Russian Federation); Konings, R.; Staicu, D. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, 76125 Karlsruhe (Germany)

    2017-06-15

    Powders based on the complex garnet-type oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm{sup 3} (0%)), 97.6% (TD = 4.88 g/cm{sup 3} (10%)), 94.4% (TD = 5.06 g/cm{sup 3} (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied. - Highlights: •Powders were prepared using wet chemistry methods. •Ceramics were sintering by SPS method (ρ{sub rel} ∼ 99%); t{sub shrinkage} < 10 min. •By increasing Ni concentration in composites, their fracture toughness was enhanced. •Thermal conductivity increases with elevated concentration of Ni.

  19. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization

    NARCIS (Netherlands)

    Brouwer, de J.A.M.; Schellekens, M.A.J.; Klumperman, B.; Monteiro, M.J.; German, A.L.

    2000-01-01

    Reversible addn.-fragmentation chain transfer (RAFT) was applied to the copolymn. of styrene and maleic anhydride. The product had a low polydispersity and a predetd. molar mass. Novel, well-defined polyolefin-based block copolymers were prepd. with a macromol. RAFT agent prepd. from a com.

  20. Radiation Oxidation Mechanisms in Polyolefins Studied by C-13 Isotopic Labeling

    International Nuclear Information System (INIS)

    Clough, R.L.

    2006-01-01

    Control of oxidative degradation is a critical consideration in most applications involving polymers and radiation. In radiation crosslinking or sterilization, or in the use of polymers in radiation environments (such as nuclear plants), the objective is to minimize degradation as much as possible. In other applications, a controlled, partial degradation is desired to alter processing properties, or to enhance adhesion or solubility. To gain more understanding of the complex processes of radiation oxidation, samples of one important commercial polyolefin, polypropylene, were synthesized in which the three different carbon atoms along the chain were selectively labeled with carbon-13. These samples were subjected to radiation under inert and air atmospheres, and to post-irradiation thermal exposure in air at various temperatures. Analysis of macromolecular radiation-oxidation products was carried out using 13 C NMR and FTIR. Time-dependent plots of oxidation products have been obtained from the NMR measurements, including the post-irradiation oxidation of a sample held at room temperature in air that has been monitored for 2 years. Analysis of volatile oxidation products (CO, CO 2 , and small organic molecules) was accomplished with gas chromatography / mass spectroscopy. The position of the 13 C labels in the degradation products, have been traced back to their positions of origin on the macromolecule, providing insights into the chemical reaction mechanisms through which the products were formed. The major solid-phase products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of macromolecular products arising from reactions at the methyl side chain. Significant temperature-dependent differences are

  1. Development of optical marker for polyolefin processes; Desenvolvimento de marcador optico para processamento de poliolefinas

    Energy Technology Data Exchange (ETDEWEB)

    Marchini, Leonardo Guedes

    2013-08-01

    Research and publications about luminescent polymers have been developed in the last years for the academic innovation; however the industrial application has been very limited in this area. Processed Optical markers are few explored due the difficult to process luminescent polymeric materials with stable luminescence. The materials used to process luminescent polypropylene (PP) were polyamide 6 (PA6) doped with europium complex [Eu(tta){sub 3}(H{sub 2}O){sub 2}] obtained through the dilution and casting process. The polyolefins because they are inert, do not fit the common procedure of doping, in consequence, in this work luminescent polypropylene was indirectly prepared by polyamide 6 doped with europium complex through extrusion process. Product characterization was done using Thermal gravimetry analysis (TG), Differential Scanning Calorimetric (DSC), X-Ray Diffraction (XRD), Infrared spectroscopy (FTIR) and spectro fluorescence of emission and excitation. The blend PP/PA6:Eu(tta){sub 3} presented luminescent properties, after semi-industrial process, as observed in the narrow bands of intra configuration transitions- 4f{sup 6} relatives to energy levels {sup 7}F{sub 0} {yields} {sup 5}L{sub 6} (394nm), {sup 7}F{sub 0} {yields} {sup 5}D{sub 3} (415nm), {sup 7}F{sub 0} {yields} {sup 5}D{sub 2} (464nm), {sup 7}F{sub 0} {yields} {sup 5}D{sub 1} (525nm) e {sup 7}F{sub 0} {yields} {sup 5}D{sub 0} (578nm) of emission spectrum. Red light of the pellets or film is emitted when excited in UV lamp (365nm). TG results showed under O{sub 2} atmosphere that PP doped with PA6:Eu(tta){sub 3} was more stable than pure PP. In this work was processed luminescent PP/PA6:Eu(tta){sub 3} with properties of thermal and photo stability which can be used as optical marker in polymer processing. (author)

  2. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  4. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  5. Effect of ionizing radiation on the properties of prepared plastic/starch blends and their applications as biodegradable materials

    International Nuclear Information System (INIS)

    Khalil, S.A.

    2010-01-01

    Blends based on different ratios of plasticised starch (PLST), low density poly-ethyleen (LDPE) were prepared by mixing in extrouder. The LDPE/PLST/POMA (poly-olefin maleic anhydride) and LDPE/PLST/TMPTA (tri-methylol propane tri-acrylate) were exposed to different doses of electron beam. The effect of mixing and E-Beam irradiation on the thermal, mechanical, water absorption, and structure morphology properties were investigated. The results showed that the addition of compatibilizers and E-Beam irradiation improve all the physical properties, which provides suitable material based on natural polymer for biodegradable plastic.

  6. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  7. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  8. Evaluation of metal ion absorptive characteristics of three types of plastic sample bags used for pecipitation sampling

    Science.gov (United States)

    Good, A.B.; Schroder, L.J.

    1984-01-01

    Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.

  9. PLASTIC SURGERY

    African Journals Online (AJOL)

    Department of Plastic and Reconstructive Surgery Sefako Makgatho Health Science University, ... We report on a pilot study on the use of a circumareolar excision and the use of .... and 1 gynecomastia patient) requested reduction in NAC size.

  10. The study of different methods of bio-liquids production from wood biomass and from biomass/polyolefine mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N. [Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, 660049 Krasnoyarsk, K. Marx str., 42 (Russian Federation); Siberian Federal University, Svobodny, 79, 660041 Krasnoyarsk (Russian Federation); Sharypov, V.I.; Kuznetsova, S.A.; Taraban' ko, V.E.; Ivanchenko, N.M. [Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, 660049 Krasnoyarsk, K. Marx str., 42 (Russian Federation)

    2009-08-15

    The different methods of wood biomass thermal liquefaction at atmospheric and elevated pressures were investigated in order to select the more effective one. Wood biomass liquefaction by melted formate/alkali mixtures and with the use of metallic iron/Na{sub 2}CO{sub 3} system is carried out at low pressures. But these methods give only moderate yield of bio-liquids. The highest yield of bio-liquid was obtained in the process of biomass dissolvation in methanol media in the presence of Zn-Cr-Fe catalyst at 20 MPa. Co-pyrolysis and co-hydropyrolysis of biomass/polyolefine mixtures makes it possible to obtain the rather high yield of bio-liquid at the moderate pressures (3 MPa). (author)

  11. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  12. Use of the fuel obtained from waste plastics as a mixture with diesel and biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, Z.; Zelazo, P. [Lublin Univ. of Technology (Poland)

    2013-06-01

    The researches concerning the use of fuel derived from waste plastics and biodiesel have been presented in the paper. The biodiesel and the fuel obtained from waste plastics were both used as fuel components. The bio-admixture in the fuel was FAME, STING and rape oil. The catalytic cracking of polyolefin's was the source of second fuel admixture. The physical properties of analyzed components of the fuel have been presented. The operational parameters of direct injection diesel engine fuelled with tested fuel blends have been set out. The principles of fuel mixture preparation has been also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels. (orig.)

  13. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  14. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  15. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  16. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  17. Plastics and beaches: A degrading relationship

    International Nuclear Information System (INIS)

    Corcoran, Patricia L.; Biesinger, Mark C.; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth

  18. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  19. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  20. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  1. Pervasive plastic

    Science.gov (United States)

    2018-05-01

    Human manipulation of hydrocarbons — as fuel and raw materials for modern society — has changed our world and the indelible imprint we will leave in the rock record. Plastics alone have permeated our lives and every corner of our planet.

  2. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  3. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  4. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  5. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  6. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems

    Directory of Open Access Journals (Sweden)

    Chen FC

    2016-06-01

    Full Text Available Fu-chao Chen,1 Jun Zhu,1 Bin Li,1 Fang-jun Yuan,1 Lin-hai Wang2 1Department of Pharmacy, Dongfeng Hospital, 2Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China Background: Mixing 5-hydroxytryptamine-3 (5-HT3 receptor antagonists with patient-controlled analgesia (PCA solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration.Materials and methods: Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method.Results: All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period.Conclusion: Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C. Keywords: tramadol, ondansetron, granisetron

  7. Evaluation of residual stresses in composite materials by using neutron diffraction; study of elasto-plasticity; Etude des composites a matrice metallique par la technique de la diffraction de neutrons: analyse du comportement elastoplastique et evaluation des contraintes residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Levy-Tubiana, R

    1999-11-05

    This work deals with the study of Metal Matrix Composites (MMC) using neutrons diffraction method and the analysis of the elastoplastic behavior in such materials. First, we evaluated macro-stresses in aluminium MMC reinforced with 17%vol. of SiC particles. One of the analyzed sample has been 4 point bending deformed, measurements have been performed after relaxation. The difference between the coefficients of thermal expansion constrains the matrix to be in tensile state and the particles in compressive state in the sample which has not be deformed. In the sample deformed, the MMC response is predicted by the science of Resistance Materials applied to a bent bar. We assume that macro-stresses are the sum of stresses with different origins (elastic, plastic, thermal mismatch): elastic mismatch is evaluated by Eshelby model and we determined micro-stresses in the unbent bar: they are equivalent and constant along width direction. For the bent bar, we observe relaxation of thermal stresses in the surface region. Theses results are confirmed by measurements of tensile/compressive sample using neutrons diffraction method. We also observed the influence of mechanical and thermal treatment on such MMC: the shear stress (established by the auto-coherent model) depends only on the way of cooling. Finally, a study was performed on titanium MMC for SNECMA on rotor beings used in the gas turbine engine industry. Evolution of stresses between felloe and boring is confirmed by a finite elements modeling and they are the first experimental results in this application. (author)

  8. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  10. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    International Nuclear Information System (INIS)

    Thilly, Ludovic; Van Petegem, Steven; Renault, Pierre-Olivier; Lecouturier, Florence; Vidal, Vanessa; Schmitt, Bernd; Van Swygenhoven, Helena

    2009-01-01

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, θ a = dσ a /dε 0 , becomes smaller than one third of the macroscopic elastic modulus.

  11. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, Ludovic, E-mail: ludovic.thilly@univ-poitiers.fr [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Van Petegem, Steven [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Renault, Pierre-Olivier [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Lecouturier, Florence [Laboratoire National des Champs Magnetiques Pulses, UPS-INSA-CNRS, 31400 Toulouse (France); Vidal, Vanessa [CROMeP, ENSTIMAC, Campus Jarlard, 81013 Albi (France); Schmitt, Bernd; Van Swygenhoven, Helena [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland)

    2009-06-15

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, {theta}{sub a} = d{sigma}{sub a}/d{epsilon}{sub 0}, becomes smaller than one third of the macroscopic elastic modulus.

  12. Estudo do uso de plastificantes de fontes renovável em composições de PVC Study of the use of plasticizer from renewable sources in PVC compositions

    Directory of Open Access Journals (Sweden)

    Emerson Madaleno

    2009-01-01

    compositions of flexible PVC - based on two vegetable plasticizers from renewable sources (modified vegetable oil - OVM and epoxidized modified vegetable oil - OVME, in addition to two conventional petrochemical plasticizers, called di(2-ethylhexyl phthalate-(DEHP and di(2-ethylhexyl adipate-(DEHA. No significant differences were observed in the mechanical behavior of the compositions evaluated. The plasticizers affected the hardness and chemical resistance to n-heptane for the compositions. The epoxi group and the high molar mass from vegetable plasticizers showed better compatibility with the PVC resin. The analyses by SEM showed a probable exudation of OVM from the PVC matrix.

  13. Behavior of a New Elastomeric material used as polyolefinic geo membrane in waterproofing; Comportamiento de un nuevo material elastomerico utilizado como geomembrana poliolefinica en impermeabilizacion

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Aguilar, E.; Vara, T. A; Soriano, J.; Garcia, F.; Castillo, F.

    2011-07-01

    Two decades ago that Balsas de Tenerife (BALTEN) and the Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), in its experimental field of the south of the Tenerife Island have installed a series of materials to known their behaviour over time. These products among which was placed over a dozen years ago, on an elastomeric polyolefin. This work presents the performance of this synthetic geo membrane, focusing on the evolution in the time of the tensile properties static puncture, low temperature folding, dynamic impact, joint strength (shear and peeling test), optical microscopy of reflection nd scanning electron microscopy. (Author) 11 refs.

  14. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    Science.gov (United States)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  15. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  16. Physicochemical stability of ternary admixtures of butorphanol, ketamine, and droperidol in polyolefin bags for patient-controlled analgesia use

    Directory of Open Access Journals (Sweden)

    Fang BX

    2016-11-01

    Full Text Available Baoxia Fang,1 Linhai Wang,2 Junfeng Gu,3 Fuchao Chen,1 Xiao-ya Shi1 1Department of Pharmacy, Dongfeng Hospital, 2Department of Pharmacy, 3Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Hubei, People’s Republic of China Background: Delivery of drug admixtures by intravenous patient-controlled analgesia is a common practice for the management of postoperative pain; however, analytical confirmation of the compatibility and stability of butorphanol tartrate, ketamine hydrochloride, and droperidol combined in ternary admixtures is not available.Methods: Butorphanol tartrate, ketamine hydrochloride, and droperidol have been examined for compatibility and stability when combined with 0.9% sodium chloride injection stored at 4°C and 25°C with light protection for a total of 14 days. Concentrations were 0.067 mg/mL, 1.33 mg/mL, and 0.033 mg/mL for butorphanol tartrate, ketamine hydrochloride, and droperidol, respectively. Drug concentrations were determined using high-performance liquid chromatographic analysis.Results: All three drugs were very stable (>97% at 4°C and 25°C for 14 days. The ternary admixtures were initially clear and colorless throughout the observation period, and the pH value did not change significantly.Conclusion: The results confirm that the ternary admixture of butorphanol tartrate 0.067 mg/mL, ketamine hydrochloride 1.33 mg/mL, and droperidol 0.033 mg/mL in 0.9% sodium chloride injection were stable for 14 days when stored in polyolefin bags at 4°C and 25°C and protected from light. Keywords: analgesia, patient-controlled analgesia, drug stability, butorphanol, ketamine, droperidol, HPLC

  17. Stability-indicating HPLC method for the determination of the stability of oxytocin parenteral solutions prepared in polyolefin bags.

    Science.gov (United States)

    Kaushal, G; Sayre, B E; Prettyman, T

    2012-02-01

    Oxytocin is very commonly used in clinical settings and is a nonapeptide hormone that stimulates the contraction of uterine smooth muscles. In this study the stability of extemporaneously compounded oxytocin solutions was investigated in polyolefin bags. The sterile preparations of oxytocin were compounded to the strength of 0.02 U/mL in accordance with United States Pharmacopeia (USP) standards. In order to carry out the stability testing of these parenteral products, the solutions were stored under three different temperature conditions of -20°C (frozen), 2-6°C (refrigerated), and 22-25°C (room temperature). Three solutions from each temperature were withdrawn and were assessed for stability on days 0, 7, 15, 21, and 30 as per the USP guidelines. The assay of oxytocin was examined by an HPLC method at each time point. No precipitation, cloudiness or color change was observed during this study at all temperatures. The assay content by HPLC revealed that oxytocin retains greater than at least 90% of the initial concentrations for 21 days. There was no significant change in pH and absorbance values for 21 days under all the conditions of storage. Oxytocin parenteral solutions in the final concentration of 0.02 U/mL and diluted in normal saline are stable for at least 30 days under frozen and refrigerated conditions for 30 days. At the room temperature, the oxytocin solutions were stable for at least 21 days. The stability analysis results show that the shelf-life of 21 days observed in this study was far better than their recommended expiration dates.

  18. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2016-01-01

    Full Text Available Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE and plastic film waste constituting the following percentages of polyolefin polymers (wt.%: LLDPE (46%, low density polyethylene (LDPE, 51%, high density polyethylene (HDPE, 1%, and polypropylene (PP, 2%. Compounded blends were evaluated for their mechanical and physical (optical properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (% and light transmission (% decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers.

  19. The expression of Helicobacter pylori tfs plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion.

    Science.gov (United States)

    Silva, Bruno; Nunes, Alexandra; Vale, Filipa F; Rocha, Raquel; Gomes, João Paulo; Dias, Ricardo; Oleastro, Mónica

    2017-08-01

    Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains. © 2017 John Wiley & Sons Ltd.

  20. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  1. Industrial Production of Food Plastic Packaging and the Use of Irradiation for Modifying Some Film Properties. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A. V.; Moura, E. A.B., [Nuclear and Energy Research Institute - IPEN - São Paulo (Brazil); Nuclear and Energy National Commission – CNEN, Rio de Janeiro (Brazil)

    2014-07-15

    The four main industrial processes needed to produce a plastic packaging structure are: cast extrusion, blown extrusion, injection moulding, and blown moulding. Since one polymer may not offer all the protection and marketing properties required for a specific food product, multilayer films can be produced. Each layer will be composed of a different polymer and additives to meet all the requirements. Ionizing radiation plays an important role in the packaging industry, especially in the heat shrinkable barrier film production process. In this process, irradiating the film structure is aimed mostly at the crosslinking of the polyolefin. Cross-linked polyolefin-based films can withstand higher stretching rates, be better stabilized, and will both have a high degree of shrinkage and higher shrinking forces. This leads to very thin structures with very well balanced cost-benefit ratios and better final packaging presentation. The use of ionizing radiation for cross-linking polymers is one of the most successful cases of irradiation used by the industry. Besides cross-linking, scission may also occur in the polymeric structure, and it may liberate toxic or unwanted substances that can be transferred to the food. Therefore, irradiated food packaging materials should be thoroughly assessed according to active legislation to guarantee that it will not harm the consumer’s health either in the short or the long term. (author)

  2. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    -element expressions, i.e. Voigt notation. The chapter concludes with a brief overview of implicit integration methods, i.e. tangent stiffness, initial tangent stiffness and Newton-Raphson. Chapter five deals with the more specialized topic of implicit and explicit integration of von Mises plasticity. One of the techniques described is the radial-return method which ensures that the stresses at the end of an increment of deformation always lie on the expanded yield surface. Although this method guarantees a solution it may not always be the most accurate for large deformation, this is one area where reference to alternative methods would have been a helpful addition. Chapter six continues with further detail of how the plasticity models may be incorporated into finite-element codes, with particular reference to the Abaqus package and the use of user-defined subroutines, introduced via a 'UMAT' subroutine. This completes part I of the book. Part II focuses on plasticity models, each chapter dealing with a particular process or material model. For example, chapter seven deals with superplasticity, chapter eight with porous plasticity, chapter nine with creep and chapter ten with cyclic plasticity, creep and TMF. Examples of deep drawing, forming of titanium metal-matrix composites and creep damage are provided, together with further guidelines on the use of Abaqus to model these processes. Overall, the book is organised in a very logical and readable form. The use of simple one-dimensional examples, with full descriptions of tensors and vectors throughout the book, is particularly useful. It provides a good introduction to the topic, covering much of the theory and with applications to give a good grounding that can be taken further with more comprehensive advanced texts. An excellent starting point for anyone involved in research in computational plasticity. (book review)

  3. Benthic plastic debris in marine and fresh water environments.

    Science.gov (United States)

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  4. Long-term stability of morphine hydrochloride in 0.9% NaCl infusion polyolefin bags after freeze-thaw treatment and in polypropylene syringes at 5 degrees C + 3 degrees C.

    Science.gov (United States)

    Hecq, J-D; Godet, M; Gillet, P; Jamart, J; Galanti, L

    2014-01-01

    The aim of this study was to investigate the long-term stability of morphine hydrochloride in 0.9% NaCI infusion polyolefin bags and polypropylene syringes after storage at 5 degrees C + 3 degrees C and to evaluate the influence of initial freezing and microwave thawing on this stability. Ten polyolefin bags and five polypropylene syringes containing 100 mL of 1 mg/mL of morphine hydrochloride solution in 0.9% NaCI were prepared under aseptic conditions. Five polyolefin bags were frozen at -20 degrees C for 90 days before storage. Immediately after the preparation and after thawing, 2 mL of each bag were withdrawn for the initial concentration measurements. All polyolefin bags and polypropylene syringes were then refrigerated at 5 degrees C + 3 degrees C for 58 days during which the morphine concentrations were measured periodically by high-performance liquid chromatography using a reversed-phase column, naloxone as internal standard, a mobile phase consisting of 5% acetonitrile and 95% of KH2PO4 buffer (pH 3.50), and detection with diode array detector at 254 nm. Visual and microscopic observations and spectrophotometric and pH measurements were also performed. Solutions were considered stable if the concentration remained superior to 90% of the initial concentration. The degradation products peaks were not quantitatively significant and were resolved from the native drug. Polyolefin bag and polypropylene syringe solutions were stable when stored at 5 degrees C + 3 degrees C during these 58 days. No color change or precipitation in the solutions was observed. The physical stability was confirmed by visual, microscopic, and spectrophotometric inspection. There was no significant change in pH during storage. Freezing and microwave thawing didn't influence the infusion stability. Morphine hydrochloride infusions may be prepared in advance by centralized intravenous additive service, frozen in polyolefin bags, and microwave thawed before storage under refrigeration

  5. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Bottoli, Federico; Christiansen, Thomas Lundin; Winther, Grethe

    2016-01-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (εeq=0.5) samples of stable stainless steel EN 1.4369 were nitrided...... or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic...... deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone....

  6. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  7. New polyvinylchloride plasticizers

    Directory of Open Access Journals (Sweden)

    MAZITOVA Aliya Karamovna

    2017-11-01

    Full Text Available One of the main large-capacity polymers of modern chemical industry is polyvinylchloride (PVC. Polyvinylchloride is characterized by many useful engineering properties – chemical firmness in different environments, good electric properties, etc. It explains immensely various use of materials on the basis of PVC in different engineering industries. It is cable, building, light industries, mechanical engineering and automotive industry where PVC is widely applied. One of the reasons why PVC production is dramatically growing is that there is no yet other polymer which could be subjected to such various modifying as it is done with PVC. However under normal temperature this polymer is fragile and isn't elastic that limits the field of its application. Rapid growth of production of polyvinylchloride is explained by its ability to modify properties, due to introduction of special additives when processing. Introduction of plasticizers – mostlly esters of organic and inorganic acids – into PVC allows significant changing properties of polymer. Plasticizers facilitate process of receiving polymeric composition, increase flexibility and elasticity of the final polymeric product due to internal modification of polymeric molecule.

  8. ASSESSMENTS OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS OF INCREASED USE, RECYCLING, AND COMBUSTION OF FIBER-REINFORCED, PLASTIC AND METAL COMPOSITE MATERIALS

    Science.gov (United States)

    The purpose of the study is to identify and define future environmental concerns related to the projected utilization, recycling, and combustion of composite materials. The study is being conducted for the Office of Strategic Assessment and Special Studies (OSASS) of the U.S. Env...

  9. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  10. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  11. The future of A-150 TE plastic

    International Nuclear Information System (INIS)

    Goodman, L.J.

    1985-01-01

    For the past 26 years a large number of laboratories have constructed or purchased ionization chambers, proportional counters, and phantoms made of A-150 tissue-equivalent plastic, and they have amassed a considerable amount of data and experience in its properties and uses. The United States National Bureau of Standards is now considering the desirability of supplying A-150 plastic as a research material with a certified homogeneity. We are, however, faced with a problem since the nylon used in A-150 has been discontinued by the manufacturer and the current stock of A-150 has been estimated to be adequate to supply the demand for only the next 2 or 3 years. Thus, it will be necessary to reformulate the plastic mixture we will be using in the future. This situation offers us the opportunity to change the composition of tissue-equivalent plastic to better conform to present-day requirements. To elucidate just what these requirements are, we have conducted a postal survey of the opinions of neutron dosimetrists and the results are presented and discussed. It is concluded that the present A-150 plastic and a future tissue-equivalent plastic formulation should be made research materials, and that a future tissue-equivalent plastic should be made to conform as closely as possible to the soft tissue composition given in ICRU Report 33

  12. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    Science.gov (United States)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  13. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  14. Effect of freezing, long-term storage and microwave thawing on the stability of a mixture of diclofenac and sodium bicarbonate in glucose 5% polyolefin bags.

    Science.gov (United States)

    François, J-H; Hecq, J-D; Vanbeckbergen, D; Jamart, J; Galanti, L

    2009-11-01

    Preparation in advance of intravenous solution could be efficient to improve quality assurance, security, time management and cost saving of drug delivery. The aim of this study was to investigate the stability of a mixture of diclofenac 75 mg/100 ml and sodium bicarbonate 42 mg/100 ml in 5% glucose polyolefin bags after freezing, long-term storage, and microwave thawing. The stability of five polyolefin bags containing approximately 75 mg/100ml of diclofenac and 42 mg/100ml of sodium bicarbonate in 5% glucose prepared under aseptic conditions was studied after freezing for 2 months at -20 degrees C, thawing in a microwave oven with a validated cycle, and stored at 5 + or - 3 degrees C. Diclofenac concentrations were measured by high-pressure liquid chromatography using a reversed-phase column, a mobile phase consisting of 40% of acetonitrile (v/v) in KH(2)PO(4) buffer 0.02 M, pH 8.40 + or - 0.05, and UV detection at 276.0 nm. Visual inspection, microscope observation, spectrophotometric measurements and pH measurement were also performed. No colour change or precipitation occurred in the preparations. No microaggregate was observed with optical microscopy or revealed by a change of absorbance. Based on a shelf-life of 90% residual potency, diclofenac was stable for at least 30 days after freezing and microwave thawing, period where 95% lower confidence limit of the concentration-time profile remained superior to 90% of the initial concentration. During this period, the pH values of drug solutions have not been altered. Within these limits, diclofenac in 5% glucose infusion may be prepared and frozen in advance by a centralized intravenous admixture service, then thawed before use in clinical units.

  15. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  16. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  17. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    Science.gov (United States)

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication.

  18. Thermal conversion of polyolefins/polystyrene ternary mixtures: Kinetics and pyrolysis on a laboratory and commercial scales

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Bičáková, Olga; Šupová, Monika

    2017-01-01

    Roč. 128, November (2017), s. 196-207 ISSN 0165-2370 Institutional support: RVO:67985891 Keywords : kinetics * pyrolysis * oil * waste plastics * GS-MS * TG-MS Subject RIV: DM - Solid Waste and Recycling OBOR OECD: Energy and fuels Impact factor: 3.471, year: 2016

  19. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  20. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium research and development in its 1st year (Development of plastic/metal compositing technology utilizing biogradable natural macromolecules); 1999 nendo seibunkaisei tennen kobunshi wo katsuyoshita plastic to kinzoku no fukugoka gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted to composite plastic and metal into an electromagnetic shield, for which the metal adsorbing function of chitin and chitosan which are biomass to be obtained from crab and lobster shells is utilized. In the research and development of a method for manufacturing chitosan with its molecular weight decreased, it is found that the molecular weight of the substance is effectively lowered by the use of amorphous chitin as the matrix, lysozyme, chitinase, and chitosanase. In the research on the application of biogradable materials to an electromagnetic shield, studies are conducted about the melting and dispersion of biogradable materials into the primer used for pre-coating treatment. In the evaluation of the physical properties and functions of a novel electromagnetic shield system, coatings prepared by use of various chitosan derivatives are tested, and then it is found that a 2,4-dihydroxybenzaldehyde derivative achieves excellent adhesion. Studies are conducted as to how to decompose such a shield system, when experiments are performed for a chitosan derivative film etc. (NEDO)

  1. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  2. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  3. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  4. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  5. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  6. Plastics and Environmental Health: The Road Ahead

    Science.gov (United States)

    North, Emily J.; Halden, Rolf U.

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043

  7. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  8. Manufacture of plastic parts by radiation molding

    International Nuclear Information System (INIS)

    Leszyk, G.M.; Morrison, E.D.; Williams, R.F. Jr.

    1977-01-01

    Thin plastic parts which can have precise tolerances and can be of complex shape are prepared by casting a viscous radiation-curable composition onto a support, such as a moving web of polymeric material, in the shape of the desired part and then irradiating, for example with ultraviolet radiation or high energy electrons, to cause curing of the composition to a solid plastic. The radiation-curable composition is formulated with viscosity and flow characteristics it to be cast in the exact shape of the part desired yet retain this shape during curing while supported only by the surface on which it has been cast. Plastic parts made by this method can be formed entirely of the radiation-curable composition by casting onto a web having a release surface from which the part can be stripped subsequent to curing or can be formed partially from a web material and partially from the radiation-curable composition by casting onto a web to which the composition will bond and subsequently cutting the web into discrete portions which include the cured composition

  9. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  10. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    Science.gov (United States)

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  11. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  12. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  13. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  14. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  15. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements

    Science.gov (United States)

    Krishnan A. Iyer; Gregory T. Schueneman; John M. Torkelson

    2015-01-01

    Cellulose nanocrystals (CNCs), a class of renewable bionanomaterials with excellent mechanical properties, have gained major interest as filler for polymers. However, challenges associated with effective CNC dispersion have hindered the production of composites with desired property enhancements. Here, composites of polypropylene (PP) and low density polyethylene (LDPE...

  16. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  17. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  18. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  19. Long-term Stability of Esomeprazole in 5% Dextrose Infusion Polyolefin Bags at 5 degrees C +/- 3 degrees C after Microwave Freeze-thaw Treatment.

    Science.gov (United States)

    Hecq, Jean-daniel; Rolin, Catherine; Godet, Marie; Gillet, Patricia; Jamart, Jacques; Galanti, Laurence M

    2015-01-01

    To improve quality assurance, security, time management, and cost saving of drug delivery, preparation in advance of intravenous solutions has been developed for several infusion solutions. The objective of this study was to investigate the stability of esomeprazole 0.4 mg/mL and 0.8 mg/mL in 5% dextrose polyolefin bags after freezing, long-term storage, and microwave thawing. The stability of five polyolefin bags containing approximately 0.4 mg/mL of esomeprazole and five other bags containing approximately 0.8 mg/mL in 5% dextrose prepared under aseptic conditions was studied after freezing for 1 month at -20 degrees C, thawing in a microwave oven with a validated cycle, and stored at 5 degrees C +/- 3 degrees C. Esomeprazole concentration was measured by high-pressure liquid chromatography using a reversed-phase column C8, a mobile phase consisting of 35% of acetonitrile and 65% of Na2HPO4 buffer at pH 7.59 with HPO4 (2 M) and NaOH (0.5 M), and detection with a diode array detector at 280 nm. Visual, microscopic, and spectrophotometric observation and pH measurements were also performed. No precipitation occurred in the preparations but little change of color was observed. No microaggregate was observed with optical microscopy or revealed by a change of absorbance at 350, 410, and 550 nm. Based on a shelf life of 90% residual potency, esomeprazole solutions (0.4 and 0.8 mg/mL) were stable for at least 20 or 29 days, respectively, after a freezing and microwave thawing period, where 95% one-side lower confidence limit of the concentration-time profile remained superior to 90% of the initial concentration. During this period, the pH values of drug solutions have been observed to decrease without affecting chromatographic parameters. Within these limits, esomeprazole (0.4 and 0.8 mg/mL) in 5% dextrose infusions may be prepared and frozen in advance by a centralized intravenous admixture service, thawed, and stored at least 20 days at 5 degrees C +/- 3 degrees C

  20. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  1. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  2. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  3. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí , E.; Duarte, Carlos M.; Có zar, A.

    2016-01-01

    to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories

  4. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  5. Recycling and recovery routes of plastic solid waste (PSW): A review

    International Nuclear Information System (INIS)

    Al-Salem, S.M.; Lettieri, P.; Baeyens, J.

    2009-01-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently

  6. Durability of wood-plastic composites

    Science.gov (United States)

    J.J. Morrell; Nicole M. Stark; David E. Pendleton; Armando G. McDonald

    2006-01-01

    Deterioration is broadly defined as any negative effect on the properties of a material. The effects can be due to biological attack or to various non-living agents (sunlight, moisture, temperature), but often, deterioration results from a combination of factors. Nowhere is this more evident than with WPCs, owing to the marriage of dissimilar materials. This article...

  7. Discoloration of plasticized PVC upon irradiation

    International Nuclear Information System (INIS)

    Kojima, Keiichi; Ueno, Keiji; Kumafuji, Hisao.

    1981-01-01

    The effects of the factors on the discoloration of PVC cross-linked by electron irradiation, such as irradiation dose, the polymerization degree of PVC resin, plasticizers and stabilizers, were studied. The composition of the plasticized PVC used for the experiment was 100 PHR of PVC, 50 PHR of plasticizer, 5 PHR of stabilizer and 5 PHR of cross-linking agent (TMPMA). Three samples with the different degree of polymerization of the PVC resin were used, namely 750, 1050 and 2600. As the plasticizers, phthalic acid esters (DBP, DOP, DIDP), trimellitic acid esters (TOTM, n-TOTM), fatty acid esters (DOS, DOZ), polyester and epoxy group plasticizers were used. The irradiation dose for the test was 3, 6 and 12 Mrad. The experimental results are summarized as follows. As the electron irradiation dose was higher, the resultant discoloration was more remarkable, and the optimum irradiation dose was below 6 Mrad. The degree of polymerization of the PVC resin did not affect the irradiation discoloration. However it was noticed that the cross-linking efficiency was better as the degree of polymerization was higher. The cross-linking efficiency was better as the content of plasticizer was more. The fatty acid esters and epoxy groups showed less discoloration and better cross-linking efficiency. Tin and barium-zinc stabilizers were good. (Kako, I.)

  8. Recent advancements and prospects of plastic surgery

    Directory of Open Access Journals (Sweden)

    Xin XING

    2011-09-01

    Full Text Available Objective To summarize the recent advancements and developmental prospects of plastic surgery worldwide,and to describe the future directions,aims,and highlights of Chinese military plastic surgery.Methods Relevant articles published in the last five years were retrieved through a search in PubMed,Medline,and CMCC.A statistical survey was conducted to summarize the achievements obtained by the Chinese military plastic surgery unit in the last five years.Results Considerable progress has been achieved in both clinical treatment and basic research of plastic surgery in the past five years.Its important role in the early treatment of combat injury and trauma has been recognized and emphasized.Chinese military plastic surgery has achieved considerable accomplishments in the last five years,especially in chronic wound repair;mechanism,prevention,and treatment of explosive soft tissue injuries and seawater immersion wounds;and new remedies of maxillofacial traumatic deformity,composite facial tissue allograft,and so on.Conclusions The repair and reconstruction of tissue defect and deformity caused by war injury and trauma will be the future major research direction of military plastic surgery.Research work should focus on tissue engineering,composite tissue allograft,stem cell therapy,mechanism of abnormal scar formation,among others,to solve the clinical problems of destructive facial injuries,extensive thora-abdominal wall defects,chronic ulcer,abnormal scars,and so on.Furthermore,plastic surgeons should fully utilize their special skills and take active part in the early treatment of war injury and trauma.

  9. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    Science.gov (United States)

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  10. Mechanical Properties and Weathering Behavior of Polypropylene-Hemp Shives Composites

    Directory of Open Access Journals (Sweden)

    Marcel Ionel Popa

    2013-01-01

    Full Text Available This paper presents the obtaining and the characterization of composites with polypropylene matrix and hemp shives as filler in different ratios and containing poly(propylene-co maleic anhydride (MAH-PP 3% wt as compatibility agent. The weathering behavior of the composite enclosing 60% hemp shives, performed after the exposure to UV radiations at different exposure times, was evaluated. The changes in the chemical and morphological structures were investigated by FT-IR and RAMAN spectroscopies and AFM microscopy. The mechanical characteristics of the composites were determined before and after an artificial aging process, and they are within the limits of the values reported for polyolefin-based composites and materials with natural fillers. During the accelerated weathering process, the correlation between the chemical degradation of the main components of the composite and the modification of the mechanical properties after the process of aging has been observed.

  11. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  12. Antifriction basalt-plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  13. FY 2000 research cooperation project on plastic processing technology/quality inspection technology; 2000 nendo kenkyu kyoryoku jigyo. Plastic kako gijutsu hinshitsukensa gijutsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  14. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  15. Global change and the evolution of phenotypic plasticity in plants.

    Science.gov (United States)

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  16. Computational Composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.

    to understand the computer as a material like any other material we would use for design, like wood, aluminum, or plastic. That as soon as the computer forms a composition with other materials it becomes just as approachable and inspiring as other smart materials. I present a series of investigations of what...... Computational Composite, and Telltale). Through the investigations, I show how the computer can be understood as a material and how it partakes in a new strand of materials whose expressions come to be in context. I uncover some of their essential material properties and potential expressions. I develop a way...

  17. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  18. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  19. Plastics: Friend or foe?

    Directory of Open Access Journals (Sweden)

    O P Gupta

    2018-01-01

    Full Text Available Plastics has been playing a very significant role in our life. Being light weight, inexpensive and heving good insulating properties it is being used in all aspects of life, from clothes to contact lenses and from mobile phones to automobiles as well as in medical equipments, However it is not biodegradable, and while degrading to fragments it gets converted in to microplastics and nanoplastics The plastic waste is being recognized as an environmental hazard, since these micr- and nanoplastics find way from landfills to water and foods, It is said that we are not only using, but we are eating, drinking and even braething the plastics. These microplastics in body release certain hazardous chemicals and found to be disrupting functions of certain endocrine organs. Whether the rising prevalence of Diabetes, thyroid disorders or infirtility etc., are realated to the plastics?

  20. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  1. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  2. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  3. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí, E.

    2016-12-02

    Marine plastic debris spans over six orders of magnitude in lineal size, from microns to meters. The broad range of plastic sizes mainly arises from the continuous photodegradation and fragmentation affecting the plastic objects. Interestingly, this time-dependent process links, to some degree, the size to the age of the debris. The variety of plastic sizes gives the possibility to marine biota to interact and possible take up microplastics through numerous pathways. Physical processes such as sinking and wind-induced transport or the chemical adsorption of contaminants are also closely related to the size and shape of the plastic items. Likewise, available sampling techniques should be considered as partial views of the marine plastic size range. This being so and given that the size is one of the most easily measurable plastic traits, the size spectrum appears as an ideal frame to arrange, integrate, and analyze plastic data of diverse nature. In this work, we examined tens of thousands of plastic items sampled from across the world with the aim of (1) developing and standardizing the size-spectrum tool to study marine plastics, and (2) assembling a global plastic size spectrum (GPSS) database, relating individual size measurements to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories for items larger than 1 cm and a clear dominance (~90%) of hard fragments below, except for the size interval corresponding to microbeads (around 0.5 mm). GPSS database depicts a comprehensive size-based framework for analyzing the marine plastic pollution, enabling the comparison of size-related studies or the testing of hypothesis.

  4. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  5. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  6. Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films and metallization of obtained films

    International Nuclear Information System (INIS)

    Al'-Saed Abdel' Aal'; Nurkeeva, Z.; Khutoryanskij, V.; Mun, G.; Sangajlo, M.

    2003-01-01

    Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films using γ-radiation and accelerated electrons has been studied. IR-spectroscopy is used to confirm the structure of grafted films. A combination of and metallization of obtained films. A combination of gravimetric and potentiometric techniques is applied to determine the fraction of each monomer in graft copolymer. Water uptake and contact angle measurements confirmed that the grafting process improve the hydrophilic properties of obtained films. The obtained materials are metallized by electroless copper plating. The metallized films have good electro conductive properties. (author)

  7. Plastics Distribution and Degradation on Lake Huron Beaches

    Science.gov (United States)

    Zbyszewski, M.; Corcoran, P.

    2009-05-01

    The resistivity of plastic debris to chemical and mechanical weathering processes poses a serious threat to the environment. Numerous marine beaches are littered with plastic fragments that entangle and become ingested by organisms including birds, turtles and plankton. Although many studies have been conducted to determine the amount and effects of plastics pollution on marine organisms, relatively little is known about the distribution and quantity of polymer types along lacustrine beaches. Plastic particles sampled from selected beaches on Lake Huron were analyzed using Fourier Transform Infrared Spectroscopy (FTIR) to determine polymer composition. The majority of the plastic fragments are industrial pellets composed of polypropylene and polyethylene. Varying degrees of oxidation are indicated by multiple irregular peaks in the lower wavenumber region on the FTIR spectra. The oxidized pellets also represent the plastic particles with the most pronounced surface textures, as identified using Scanning Electron Microscopy (SEM). Crazes and flakey, fibrous, or granular textures are consistent with chemical weathering processes, whereas gauges and pits occur through abrasion during mechanical weathering. Further textural and compositional analysis will indicate which polymer types are more resistant to weathering processes. Additional investigation of the distribution of plastic debris along the beaches of Lake Huron will indicate the amount and primary transport directions of resistant plastic debris polluting one of Ontario's Great Lakes.

  8. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  9. Effect of freeze-thawing on the long-term stability of calcium levofolinate in 5% dextrose stored on polyolefin infusion bags.

    Science.gov (United States)

    Lebitasy, M; Hecq, J-D; Athanassopoulos, A; Vanbeckbergen, D; Jamart, J; Galanti, L

    2009-08-01

    Calcium levofolinate infusions could be prepared in advance by a centralized intravenous additive service (CIVAS) to improve safety and time management. To investigate the effect of freezing, microwave thawing and long-term storage at 5 +/- 3 degrees C on the stability of calcium levofolinate in 5% dextrose solution. Solutions of 250 mL of 5% dextrose in polyolefin bags (n = 5) containing approximately 400 mg of calcium levofolinate were prepared under aseptic conditions and frozen for 95 days at -20 degrees C. The solutions were then thawed using microwaves and stored at 5 +/- 3 degrees C for 1 month. The calcium levofolinate concentrations were measured by high performance liquid chromatography (HPLC). Visual inspection was performed and pH was measured periodically during the storage at 5 +/- 3 degrees C. Stability of the solution was defined as a concentration remaining superior to 90% of the initial concentration by regression analysis as recommended by the Food and Drug Administration (FDA). No colour change or precipitation in the solutions was observed. Calcium levofolinate infusions were stable when stored at 5 +/- 3 degrees C during 1 month after freeze-thaw treatment. Throughout this period, the lower confidence limit of the estimated regression line of concentration-time profile remained above 90% of the initial concentration. Slight change in pH values from 6.52 +/- 0.01 to 6.50 +/- 0.01 during storage time did not affect retention time on HPLC and has no clinical consequence, the solutions remaining in the acceptable range for perfusion (4

  10. FY 2000 research cooperation project on plastic processing technology/quality inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  11. How quickly do albatrosses and petrels digest plastic particles?

    Science.gov (United States)

    Ryan, Peter G

    2015-12-01

    Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fabrication of plastic objects by radiation-induced molding

    International Nuclear Information System (INIS)

    Leszyk, G.M.; Morrison, E.D.; Williams, R.F. Jr.

    1976-01-01

    A process is described for fabricating thin plastic objects. It comprises the following successive operations: a supporting tray is moved into a pouring area; a succession of components of viscous composition in the predetermined shape corresponding to the objects to be produced is poured on to this supporting tray, the viscosity of the composition being such that these distinct components retain their poured shape when they are no longer supported on the supporting tray; the supporting tray bearing the distinct viscous composition components is then moved into a hardening area; the distinct viscous composition components are then irradiated in this hardening area so as to transform them into solid plastic objects. The supporting tray carrying the separate plastic objects, now solid, is withdrawn from the hardening area [fr

  13. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  14. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  15. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  16. Plastics control paraffin buildup

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    Paraffin buildup in producing oil wells has been virtually eliminated by the use of plastic-coated sucker rods. The payout of the plasticing process is generally reached in less than a year, and the paraffin buildup may be inhibited for 10 yr or longer. Most of the plants applying plastic coatings to sucker rods are now fully automated, though a few still offer the hand-sprayed coating that some operators prefer. The several steps involved are described. The ideal plastic for the job is resistant to chemicals at high and low temperatures, flexible, has good adhesion, abrasion resistance, impact resistance, and a smooth glossy finish. The phenol aldehyde and epoxy resins presently offered by the industry fulfill these specifications very well; the multicoating and multibaking techniques improve their performance. Due to wide variations in the severity of the paraffin problem from one oil field to another, there is no general rule to estimate the possible savings from using plastic-coated sucker rods. The process, however, does appear to do a remarkable job in controlling paraffin buildup wherever it is a problem in producing oil by pump.

  17. Investigation into Plastic Cards

    Directory of Open Access Journals (Sweden)

    Neringa Stašelytė

    2015-03-01

    Full Text Available The article examines the strength of laminating plastic cards at different lamination temperatures. For investigation purposes, two types of plastic substrate and films have been used. Laminate strength has been tested (CMYK to establish the impact of colours on the strength of laminate. The paper compares inks supplied by two different producers. The colour characteristics of CIE L*a*b* space before and after the lamination process have been found. According to lamination strength and characteristics of the colours, the most suitable inks, temperature and films have been chosen.

  18. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  19. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  20. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  1. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  2. Plastic Surgery: Tackling Misconceptions

    African Journals Online (AJOL)

    will succeed. First impressions tend to last, and if young people's first impression of plastic surgeons is that they spend much of their time doing cosmetic surgery then this is a first impression that might be long ... Res 2014;4 Suppl S3:169‑70. Access this article online. Quick Response Code: Website: www.amhsr.org. DOI:.

  3. Biobased Plastics 2012

    NARCIS (Netherlands)

    Bolck, C.H.; Ravenstijn, J.; Molenveld, K.; Harmsen, P.F.H.

    2011-01-01

    Dit boek geeft inzicht in de huidige op de markt verkrijgbare biobased plastics en de te verwachten ontwikkelingen. Er wordt gekeken naar zowel thermoplastische als thermohardende materialen. Het boek biedt inzicht in de productie, verwerking en eigenschappen van de verschillende types. Daarnaast

  4. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  5. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  6. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  7. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  8. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  9. Transition from glass to graphite in manufacture of composite aircraft structure

    Science.gov (United States)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  10. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  11. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  12. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  13. Compensatory plasticity: time matters

    Directory of Open Access Journals (Sweden)

    Latifa eLazzouni

    2014-06-01

    Full Text Available Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioural outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioural enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. Plasticity in the blind is also accompanied with neurochemical and morphological changes; both intrinsic connectivity and functional coupling at rest are altered but are likewise dependent on different sensory

  14. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel...... source of information about real time degradation in terrestrial and marine microenvironments that seems likely to contribute to the conservation of similar materials in contemporary artworks....

  15. Plastic footwear for leprosy.

    Science.gov (United States)

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties.

  16. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S

    1972-05-01

    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  17. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching.

    Science.gov (United States)

    Neubauer, Nicole; Scifo, Lorette; Navratilova, Jana; Gondikas, Andreas; Mackevica, Aiga; Borschneck, Daniel; Chaurand, Perrine; Vidal, Vladimir; Rose, Jerome; von der Kammer, Frank; Wohlleben, Wendel

    2017-10-17

    The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe 2 O 3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m 2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).

  18. Monitoring the abundance of plastic debris in the marine environment.

    Science.gov (United States)

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  19. Plastic Foam Withstands Greater Temperatures And Pressures

    Science.gov (United States)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  20. Coliquefaction of coal, tar sand bitumen and plastic (interaction among coal, bitumen and plastic); Sekitan/tar sand bitumen/plastic no kyoekika ni okeru kyozon busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Okuyama, Y.; Matsubara, K. [NKK Corp., Tokyo (Japan); Kamo, T.; Sato, Y. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    For the improvement of economy, coliquefaction of coal, tar sand bitumen and plastic was performed under low hydrogen pressure, to investigate the influence of interaction among these on the liquefaction characteristics. For comparison, coliquefaction was also performed under the hydrogen pressure same as the NEDOL process. In addition, for clarifying its reaction mechanism, coliquefaction of dibenzyl and plastic was performed as a model experiment, to illustrate the distribution of products and composition of oil, and to discuss the interaction between dibenzyl and various plastics, and between various plastics. Under direct coal liquefaction conditions, coprocessing of Tanito Harum coal, Athabasca tar sand and plastic was carried out under low hydrogen pressure with an autoclave. The observed value of oil yield was higher than the calculated value based on the values from separate liquefaction of coal and plastic, which suggested the interaction between coal and the mixed plastic. The results of coliquefaction of coal, tar sand bitumen and plastic could be explained from the obtained oil yield and its composition by the coliquefaction of dibenzyl and plastic. 2 refs., 3 tabs.

  1. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  3. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  4. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  5. Effects of gamma-irradiation of plastics on migration of constituents into test foods

    International Nuclear Information System (INIS)

    Figge, K.; Freytag, W.

    1977-01-01

    Test films prepared from polyethylene (LD- and HD-PE), polypropylene (PP), polystyrene (St- and HI-PS) and polyvinylchloride (rigid PVC) compositions under addition of 2,6-di-tert-butyl-4-methyl[ 14 C]-phenol(I), 3-(3,5-di-tert-butyl -4-hydroxyphenyl)- stearyl-propionate[3- 14 C] (II), n-butyl-stearate[1- 14 C] (III) di-n-octyl[1- 14 C]-tin-2 -ethyl-hexyl-di-thioglycolate inclusive of the corresponding mono-n-octyl[1- 14 C]-tin compound (IV-Oc), di-n-octyl-tin-2-ethylhexyl -di-thioglycolate[2- 14 C] inclusive of the corresponding 2-ethylhexyl-tri -thioglycolate[2- 14 C] (IV-S) or of stearyl alcohol [1- 14 C] (V) respectively, were sterilized in a 60 Co irradiation unit with a radiation dosage of 2,5 Mrad. Then, the irradiated films as well as non-treated reference films were kept in one-sided contact with the test foodstuffs 'dist. Water' and HB 307 (test fat) for 10 days at 40 0 C. Under these conditions the additives I and II migrated from the PP, HD-PE and LD-PE test films into the test fat HB 307 in amounts of 10 to 50%. Migration into distilled water was only 0.05 to 4.6%. The migration of the additives I and II from the irradiated polyolefin test films into the test fat HB 307 was by 8 to 38% lower than that from the corresponding non-irradiated films. In contrast to this, both additives migrated distinctly more strongly from the irradiated polyolefin test films into distilled water, i.e. 1.9 to 8.7 times stronger than from the non-irradiated films. The migration of the additives I to V from the HI-PS St-PS and rigid PVC test films into the two test foodstuffs was very low, in most cases below 0.1%. Generally lower amounts of additive migrated from the irradiated films than from the non-irradiated samples. (orig.) [de

  6. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  7. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  8. Long-term stability of temocillin in dextrose 5% and in sodium chloride 0.9% polyolefin bags at 5 ± 3°C after freeze-thaw treatment.

    Science.gov (United States)

    Rolin, C; Hecq, J-D; Tulkens, P; Vanbeckbergen, D; Jamart, J; Galanti, L

    2011-11-01

    The aim of this study was to investigate the stability of a mixture of temocillin 20mg/ml in 5% dextrose and in 0.9% sodium chloride polyolefin bags after freezing, microwave thawing and long-term storage at 5±3°C. The stability of ten polyolefin bags containing 20mg/ml of temocillin, five bags in 5% dextrose and five bags in 0.9% sodium chloride, prepared under aseptic conditions was studied after freezing for 1 month at -20°C, thawing in a microwave oven with a validated cycle, and stored at 5±3°C. Over 30 days, temocillin concentrations were measured by high-pressure liquid chromatography. Visual inspections, microscope observation, spectrophotometric measurements and pH measurements were also performed. No precipitation occurred in the preparations but minor colour change was observed. No microaggregate was observed with optical microscopy or revealed by a change of absorbance. Based on a shelf life of 95% residual potency, temocillin infusions were stable at least 11 days in 5% dextrose and 14 days in 0.9% sodium chloride after freezing and microwave thawing (corresponding at the period where 95% lower confidence limit of the concentration-time profile remained superior to 95% of the initial concentration). During this period, the pH values of drug solutions have been observed to decrease without affecting chromatographic parameters. Within these limits, temocillin in 5% dextrose and in 0.9% sodium chloride infusions may be prepared and frozen in advance by a centralized intravenous admixture service then thawed before use in clinical units. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Physicochemical stability of carfilzomib (Kyprolis®) containing solutions in glass vials, ready-to-administer plastic syringes and infusion bags over a 28-day storage period.

    Science.gov (United States)

    Kim, Sun Hee; Krämer, Irene

    2017-01-01

    Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2-8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.

  10. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  11. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  12. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  13. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  14. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  15. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  16. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  17. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  18. Leaching of plastic polymers by plastic vials used for storing homoeopathic medicines: A preliminary study

    Directory of Open Access Journals (Sweden)

    Neeraj Gupta

    2014-01-01

    Full Text Available Background: In Homoeopathy, plastic containers/vials are used for the storing/dispensing of ethanol-based medicines instead of glass. Various studies have suggested that plastic components that leach out in stored substances tend to cause contamination and may produce adverse effects in living systems. The present study was aimed to find out chemical composition and leaching behaviour of commonly used plastic vials (PVs if any during the storage of ethanol-based homoeopathic medicines in optimal environment. Material and Methods: The experiments were conducted on two sample sets of PVs. Chemical properties of PV were assessed by Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR spectroscopy. PV were cut separately [sample-1 (S-1 and sample-2 (S-2] and immersed in Homoeopathic Grade Ethanol (HGE in conical flask and stored for 7 days at ambient temperature (25° ± 5C with constant rotary shaking. After 7 days, S-1 and S-2 of PV in Homoeopathic Grade Ethanol (HGE were decanted and filtered. Aliquots (A1 and A2 were analysed by proton nuclear magnetic resonance spectroscopy (H 1 NMR. The spectral graph obtained by FTIR-ATR spectroscopy for PV compositions and spectral graph obtained by H 1 NMR spectroscopy for PV ethanol aliquots were examined for PVs material and PV leaching effect in HGE. Results: FTIR-ATR spectra showed that PV are made up of two types of polyolefin′s compounds i.e. Low Density Polyethylene (LDPE and Linear Low Density Polyethylene (LLDPE. Aliquots of PV in HGE showed the presence benzophenone and its methyl derivative, heat and light stabiliser (2, 2, 6, 6-tetramethylpiperidine and amino derivative, antioxidant (4, 4′- thiobis and 2-tertbutyl-5-methylphenol and plasticizer bis 2-Diethylhexyl phthalate (DEHP or Dioctyl phthalate (DOP. Results of study suggest that PVs leach out plastic polymers in HGE. Conclusion: This preliminary experiment suggests that it is not safe to use LDPE/LLDPE plastic for storing

  19. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  20. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.